code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =(DEISMultistepScheduler,) __UpperCAmelCase : Optional[int] =(("""num_inference_steps""", 2_5),) def snake_case ( self , **__a ): __lowerCAmelCase = { "num_train_timesteps": 10_00, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, } config.update(**__a ) return config def snake_case ( self , __a=0 , **__a ): __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __a ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config(**__a ) __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __lowerCAmelCase = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals __lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase , __lowerCAmelCase = sample, sample for t in range(__a , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __lowerCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self ): pass def snake_case ( self , __a=0 , **__a ): __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __a ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) __lowerCAmelCase = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __lowerCAmelCase = new_scheduler.step(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case ( self , __a=None , **__a ): if scheduler is None: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**__a ) __lowerCAmelCase = scheduler_class(**__a ) __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(**__a ) __lowerCAmelCase = scheduler_class(**__a ) __lowerCAmelCase = 10 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ).prev_sample return sample def snake_case ( self ): __lowerCAmelCase = dict(self.forward_default_kwargs ) __lowerCAmelCase = kwargs.pop("num_inference_steps" , __a ) for scheduler_class in self.scheduler_classes: __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**__a ) __lowerCAmelCase = self.dummy_sample __lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__a , "set_timesteps" ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , "set_timesteps" ): __lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCAmelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] __lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] __lowerCAmelCase = scheduler.timesteps[5] __lowerCAmelCase = scheduler.timesteps[6] __lowerCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample __lowerCAmelCase = scheduler.step(__a , __a , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase = self.full_loop(scheduler=__a ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 __lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase = self.full_loop(scheduler=__a ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case ( self ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def snake_case ( self ): self.check_over_configs(thresholding=__a ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , algorithm_type="deis" , solver_order=__a , solver_type=__a , ) def snake_case ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) __lowerCAmelCase = self.full_loop( solver_order=__a , solver_type=__a , prediction_type=__a , algorithm_type=__a , ) assert not torch.isnan(__a ).any(), "Samples have nan numbers" def snake_case ( self ): self.check_over_configs(lower_order_final=__a ) self.check_over_configs(lower_order_final=__a ) def snake_case ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__a , time_step=0 ) def snake_case ( self ): __lowerCAmelCase = self.full_loop() __lowerCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.2_3_9_1_6 ) < 1e-3 def snake_case ( self ): __lowerCAmelCase = self.full_loop(prediction_type="v_prediction" ) __lowerCAmelCase = torch.mean(torch.abs(__a ) ) assert abs(result_mean.item() - 0.0_9_1 ) < 1e-3 def snake_case ( self ): __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(thresholding=__a , dynamic_thresholding_ratio=0 ) __lowerCAmelCase = scheduler_class(**__a ) __lowerCAmelCase = 10 __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase = model(__a , __a ) __lowerCAmelCase = scheduler.step(__a , __a , __a ).prev_sample assert sample.dtype == torch.floataa
57
import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" A__ = BeautifulSoup(requests.get(lowercase_ , params=lowercase_ ).content , '''html.parser''' ) A__ = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) A__ = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCamelCase : Optional[Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 30, """pages""": """3979-3990""", """year""": 2018, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
14
0
'''simple docstring''' A = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowerCAmelCase__ ( lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[str] ): assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _A : Optional[int] = year // 100 _A : Any = (5 * (century % 4) + 2) % 7 _A : str = year % 100 _A : int = centurian % 12 _A : Dict = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _A : str = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _A : List[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A : Tuple = logging.get_logger(__name__) A : Tuple = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __lowerCamelCase ( a_ ): """simple docstring""" a = "longformer" def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[List[int], int] = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 30522 , SCREAMING_SNAKE_CASE : int = 768 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 3072 , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : float = 1e-12 , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : List[Any] , ): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[Any] = attention_window _A : int = sep_token_id _A : Tuple = bos_token_id _A : Any = eos_token_id _A : List[str] = vocab_size _A : Any = hidden_size _A : Optional[int] = num_hidden_layers _A : int = num_attention_heads _A : Dict = hidden_act _A : List[Any] = intermediate_size _A : int = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : int = max_position_embeddings _A : Any = type_vocab_size _A : Dict = initializer_range _A : Any = layer_norm_eps _A : List[Any] = onnx_export class __lowerCamelCase ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : "PretrainedConfig" , SCREAMING_SNAKE_CASE : str = "default" , SCREAMING_SNAKE_CASE : "List[PatchingSpec]" = None): super().__init__(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) _A : Optional[Any] = True @property def A ( self : List[str]): if self.task == "multiple-choice": _A : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ]) @property def A ( self : str): _A : int = super().outputs if self.task == "default": _A : str = {0: 'batch'} return outputs @property def A ( self : List[Any]): return 1e-4 @property def A ( self : Dict): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def A ( self : str , SCREAMING_SNAKE_CASE : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ): _A : Union[str, Any] = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _A : Tuple = torch.zeros_like(inputs['input_ids']) # make every second token global _A : Dict = 1 return inputs
227
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase__ : List[str] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : Tuple ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[Dict[str, int]] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[int, float] = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,**lowerCamelCase__ : List[str] ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = size if size is not None else {'shortest_edge': 256} UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) UpperCAmelCase__ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : int ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Tuple ,): UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase__ = get_resize_output_image_size(lowerCamelCase__ ,size=size['shortest_edge'] ,default_to_square=lowerCamelCase__ ) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Tuple ,): UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCamelCase__ ,size=(size['height'], size['width']) ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : float ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : int ): return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : List[Any] ,): return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[float] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowerCamelCase__ : Union[str, Any] ,): UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ,param_name='crop_size' ) UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: UpperCAmelCase__ = [self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) for image in images] if do_center_crop: UpperCAmelCase__ = [self.center_crop(image=lowerCamelCase__ ,size=lowerCamelCase__ ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=lowerCamelCase__ ,scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] UpperCAmelCase__ = {'pixel_values': images} return BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Tuple] = None ): UpperCAmelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowerCamelCase__ ): UpperCAmelCase__ = target_sizes.numpy() UpperCAmelCase__ = [] for idx in range(len(lowerCamelCase__ ) ): UpperCAmelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=lowerCamelCase__ ) UpperCAmelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCamelCase__ ) else: UpperCAmelCase__ = logits.argmax(dim=1 ) UpperCAmelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
98
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = str(bin(lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase__ = max(len(lowerCamelCase ) , len(lowerCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase ) , b_binary.zfill(lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
98
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''wavlm''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : List[str]=768 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Any=3072 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Optional[Any]=1E-5 , UpperCamelCase__ : Optional[int]="group" , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__ : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : int=False , UpperCamelCase__ : List[Any]=128 , UpperCamelCase__ : Dict=16 , UpperCamelCase__ : List[str]=320 , UpperCamelCase__ : Any=800 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=0.05 , UpperCamelCase__ : List[Any]=10 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Union[str, Any]=10 , UpperCamelCase__ : int=320 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Optional[Any]=100 , UpperCamelCase__ : Any=256 , UpperCamelCase__ : Union[str, Any]=256 , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Optional[Any]="mean" , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Tuple=256 , UpperCamelCase__ : int=(512, 512, 512, 512, 1500) , UpperCamelCase__ : int=(5, 3, 3, 1, 1) , UpperCamelCase__ : List[str]=(1, 2, 3, 1, 1) , UpperCamelCase__ : Union[str, Any]=512 , UpperCamelCase__ : Union[str, Any]=80 , UpperCamelCase__ : Union[str, Any]=0 , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : str=2 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : str=3 , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Union[str, Any]=None , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) __UpperCamelCase =hidden_size __UpperCamelCase =feat_extract_norm __UpperCamelCase =feat_extract_activation __UpperCamelCase =list(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =list(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =list(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =conv_bias __UpperCamelCase =num_buckets __UpperCamelCase =max_bucket_distance __UpperCamelCase =num_conv_pos_embeddings __UpperCamelCase =num_conv_pos_embedding_groups __UpperCamelCase =len(self.conv_dim ) __UpperCamelCase =num_hidden_layers __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =feat_proj_dropout __UpperCamelCase =final_dropout __UpperCamelCase =layerdrop __UpperCamelCase =layer_norm_eps __UpperCamelCase =initializer_range __UpperCamelCase =num_ctc_classes __UpperCamelCase =vocab_size __UpperCamelCase =do_stable_layer_norm __UpperCamelCase =use_weighted_layer_sum __UpperCamelCase =classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase =apply_spec_augment __UpperCamelCase =mask_time_prob __UpperCamelCase =mask_time_length __UpperCamelCase =mask_time_min_masks __UpperCamelCase =mask_feature_prob __UpperCamelCase =mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCamelCase =num_codevectors_per_group __UpperCamelCase =num_codevector_groups __UpperCamelCase =contrastive_logits_temperature __UpperCamelCase =num_negatives __UpperCamelCase =codevector_dim __UpperCamelCase =proj_codevector_dim __UpperCamelCase =diversity_loss_weight # ctc loss __UpperCamelCase =ctc_loss_reduction __UpperCamelCase =ctc_zero_infinity # adapter __UpperCamelCase =add_adapter __UpperCamelCase =adapter_kernel_size __UpperCamelCase =adapter_stride __UpperCamelCase =num_adapter_layers __UpperCamelCase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase =list(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =list(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =list(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =xvector_output_dim @property def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
371
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = {'''configuration_gpt_neox''': ['''GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXConfig''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''GPTNeoXTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXForCausalLM''', '''GPTNeoXForQuestionAnswering''', '''GPTNeoXForSequenceClassification''', '''GPTNeoXForTokenClassification''', '''GPTNeoXLayer''', '''GPTNeoXModel''', '''GPTNeoXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
0
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase ="pt" elif is_tf_available(): __UpperCAmelCase ="tf" else: __UpperCAmelCase ="jax" class a__ ( UpperCAmelCase__ , unittest.TestCase ): lowerCamelCase : Union[str, Any] =PerceiverTokenizer lowerCamelCase : Tuple =False def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" super().setUp() __lowerCamelCase = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def SCREAMING_SNAKE_CASE__ ( self : Dict , **a : str ): """simple docstring""" return self.tokenizer_class.from_pretrained(self.tmpdirname , **a ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : str , a : Any=False , a : Any=20 , a : Union[str, Any]=5 ): """simple docstring""" __lowerCamelCase = [] for i in range(len(a ) ): try: __lowerCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=a ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCamelCase = list(filter(lambda a : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , a ) ) __lowerCamelCase = list(filter(lambda a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a ) , a ) ) if max_length is not None and len(a ) > max_length: __lowerCamelCase = toks[:max_length] if min_length is not None and len(a ) < min_length and len(a ) > 0: while len(a ) < min_length: __lowerCamelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCamelCase = [t[0] for t in toks] # Ensure consistency __lowerCamelCase = tokenizer.decode(a , clean_up_tokenization_spaces=a ) if " " not in output_txt and len(a ) > 1: __lowerCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a ) ) if with_prefix_space: __lowerCamelCase = ''' ''' + output_txt __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) return output_txt, output_ids def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = '''Unicode €.''' __lowerCamelCase = tokenizer(a ) __lowerCamelCase = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded['''input_ids'''] , a ) # decoding __lowerCamelCase = tokenizer.decode(a ) self.assertEqual(a , '''[CLS]Unicode €.[SEP]''' ) __lowerCamelCase = tokenizer('''e è é ê ë''' ) __lowerCamelCase = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded['''input_ids'''] , a ) # decoding __lowerCamelCase = tokenizer.decode(a ) self.assertEqual(a , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowerCamelCase = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on __lowerCamelCase = tokenizer(a , padding=a , return_tensors=a ) self.assertIsInstance(a , a ) if FRAMEWORK != "jax": __lowerCamelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a , a ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowerCamelCase = tokenizer(a , padding=a , return_tensors=a ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , a ) self.assertIn('''attention_mask''' , a ) self.assertNotIn('''decoder_input_ids''' , a ) self.assertNotIn('''decoder_attention_mask''' , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.perceiver_tokenizer __lowerCamelCase = [ '''Summary of the text.''', '''Another summary.''', ] __lowerCamelCase = tokenizer( text_target=a , max_length=32 , padding='''max_length''' , truncation=a , return_tensors=a ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = ''' He is very happy, UNwant\u00E9d,running''' __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) tokenizer.save_pretrained(a ) __lowerCamelCase = tokenizer.__class__.from_pretrained(a ) __lowerCamelCase = after_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) shutil.rmtree(a ) __lowerCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowerCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowerCamelCase = tokenizer.encode(a , add_special_tokens=a ) tokenizer.save_pretrained(a ) __lowerCamelCase = tokenizer.__class__.from_pretrained(a ) __lowerCamelCase = after_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowerCamelCase = tokenizer.__class__.from_pretrained(a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a ) with open(os.path.join(a , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCamelCase = json.load(a ) with open(os.path.join(a , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowerCamelCase = json.load(a ) __lowerCamelCase = [f"""<extra_id_{i}>""" for i in range(1_25 )] __lowerCamelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowerCamelCase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(a , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(a , a ) with open(os.path.join(a , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(a , a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCamelCase = tokenizer_class.from_pretrained( a , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCamelCase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=a )] __lowerCamelCase = tokenizer_class.from_pretrained( a , additional_special_tokens=a , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , '''�''' ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = self.get_tokenizers(fast=a , do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCamelCase = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] __lowerCamelCase = tokenizer.convert_tokens_to_string(a ) self.assertIsInstance(a , a )
67
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
1
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'EncodecFeatureExtractor' SCREAMING_SNAKE_CASE = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Optional[Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.feature_extractor __lowerCAmelCase : Any = False def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Any=True) -> Union[str, Any]: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_SCREAMING_SNAKE_CASE , language=_SCREAMING_SNAKE_CASE , no_timestamps=_SCREAMING_SNAKE_CASE) def __call__( self: Optional[Any] , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Tuple) -> Optional[Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = kwargs.pop("sampling_rate" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = kwargs.pop("text" , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: __lowerCAmelCase : List[str] = args[0] __lowerCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: __lowerCAmelCase : int = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is not None: __lowerCAmelCase : Tuple = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCAmelCase : Optional[Any] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __lowerCAmelCase : Dict = audio_inputs["padding_mask"] return inputs def _SCREAMING_SNAKE_CASE ( self: str , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Dict = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = kwargs.pop("padding_mask" , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: __lowerCAmelCase : List[Any] = args[0] __lowerCAmelCase : str = args[1:] if audio_values is not None: return self._decode_audio(_SCREAMING_SNAKE_CASE , padding_mask=_SCREAMING_SNAKE_CASE) else: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> str: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional = None) -> List[np.ndarray]: """simple docstring""" __lowerCAmelCase : Tuple = to_numpy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = audio_values.shape if padding_mask is None: return list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = to_numpy(_SCREAMING_SNAKE_CASE) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCAmelCase : Optional[int] = seq_len - padding_mask.shape[-1] __lowerCAmelCase : Optional[Any] = 1 - self.feature_extractor.padding_value __lowerCAmelCase : Dict = np.pad(_SCREAMING_SNAKE_CASE , ((0, 0), (0, difference)) , "constant" , constant_values=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = audio_values.tolist() for i in range(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCAmelCase : Optional[int] = sliced_audio.reshape(_SCREAMING_SNAKE_CASE , -1) return audio_values
58
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __snake_case : str = logging.get_logger(__name__) # General docstring __snake_case : Optional[int] = 'PoolFormerConfig' # Base docstring __snake_case : Any = 'sail/poolformer_s12' __snake_case : Optional[Any] = [1, 512, 7, 7] # Image classification docstring __snake_case : List[Any] = 'sail/poolformer_s12' __snake_case : Optional[Any] = 'tabby, tabby cat' __snake_case : Union[str, Any] = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowercase ( __snake_case ,__snake_case = 0.0 ,__snake_case = False ) -> Tuple: if drop_prob == 0.0 or not training: return input __lowerCAmelCase : Optional[int] = 1 - drop_prob __lowerCAmelCase : Union[str, Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCAmelCase : List[str] = keep_prob + torch.rand(__snake_case ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize __lowerCAmelCase : Tuple = input.div(__snake_case ) * random_tensor return output class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[float] = None) -> None: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = drop_prob def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: torch.Tensor) -> torch.Tensor: """simple docstring""" return drop_path(_SCREAMING_SNAKE_CASE , self.drop_prob , self.training) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> str: """simple docstring""" return "p={}".format(self.drop_prob) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any=None) -> int: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = patch_size if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (patch_size, patch_size) __lowerCAmelCase : Any = stride if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (stride, stride) __lowerCAmelCase : Any = padding if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable) else (padding, padding) __lowerCAmelCase : Optional[int] = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = norm_layer(_SCREAMING_SNAKE_CASE) if norm_layer else nn.Identity() def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : str = self.projection(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.norm(_SCREAMING_SNAKE_CASE) return embeddings class A__ ( nn.GroupNorm ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> Tuple: """simple docstring""" super().__init__(1 , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: int , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.AvgPoolad(_SCREAMING_SNAKE_CASE , stride=1 , padding=pool_size // 2 , count_include_pad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Dict) -> Dict: """simple docstring""" return self.pool(_SCREAMING_SNAKE_CASE) - hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Dict = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Tuple = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Any = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if isinstance(config.hidden_act , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[int] = ACTaFN[config.hidden_act] else: __lowerCAmelCase : int = config.hidden_act def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int) -> Tuple: """simple docstring""" __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = self.act_fn(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = self.drop(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = self.conva(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = self.drop(_SCREAMING_SNAKE_CASE) return hidden_states class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : List[str] = PoolFormerPooling(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = PoolFormerOutput(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = PoolFormerGroupNorm(_SCREAMING_SNAKE_CASE) # Useful for training neural nets __lowerCAmelCase : Optional[int] = PoolFormerDropPath(_SCREAMING_SNAKE_CASE) if drop_path > 0.0 else nn.Identity() __lowerCAmelCase : Union[str, Any] = config.use_layer_scale if config.use_layer_scale: __lowerCAmelCase : List[Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((_SCREAMING_SNAKE_CASE)) , requires_grad=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" if self.use_layer_scale: __lowerCAmelCase : int = self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection __lowerCAmelCase : Optional[Any] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = () __lowerCAmelCase : Union[str, Any] = self.output(self.after_norm(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Dict = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection __lowerCAmelCase : List[str] = hidden_states + self.drop_path(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = (output,) + outputs return outputs else: __lowerCAmelCase : Optional[Any] = self.drop_path(self.pooling(self.before_norm(_SCREAMING_SNAKE_CASE))) # First residual connection __lowerCAmelCase : Optional[Any] = pooling_output + hidden_states __lowerCAmelCase : List[Any] = () # Second residual connection inside the PoolFormerOutput block __lowerCAmelCase : Any = self.drop_path(self.output(self.after_norm(_SCREAMING_SNAKE_CASE))) __lowerCAmelCase : str = hidden_states + layer_output __lowerCAmelCase : List[Any] = (output,) + outputs return outputs class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[Any]: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = config # stochastic depth decay rule __lowerCAmelCase : Tuple = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths))] # patch embeddings __lowerCAmelCase : List[str] = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , )) __lowerCAmelCase : Tuple = nn.ModuleList(_SCREAMING_SNAKE_CASE) # Transformer blocks __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : Any = 0 for i in range(config.num_encoder_blocks): # each block consists of layers __lowerCAmelCase : List[Any] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( _SCREAMING_SNAKE_CASE , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio) , drop_path=dpr[cur + j] , )) blocks.append(nn.ModuleList(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Union[str, Any] = nn.ModuleList(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=True) -> Dict: """simple docstring""" __lowerCAmelCase : Dict = () if output_hidden_states else None __lowerCAmelCase : Union[str, Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block)): __lowerCAmelCase , __lowerCAmelCase : str = layers # Get patch embeddings from hidden_states __lowerCAmelCase : str = embedding_layer(_SCREAMING_SNAKE_CASE) # Send the embeddings through the blocks for _, blk in enumerate(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = blk(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = layer_outputs[0] if output_hidden_states: __lowerCAmelCase : int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = PoolFormerConfig SCREAMING_SNAKE_CASE = 'poolformer' SCREAMING_SNAKE_CASE = 'pixel_values' SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: List[Any]) -> List[str]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(_SCREAMING_SNAKE_CASE , nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=False) -> Dict: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[Any] = value __snake_case : Union[str, Any] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : str = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[int]) -> Any: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = config __lowerCAmelCase : Any = PoolFormerEncoder(_SCREAMING_SNAKE_CASE) # Initialize weights and apply final processing self.post_init() def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") __lowerCAmelCase : Union[str, Any] = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" super().__init__() __lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , config.hidden_size) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = self.dense(_SCREAMING_SNAKE_CASE) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any]) -> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = config.num_labels __lowerCAmelCase : Tuple = PoolFormerModel(_SCREAMING_SNAKE_CASE) # Final norm __lowerCAmelCase : Optional[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head __lowerCAmelCase : Any = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[torch.LongTensor] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" __lowerCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Union[str, Any] = self.poolformer( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = outputs[0] __lowerCAmelCase : Optional[int] = self.classifier(self.norm(_SCREAMING_SNAKE_CASE).mean([-2, -1])) __lowerCAmelCase : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase : int = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase : List[Any] = "single_label_classification" else: __lowerCAmelCase : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": __lowerCAmelCase : Dict = MSELoss() if self.num_labels == 1: __lowerCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze()) else: __lowerCAmelCase : int = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase : int = CrossEntropyLoss() __lowerCAmelCase : str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase : Union[str, Any] = BCEWithLogitsLoss() __lowerCAmelCase : Optional[int] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if not return_dict: __lowerCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states)
58
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowercase_ = logging.get_logger(__name__) lowercase_ = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) lowercase_ = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) lowercase_ = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) lowercase_ = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) lowercase_ = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) lowercase_ = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) lowercase_ = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) lowercase_ = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) lowercase_ = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) lowercase_ = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) lowercase_ = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) lowercase_ = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowercase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowercase_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_MAPPING lowercase_ = auto_class_update(FlaxAutoModel) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowercase_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class a_ ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowercase_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
58
"""simple docstring""" def __lowercase ( _a , _a , _a=False ): if isinstance(_a , _a ) and isinstance(_a , _a ): snake_case_ : Union[str, Any] = len(set_a.intersection(_a ) ) if alternative_union: snake_case_ : Any = len(_a ) + len(_a ) else: snake_case_ : str = len(set_a.union(_a ) ) return intersection / union if isinstance(_a , (list, tuple) ) and isinstance(_a , (list, tuple) ): snake_case_ : str = [element for element in set_a if element in set_b] if alternative_union: snake_case_ : Tuple = len(_a ) + len(_a ) return len(_a ) / union else: snake_case_ : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(_a ) / len(_a ) return len(_a ) / len(_a ) return None if __name__ == "__main__": lowercase__ : Any = {'''a''', '''b''', '''c''', '''d''', '''e'''} lowercase__ : Optional[Any] = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
264
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) A : List[Any] = logging.get_logger(__name__) A : List[Any] = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) A : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCAmelCase ( a__ ) -> Any: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __a = model_type_to_module_name(a__ ) __a = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(a__ , a__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(a__ , '''__name__''' , a__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __a = importlib.import_module('''transformers''' ) if hasattr(a__ , a__ ): return getattr(a__ , a__ ) return None def __lowerCAmelCase ( a__ , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , a__ = False , **a__ , ) -> List[Any]: __a = get_file_from_repo( a__ , a__ , cache_dir=a__ , force_download=a__ , resume_download=a__ , proxies=a__ , use_auth_token=a__ , revision=a__ , local_files_only=a__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(a__ , encoding='''utf-8''' ) as reader: return json.load(a__ ) class __A: def __init__( self ) -> Optional[int]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_snake_case ) def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' __a = kwargs.pop('''config''' , _snake_case ) __a = kwargs.pop('''trust_remote_code''' , _snake_case ) __a = True __a , __a = ImageProcessingMixin.get_image_processor_dict(_snake_case , **_snake_case ) __a = config_dict.get('''image_processor_type''' , _snake_case ) __a = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): __a = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __a = config_dict.pop('''feature_extractor_type''' , _snake_case ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) __a = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __a = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_snake_case , _snake_case ): __a = AutoConfig.from_pretrained(_snake_case , **_snake_case ) # It could be in `config.image_processor_type`` __a = getattr(_snake_case , '''image_processor_type''' , _snake_case ) if hasattr(_snake_case , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: __a = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __a = image_processor_class_from_name(_snake_case ) __a = image_processor_auto_map is not None __a = image_processor_class is not None or type(_snake_case ) in IMAGE_PROCESSOR_MAPPING __a = resolve_trust_remote_code( _snake_case , _snake_case , _snake_case , _snake_case ) if has_remote_code and trust_remote_code: __a = get_class_from_dynamic_module( _snake_case , _snake_case , **_snake_case ) __a = kwargs.pop('''code_revision''' , _snake_case ) if os.path.isdir(_snake_case ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_snake_case , **_snake_case ) elif image_processor_class is not None: return image_processor_class.from_dict(_snake_case , **_snake_case ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_snake_case ) in IMAGE_PROCESSOR_MAPPING: __a = IMAGE_PROCESSOR_MAPPING[type(_snake_case )] return image_processor_class.from_dict(_snake_case , **_snake_case ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def SCREAMING_SNAKE_CASE_ ( _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(_snake_case , _snake_case )
350
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __snake_case , unittest.TestCase ): """simple docstring""" _snake_case : Dict = LDMTextToImagePipeline _snake_case : int = TEXT_TO_IMAGE_PARAMS - { 'negative_prompt', 'negative_prompt_embeds', 'cross_attention_kwargs', 'prompt_embeds', } _snake_case : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'callback', 'callback_steps', } _snake_case : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : Optional[Any] = False def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase = CLIPTextModel(A_ ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int=0 ) -> Dict: '''simple docstring''' if str(A_ ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(A_ ) else: _UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) _UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = LDMTextToImagePipeline(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_dummy_inputs(A_ ) _UpperCamelCase = pipe(**A_ ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _UpperCamelCase = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=torch.floataa , lowerCAmelCase__ : int=0 ) -> Any: '''simple docstring''' _UpperCamelCase = torch.manual_seed(A_ ) _UpperCamelCase = np.random.RandomState(A_ ).standard_normal((1, 4, 32, 32) ) _UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ , dtype=A_ ) _UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_inputs(A_ ) _UpperCamelCase = pipe(**A_ ).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _UpperCamelCase = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) _UpperCamelCase = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=torch.floataa , lowerCAmelCase__ : Optional[int]=0 ) -> List[str]: '''simple docstring''' _UpperCamelCase = torch.manual_seed(A_ ) _UpperCamelCase = np.random.RandomState(A_ ).standard_normal((1, 4, 32, 32) ) _UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ , dtype=A_ ) _UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case__ ( self : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_inputs(A_ ) _UpperCamelCase = pipe(**A_ ).images[0] _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) _UpperCamelCase = np.abs(expected_image - image ).max() assert max_diff < 1e-3
324
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCamelCase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCamelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __lowerCamelCase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __lowerCamelCase : List[str] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Optional[Any] = None # source code of `config_class` UpperCamelCase : Tuple = inspect.getsource(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = _re_checkpoint.findall(_lowerCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): UpperCamelCase : Dict = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase : Any = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: UpperCamelCase : List[Any] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: UpperCamelCase : Optional[int] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase : Union[str, Any] = get_checkpoint_from_config_class(_lowerCAmelCase ) UpperCamelCase : Optional[int] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: UpperCamelCase : Any = "\n".join(sorted(_lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
52
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: Any , *__A: Union[str, Any] , **__A: Dict ) -> None: warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
75
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Union[str, Any] ) -> Union[str, Any]: _A = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() _A = dict(zip(__A , range(len(__A ) ) ) ) _A = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } _A = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 1_60_00, '''return_attention_mask''': False, '''do_normalize''': True, } _A = tempfile.mkdtemp() _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(self.tmpdirname , __A ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) # load decoder from hub _A = '''hf-internal-testing/ngram-beam-search-decoder''' def __A ( self: Tuple , **__A: str ) -> str: _A = self.add_kwargs_tokens_map.copy() kwargs.update(__A ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self: Any , **__A: List[Any] ) -> Union[str, Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__A ) def __A ( self: List[Any] , **__A: Union[str, Any] ) -> int: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__A ) def __A ( self: List[str] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __A ( self: List[str] ) -> Optional[Any]: _A = self.get_tokenizer() _A = self.get_feature_extractor() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) processor.save_pretrained(self.tmpdirname ) _A = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __A ) def __A ( self: Optional[int] ) -> Union[str, Any]: _A = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _A = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __A ( self: str ) -> Any: _A = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(__A , '''include''' ): WavaVecaProcessorWithLM( tokenizer=__A , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __A ( self: List[str] ) -> str: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = floats_list((3, 10_00) ) _A = feature_extractor(__A , return_tensors='''np''' ) _A = processor(__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self: Union[str, Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = '''This is a test string''' _A = processor(text=__A ) _A = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self: List[str] , __A: Optional[int]=(2, 10, 16) , __A: Optional[int]=77 ) -> List[Any]: np.random.seed(__A ) return np.random.rand(*__A ) def __A ( self: List[Any] ) -> Optional[Any]: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _A = processor.decode(__A ) _A = decoder.decode_beams(__A )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __A ( self: str , __A: Any ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _A = processor.batch_decode(__A ) else: with get_context(__A ).Pool() as pool: _A = processor.batch_decode(__A , __A ) _A = list(__A ) with get_context('''fork''' ).Pool() as p: _A = decoder.decode_beams_batch(__A , __A ) _A ,_A ,_A = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__A , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(__A , decoded_processor.logit_score ) self.assertListEqual(__A , decoded_processor.lm_score ) def __A ( self: Optional[Any] ) -> int: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 15 _A = -20.0 _A = -4.0 _A = processor.batch_decode( __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = decoded_processor_out.text _A = list(__A ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , beam_width=__A , beam_prune_logp=__A , token_min_logp=__A , ) _A = [d[0][0] for d in decoded_decoder_out] _A = [d[0][2] for d in decoded_decoder_out] _A = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , __A ) self.assertTrue(np.array_equal(__A , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __A , atol=1e-3 ) ) self.assertTrue(np.array_equal(__A , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , __A , atol=1e-3 ) ) def __A ( self: Optional[int] ) -> Dict: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) _A = self._get_dummy_logits() _A = 2.0 _A = 5.0 _A = -20.0 _A = True _A = processor.batch_decode( __A , alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) _A = decoded_processor_out.text _A = list(__A ) decoder.reset_params( alpha=__A , beta=__A , unk_score_offset=__A , lm_score_boundary=__A , ) with get_context('''fork''' ).Pool() as pool: _A = decoder.decode_beams_batch( __A , __A , ) _A = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__A , __A ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , __A ) _A = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __A ) def __A ( self: int ) -> Optional[Any]: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__A , __A ) def __A ( self: Tuple ) -> Any: _A = snapshot_download('''hf-internal-testing/processor_with_lm''' ) _A = WavaVecaProcessorWithLM.from_pretrained(__A ) _A = processor.decoder.model_container[processor.decoder._model_key] _A = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() _A = os.listdir(__A ) _A = os.listdir(__A ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__A , __A ) def __A ( self: List[str] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = floats_list((3, 10_00) ) _A = processor_wavaveca(__A , return_tensors='''np''' ) _A = processor_auto(__A , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) _A = self._get_dummy_logits() _A = processor_wavaveca.batch_decode(__A ) _A = processor_auto.batch_decode(__A ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __A ( self: Optional[int] ) -> Any: _A = self.get_feature_extractor() _A = self.get_tokenizer() _A = self.get_decoder() _A = WavaVecaProcessorWithLM(tokenizer=__A , feature_extractor=__A , decoder=__A ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __A ( __A: int , __A: List[str] ) -> Union[str, Any]: _A = [d[key] for d in offsets] return retrieved_list def __A ( self: Optional[Any] ) -> int: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits()[0] _A = processor.decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __A ( self: Optional[Any] ) -> Tuple: _A = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) _A = self._get_dummy_logits() _A = processor.batch_decode(__A , output_word_offsets=__A ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(__A , __A ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(__A , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __A ( self: Optional[Any] ) -> Optional[Any]: import torch _A = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=__A ) _A = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=1_60_00 ) ) _A = iter(__A ) _A = next(__A ) _A = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) _A = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _A = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): _A = model(__A ).logits.cpu().numpy() _A = processor.decode(logits[0] , output_word_offsets=__A ) _A = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _A = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] _A = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , __A ) self.assertEqual(''' '''.join(self.get_from_offsets(__A , '''word''' ) ) , output.text ) # output times _A = torch.tensor(self.get_from_offsets(__A , '''start_time''' ) ) _A = torch.tensor(self.get_from_offsets(__A , '''end_time''' ) ) # fmt: off _A = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) _A = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) ) self.assertTrue(torch.allclose(__A , __A , atol=0.01 ) )
75
1
import os from datetime import datetime as dt from github import Github _lowerCamelCase : Dict = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def a_ ( ) -> List[Any]: _snake_case = Github(os.environ['GITHUB_TOKEN'] ) _snake_case = g.get_repo('huggingface/diffusers' ) _snake_case = repo.get_issues(state='open' ) for issue in open_issues: _snake_case = sorted(issue.get_comments() , key=lambda __lowercase : i.created_at , reverse=__a ) _snake_case = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
282
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 255 , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Dict = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase__ :str = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :str = min_resolution UpperCamelCase__ :Optional[Any] = max_resolution UpperCamelCase__ :int = do_resize UpperCamelCase__ :Optional[Any] = size UpperCamelCase__ :Tuple = do_normalize UpperCamelCase__ :List[Any] = image_mean UpperCamelCase__ :Dict = image_std UpperCamelCase__ :Union[str, Any] = do_rescale UpperCamelCase__ :Union[str, Any] = rescale_factor UpperCamelCase__ :Union[str, Any] = do_pad def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if not batched: UpperCamelCase__ :List[str] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): UpperCamelCase__ , UpperCamelCase__ :List[str] = image.size else: UpperCamelCase__ , UpperCamelCase__ :List[Any] = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ :int = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase__ :Dict = self.size['''shortest_edge'''] elif w > h: UpperCamelCase__ :int = self.size['''shortest_edge'''] UpperCamelCase__ :Tuple = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase__ :str = self.size['''shortest_edge'''] UpperCamelCase__ :str = self.size['''shortest_edge'''] else: UpperCamelCase__ :Any = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ :Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ :List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] UpperCamelCase__ :Optional[int] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase__ :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase__ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase__ :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Dict = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.loads(f.read() ) UpperCamelCase__ :Any = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCamelCase__ :str = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) UpperCamelCase__ :List[Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size UpperCamelCase__ :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Tuple = json.loads(f.read() ) UpperCamelCase__ :List[str] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCamelCase__ :Any = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) UpperCamelCase__ :Dict = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks UpperCamelCase__ :Optional[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size UpperCamelCase__ :List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
97
0
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
275
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :Optional[int] = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase :str = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } lowerCAmelCase :Any = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } lowerCAmelCase :List[Any] = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase :List[Any] = os.path.join(os.path.expanduser('''~'''), '''.cache''') lowerCAmelCase :List[str] = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=False ): """simple docstring""" __magic_name__ : str = model_type if use_small: key += "_small" return os.path.join(lowerCAmelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) hf_hub_download(repo_id=lowerCAmelCase , filename=lowerCAmelCase , local_dir=lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : str="text" ): """simple docstring""" if model_type == "text": __magic_name__ : Tuple = BarkSemanticModel __magic_name__ : Optional[int] = BarkSemanticConfig __magic_name__ : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __magic_name__ : List[str] = BarkCoarseModel __magic_name__ : Dict = BarkCoarseConfig __magic_name__ : Tuple = BarkCoarseGenerationConfig elif model_type == "fine": __magic_name__ : Optional[Any] = BarkFineModel __magic_name__ : Dict = BarkFineConfig __magic_name__ : Tuple = BarkFineGenerationConfig else: raise NotImplementedError() __magic_name__ : int = f'{model_type}_small' if use_small else model_type __magic_name__ : List[str] = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCAmelCase ): logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['repo_id'] , model_info['file_name'] ) __magic_name__ : Optional[Any] = torch.load(lowerCAmelCase , map_location=lowerCAmelCase ) # this is a hack __magic_name__ : Optional[Any] = checkpoint['model_args'] if "input_vocab_size" not in model_args: __magic_name__ : Dict = model_args['vocab_size'] __magic_name__ : Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __magic_name__ : Optional[Any] = model_args.pop('n_head' ) __magic_name__ : List[str] = model_args.pop('n_embd' ) __magic_name__ : List[Any] = model_args.pop('n_layer' ) __magic_name__ : Optional[Any] = ConfigClass(**checkpoint['model_args'] ) __magic_name__ : Any = ModelClass(config=lowerCAmelCase ) __magic_name__ : List[str] = GenerationConfigClass() __magic_name__ : List[Any] = model_generation_config __magic_name__ : str = checkpoint['model'] # fixup checkpoint __magic_name__ : str = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCAmelCase ): # replace part of the key with corresponding layer name in HF implementation __magic_name__ : Tuple = k[len(lowerCAmelCase ) :] for old_layer_name in new_layer_name_dict: __magic_name__ : int = new_k.replace(lowerCAmelCase , new_layer_name_dict[old_layer_name] ) __magic_name__ : Union[str, Any] = state_dict.pop(lowerCAmelCase ) __magic_name__ : Optional[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) __magic_name__ : Any = {k for k in extra_keys if not k.endswith('.attn.bias' )} __magic_name__ : Any = set(model.state_dict().keys() ) - set(state_dict.keys() ) __magic_name__ : Dict = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCAmelCase ) != 0: raise ValueError(f'extra keys found: {extra_keys}' ) if len(lowerCAmelCase ) != 0: raise ValueError(f'missing keys: {missing_keys}' ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) __magic_name__ : Union[str, Any] = model.num_parameters(exclude_embeddings=lowerCAmelCase ) __magic_name__ : Optional[Any] = checkpoint['best_val_loss'].item() logger.info(f'model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCAmelCase , 3 )} loss' ) model.eval() model.to(lowerCAmelCase ) del checkpoint, state_dict return model def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Tuple="text" ): """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __magic_name__ : List[str] = 'cpu' # do conversion on cpu __magic_name__ : int = _get_ckpt_path(lowerCAmelCase , use_small=lowerCAmelCase ) __magic_name__ : Any = _load_model(lowerCAmelCase , lowerCAmelCase , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) # load bark initial model __magic_name__ : List[str] = _bark_load_model(lowerCAmelCase , 'cpu' , model_type=lowerCAmelCase , use_small=lowerCAmelCase ) if model_type == "text": __magic_name__ : int = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCAmelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model __magic_name__ : Union[str, Any] = 5 __magic_name__ : Optional[int] = 10 if model_type in ["text", "coarse"]: __magic_name__ : Optional[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __magic_name__ : List[str] = bark_model(lowerCAmelCase )[0] __magic_name__ : Optional[int] = model(lowerCAmelCase ) # take last logits __magic_name__ : int = output_new_model_total.logits[:, [-1], :] else: __magic_name__ : Tuple = 3 __magic_name__ : List[str] = 8 __magic_name__ : List[str] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __magic_name__ : str = model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = bark_model(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Tuple = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : str , ): """simple docstring""" __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Dict = BarkSemanticConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : str = BarkCoarseConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : int = BarkFineConfig.from_pretrained(os.path.join(lowerCAmelCase , 'config.json' ) ) __magic_name__ : List[Any] = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Optional[int] = BarkSemanticModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Dict = BarkCoarseModel.from_pretrained(lowerCAmelCase ) __magic_name__ : List[str] = BarkFineModel.from_pretrained(lowerCAmelCase ) __magic_name__ : Optional[Any] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) __magic_name__ : Dict = BarkConfig.from_sub_model_configs( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __magic_name__ : List[Any] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __magic_name__ : int = BarkModel(lowerCAmelCase ) __magic_name__ : List[str] = semantic __magic_name__ : Optional[int] = coarseAcoustic __magic_name__ : List[str] = fineAcoustic __magic_name__ : int = codec __magic_name__ : Union[str, Any] = bark_generation_config Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) bark.save_pretrained(lowerCAmelCase , repo_id=lowerCAmelCase , push_to_hub=lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') lowerCAmelCase :Union[str, Any] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
275
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , __lowercase : int , __lowercase : int = 13 , __lowercase : int = 64 , __lowercase : int = 2 , __lowercase : int = 3 , __lowercase : int = 3 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : int = 1_28 , __lowercase : str=[16, 32, 64, 1_28] , __lowercase : int = 7 , __lowercase : int = 4 , __lowercase : int = 37 , __lowercase : str = "gelu" , __lowercase : float = 0.1 , __lowercase : float = 0.1 , __lowercase : int = 10 , __lowercase : float = 0.02 , __lowercase : int = 2 , __lowercase : int = 1 , __lowercase : int = 1_28 , __lowercase : List[int] = [2, 2, 2, 2] , __lowercase : int = 2 , __lowercase : int = 2 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = encoder_stride snake_case_ = num_attention_outputs snake_case_ = embed_dim snake_case_ = embed_dim + 1 snake_case_ = resolution snake_case_ = depths snake_case_ = hidden_sizes snake_case_ = dim snake_case_ = mlp_expansion_ratio def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[Any] ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case__ ( self : Optional[Any] , __lowercase : List[str] , __lowercase : Optional[Any] , __lowercase : Optional[int] ): """simple docstring""" snake_case_ = TFEfficientFormerModel(config=UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Dict , __lowercase : str , __lowercase : Tuple , __lowercase : Optional[Any] ): """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = TFEfficientFormerForImageClassification(UpperCAmelCase_ ) snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ , training=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = TFEfficientFormerForImageClassification(UpperCAmelCase_ ) snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : int ): """simple docstring""" snake_case_ = TFEfficientFormerModelTester(self ) snake_case_ = ConfigTester( self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def snake_case__ ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case__ ( self : List[str] ): """simple docstring""" pass def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def snake_case__ ( self : Optional[Any] ): """simple docstring""" def check_hidden_states_output(__lowercase : Any , __lowercase : str , __lowercase : Union[str, Any] ): snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) , training=UpperCAmelCase_ ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case_ = seq_length * self.model_tester.chunk_length else: snake_case_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase_ , (list, tuple) ) self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) snake_case_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase_ ) snake_case_ = getattr(self.model_tester , "decoder_seq_length" , UpperCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def snake_case__ ( self : Dict , __lowercase : List[Any] , __lowercase : Any , __lowercase : Union[str, Any]=False ): """simple docstring""" snake_case_ = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase_ ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def snake_case__ ( self : Union[str, Any] ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True snake_case_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase_ ) snake_case_ = getattr(self.model_tester , "encoder_seq_length" , UpperCAmelCase_ ) snake_case_ = getattr(self.model_tester , "key_length" , UpperCAmelCase_ ) snake_case_ = getattr(self.model_tester , "chunk_length" , UpperCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) , training=UpperCAmelCase_ ) snake_case_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) , training=UpperCAmelCase_ ) snake_case_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case_ = model_class(UpperCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case_ = model(UpperCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : List[Any] ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="tf" ) # forward pass snake_case_ = model(**UpperCAmelCase_ , training=UpperCAmelCase_ ) # verify the logits snake_case_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors="tf" ) # forward pass snake_case_ = model(**UpperCAmelCase_ , training=UpperCAmelCase_ ) # verify the logits snake_case_ = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
187
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __snake_case = logging.get_logger(__name__) __snake_case = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowercase__ ( _UpperCAmelCase ): def __init__( self : str , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]=None , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if config is None: assert isinstance(self.model , UpperCAmelCase_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F' {self.model.__class__}' ) SCREAMING_SNAKE_CASE__ = self.model.config else: SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = data_args SCREAMING_SNAKE_CASE__ = self.config.tgt_vocab_size if isinstance(self.config , UpperCAmelCase_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for' ' padding..' ) if self.args.label_smoothing == 0: SCREAMING_SNAKE_CASE__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss SCREAMING_SNAKE_CASE__ = label_smoothed_nll_loss def A_ ( self : Tuple , UpperCAmelCase_ : int ): if self.optimizer is None: SCREAMING_SNAKE_CASE__ = ['bias', 'LayerNorm.weight'] SCREAMING_SNAKE_CASE__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] SCREAMING_SNAKE_CASE__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: SCREAMING_SNAKE_CASE__ = Adafactor SCREAMING_SNAKE_CASE__ = {'scale_parameter': False, 'relative_step': False} else: SCREAMING_SNAKE_CASE__ = AdamW SCREAMING_SNAKE_CASE__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } SCREAMING_SNAKE_CASE__ = self.args.learning_rate if self.sharded_ddp: SCREAMING_SNAKE_CASE__ = OSS( params=UpperCAmelCase_ , optim=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: SCREAMING_SNAKE_CASE__ = optimizer_cls(UpperCAmelCase_ , **UpperCAmelCase_ ) if self.lr_scheduler is None: SCREAMING_SNAKE_CASE__ = self._get_lr_scheduler(UpperCAmelCase_ ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def A_ ( self : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": SCREAMING_SNAKE_CASE__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": SCREAMING_SNAKE_CASE__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: SCREAMING_SNAKE_CASE__ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCAmelCase_ ) return scheduler def A_ ( self : List[str] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def A_ ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ , use_cache=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE__ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ , labels=UpperCAmelCase_ , use_cache=UpperCAmelCase_ )[:2] else: # compute label smoothed loss SCREAMING_SNAKE_CASE__ = model(**UpperCAmelCase_ , use_cache=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE__ = torch.nn.functional.log_softmax(UpperCAmelCase_ , dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.loss_fn(UpperCAmelCase_ , UpperCAmelCase_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def A_ ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = inputs.pop('labels' ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._compute_loss(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return loss def A_ ( self : List[str] , UpperCAmelCase_ : nn.Module , UpperCAmelCase_ : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[List[str]] = None , ): SCREAMING_SNAKE_CASE__ = self._prepare_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: SCREAMING_SNAKE_CASE__ = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **UpperCAmelCase_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: SCREAMING_SNAKE_CASE__ = self._pad_tensors_to_max_len(UpperCAmelCase_ , gen_kwargs['max_length'] ) SCREAMING_SNAKE_CASE__ = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._compute_loss(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) SCREAMING_SNAKE_CASE__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: SCREAMING_SNAKE_CASE__ = self._pad_tensors_to_max_len(UpperCAmelCase_ , gen_kwargs['max_length'] ) return (loss, logits, labels) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): # If PAD token is not defined at least EOS token has to be defined SCREAMING_SNAKE_CASE__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F' padded to `max_length`={max_length}' ) SCREAMING_SNAKE_CASE__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) SCREAMING_SNAKE_CASE__ = tensor return padded_tensor
176
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __a ( unittest.TestCase ): """simple docstring""" @property def _lowerCAmelCase ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase__ : Any =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def _lowerCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase__ : str =VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def _lowerCAmelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) UpperCamelCase__ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] ): UpperCamelCase__ : Tuple =self.dummy_uncond_unet UpperCamelCase__ : int =DDIMScheduler() UpperCamelCase__ : Union[str, Any] =self.dummy_vq_model UpperCamelCase__ : str =LDMPipeline(unet=_SCREAMING_SNAKE_CASE , vqvae=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) ldm.to(_SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict =torch.manual_seed(0 ) UpperCamelCase__ : int =ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''numpy''' ).images UpperCamelCase__ : Optional[int] =torch.manual_seed(0 ) UpperCamelCase__ : str =ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''numpy''' , return_dict=_SCREAMING_SNAKE_CASE )[0] UpperCamelCase__ : Tuple =image[0, -3:, -3:, -1] UpperCamelCase__ : Dict =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] =np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCamelCase__ : Tuple =1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __a ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ): UpperCamelCase__ : Dict =LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(_SCREAMING_SNAKE_CASE ) ldm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict =torch.manual_seed(0 ) UpperCamelCase__ : int =ldm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=5 , output_type='''numpy''' ).images UpperCamelCase__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase__ : List[Any] =np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCamelCase__ : List[str] =1e-2 if torch_device != '''mps''' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
368
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _SCREAMING_SNAKE_CASE : List[Any] = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _SCREAMING_SNAKE_CASE : Tuple = """|""".join(sys.argv[1:]) _SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(rF'''^({joined_dirs}).*?\.py$''') _SCREAMING_SNAKE_CASE : str = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
157
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """luke""" def __init__( self , __lowerCAmelCase=5_0_2_6_7 , __lowerCAmelCase=5_0_0_0_0_0 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=True , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowerCamelCase__ = vocab_size lowerCamelCase__ = entity_vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = entity_emb_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_act lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = use_entity_aware_attention lowerCamelCase__ = classifier_dropout
209
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = ["""image_processor""", """tokenizer"""] lowerCAmelCase_ = """BlipImageProcessor""" lowerCAmelCase_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = False super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: lowerCamelCase__ = self.tokenizer lowerCamelCase__ = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) return text_encoding # add pixel_values lowerCamelCase__ = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) if text is not None: lowerCamelCase__ = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) else: lowerCamelCase__ = None if text_encoding is not None: encoding_image_processor.update(__lowerCAmelCase ) return encoding_image_processor def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( self , *__lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.tokenizer.model_input_names lowerCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
209
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Union[str, Any] ={ "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _A : Optional[int] =pd.read_csv('''sample_data.csv''', header=None) _A : Any =df.shape[:1][0] # If you're using some other dataset input the target column _A : List[str] =df.iloc[:, 1:2] _A : int =actual_data.values.reshape(len_data, 1) _A : Union[str, Any] =MinMaxScaler().fit_transform(actual_data) _A : Optional[int] =10 _A : Union[str, Any] =5 _A : Union[str, Any] =20 _A : str =len_data - periods * look_back _A : List[Any] =actual_data[:division] _A : Optional[Any] =actual_data[division - look_back :] _A , _A : Tuple =[], [] _A , _A : List[str] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _A : List[Any] =np.array(train_x) _A : str =np.array(test_x) _A : List[Any] =np.array([list(i.ravel()) for i in train_y]) _A : Any =np.array([list(i.ravel()) for i in test_y]) _A : Optional[Any] =Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _A : Dict =model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _A : List[str] =model.predict(x_test)
129
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : Optional[int] ) ->int: snake_case_ = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) snake_case_ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ = model(_UpperCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) ) @slow def snake_case__( self : Union[str, Any] ) ->Tuple: snake_case_ = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) snake_case_ = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house snake_case_ = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ = model(_UpperCamelCase )['''last_hidden_state'''].detach() self.assertEqual(output.shape , _UpperCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCamelCase , atol=1e-3 ) )
8
lowerCamelCase : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def snake_case_ ( ): __lowercase : List[str] = input("""Enter message: """ ) __lowercase : int = input("""Enter key [alphanumeric]: """ ) __lowercase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowercase : Optional[int] = """encrypt""" __lowercase : Dict = encrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) elif mode.lower().startswith("""d""" ): __lowercase : Union[str, Any] = """decrypt""" __lowercase : Optional[int] = decrypt_message(lowerCAmelCase_ , lowerCAmelCase_ ) print(F"\n{mode.title()}ed message:" ) print(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """encrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return translate_message(lowerCAmelCase_ , lowerCAmelCase_ , """decrypt""" ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Union[str, Any] = [] __lowercase : Tuple = 0 __lowercase : Dict = key.upper() for symbol in message: __lowercase : Optional[Any] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(lowerCAmelCase_ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(lowerCAmelCase_ ): __lowercase : str = 0 else: translated.append(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": main()
233
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): def __lt__(self , lowerCamelCase ): '''simple docstring''' return self[-1] < other[-1] def __eq__(self , lowerCamelCase ): '''simple docstring''' return self[-1] == other[-1] def __UpperCAmelCase ( snake_case_ : str ) -> list: """simple docstring""" _lowerCAmelCase = [] # sort into stacks for element in collection: _lowerCAmelCase = Stack([element] ) _lowerCAmelCase = bisect_left(__snake_case , __snake_case ) if i != len(__snake_case ): stacks[i].append(__snake_case ) else: stacks.append(__snake_case ) # use a heap-based merge to merge stack efficiently _lowerCAmelCase = merge(*(reversed(__snake_case ) for stack in stacks) ) return collection if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE : Optional[int] = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
364
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE : Optional[Any] = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 , lowerCamelCase_ = "bert-base-cased" ) -> Optional[Any]: _lowercase : str = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _lowercase : Dict = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase : List[str] = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowerCamelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase_ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase : Tuple = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) _lowercase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: # Initialize accelerator _lowercase : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : Optional[int] = config['lr'] _lowercase : Tuple = int(config['num_epochs'] ) _lowercase : int = int(config['seed'] ) _lowercase : Tuple = int(config['batch_size'] ) _lowercase : Any = args.model_name_or_path set_seed(lowerCamelCase_ ) _lowercase , _lowercase : str = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) # Instantiate optimizer _lowercase : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase : int = optimizer_cls(params=model.parameters() , lr=lowerCamelCase_ ) if accelerator.state.deepspeed_plugin is not None: _lowercase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase : Tuple = 1 _lowercase : Union[str, Any] = (len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=0 , num_training_steps=lowerCamelCase_ , ) else: _lowercase : Dict = DummyScheduler(lowerCamelCase_ , total_num_steps=lowerCamelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # We need to keep track of how many total steps we have iterated over _lowercase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _lowercase : Union[str, Any] = 0 # Now we train the model _lowercase : Tuple = evaluate.load('glue' , 'mrpc' ) _lowercase : Any = 0 _lowercase : Optional[Any] = {} for epoch in range(lowerCamelCase_ , lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : Tuple = outputs.loss _lowercase : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _lowercase : int = 0 for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : Dict = model(**lowerCamelCase_ ) _lowercase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase_ ) - 1: _lowercase : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) _lowercase : List[str] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: _lowercase : Union[str, Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowerCamelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCamelCase_ , ) parser.add_argument( '--output_dir' , type=lowerCamelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=lowerCamelCase_ , default=3 , help='Number of train epochs.' , ) _lowercase : List[str] = parser.parse_args() _lowercase : List[str] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : int = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = 'laion/clap-htsat-unfused' __a : Optional[Any] = tempfile.mkdtemp() def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return RobertaTokenizer.from_pretrained(self.checkpoint , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = self.get_tokenizer() __a : List[str] = self.get_feature_extractor() __a : Any = ClapProcessor(tokenizer=__a , feature_extractor=__a ) processor.save_pretrained(self.tmpdirname ) __a : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __a : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __a : List[str] = self.get_feature_extractor(do_normalize=__a , padding_value=1.0 ) __a : Tuple = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_feature_extractor() __a : int = self.get_tokenizer() __a : str = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __a : int = floats_list((3, 1000) ) __a : str = feature_extractor(__a , return_tensors='np' ) __a : int = processor(audios=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = self.get_feature_extractor() __a : Any = self.get_tokenizer() __a : Any = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __a : Union[str, Any] = 'This is a test string' __a : Union[str, Any] = processor(text=__a ) __a : Tuple = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_feature_extractor() __a : str = self.get_tokenizer() __a : List[str] = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __a : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Optional[int] = processor.batch_decode(__a ) __a : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = self.get_feature_extractor() __a : Optional[int] = self.get_tokenizer() __a : int = ClapProcessor(tokenizer=__a , feature_extractor=__a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
294
1
def a( A : int = 1000 ) -> str: """simple docstring""" a = 1, 1 a = 2 while True: a = 0 a = fa + fa a = fa, f index += 1 for _ in str(__snake_case ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
227
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : def __init__( self : int , A : Tuple , A : int=3 , A : List[str]=32 , A : Dict=3 , A : Any=10 , A : Dict=[10, 20, 30, 40] , A : Optional[Any]=[1, 1, 2, 1] , A : Union[str, Any]=True , A : Optional[Any]=True , A : Any="relu" , A : Optional[Any]=3 , A : Tuple=None , ) -> Dict: lowercase_ : str = parent lowercase_ : List[Any] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : int = num_channels lowercase_ : int = embeddings_size lowercase_ : str = hidden_sizes lowercase_ : List[str] = depths lowercase_ : Dict = is_training lowercase_ : int = use_labels lowercase_ : Any = hidden_act lowercase_ : List[Any] = num_labels lowercase_ : Tuple = scope lowercase_ : Optional[Any] = len(A ) def A ( self : str ) -> Tuple: lowercase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = None if self.use_labels: lowercase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Optional[int] = self.get_config() return config, pixel_values, labels def A ( self : Dict ) -> int: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self : str , A : Tuple , A : str , A : str ) -> str: lowercase_ : str = TFResNetModel(config=A ) lowercase_ : Union[str, Any] = model(A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : Any , A : int , A : List[Any] , A : Optional[Any] ) -> Optional[Any]: lowercase_ : Tuple = self.num_labels lowercase_ : Union[str, Any] = TFResNetForImageClassification(A ) lowercase_ : Tuple = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Dict = config_and_inputs lowercase_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Any = False def A ( self : Union[str, Any] ) -> List[Any]: lowercase_ : int = TFResNetModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=A , has_text_modality=A ) def A ( self : Dict ) -> Optional[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Dict ) -> List[Any]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def A ( self : Any ) -> Any: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def A ( self : List[str] ) -> Optional[Any]: pass def A ( self : str ) -> Tuple: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = model_class(A ) lowercase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : str = [*signature.parameters.keys()] lowercase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def A ( self : List[str] ) -> Tuple: lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def A ( self : List[Any] ) -> List[str]: def check_hidden_states_output(A : Union[str, Any] , A : int , A : List[Any] ): lowercase_ : int = model_class(A ) lowercase_ : Optional[Any] = model(**self._prepare_for_class(A , A ) ) lowercase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Any = self.model_tester.num_stages self.assertEqual(len(A ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase_ : List[str] = layer_type lowercase_ : Tuple = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[Any] = True check_hidden_states_output(A , A , A ) def A ( self : Optional[int] ) -> Tuple: lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def A ( self : List[str] ) -> Optional[int]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = TFResNetModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Any ) -> Optional[int]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Any ) -> Optional[int]: lowercase_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : List[str] = image_processor(images=A , return_tensors='''tf''' ) # forward pass lowercase_ : Tuple = model(**A ) # verify the logits lowercase_ : Optional[int] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , A ) lowercase_ : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A , atol=1e-4 ) )
33
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable __UpperCAmelCase :Tuple = list[list[float | int]] def _a ( _lowercase : Matrix , _lowercase : Matrix ): '''simple docstring''' __UpperCAmelCase : int = len(_lowercase ) __UpperCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_lowercase )] __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : float for row in range(_lowercase ): for col in range(_lowercase ): __UpperCAmelCase : Optional[Any] = matrix[row][col] __UpperCAmelCase : List[str] = vector[row][0] __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Tuple = 0 while row < size and col < size: # pivoting __UpperCAmelCase : Tuple = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_lowercase , _lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _lowercase ): __UpperCAmelCase : Tuple = augmented[rowa][col] / augmented[row][col] __UpperCAmelCase : Union[str, Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _lowercase ): for row in range(_lowercase ): __UpperCAmelCase : Optional[Any] = augmented[row][col] / augmented[col][col] for cola in range(_lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_lowercase ) ] def _a ( _lowercase : list[int] ): '''simple docstring''' __UpperCAmelCase : int = len(_lowercase ) __UpperCAmelCase : Matrix = [[0 for _ in range(_lowercase )] for _ in range(_lowercase )] __UpperCAmelCase : Matrix = [[0] for _ in range(_lowercase )] __UpperCAmelCase : Matrix __UpperCAmelCase : int __UpperCAmelCase : int __UpperCAmelCase : int for x_val, y_val in enumerate(_lowercase ): for col in range(_lowercase ): __UpperCAmelCase : int = (x_val + 1) ** (size - col - 1) __UpperCAmelCase : Tuple = y_val __UpperCAmelCase : Optional[int] = solve(_lowercase , _lowercase ) def interpolated_func(_lowercase : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_lowercase ) ) return interpolated_func def _a ( _lowercase : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( _lowercase : Callable[[int], int] = question_function , _lowercase : int = 10 ): '''simple docstring''' __UpperCAmelCase : list[int] = [func(_lowercase ) for x_val in range(1 , order + 1 )] __UpperCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __UpperCAmelCase : int = 0 __UpperCAmelCase : Callable[[int], int] __UpperCAmelCase : int for poly in polynomials: __UpperCAmelCase : int = 1 while func(_lowercase ) == poly(_lowercase ): x_val += 1 ret += poly(_lowercase ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
240
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase :str = logging.get_logger(__name__) __UpperCAmelCase :int = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __UpperCAmelCase :List[str] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __UpperCAmelCase :Optional[Any] = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = set() __UpperCAmelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Tuple = char return pairs class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] def __init__( self : str , snake_case : Dict , snake_case : str , snake_case : Optional[int]="replace" , snake_case : Tuple="<s>" , snake_case : Dict="</s>" , snake_case : Any="</s>" , snake_case : Any="<s>" , snake_case : List[Any]="<unk>" , snake_case : int="<pad>" , snake_case : List[Any]="<mask>" , snake_case : List[Any]=False , **snake_case : Any , ) -> Union[str, Any]: __UpperCAmelCase : List[str] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token __UpperCAmelCase : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token __UpperCAmelCase : str = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token __UpperCAmelCase : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token __UpperCAmelCase : Tuple = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token __UpperCAmelCase : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : List[str] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase : Tuple = json.load(snake_case ) __UpperCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : List[str] = errors # how to handle errors in decoding __UpperCAmelCase : Any = bytes_to_unicode() __UpperCAmelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='''utf-8''' ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split('''\n''' )[1:-1] __UpperCAmelCase : int = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : str = dict(zip(snake_case , range(len(snake_case ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Optional[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase__ ( self : Tuple ) -> List[str]: return len(self.encoder ) def lowerCamelCase__ ( self : Tuple ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : List[str] , snake_case : Optional[Any] ) -> int: if token in self.cache: return self.cache[token] __UpperCAmelCase : Optional[Any] = tuple(snake_case ) __UpperCAmelCase : Optional[int] = get_pairs(snake_case ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[str] = 0 while i < len(snake_case ): try: __UpperCAmelCase : Optional[Any] = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[Any] = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Union[str, Any] = tuple(snake_case ) __UpperCAmelCase : Optional[Any] = new_word if len(snake_case ) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(snake_case ) __UpperCAmelCase : str = ''' '''.join(snake_case ) __UpperCAmelCase : Optional[int] = word return word def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] ) -> List[str]: __UpperCAmelCase : List[Any] = [] for token in re.findall(self.pat , snake_case ): __UpperCAmelCase : List[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : Dict , snake_case : List[str] ) -> Optional[int]: return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , snake_case : int ) -> Optional[int]: return self.decoder.get(snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = ''''''.join(snake_case ) __UpperCAmelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : str = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : int = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '''\n''' ) __UpperCAmelCase : Optional[int] = 0 with open(snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(''' '''.join(snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def lowerCamelCase__ ( self : List[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : List[str] = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Union[str, Any] , snake_case : List[str] , snake_case : Dict=False , **snake_case : Union[str, Any] ) -> List[str]: __UpperCAmelCase : Optional[int] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : Tuple , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> int: return token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Dict , snake_case : "Conversation" ) -> List[int]: __UpperCAmelCase : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case ) __UpperCAmelCase : List[str] = ''' '''.join(snake_case ) __UpperCAmelCase : Tuple = self.encode(snake_case ) if len(snake_case ) > self.model_max_length: __UpperCAmelCase : List[str] = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
240
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def a__ ( _UpperCamelCase : Union[str, Any] ): print('''Loading config file...''' ) def flatten_yaml_as_dict(_UpperCamelCase : Dict ,_UpperCamelCase : str="" ,_UpperCamelCase : int="." ): __lowerCamelCase = [] for k, v in d.items(): __lowerCamelCase = parent_key + sep + k if parent_key else k if isinstance(lowerCAmelCase_ ,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCAmelCase_ ,lowerCAmelCase_ ,sep=lowerCAmelCase_ ).items() ) else: items.append((new_key, v) ) return dict(lowerCAmelCase_ ) __lowerCamelCase = argparse.Namespace() with open(lowerCAmelCase_ ,'''r''' ) as yaml_file: try: __lowerCamelCase = yaml.load(lowerCAmelCase_ ,Loader=yaml.FullLoader ) __lowerCamelCase = flatten_yaml_as_dict(lowerCAmelCase_ ) for k, v in flat_cfg.items(): setattr(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(lowerCAmelCase_ ,str(lowerCAmelCase_ ) ) ) return config def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Tuple ): __lowerCamelCase = MobileViTVaConfig() __lowerCamelCase = False # dataset if task_name.startswith('''imagenet1k_''' ): __lowerCamelCase = 10_00 if int(task_name.strip().split('''_''' )[-1] ) == 3_84: __lowerCamelCase = 3_84 else: __lowerCamelCase = 2_56 __lowerCamelCase = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): __lowerCamelCase = 2_10_00 if int(task_name.strip().split('''_''' )[-1] ) == 3_84: __lowerCamelCase = 3_84 else: __lowerCamelCase = 2_56 __lowerCamelCase = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): __lowerCamelCase = 1_51 __lowerCamelCase = 5_12 __lowerCamelCase = '''ade20k-id2label.json''' __lowerCamelCase = True elif task_name.startswith('''voc_''' ): __lowerCamelCase = 21 __lowerCamelCase = 5_12 __lowerCamelCase = '''pascal-voc-id2label.json''' __lowerCamelCase = True # orig_config __lowerCamelCase = load_orig_config_file(lowerCAmelCase_ ) assert getattr(lowerCAmelCase_ ,'''model.classification.name''' ,-1 ) == "mobilevit_v2", "Invalid model" __lowerCamelCase = getattr(lowerCAmelCase_ ,'''model.classification.mitv2.width_multiplier''' ,1.0 ) assert ( getattr(lowerCAmelCase_ ,'''model.classification.mitv2.attn_norm_layer''' ,-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" __lowerCamelCase = getattr(lowerCAmelCase_ ,'''model.classification.activation.name''' ,'''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: __lowerCamelCase = getattr(lowerCAmelCase_ ,'''model.segmentation.output_stride''' ,16 ) if "_deeplabv3" in task_name: __lowerCamelCase = getattr(lowerCAmelCase_ ,'''model.segmentation.deeplabv3.aspp_rates''' ,[12, 24, 36] ) __lowerCamelCase = getattr(lowerCAmelCase_ ,'''model.segmentation.deeplabv3.aspp_out_channels''' ,5_12 ) __lowerCamelCase = getattr(lowerCAmelCase_ ,'''model.segmentation.deeplabv3.aspp_dropout''' ,0.1 ) # id2label __lowerCamelCase = '''huggingface/label-files''' __lowerCamelCase = json.load(open(hf_hub_download(lowerCAmelCase_ ,lowerCAmelCase_ ,repo_type='''dataset''' ) ,'''r''' ) ) __lowerCamelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def a__ ( _UpperCamelCase : Dict ,_UpperCamelCase : Dict ,_UpperCamelCase : int ): __lowerCamelCase = dct.pop(lowerCAmelCase_ ) __lowerCamelCase = val def a__ ( _UpperCamelCase : Union[str, Any] ,_UpperCamelCase : Tuple=False ): if base_model: __lowerCamelCase = '''''' else: __lowerCamelCase = '''mobilevitv2.''' __lowerCamelCase = [] for k in state_dict.keys(): if k[:8] == "encoder.": __lowerCamelCase = k[8:] else: __lowerCamelCase = k if ".block." in k: __lowerCamelCase = k_new.replace('''.block.''' ,'''.''' ) if ".conv." in k: __lowerCamelCase = k_new.replace('''.conv.''' ,'''.convolution.''' ) if ".norm." in k: __lowerCamelCase = k_new.replace('''.norm.''' ,'''.normalization.''' ) if "conv_1." in k: __lowerCamelCase = k_new.replace('''conv_1.''' ,F"""{model_prefix}conv_stem.""" ) for i in [1, 2]: if F"""layer_{i}.""" in k: __lowerCamelCase = k_new.replace(F"""layer_{i}.""" ,F"""{model_prefix}encoder.layer.{i-1}.layer.""" ) if ".exp_1x1." in k: __lowerCamelCase = k_new.replace('''.exp_1x1.''' ,'''.expand_1x1.''' ) if ".red_1x1." in k: __lowerCamelCase = k_new.replace('''.red_1x1.''' ,'''.reduce_1x1.''' ) for i in [3, 4, 5]: if F"""layer_{i}.0.""" in k: __lowerCamelCase = k_new.replace(F"""layer_{i}.0.""" ,F"""{model_prefix}encoder.layer.{i-1}.downsampling_layer.""" ) if F"""layer_{i}.1.local_rep.0.""" in k: __lowerCamelCase = k_new.replace(F"""layer_{i}.1.local_rep.0.""" ,F"""{model_prefix}encoder.layer.{i-1}.conv_kxk.""" ) if F"""layer_{i}.1.local_rep.1.""" in k: __lowerCamelCase = k_new.replace(F"""layer_{i}.1.local_rep.1.""" ,F"""{model_prefix}encoder.layer.{i-1}.conv_1x1.""" ) for i in [3, 4, 5]: if i == 3: __lowerCamelCase = [0, 1] elif i == 4: __lowerCamelCase = [0, 1, 2, 3] elif i == 5: __lowerCamelCase = [0, 1, 2] for j in j_in: if F"""layer_{i}.1.global_rep.{j}.""" in k: __lowerCamelCase = k_new.replace( F"""layer_{i}.1.global_rep.{j}.""" ,F"""{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.""" ) if F"""layer_{i}.1.global_rep.{j+1}.""" in k: __lowerCamelCase = k_new.replace( F"""layer_{i}.1.global_rep.{j+1}.""" ,F"""{model_prefix}encoder.layer.{i-1}.layernorm.""" ) if F"""layer_{i}.1.conv_proj.""" in k: __lowerCamelCase = k_new.replace(F"""layer_{i}.1.conv_proj.""" ,F"""{model_prefix}encoder.layer.{i-1}.conv_projection.""" ) if "pre_norm_attn.0." in k: __lowerCamelCase = k_new.replace('''pre_norm_attn.0.''' ,'''layernorm_before.''' ) if "pre_norm_attn.1." in k: __lowerCamelCase = k_new.replace('''pre_norm_attn.1.''' ,'''attention.''' ) if "pre_norm_ffn.0." in k: __lowerCamelCase = k_new.replace('''pre_norm_ffn.0.''' ,'''layernorm_after.''' ) if "pre_norm_ffn.1." in k: __lowerCamelCase = k_new.replace('''pre_norm_ffn.1.''' ,'''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: __lowerCamelCase = k_new.replace('''pre_norm_ffn.3.''' ,'''ffn.conv2.''' ) if "classifier.1." in k: __lowerCamelCase = k_new.replace('''classifier.1.''' ,'''classifier.''' ) if "seg_head." in k: __lowerCamelCase = k_new.replace('''seg_head.''' ,'''segmentation_head.''' ) if ".aspp_layer." in k: __lowerCamelCase = k_new.replace('''.aspp_layer.''' ,'''.''' ) if ".aspp_pool." in k: __lowerCamelCase = k_new.replace('''.aspp_pool.''' ,'''.''' ) rename_keys.append((k, k_new) ) return rename_keys def a__ ( _UpperCamelCase : List[str] ): __lowerCamelCase = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(lowerCAmelCase_ ) for k in keys_to_ignore: state_dict.pop(lowerCAmelCase_ ,lowerCAmelCase_ ) def a__ ( ): __lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" __lowerCamelCase = Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : Tuple ,_UpperCamelCase : Any ): __lowerCamelCase = get_mobilevitva_config(lowerCAmelCase_ ,lowerCAmelCase_ ) # load original state_dict __lowerCamelCase = torch.load(lowerCAmelCase_ ,map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): __lowerCamelCase = MobileViTVaForSemanticSegmentation(lowerCAmelCase_ ).eval() __lowerCamelCase = False else: __lowerCamelCase = MobileViTVaForImageClassification(lowerCAmelCase_ ).eval() __lowerCamelCase = False # remove and rename some keys of load the original model __lowerCamelCase = checkpoint remove_unused_keys(lowerCAmelCase_ ) __lowerCamelCase = create_rename_keys(lowerCAmelCase_ ,base_model=lowerCAmelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # load modified state_dict model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowerCamelCase = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 ) __lowerCamelCase = image_processor(images=prepare_img() ,return_tensors='''pt''' ) __lowerCamelCase = model(**lowerCAmelCase_ ) # verify classification model if task_name.startswith('''imagenet''' ): __lowerCamelCase = outputs.logits __lowerCamelCase = logits.argmax(-1 ).item() print('''Predicted class:''' ,model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant __lowerCamelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] ,lowerCAmelCase_ ,atol=1e-4 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"""Saving model {task_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) a_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
330
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase__ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a_ : Optional[Any] , a_ : Tuple=16 , a_ : List[str]=13 , a_ : str=7 , a_ : List[str]=14 , a_ : Dict=10 , a_ : Any=19 , a_ : Tuple=5 , a_ : Any=4 , a_ : int=True , a_ : Optional[Any]=16 , a_ : Dict=2 , a_ : Tuple=4 , a_ : Any=4 , a_ : List[Any]="gelu" , a_ : Union[str, Any]=0.1 , a_ : Tuple=0.1 , a_ : Tuple=[1, 2, 3, 4, 5] , a_ : str=25 , a_ : List[str]=5 , ): lowerCAmelCase_ : List[str] = d_model lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : Tuple = batch_size lowerCAmelCase_ : str = prediction_length lowerCAmelCase_ : Tuple = context_length lowerCAmelCase_ : Any = cardinality lowerCAmelCase_ : Tuple = num_time_features lowerCAmelCase_ : Union[str, Any] = lags_sequence lowerCAmelCase_ : Tuple = embedding_dimension lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = context_length lowerCAmelCase_ : Optional[int] = prediction_length + label_length lowerCAmelCase_ : Optional[int] = label_length lowerCAmelCase_ : Optional[Any] = moving_average lowerCAmelCase_ : Optional[int] = autocorrelation_factor def lowerCamelCase ( self : Optional[Any] ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCamelCase ( self : int , a_ : Optional[Any] ): lowerCAmelCase_ : Tuple = config.context_length + max(config.lags_sequence ) lowerCAmelCase_ : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase_ : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase_ : str = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase_ : Dict = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase_ : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase_ : Any = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def lowerCamelCase ( self : str ): lowerCAmelCase_ : Union[str, Any] = self.get_config() lowerCAmelCase_ : Union[str, Any] = self.prepare_autoformer_inputs_dict(a_ ) return config, inputs_dict def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCamelCase ( self : Union[str, Any] , a_ : Optional[Any] , a_ : List[str] ): lowerCAmelCase_ : Optional[Any] = AutoformerModel(config=a_ ).to(a_ ).eval() lowerCAmelCase_ : List[str] = model(**a_ ) lowerCAmelCase_ : Union[str, Any] = outputs.encoder_last_hidden_state lowerCAmelCase_ : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : Optional[int] = model.get_encoder() encoder.save_pretrained(a_ ) lowerCAmelCase_ : Dict = AutoformerEncoder.from_pretrained(a_ ).to(a_ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = model.create_network_inputs(**a_ ) lowerCAmelCase_ , lowerCAmelCase_ : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase_ : Tuple = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase_ : Optional[int] = encoder(inputs_embeds=a_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCAmelCase_ : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase_ : Optional[int] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase_ : str = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase_ : Optional[int] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : str = model.get_decoder() decoder.save_pretrained(a_ ) lowerCAmelCase_ : int = AutoformerDecoder.from_pretrained(a_ ).to(a_ ) lowerCAmelCase_ : List[str] = decoder( trend=a_ , inputs_embeds=a_ , encoder_hidden_states=a_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowerCamelCase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' a_ : Any = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a_ : str = (AutoformerForPrediction,) if is_torch_available() else () a_ : Tuple = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} a_ : Optional[int] = False a_ : List[Any] = False a_ : Tuple = False a_ : List[Any] = False a_ : Tuple = False a_ : Tuple = False def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Dict = AutoformerModelTester(self ) lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def lowerCamelCase ( self : Any ): self.config_tester.run_common_tests() def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = model_class.from_pretrained(a_ , output_loading_info=a_ ) self.assertEqual(info["missing_keys"] , [] ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a_ ) @unittest.skip(reason="Model has no tokens embeddings" ) def lowerCamelCase ( self : Optional[Any] ): pass def lowerCamelCase ( self : Union[str, Any] ): lowerCAmelCase_ : str = inspect.signature(getattr(a_ , "forward" ) ) # The main input is the name of the argument after `self` lowerCAmelCase_ : str = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , a_ ) def lowerCamelCase ( self : Any ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(a_ ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : str = [*signature.parameters.keys()] lowerCAmelCase_ : Any = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(a_ )] , a_ ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Any = True lowerCAmelCase_ : Optional[int] = getattr(self.model_tester , "seq_length" , a_ ) lowerCAmelCase_ : str = getattr(self.model_tester , "decoder_seq_length" , a_ ) lowerCAmelCase_ : str = getattr(self.model_tester , "encoder_seq_length" , a_ ) lowerCAmelCase_ : Optional[int] = getattr(self.model_tester , "d_model" , a_ ) lowerCAmelCase_ : Any = getattr(self.model_tester , "num_attention_heads" , a_ ) lowerCAmelCase_ : Optional[int] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(a_ , a_ ) ) lowerCAmelCase_ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ : Union[str, Any] = True lowerCAmelCase_ : List[str] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(a_ , a_ ) ) lowerCAmelCase_ : Dict = outputs.encoder_attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase_ : List[Any] = len(a_ ) lowerCAmelCase_ : List[str] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(a_ , a_ ) # decoder attentions lowerCAmelCase_ : str = outputs.decoder_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase_ : Any = outputs.cross_attentions self.assertIsInstance(a_ , (list, tuple) ) self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Optional[Any] = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(**self._prepare_for_class(a_ , a_ ) ) self.assertEqual(out_len + 2 , len(a_ ) ) lowerCAmelCase_ : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCamelCase ( self : Optional[Any] ): super().test_retain_grad_hidden_states_attentions() def __lowerCamelCase ( __UpperCamelCase="train-batch.pt" ) -> List[str]: """simple docstring""" lowerCAmelCase_ : Any = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__UpperCamelCase , repo_type="dataset" ) lowerCAmelCase_ : Optional[int] = torch.load(__UpperCamelCase , map_location=__UpperCamelCase ) return batch @require_torch @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : int ): lowerCAmelCase_ : List[Any] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(a_ ) lowerCAmelCase_ : List[str] = prepare_batch() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCAmelCase_ : Any = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , a_ ) lowerCAmelCase_ : List[Any] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : List[Any] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(a_ ) lowerCAmelCase_ : str = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCAmelCase_ : Union[str, Any] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCAmelCase_ : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , a_ ) lowerCAmelCase_ : Dict = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=a_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , a_ , atol=a_ ) ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : List[str] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(a_ ) lowerCAmelCase_ : Union[str, Any] = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCAmelCase_ : Dict = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCAmelCase_ : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , a_ ) lowerCAmelCase_ : List[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=a_ ) lowerCAmelCase_ : List[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , a_ , rtol=1e-1 ) )
161
"""simple docstring""" import qiskit def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase_ : int = qiskit.Aer.get_backend("aer_simulator" ) lowerCAmelCase_ : List[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase_ : Tuple = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
161
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = "Hello, World!" _UpperCamelCase = "en_XX" def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = Path('''data_bin''' ) __lowerCAmelCase : str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(lowercase__ ).parent ) , checkpoint_file=Path(lowercase__ ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(lowercase__ ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(lowercase__ ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(lowercase__ ) __lowerCAmelCase : Dict = xmod.model.encoder.sentence_encoder __lowerCAmelCase : int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCAmelCase : Any = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , lowercase__ ) __lowerCAmelCase : Any = XmodForSequenceClassification(lowercase__ ) if classification_head else XmodForMaskedLM(lowercase__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCAmelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight __lowerCAmelCase : Tuple = xmod_sent_encoder.embed_positions.weight __lowerCAmelCase : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCAmelCase : List[Any] = xmod_sent_encoder.layernorm_embedding.weight __lowerCAmelCase : Dict = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCAmelCase : List[str] = model.roberta.encoder.layer[i] __lowerCAmelCase : Tuple = xmod_sent_encoder.layers[i] # self attention __lowerCAmelCase : Any = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) __lowerCAmelCase : List[str] = xmod_layer.self_attn.q_proj.weight __lowerCAmelCase : int = xmod_layer.self_attn.q_proj.bias __lowerCAmelCase : Optional[int] = xmod_layer.self_attn.k_proj.weight __lowerCAmelCase : List[str] = xmod_layer.self_attn.k_proj.bias __lowerCAmelCase : Optional[int] = xmod_layer.self_attn.v_proj.weight __lowerCAmelCase : List[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCAmelCase : Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) __lowerCAmelCase : Dict = xmod_layer.self_attn.out_proj.weight __lowerCAmelCase : Optional[int] = xmod_layer.self_attn.out_proj.bias __lowerCAmelCase : Optional[int] = xmod_layer.self_attn_layer_norm.weight __lowerCAmelCase : Tuple = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCAmelCase : List[Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) __lowerCAmelCase : Tuple = xmod_layer.fca.weight __lowerCAmelCase : Optional[int] = xmod_layer.fca.bias # output __lowerCAmelCase : Tuple = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) __lowerCAmelCase : Dict = xmod_layer.fca.weight __lowerCAmelCase : str = xmod_layer.fca.bias __lowerCAmelCase : str = xmod_layer.final_layer_norm.weight __lowerCAmelCase : List[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCAmelCase : Tuple = xmod_layer.adapter_layer_norm.weight __lowerCAmelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCAmelCase : List[str] = bert_output.adapter_modules[lang_code] __lowerCAmelCase : Optional[int] = xmod_layer.adapter_modules[lang_code] __lowerCAmelCase : Tuple = from_adapter.fca.weight __lowerCAmelCase : Dict = from_adapter.fca.bias __lowerCAmelCase : Tuple = from_adapter.fca.weight __lowerCAmelCase : Optional[int] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCAmelCase : List[Any] = xmod_sent_encoder.layer_norm.weight __lowerCAmelCase : Dict = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCAmelCase : Optional[int] = xmod.model.classification_heads['''mnli'''].dense.weight __lowerCAmelCase : Optional[Any] = xmod.model.classification_heads['''mnli'''].dense.bias __lowerCAmelCase : Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight __lowerCAmelCase : Optional[int] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.weight __lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.dense.bias __lowerCAmelCase : int = xmod.model.encoder.lm_head.layer_norm.weight __lowerCAmelCase : List[str] = xmod.model.encoder.lm_head.layer_norm.bias __lowerCAmelCase : Union[str, Any] = xmod.model.encoder.lm_head.weight __lowerCAmelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCAmelCase : Any = xmod.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(lowercase__ ) __lowerCAmelCase : Any = model(lowercase__ )[0] if classification_head: __lowerCAmelCase : List[Any] = xmod.model.classification_heads['''mnli'''](xmod.extract_features(lowercase__ ) ) else: __lowerCAmelCase : List[str] = xmod.model(lowercase__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCAmelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCAmelCase : Tuple = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) _UpperCamelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
275
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): def constraint_to_multiple_of(lowercase__ , lowercase__ , lowercase__=0 , lowercase__=None ): __lowerCAmelCase : int = round(val / multiple ) * multiple if max_val is not None and x > max_val: __lowerCAmelCase : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: __lowerCAmelCase : Any = math.ceil(val / multiple ) * multiple return x __lowerCAmelCase : Dict = (output_size, output_size) if isinstance(lowercase__ , lowercase__ ) else output_size __lowerCAmelCase, __lowerCAmelCase : Optional[Any] = get_image_size(lowercase__ ) __lowerCAmelCase, __lowerCAmelCase : int = output_size # determine new height and width __lowerCAmelCase : Optional[Any] = output_height / input_height __lowerCAmelCase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __lowerCAmelCase : str = scale_width else: # fit height __lowerCAmelCase : str = scale_height __lowerCAmelCase : Any = constraint_to_multiple_of(scale_height * input_height , multiple=lowercase__ ) __lowerCAmelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width , multiple=lowercase__ ) return (new_height, new_width) class __lowercase (_UpperCAmelCase ): _UpperCamelCase = ["""pixel_values"""] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = False , A_ = 1 , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ) ->None: '''simple docstring''' super().__init__(**A_ ) __lowerCAmelCase : Union[str, Any] = size if size is not None else {'''height''': 384, '''width''': 384} __lowerCAmelCase : Dict = get_size_dict(A_ ) __lowerCAmelCase : Optional[Any] = do_resize __lowerCAmelCase : int = size __lowerCAmelCase : Dict = keep_aspect_ratio __lowerCAmelCase : List[Any] = ensure_multiple_of __lowerCAmelCase : Tuple = resample __lowerCAmelCase : Dict = do_rescale __lowerCAmelCase : Any = rescale_factor __lowerCAmelCase : List[Any] = do_normalize __lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , A_ , A_ , A_ = False , A_ = 1 , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) ->np.ndarray: '''simple docstring''' __lowerCAmelCase : int = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase : Union[str, Any] = get_resize_output_image_size( A_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=A_ , multiple=A_ , ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ = None , **A_ , ) ->Dict: '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ , A_ , A_ = None , **A_ , ) ->np.ndarray: '''simple docstring''' return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def UpperCamelCase__ ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) ->PIL.Image.Image: '''simple docstring''' __lowerCAmelCase : int = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Optional[int] = size if size is not None else self.size __lowerCAmelCase : Union[str, Any] = get_size_dict(A_ ) __lowerCAmelCase : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __lowerCAmelCase : Optional[int] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __lowerCAmelCase : Tuple = resample if resample is not None else self.resample __lowerCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : str = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : Optional[Any] = image_std if image_std is not None else self.image_std __lowerCAmelCase : Optional[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase : Any = [to_numpy_array(A_ ) for image in images] if do_resize: __lowerCAmelCase : Optional[Any] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_rescale: __lowerCAmelCase : Tuple = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: __lowerCAmelCase : str = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] __lowerCAmelCase : Union[str, Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] __lowerCAmelCase : Dict = {'''pixel_values''': images} return BatchFeature(data=A_ , tensor_type=A_ ) def UpperCamelCase__ ( self , A_ , A_ = None ) ->Any: '''simple docstring''' __lowerCAmelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(A_ ): __lowerCAmelCase : Optional[int] = target_sizes.numpy() __lowerCAmelCase : List[str] = [] for idx in range(len(A_ ) ): __lowerCAmelCase : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=A_ ) __lowerCAmelCase : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: __lowerCAmelCase : Any = logits.argmax(dim=1 ) __lowerCAmelCase : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
275
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class a ( unittest.TestCase , __lowerCAmelCase ): """simple docstring""" def UpperCAmelCase ( self ) -> int: _A = load_tool("""text-classification""" ) self.tool.setup() _A = load_tool("""text-classification""" , remote=lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" ) def UpperCAmelCase ( self ) -> List[str]: _A = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" ) def UpperCAmelCase ( self ) -> str: _A = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(lowerCAmelCase_ , """positive""" )
363
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
78
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=56 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : int=7 , _UpperCAmelCase : Optional[Any]="gelu_new" , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Optional[int]="block_sparse" , _UpperCAmelCase : Any=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=3 , ) -> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices lowercase__ = rescale_embeddings lowercase__ = attention_type lowercase__ = use_bias lowercase__ = block_size lowercase__ = num_random_blocks def lowerCamelCase__ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A__ = False A__ = False def lowerCamelCase__ (self : Optional[int] ) -> Dict: """simple docstring""" lowercase__ = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase__ (self : Union[str, Any] ) -> str: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase__ (self : Dict ) -> Tuple: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().test_hidden_states_output() @slow def lowerCamelCase__ (self : Tuple ) -> int: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCamelCase__ (self : Dict ) -> Dict: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Dict ): return model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): lowercase__ = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase__ = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ (self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=1E-5 , _UpperCAmelCase : Any="outputs" , _UpperCAmelCase : int=None ) -> int: """simple docstring""" if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
146
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__(self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Any , ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=''' f''' {type(_UpperCAmelCase )}.''' ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 1 / 0.18_215 * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
146
1
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase__ = data_utils.TransfoXLTokenizer UpperCAmelCase__ = data_utils.TransfoXLCorpus UpperCAmelCase__ = data_utils UpperCAmelCase__ = data_utils def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowercase ,"""rb""" ) as fp: _UpperCAmelCase = pickle.load(lowercase ,encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _UpperCAmelCase = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) _UpperCAmelCase = corpus.vocab.__dict__ torch.save(lowercase ,lowercase ) _UpperCAmelCase = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" ,lowercase ) _UpperCAmelCase = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(lowercase ,lowercase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _UpperCAmelCase = os.path.abspath(lowercase ) _UpperCAmelCase = os.path.abspath(lowercase ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": _UpperCAmelCase = TransfoXLConfig() else: _UpperCAmelCase = TransfoXLConfig.from_json_file(lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase = TransfoXLLMHeadModel(lowercase ) _UpperCAmelCase = load_tf_weights_in_transfo_xl(lowercase ,lowercase ,lowercase ) # Save pytorch-model _UpperCAmelCase = os.path.join(lowercase ,lowercase ) _UpperCAmelCase = os.path.join(lowercase ,lowercase ) print(f'''Save PyTorch model to {os.path.abspath(lowercase )}''' ) torch.save(model.state_dict() ,lowercase ) print(f'''Save configuration file to {os.path.abspath(lowercase )}''' ) with open(lowercase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) UpperCAmelCase__ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
289
"""simple docstring""" UpperCAmelCase__ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) UpperCAmelCase__ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = from_type.lower().strip("""s""" ) _UpperCAmelCase = to_type.lower().strip("""s""" ) _UpperCAmelCase = UNIT_SYMBOL.get(lowercase ,lowercase ) _UpperCAmelCase = UNIT_SYMBOL.get(lowercase ,lowercase ) if from_sanitized not in METRIC_CONVERSION: _UpperCAmelCase = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowercase )}''' ) raise ValueError(lowercase ) if to_sanitized not in METRIC_CONVERSION: _UpperCAmelCase = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(lowercase )}''' ) raise ValueError(lowercase ) _UpperCAmelCase = METRIC_CONVERSION[from_sanitized] _UpperCAmelCase = METRIC_CONVERSION[to_sanitized] _UpperCAmelCase = 1 if from_exponent > to_exponent: _UpperCAmelCase = from_exponent - to_exponent else: _UpperCAmelCase = -(to_exponent - from_exponent) return value * pow(10 ,lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
289
1
class A : """simple docstring""" def __init__( self : int,lowercase_ : list[int] )-> None: '''simple docstring''' A__ = len(lowercase_ ) A__ = [0] * len_array if len_array > 0: A__ = array[0] for i in range(1,lowercase_ ): A__ = self.prefix_sum[i - 1] + array[i] def snake_case__ ( self : Optional[Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def snake_case__ ( self : List[Any],lowercase_ : int )-> bool: '''simple docstring''' A__ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
282
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int: '''simple docstring''' A__ = 3 A__ = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
282
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : str = logging.get_logger(__name__) lowerCAmelCase__ : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart lowerCAmelCase__ : Tuple = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } lowerCAmelCase__ : Optional[int] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def UpperCamelCase__ ( ) -> Dict: snake_case__ : Tuple = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) snake_case__ : Any = bs[:] snake_case__ : str = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 snake_case__ : List[Any] = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def UpperCamelCase__ ( A__ ) -> Any: snake_case__ : Union[str, Any] = set() snake_case__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Any = char return pairs class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="replace" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<s>" , __UpperCamelCase="<unk>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<mask>" , __UpperCamelCase=False , **__UpperCamelCase , ) -> List[str]: '''simple docstring''' snake_case__ : int = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token snake_case__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token snake_case__ : Any = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token snake_case__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token snake_case__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token snake_case__ : Optional[Any] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Tuple = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , **__UpperCamelCase , ) with open(__UpperCamelCase , encoding='utf-8' ) as vocab_handle: snake_case__ : Optional[int] = json.load(__UpperCamelCase ) snake_case__ : Tuple = {v: k for k, v in self.encoder.items()} snake_case__ : int = errors # how to handle errors in decoding snake_case__ : Optional[int] = bytes_to_unicode() snake_case__ : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCamelCase , encoding='utf-8' ) as merges_handle: snake_case__ : Optional[Any] = merges_handle.read().split('\n' )[1:-1] snake_case__ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : Union[str, Any] = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) snake_case__ : Any = {} snake_case__ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : str = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __a ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def __a ( self ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , __UpperCamelCase ) -> Any: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case__ : str = tuple(__UpperCamelCase ) snake_case__ : Union[str, Any] = get_pairs(__UpperCamelCase ) if not pairs: return token while True: snake_case__ : Union[str, Any] = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ : Dict = bigram snake_case__ : Union[str, Any] = [] snake_case__ : Dict = 0 while i < len(__UpperCamelCase ): try: snake_case__ : Union[str, Any] = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : str = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Dict = tuple(__UpperCamelCase ) snake_case__ : int = new_word if len(__UpperCamelCase ) == 1: break else: snake_case__ : List[str] = get_pairs(__UpperCamelCase ) snake_case__ : int = ' '.join(__UpperCamelCase ) snake_case__ : Tuple = word return word def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Dict = [] for token in re.findall(self.pat , __UpperCamelCase ): snake_case__ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCamelCase ).split(' ' ) ) return bpe_tokens def __a ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' return self.decoder.get(__UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> str: '''simple docstring''' snake_case__ : Dict = ''.join(__UpperCamelCase ) snake_case__ : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : Optional[int] = os.path.join( __UpperCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + '\n' ) snake_case__ : Union[str, Any] = 0 with open(__UpperCamelCase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) snake_case__ : Tuple = token_index writer.write(' '.join(__UpperCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] snake_case__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self , __UpperCamelCase , __UpperCamelCase=False , **__UpperCamelCase ) -> Tuple: '''simple docstring''' snake_case__ : Optional[Any] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCamelCase ) > 0 and not text[0].isspace()): snake_case__ : int = ' ' + text return (text, kwargs)
143
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP lowerCAmelCase__ : List[str] = False try: lowerCAmelCase__ : str = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class __snake_case : def __init__( self , __UpperCamelCase = None , __UpperCamelCase = [] ) -> int: '''simple docstring''' snake_case__ : List[str] = 0 snake_case__ : List[str] = choices snake_case__ : str = prompt if sys.platform == "win32": snake_case__ : str = '*' else: snake_case__ : Tuple = '➔ ' def __a ( self , __UpperCamelCase , __UpperCamelCase = "" ) -> Optional[int]: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , __UpperCamelCase ) else: forceWrite(self.choices[index] , __UpperCamelCase ) def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(__UpperCamelCase ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def __a ( self , __UpperCamelCase , __UpperCamelCase = 1 ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__UpperCamelCase ) move_cursor(__UpperCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def __a ( self ) -> Optional[int]: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def __a ( self ) -> List[Any]: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def __a ( self ) -> List[str]: '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def __a ( self ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__UpperCamelCase )] for number in range(10 )] ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = int(chr(self.current_selection ) ) snake_case__ : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __UpperCamelCase ) else: return else: return def __a ( self , __UpperCamelCase = 0 ) -> str: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) snake_case__ : Optional[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(__UpperCamelCase ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: snake_case__ : Union[str, Any] = int(builtins.input() ) except ValueError: snake_case__ : Dict = default_choice else: snake_case__ : List[Any] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(__UpperCamelCase , '\n' ) return choice
143
1
__snake_case : Dict ='Tobias Carryer' from time import time class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=int(time() ) ) -> List[Any]: # noqa: B008 """simple docstring""" lowerCAmelCase__ : Union[str, Any] = multiplier lowerCAmelCase__ : int = increment lowerCAmelCase__ : Optional[Any] = modulo lowerCAmelCase__ : Dict = seed def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Tuple =LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
94
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __snake_case : Dict =HfArgumentParser(InitializationArguments) __snake_case : Tuple =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __snake_case : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __snake_case : List[str] ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) __snake_case : List[Any] =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __snake_case : int =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
94
1
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
2
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : int ) -> List[str]: _a : Any = """laion/clap-htsat-unfused""" _a : Union[str, Any] = tempfile.mkdtemp() def _lowercase ( self : List[Any] , **UpperCAmelCase__ : Any ) -> Dict: return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] , **UpperCAmelCase__ : List[str] ) -> int: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def _lowercase ( self : List[str] ) -> Optional[int]: _a : List[str] = self.get_tokenizer() _a : Any = self.get_feature_extractor() _a : Optional[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) _a : List[str] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> Optional[int]: _a : Tuple = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _a : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _a : Union[str, Any] = self.get_feature_extractor(do_normalize=UpperCAmelCase__ , padding_value=1.0 ) _a : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase__ ) def _lowercase ( self : List[str] ) -> Optional[Any]: _a : Optional[int] = self.get_feature_extractor() _a : Tuple = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = floats_list((3, 1000) ) _a : List[Any] = feature_extractor(UpperCAmelCase__ , return_tensors="""np""" ) _a : List[str] = processor(audios=UpperCAmelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self : Tuple ) -> Optional[int]: _a : List[str] = self.get_feature_extractor() _a : Any = self.get_tokenizer() _a : Any = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Optional[int] = """This is a test string""" _a : Tuple = processor(text=UpperCAmelCase__ ) _a : int = tokenizer(UpperCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self : List[Any] ) -> Any: _a : str = self.get_feature_extractor() _a : List[str] = self.get_tokenizer() _a : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) _a : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a : Dict = processor.batch_decode(UpperCAmelCase__ ) _a : Any = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Dict ) -> List[str]: _a : str = self.get_feature_extractor() _a : Optional[Any] = self.get_tokenizer() _a : Union[str, Any] = ClapProcessor(tokenizer=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
294
0
from bisect import bisect from itertools import accumulate def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Any: snake_case : Tuple = sorted(zip(snake_case__ ,snake_case__ ) ,key=lambda lowercase : x[0] / x[1] ,reverse=snake_case__ ) snake_case : str = [i[0] for i in r], [i[1] for i in r] snake_case : Optional[Any] = list(accumulate(snake_case__ ) ) snake_case : Dict = bisect(snake_case__ ,snake_case__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : Dict = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=8 ) -> Optional[int]: snake_case : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , ) -> int: super().__init__() self.register_modules( unet=A , scheduler=A , movq=A , ) snake_case : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , A , A , A , A , A , A ) -> str: if latents is None: snake_case : List[str] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) snake_case : Union[str, Any] = latents.to(A ) snake_case : Optional[Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self , A=0 ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case : Dict = torch.device(f"""cuda:{gpu_id}""" ) snake_case : Tuple = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def UpperCAmelCase ( self , A=0 ) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case : int = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case , snake_case : Tuple = cpu_offload_with_hook(A , A , prev_module_hook=A ) # We'll offload the last model manually. snake_case : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ) -> str: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A , A = 5_1_2 , A = 5_1_2 , A = 1_0_0 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> Any: snake_case : int = self._execution_device snake_case : Tuple = guidance_scale > 1.0 if isinstance(A , A ): snake_case : str = torch.cat(A , dim=0 ) if isinstance(A , A ): snake_case : int = torch.cat(A , dim=0 ) if isinstance(A , A ): snake_case : Tuple = torch.cat(A , dim=0 ) snake_case : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case : Optional[int] = image_embeds.repeat_interleave(A , dim=0 ) snake_case : Dict = negative_image_embeds.repeat_interleave(A , dim=0 ) snake_case : Optional[Any] = hint.repeat_interleave(A , dim=0 ) snake_case : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A ) snake_case : Optional[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) snake_case : Tuple = self.scheduler.timesteps snake_case : Tuple = self.movq.config.latent_channels snake_case , snake_case : Optional[int] = downscale_height_and_width(A , A , self.movq_scale_factor ) # create initial latent snake_case : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance snake_case : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : Any = {"""image_embeds""": image_embeds, """hint""": hint} snake_case : List[Any] = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: snake_case , snake_case : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) snake_case , snake_case : Tuple = noise_pred.chunk(2 ) snake_case , snake_case : Optional[Any] = variance_pred.chunk(2 ) snake_case : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case , snake_case : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : Dict = self.scheduler.step( A , A , A , generator=A , )[0] # post-processing snake_case : Tuple = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: snake_case : Optional[int] = image * 0.5 + 0.5 snake_case : Union[str, Any] = image.clamp(0 , 1 ) snake_case : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : Tuple = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
176
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def __lowerCamelCase ( ) -> Generator[int, None, None]: UpperCAmelCase : dict[int, int] = {} UpperCAmelCase : List[Any] = 2 while True: UpperCAmelCase : str = factor_map.pop(_lowercase , _lowercase ) if factor: UpperCAmelCase : List[str] = factor + prime while x in factor_map: x += factor UpperCAmelCase : List[str] = factor else: UpperCAmelCase : int = prime yield prime prime += 1 def __lowerCamelCase ( _lowercase = 1e10 ) -> int: UpperCAmelCase : Optional[Any] = sieve() UpperCAmelCase : str = 1 while True: UpperCAmelCase : Optional[int] = next(_lowercase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_lowercase ) n += 2 if __name__ == "__main__": print(solution())
265
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , A , A=12 , A=7 , A=True , A=True , A=True , A=99 , A=32 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=512 , A=0.0_2 , A=0 , A=None , ) -> Any: UpperCAmelCase : Optional[Any] = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : Dict = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : List[Any] = projection_dim UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Any = dropout UpperCAmelCase : List[Any] = attention_dropout UpperCAmelCase : Optional[Any] = max_position_embeddings UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = scope UpperCAmelCase : Union[str, Any] = bos_token_id def _lowercase( self ) -> Tuple: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: UpperCAmelCase : Tuple = input_mask.numpy() UpperCAmelCase , UpperCAmelCase : int = input_mask.shape UpperCAmelCase : Optional[int] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A ): UpperCAmelCase : Tuple = 1 UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : int = self.get_config() return config, input_ids, tf.convert_to_tensor(A ) def _lowercase( self ) -> int: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _lowercase( self , A , A , A ) -> Union[str, Any]: UpperCAmelCase : int = TFBlipTextModel(config=A ) UpperCAmelCase : Union[str, Any] = model(A , attention_mask=A , training=A ) UpperCAmelCase : int = model(A , training=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = config_and_inputs UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = (TFBlipTextModel,) if is_tf_available() else () lowercase = False lowercase = False lowercase = False def _lowercase( self ) -> int: UpperCAmelCase : Union[str, Any] = BlipTextModelTester(self ) UpperCAmelCase : List[str] = ConfigTester(self , config_class=A , hidden_size=37 ) def _lowercase( self ) -> Tuple: self.config_tester.run_common_tests() def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def _lowercase( self ) -> List[str]: pass def _lowercase( self ) -> Optional[int]: pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def _lowercase( self ) -> Union[str, Any]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _lowercase( self ) -> Optional[int]: pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def _lowercase( self ) -> Dict: pass @slow def _lowercase( self ) -> Dict: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Any = TFBlipTextModel.from_pretrained(A ) self.assertIsNotNone(A ) def _lowercase( self , A=True ) -> str: super().test_pt_tf_model_equivalence(allow_missing_keys=A )
265
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Dict = "rwkv" __snake_case : Optional[int] = {"max_position_embeddings": "context_length"} def __init__( self: Optional[int] , UpperCAmelCase_: List[str]=50_277 , UpperCAmelCase_: str=1_024 , UpperCAmelCase_: Optional[int]=4_096 , UpperCAmelCase_: Tuple=32 , UpperCAmelCase_: Optional[int]=None , UpperCAmelCase_: List[Any]=None , UpperCAmelCase_: Optional[int]=1E-5 , UpperCAmelCase_: List[Any]=0 , UpperCAmelCase_: str=0 , UpperCAmelCase_: Optional[Any]=6 , UpperCAmelCase_: Optional[int]=False , UpperCAmelCase_: Union[str, Any]=True , **UpperCAmelCase_: Union[str, Any] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = context_length _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = attention_hidden_size if attention_hidden_size is not None else hidden_size _SCREAMING_SNAKE_CASE = intermediate_size if intermediate_size is not None else 4 * hidden_size _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = rescale_every _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
125
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _a : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _a : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: _a : Union[str, Any] = '' else: _a : Optional[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _a : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _a : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _a : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _a : Union[str, Any] = in_proj_bias[: config.hidden_size] _a : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _a : Dict = in_proj_weight[ -config.hidden_size :, : ] _a : Optional[Any] = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[Any]: _a : int = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _a : Tuple = dct.pop(lowerCAmelCase_ ) _a : Optional[Any] = val def __lowerCamelCase ( ) -> Any: _a : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' _a : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : Any = ViTConfig() _a : List[Any] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _a : List[Any] = True _a : str = int(vit_name[-12:-10] ) _a : Any = int(vit_name[-9:-6] ) else: _a : str = 1000 _a : List[Any] = 'huggingface/label-files' _a : int = 'imagenet-1k-id2label.json' _a : Any = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type='dataset' ) , 'r' ) ) _a : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _a : str = idalabel _a : int = {v: k for k, v in idalabel.items()} _a : List[Any] = int(vit_name[-6:-4] ) _a : Optional[int] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): _a : Optional[int] = 192 _a : Dict = 768 _a : List[Any] = 12 _a : Union[str, Any] = 3 elif vit_name[9:].startswith('small' ): _a : Optional[Any] = 384 _a : str = 1536 _a : str = 12 _a : Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith('small' ): _a : int = 768 _a : str = 2304 _a : List[str] = 8 _a : Optional[int] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): _a : Any = 1024 _a : Optional[int] = 4096 _a : Union[str, Any] = 24 _a : Any = 16 elif vit_name[4:].startswith('huge' ): _a : str = 1280 _a : Dict = 5120 _a : str = 32 _a : str = 16 # load original model from timm _a : Union[str, Any] = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _a : str = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) _a : Optional[Any] = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": _a : Union[str, Any] = ViTModel(lowerCAmelCase_ ).eval() else: _a : str = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _a : Any = DeiTImageProcessor(size=config.image_size ) else: _a : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _a : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) _a : str = encoding['pixel_values'] _a : List[str] = model(lowerCAmelCase_ ) if base_model: _a : Optional[Any] = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_ , outputs.pooler_output , atol=1E-3 ) else: _a : Union[str, Any] = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1E-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
89
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[str]=13 ,_UpperCAmelCase : Any=32 ,_UpperCAmelCase : Union[str, Any]=3 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : Optional[Any]=[10, 20, 30, 40] ,_UpperCAmelCase : Tuple=[2, 2, 3, 2] ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Union[str, Any]=37 ,_UpperCAmelCase : Optional[int]="gelu" ,_UpperCAmelCase : Optional[Any]=10 ,_UpperCAmelCase : Tuple=0.02 ,_UpperCAmelCase : Any=["stage2", "stage3", "stage4"] ,_UpperCAmelCase : Any=[2, 3, 4] ,_UpperCAmelCase : Tuple=None ,): _a : Optional[Any] = parent _a : List[Any] = batch_size _a : str = image_size _a : Union[str, Any] = num_channels _a : List[Any] = num_stages _a : Dict = hidden_sizes _a : int = depths _a : Tuple = is_training _a : List[str] = use_labels _a : Dict = intermediate_size _a : int = hidden_act _a : int = num_labels _a : Any = initializer_range _a : Tuple = out_features _a : int = out_indices _a : List[Any] = scope def __lowercase ( self : Dict ): _a : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) _a : str = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): return ConvNextVaConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ): _a : Optional[Any] = ConvNextVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Any = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ): _a : List[Any] = ConvNextVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : str ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ): _a : Optional[int] = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Dict = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a : Tuple = None _a : List[Any] = ConvNextVaBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : List[str] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def __lowercase ( self : Optional[Any] ): _a : Any = self.prepare_config_and_inputs() _a , _a , _a : Union[str, Any] = config_and_inputs _a : Any = {'pixel_values': pixel_values} return config, inputs_dict def __lowercase ( self : str ): _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a : Tuple = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values, 'labels': labels} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCAmelCase : str = ( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCAmelCase : int = False lowerCAmelCase : str = False lowerCAmelCase : Optional[Any] = False lowerCAmelCase : List[str] = False lowerCAmelCase : Optional[int] = False def __lowercase ( self : List[Any] ): _a : str = ConvNextVaModelTester(self ) _a : Tuple = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : str ): return @unittest.skip(reason='ConvNextV2 does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): pass @unittest.skip(reason='ConvNextV2 does not support input and output embeddings' ) def __lowercase ( self : Optional[int] ): pass @unittest.skip(reason='ConvNextV2 does not use feedforward chunking' ) def __lowercase ( self : Any ): pass def __lowercase ( self : List[str] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Any = True if model_class.__name__ in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ]: continue _a : Optional[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : str = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : Optional[int] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : str ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _a : Optional[int] = False _a : Tuple = True if ( model_class.__name__ in [*get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue _a : Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : Any = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : List[Any] = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : List[Any] ): _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = model_class(_UpperCAmelCase ) _a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Dict = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : int ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : Any ): def check_hidden_states_output(_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Dict ): _a : Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a : str = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) ,expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : List[Any] ): _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def __lowercase ( self : int ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = ConvNextVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCamelCase ( ) -> List[Any]: _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __lowercase ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained('facebook/convnextv2-tiny-1k-224' ) if is_vision_available() else None @slow def __lowercase ( self : Any ): _a : List[str] = ConvNextVaForImageClassification.from_pretrained('facebook/convnextv2-tiny-1k-224' ).to(_UpperCAmelCase ) _a : Optional[int] = self.default_image_processor _a : str = prepare_img() _a : str = preprocessor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : Dict = model(**_UpperCAmelCase ) # verify the logits _a : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_UpperCAmelCase ) _a : Optional[Any] = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCAmelCase ,atol=1E-4 ) )
89
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCAmelCase__ ): lowerCamelCase : Tuple = ['input_features'] def __init__( self : Dict , UpperCAmelCase__ : List[str]=8_0 , UpperCAmelCase__ : Dict=1_6_0_0_0 , UpperCAmelCase__ : Optional[Any]=1_6_0 , UpperCAmelCase__ : Dict=3_0 , UpperCAmelCase__ : Tuple=4_0_0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : List[str]=False , **UpperCAmelCase__ : List[str] , ) -> Dict: super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : Any ) -> np.ndarray: lowerCAmelCase = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __UpperCAmelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: lowerCAmelCase = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) lowerCAmelCase = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int = True , UpperCAmelCase__ : Tuple = None , UpperCAmelCase__ : List[str] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : int = "max_length" , UpperCAmelCase__ : Union[str, Any] = None , UpperCAmelCase__ : Tuple = None , UpperCAmelCase__ : List[Any] = None , **UpperCAmelCase__ : Optional[int] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): lowerCAmelCase = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech] ).T] lowerCAmelCase = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding lowerCAmelCase = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format lowerCAmelCase = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) lowerCAmelCase = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict[str, Any]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
359
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a_ ( lowerCamelCase : Iterable[str] , lowerCamelCase : int ): lowerCAmelCase = iter(lowerCamelCase ) while True: lowerCAmelCase = tuple(itertools.islice(lowerCamelCase , lowerCamelCase ) ) if not chunk: return yield chunk def a_ ( lowerCamelCase : str ): lowerCAmelCase = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase = '' if len(lowerCamelCase ) < 2: return dirty for i in range(len(lowerCamelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCamelCase ) & 1: clean += "X" return clean def a_ ( lowerCamelCase : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowerCAmelCase = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCamelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCamelCase ) return table def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = generate_table(lowerCamelCase ) lowerCAmelCase = prepare_input(lowerCamelCase ) lowerCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a_ ( lowerCamelCase : str , lowerCamelCase : str ): lowerCAmelCase = generate_table(lowerCamelCase ) lowerCAmelCase = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCamelCase , 2 ): lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) lowerCAmelCase , lowerCAmelCase = divmod(table.index(lowerCamelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
55
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
338
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
338
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """nielsr/canine-s""": 2_048, } # Unicode defines 1,114,112 total “codepoints” lowerCamelCase__ = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCamelCase__ = 0 lowerCamelCase__ = 0XE0_00 lowerCamelCase__ = 0XE0_01 lowerCamelCase__ = 0XE0_02 lowerCamelCase__ = 0XE0_03 lowerCamelCase__ = 0XE0_04 # Maps special codepoints to human-readable names. lowerCamelCase__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCamelCase__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class A__ ( _lowerCamelCase): A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=chr(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=20_48 , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token __lowerCAmelCase : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token __lowerCAmelCase : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token __lowerCAmelCase : Union[str, Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token __lowerCAmelCase : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , model_max_length=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Creates a mapping for looking up the IDs of special symbols. __lowerCAmelCase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): __lowerCAmelCase : Optional[int] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. __lowerCAmelCase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } __lowerCAmelCase : List[Any] = UNICODE_VOCAB_SIZE __lowerCAmelCase : List[str] = len(self._special_codepoints ) @property def __lowerCamelCase ( self ): return self._unicode_vocab_size def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return list(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): try: return ord(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f"invalid token: '{token}'" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f"invalid id: {index}" ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return "".join(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : int = [self.sep_token_id] __lowerCAmelCase : Dict = [self.cls_token_id] __lowerCAmelCase : Optional[int] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: result += ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return result def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : Union[str, Any] = [self.sep_token_id] __lowerCAmelCase : str = [self.cls_token_id] __lowerCAmelCase : int = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): return ()
182
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase) class A__ ( _lowerCamelCase): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A_ : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True}) A_ : ClassVar[Features] = Features({'text': Value('string')}) A_ : ClassVar[Features] = Features({'labels': ClassLabel}) A_ : str = "text" A_ : str = "labels" def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __lowerCAmelCase : Any = copy.deepcopy(self ) __lowerCAmelCase : Dict = self.label_schema.copy() __lowerCAmelCase : List[Any] = features[self.label_column] __lowerCAmelCase : Dict = label_schema return task_template @property def __lowerCamelCase ( self ): return { self.text_column: "text", self.label_column: "labels", }
182
1
import os import sys lowercase : List[str] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase : Optional[int] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def A_ ( *A__ , **A__ ) -> str: return AutoConfig.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A_ ( *A__ , **A__ ) -> Tuple: return AutoTokenizer.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModel.__doc__ ) def A_ ( *A__ , **A__ ) -> Any: return AutoModel.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A_ ( *A__ , **A__ ) -> Tuple: return AutoModelForCausalLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A_ ( *A__ , **A__ ) -> Optional[Any]: return AutoModelForMaskedLM.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A_ ( *A__ , **A__ ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*A__ , **A__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A_ ( *A__ , **A__ ) -> Dict: return AutoModelForQuestionAnswering.from_pretrained(*A__ , **A__ )
99
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowercase ( self ) -> List[Any]: _a : List[Any] = self.task_name.lower() class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "train" UpperCAmelCase__ : List[str] = "dev" UpperCAmelCase__ : Union[str, Any] = "test" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : GlueDataTrainingArguments UpperCAmelCase__ : str UpperCAmelCase__ : List[InputFeatures] def __init__( self , _a , _a , _a = None , _a = Split.train , _a = None , ) -> str: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , _a , ) _a : List[str] = args _a : List[str] = glue_processors[args.task_name]() _a : List[Any] = glue_output_modes[args.task_name] if isinstance(_a , _a ): try: _a : Any = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file _a : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _a : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a : Optional[int] = label_list[2], label_list[1] _a : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a : Optional[int] = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: _a : List[Any] = time.time() _a : str = torch.load(_a ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _a : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _a : Any = self.processor.get_test_examples(args.data_dir ) else: _a : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _a : Dict = examples[:limit_length] _a : Union[str, Any] = glue_convert_examples_to_features( _a , _a , max_length=args.max_seq_length , label_list=_a , output_mode=self.output_mode , ) _a : Optional[int] = time.time() torch.save(self.features , _a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , _a ) -> InputFeatures: return self.features[i] def __lowercase ( self ) -> Tuple: return self.label_list
235
0
from scipy.stats import pearsonr import datasets lowercase_ = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' lowercase_ = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' lowercase_ = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :Tuple ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) ,reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] ,) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Optional[int] ,__lowercase :Dict ,__lowercase :List[str]=False ): if return_pvalue: snake_case__ : List[Any] = pearsonr(__lowercase ,__lowercase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowercase ,__lowercase )[0] )}
353
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Dict = TransfoXLTokenizer __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() snake_case__ : Optional[int] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :int ,**__lowercase :Any ): snake_case__ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :Optional[int] ): snake_case__ : int = '''<unk> UNwanted , running''' snake_case__ : List[Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = TransfoXLTokenizer(vocab_file=self.vocab_file ,lower_case=__lowercase ) snake_case__ : Tuple = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(__lowercase ,['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[0, 4, 8, 7] ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[Any] = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = TransfoXLTokenizer(lower_case=__lowercase ) snake_case__ : List[str] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' snake_case__ : Union[str, Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(__lowercase ) ,__lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = self.get_tokenizer() snake_case__ : Optional[Any] = len(__lowercase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' ,1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ) ,original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) ,[1] ) self.assertEqual(tokenizer.decode([1] ) ,'''new1''' )
44
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = TapasConfig.from_json_file(_UpperCAmelCase ) # set absolute/relative position embeddings parameter __UpperCAmelCase : Tuple = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "WTQ": # run_task_main.py hparams __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : int = True # hparam_utils.py hparams __UpperCAmelCase : List[str] = 0.66_46_94 __UpperCAmelCase : List[str] = 0.20_79_51 __UpperCAmelCase : List[str] = 0.12_11_94 __UpperCAmelCase : str = True __UpperCAmelCase : Dict = True __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[Any] = 0.0_35_25_13 __UpperCAmelCase : Tuple = TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = False # hparam_utils.py hparams __UpperCAmelCase : Optional[int] = 36.45_19 __UpperCAmelCase : Dict = 0.90_34_21 __UpperCAmelCase : List[str] = 2_22.0_88 __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : Any = True __UpperCAmelCase : List[Any] = 0.76_31_41 __UpperCAmelCase : Union[str, Any] = TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "TABFACT": __UpperCAmelCase : Optional[Any] = TapasForSequenceClassification(config=_UpperCAmelCase ) elif task == "MLM": __UpperCAmelCase : Optional[int] = TapasForMaskedLM(config=_UpperCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCAmelCase : Dict = TapasModel(config=_UpperCAmelCase ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_UpperCAmelCase ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) __UpperCAmelCase : List[str] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + '''vocab.txt''' , model_max_length=5_12 ) tokenizer.save_pretrained(_UpperCAmelCase ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __A =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
226
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = k_size // 2 __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Any = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def a ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : str = height - k_size + 1 __UpperCAmelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Optional[Any] = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): __UpperCAmelCase : int = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : Tuple = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase : List[Any] = ravel(_UpperCAmelCase ) # reshape and get the dst image __UpperCAmelCase : Optional[Any] = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image __A =imread(R"../image_data/lena.jpg") # turn image in gray scale value __A =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __A =gaussian_filter(gray, 3, sigma=1) __A =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
226
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a__ ( unittest.TestCase ): def lowercase ( self : Any ) -> List[Any]: lowercase : Dict = 0 @slow def lowercase ( self : List[Any] ) -> Optional[int]: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase : Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(lowerCAmelCase ), 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(lowerCAmelCase ), 0 ) def lowercase ( self : Optional[Any] ) -> Optional[Any]: lowercase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size, 12 ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: lowercase : int = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size, 20 ) def lowercase ( self : Optional[Any] ) -> Dict: lowercase : Dict = AutoConfig.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) # Check that tokenizer_type ≠ model_type lowercase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase, config=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size, 12 ) def lowercase ( self : str ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt', os.path.join(lowerCAmelCase, 'vocab.txt' ) ) lowercase : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase, tokenizer_type='bert', use_fast=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json', os.path.join(lowerCAmelCase, 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt', os.path.join(lowerCAmelCase, 'merges.txt' ) ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase, tokenizer_type='gpt2', use_fast=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) @require_tokenizers def lowercase ( self : List[str] ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt', os.path.join(lowerCAmelCase, 'vocab.txt' ) ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase, tokenizer_type='bert' ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json', os.path.join(lowerCAmelCase, 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt', os.path.join(lowerCAmelCase, 'merges.txt' ) ) lowercase : str = AutoTokenizer.from_pretrained(lowerCAmelCase, tokenizer_type='gpt2' ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Any ) -> Dict: with pytest.raises(lowerCAmelCase ): AutoTokenizer.from_pretrained('./', tokenizer_type='xxx' ) @require_tokenizers def lowercase ( self : Union[str, Any] ) -> Optional[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase : str = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(lowerCAmelCase, (BertTokenizer, BertTokenizerFast) ) if isinstance(lowerCAmelCase, lowerCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, lowerCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case, lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length, 512 ) @require_tokenizers def lowercase ( self : Optional[Any] ) -> List[str]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( lowerCAmelCase, 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier', ): lowercase : List[str] = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def lowercase ( self : int ) -> Dict: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase : Optional[Any] = TOKENIZER_MAPPING.values() lowercase : str = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(lowerCAmelCase ) @require_tokenizers def lowercase ( self : Tuple ) -> int: self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased', use_fast=lowerCAmelCase ), lowerCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ), lowerCAmelCase ) @require_tokenizers def lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase : List[str] = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=lowerCAmelCase ) lowercase : Optional[Any] = 'Hello, world. How are you?' lowercase : Dict = tokenizer.tokenize(lowerCAmelCase ) self.assertEqual('[UNK]', tokens[0] ) lowercase : str = AutoTokenizer.from_pretrained('microsoft/mpnet-base', do_lower_case=lowerCAmelCase ) lowercase : Any = tokenizer.tokenize(lowerCAmelCase ) self.assertEqual('[UNK]', tokens[0] ) @require_tokenizers def lowercase ( self : Union[str, Any] ) -> Tuple: lowercase : Tuple = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length, 512 ) self.assertEqual(tokenizer.vocab_size, 30000 ) self.assertEqual(tokenizer.unk_token, '[UNK]' ) self.assertEqual(tokenizer.padding_side, 'right' ) self.assertEqual(tokenizer.truncation_side, 'right' ) def lowercase ( self : Union[str, Any] ) -> List[str]: lowercase : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) lowercase : List[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size, 12 ) def lowercase ( self : Optional[Any] ) -> Tuple: lowercase : int = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : int ) -> List[Any]: # Check we can load the tokenizer config of an online model. lowercase : Optional[Any] = get_tokenizer_config('bert-base-cased' ) lowercase : Optional[int] = config.pop('_commit_hash', lowerCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(lowerCAmelCase, {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase : Union[str, Any] = get_tokenizer_config(lowerCAmelCase ) self.assertDictEqual(lowerCAmelCase, {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase : str = AutoTokenizer.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) lowercase : List[str] = get_tokenizer_config(lowerCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'], 'BertTokenizer' ) def lowercase ( self : List[str] ) -> Optional[int]: try: AutoConfig.register('custom', lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoTokenizer.register(lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase ) lowercase : str = CustomTokenizer.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) lowercase : Tuple = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase ( self : List[Any] ) -> str: try: AutoConfig.register('custom', lowerCAmelCase ) # Can register in two steps AutoTokenizer.register(lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, None) ) AutoTokenizer.register(lowerCAmelCase, fast_tokenizer_class=lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase, fast_tokenizer_class=lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig], (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoTokenizer.register(lowerCAmelCase, fast_tokenizer_class=lowerCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase : str = BertTokenizerFast.from_pretrained(lowerCAmelCase ) bert_tokenizer.save_pretrained(lowerCAmelCase ) lowercase : str = CustomTokenizerFast.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) lowercase : Dict = AutoTokenizer.from_pretrained(lowerCAmelCase, use_fast=lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase ( self : List[str] ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase ): lowercase : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): lowercase : Any = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase, trust_remote_code=lowerCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__, 'NewTokenizerFast' ) # Test we can also load the slow version lowercase : Union[str, Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase, use_fast=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCAmelCase ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase, trust_remote_code=lowerCAmelCase, use_fast=lowerCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__, 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__, 'NewTokenizer' ) @require_tokenizers def lowercase ( self : List[str] ) -> int: class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = False class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = NewTokenizer _lowerCamelCase = False try: AutoConfig.register('custom', lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase, slow_tokenizer_class=lowerCAmelCase ) AutoTokenizer.register(lowerCAmelCase, fast_tokenizer_class=lowerCAmelCase ) # If remote code is not set, the default is to use local lowercase : str = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer', use_fast=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase : List[Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Dict = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase, use_fast=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase : Union[str, Any] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase : Optional[int] = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer', trust_remote_code=lowerCAmelCase, use_fast=lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase ( self : Optional[int] ) -> Union[str, Any]: lowercase : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy', trust_remote_code=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizerFast' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy', trust_remote_code=lowerCAmelCase, use_fast=lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__, 'NewTokenizer' ) def lowercase ( self : Optional[int] ) -> Any: with self.assertRaisesRegex( lowerCAmelCase, 'bert-base is not a local folder and is not a valid model identifier' ): lowercase : Tuple = AutoTokenizer.from_pretrained('bert-base' ) def lowercase ( self : Tuple ) -> List[Any]: with self.assertRaisesRegex( lowerCAmelCase, R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase : str = AutoTokenizer.from_pretrained(lowerCAmelCase, revision='aaaaaa' ) def lowercase ( self : str ) -> str: # Make sure we have cached the tokenizer. lowercase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: lowercase : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 )
53
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase: str = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _UpperCamelCase: int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _UpperCamelCase: Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowercase ( self : List[str] ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': { 'id': datasets.Value('string' ), 'prediction_text': datasets.features.Sequence(datasets.Value('string' ) ), }, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ), codebase_urls=['https://www.atticusprojectai.org/cuad'], reference_urls=['https://www.atticusprojectai.org/cuad'], ) def lowercase ( self : Any, lowerCAmelCase : int, lowerCAmelCase : Optional[Any] ) -> Optional[Any]: lowercase : int = {prediction['id']: prediction['prediction_text'] for prediction in predictions} lowercase : Any = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] lowercase : int = evaluate(dataset=lowerCAmelCase, predictions=lowerCAmelCase ) return score
53
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} SCREAMING_SNAKE_CASE__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ = frozenset([] ) def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowerCamelCase , ) a :int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) a :Tuple = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_zero=_lowerCamelCase , ) torch.manual_seed(0 ) a :Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) a :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) a :Optional[int] = CLIPTextModel(_lowerCamelCase ) a :str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a :Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :Tuple = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if str(_lowerCamelCase ).startswith('''mps''' ): a :int = torch.manual_seed(_lowerCamelCase ) else: a :int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :Dict = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :str = image.cpu().permute(0 , 2 , 3 , 1 )[0] a :Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ) if str(_lowerCamelCase ).startswith('''mps''' ): a :Dict = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :Union[str, Any] = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=0 ): a :List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) a :int = image.cpu().permute(0 , 2 , 3 , 1 )[0] a :Optional[Any] = Image.fromarray(np.uinta(_lowerCamelCase ) ).convert('''RGB''' ) if str(_lowerCamelCase ).startswith('''mps''' ): a :Dict = torch.manual_seed(_lowerCamelCase ) else: a :Any = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) a :List[Any] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self ): if not hasattr(self.pipeline_class , '''_optional_components''' ): return a :Any = self.get_dummy_components() a :str = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) a :Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase ) a :List[Any] = pipe(**_lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowerCamelCase ) a :int = self.pipeline_class.from_pretrained(_lowerCamelCase ) pipe_loaded.to(_lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=_lowerCamelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowerCamelCase , _lowerCamelCase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) a :Dict = self.get_dummy_inputs(_lowerCamelCase ) a :Tuple = pipe_loaded(**_lowerCamelCase )[0] a :List[str] = np.abs(output - output_loaded ).max() self.assertLess(_lowerCamelCase , 1e-4 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = '''cpu''' a :Optional[int] = self.get_dummy_components() a :List[str] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Any = self.get_dummy_mask_inputs(_lowerCamelCase ) a :str = pipe.generate_mask(**_lowerCamelCase ) a :List[str] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) a :List[Any] = np.array([0] * 9 ) a :str = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def SCREAMING_SNAKE_CASE__ ( self ): a :Any = '''cpu''' a :List[str] = self.get_dummy_components() a :List[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :str = self.get_dummy_inversion_inputs(_lowerCamelCase ) a :Any = pipe.invert(**_lowerCamelCase ).images a :Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) a :str = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) a :str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def SCREAMING_SNAKE_CASE__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = '''cpu''' a :str = self.get_dummy_components() a :Union[str, Any] = {'''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} a :Dict = DPMSolverMultistepScheduler(**_lowerCamelCase ) a :List[str] = DPMSolverMultistepInverseScheduler(**_lowerCamelCase ) a :int = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :str = self.get_dummy_inversion_inputs(_lowerCamelCase ) a :Tuple = pipe.invert(**_lowerCamelCase ).images a :Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) a :int = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) a :Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): a :Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) a :Union[str, Any] = raw_image.convert('''RGB''' ).resize((768, 768) ) a :List[Any] = raw_image def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = torch.manual_seed(0 ) a :int = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) a :Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) a :Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Optional[Any] = '''a bowl of fruit''' a :Any = '''a bowl of pears''' a :Any = pipe.generate_mask( image=self.raw_image , source_prompt=_lowerCamelCase , target_prompt=_lowerCamelCase , generator=_lowerCamelCase , ) a :Dict = pipe.invert( prompt=_lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowerCamelCase ).latents a :List[str] = pipe( prompt=_lowerCamelCase , mask_image=_lowerCamelCase , image_latents=_lowerCamelCase , generator=_lowerCamelCase , negative_prompt=_lowerCamelCase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] a :List[str] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = torch.manual_seed(0 ) a :List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_lowerCamelCase , torch_dtype=torch.floataa ) a :Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) a :Union[str, Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Dict = '''a bowl of fruit''' a :Optional[Any] = '''a bowl of pears''' a :Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=_lowerCamelCase , target_prompt=_lowerCamelCase , generator=_lowerCamelCase , ) a :Dict = pipe.invert( prompt=_lowerCamelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowerCamelCase , num_inference_steps=25 , ).latents a :str = pipe( prompt=_lowerCamelCase , mask_image=_lowerCamelCase , image_latents=_lowerCamelCase , generator=_lowerCamelCase , negative_prompt=_lowerCamelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] a :List[Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
94
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : int = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'blenderbot-small' SCREAMING_SNAKE_CASE__ = ['past_key_values'] SCREAMING_SNAKE_CASE__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _lowerCamelCase=5_0265 , _lowerCamelCase=512 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=8 , _lowerCamelCase=2048 , _lowerCamelCase=16 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="gelu" , _lowerCamelCase=512 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=2 , **_lowerCamelCase , ): a :Dict = vocab_size a :Optional[Any] = max_position_embeddings a :str = d_model a :Any = encoder_ffn_dim a :Optional[int] = encoder_layers a :List[str] = encoder_attention_heads a :List[str] = decoder_ffn_dim a :Optional[int] = decoder_layers a :str = decoder_attention_heads a :List[str] = dropout a :Optional[int] = attention_dropout a :Dict = activation_dropout a :List[str] = activation_function a :List[Any] = init_std a :Optional[int] = encoder_layerdrop a :Tuple = decoder_layerdrop a :List[str] = use_cache a :int = encoder_layers a :Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) class _snake_case ( _snake_case ): @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task in ["default", "seq2seq-lm"]: a :Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a :Union[str, Any] = {0: '''batch'''} a :Tuple = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: a :Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} a :str = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. a :Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: a , a :str = self.num_layers for i in range(_lowerCamelCase ): a :List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} a :List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: a :Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): if self.task in ["default", "seq2seq-lm"]: a :List[Any] = super().outputs else: a :Union[str, Any] = super(_lowerCamelCase , self ).outputs if self.use_past: a , a :int = self.num_layers for i in range(_lowerCamelCase ): a :int = {0: '''batch''', 2: '''past_sequence + sequence'''} a :Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Generate decoder inputs a :Dict = seq_length if not self.use_past else 1 a :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) a :List[Any] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} a :List[str] = dict(**_lowerCamelCase , **_lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a :Optional[Any] = common_inputs['''input_ids'''].shape a :Tuple = common_inputs['''decoder_input_ids'''].shape[1] a , a :List[Any] = self.num_attention_heads a :List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) a :int = decoder_seq_length + 3 a :Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) a :Union[str, Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase )] , dim=1 ) a :List[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered a , a :Optional[int] = self.num_layers a :str = min(_lowerCamelCase , _lowerCamelCase ) a :str = max(_lowerCamelCase , _lowerCamelCase ) - min_num_layers a :Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase ), ) ) # TODO: test this. a :int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowerCamelCase , _lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): a :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a :Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a :Optional[int] = seqlen + 2 a , a :Union[str, Any] = self.num_layers a , a :Optional[Any] = self.num_attention_heads a :str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) a :Tuple = common_inputs['''attention_mask'''].dtype a :Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowerCamelCase , _lowerCamelCase , dtype=_lowerCamelCase )] , dim=1 ) a :Any = [ (torch.zeros(_lowerCamelCase ), torch.zeros(_lowerCamelCase )) for _ in range(_lowerCamelCase ) ] return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a :Optional[Any] = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a :Optional[int] = tokenizer.num_special_tokens_to_add(_lowerCamelCase ) a :Tuple = compute_effective_axis_dimension( _lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence a :List[str] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size a :Dict = dict(tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase ) ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = -1 , _lowerCamelCase = -1 , _lowerCamelCase = False , _lowerCamelCase = None , ): if self.task in ["default", "seq2seq-lm"]: a :Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) elif self.task == "causal-lm": a :Dict = self._generate_dummy_inputs_for_causal_lm( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) else: a :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCamelCase , batch_size=_lowerCamelCase , seq_length=_lowerCamelCase , is_pair=_lowerCamelCase , framework=_lowerCamelCase ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if self.task in ["default", "seq2seq-lm"]: a :Optional[int] = super()._flatten_past_key_values_(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: a :Any = super(_lowerCamelCase , self )._flatten_past_key_values_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
94
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase_ ( lowerCAmelCase: Dict=True )-> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase_ ) ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Any =None a_ : Any =None def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str , UpperCamelCase : Optional[Any] ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: _snake_case : int = dataset_module_factory(UpperCamelCase , cache_dir=UpperCamelCase ) _snake_case : Optional[Any] = import_main_class(dataset_module.module_path , dataset=UpperCamelCase ) _snake_case : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name=UpperCamelCase , hash=dataset_module.hash , ) _snake_case : Tuple = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=UpperCamelCase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case : List[str] = cached_path(UpperCamelCase , cache_dir=UpperCamelCase ) self.assertTrue(os.path.exists(UpperCamelCase ) ) @pytest.mark.integration def lowerCamelCase_ ( lowerCAmelCase: List[Any] )-> str: _snake_case : int = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case : Tuple = dataset_module_factory('wikipedia' , cache_dir=lowerCAmelCase ) _snake_case : str = import_main_class(dataset_module.module_path ) _snake_case : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case : Dict = None builder_instance.download_and_prepare() _snake_case : List[str] = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> Optional[Any]: _snake_case : Optional[int] = dataset_module_factory('wikipedia' , cache_dir=lowerCAmelCase ) _snake_case : Any = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase ) _snake_case : DatasetBuilder = builder_cls( cache_dir=lowerCAmelCase , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert "train" in ds assert isinstance(ds['train'] , lowerCAmelCase ) assert next(iter(ds['train'] ) )
260
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase_ = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase_ = 0 lowerCAmelCase_ = 0xE_000 lowerCAmelCase_ = 0xE_001 lowerCAmelCase_ = 0xE_002 lowerCAmelCase_ = 0xE_003 lowerCAmelCase_ = 0xE_004 # Maps special codepoints to human-readable names. lowerCAmelCase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , UpperCamelCase : int=chr(UpperCamelCase ) , UpperCamelCase : Union[str, Any]=chr(UpperCamelCase ) , UpperCamelCase : Any=chr(UpperCamelCase ) , UpperCamelCase : Union[str, Any]=chr(UpperCamelCase ) , UpperCamelCase : List[Any]=chr(UpperCamelCase ) , UpperCamelCase : List[str]=chr(UpperCamelCase ) , UpperCamelCase : int=False , UpperCamelCase : str=20_48 , **UpperCamelCase : List[str] , ): '''simple docstring''' _snake_case : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token _snake_case : Optional[Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token _snake_case : Any = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token _snake_case : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , model_max_length=UpperCamelCase , **UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _snake_case : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _snake_case : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _snake_case : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _snake_case : str = UNICODE_VOCAB_SIZE _snake_case : Optional[Any] = len(self._special_codepoints ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._unicode_vocab_size def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' return list(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' try: return ord(UpperCamelCase ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' return "".join(UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : int = [self.cls_token_id] _snake_case : Any = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) _snake_case : int = [1] + ([0] * len(UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase )) + [1] return result def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] _snake_case : Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' return ()
260
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : List[str]=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : int=False , __UpperCAmelCase : str=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : int=99 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : str=5 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Any=2 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Any="last" , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Tuple=0 , ) ->List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_lengths a = use_token_type_ids a = use_labels a = gelu_activation a = sinusoidal_embeddings a = causal a = asm a = n_langs a = vocab_size a = n_special a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = summary_type a = use_proj a = scope a = bos_token_id def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_input_lengths: a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , 2 ).float() a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" a = XLMModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase ) a = model(__UpperCAmelCase , langs=__UpperCAmelCase ) a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , ) ->Any: """simple docstring""" a = XLMWithLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , ) ->Optional[Any]: """simple docstring""" a = XLMForQuestionAnsweringSimple(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) a = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , ) ->List[Any]: """simple docstring""" a = XLMForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) a = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , ) a = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , ) ((a) , ) = result_with_labels.to_tuple() a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) ((a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , ) ->Dict: """simple docstring""" a = XLMForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase ) a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : str , ) ->Optional[Any]: """simple docstring""" a = self.num_labels a = XLMForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , ) ->str: """simple docstring""" a = self.num_choices a = XLMForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : Optional[Any] ) ->Tuple: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowercase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ) ->int: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=False ) ->int: """simple docstring""" a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def __lowerCAmelCase ( self : int ) ->Any: """simple docstring""" a = XLMModelTester(self ) a = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def __lowerCAmelCase ( self : Dict ) ->Dict: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : int ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__UpperCAmelCase ) def __lowerCAmelCase ( self : Any ) ->Union[str, Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__UpperCAmelCase ) def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : int=False , __UpperCAmelCase : int=1 ) ->Dict: """simple docstring""" self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual( [isinstance(__UpperCAmelCase , __UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(__UpperCAmelCase ) ) self.assertEqual(len(__UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__UpperCAmelCase ): # adds PAD dummy token a = min_length + idx + 1 a = min_length + idx + 1 a = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__UpperCAmelCase ) ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=1 ) ->Dict: """simple docstring""" self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual( [isinstance(__UpperCAmelCase , __UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(__UpperCAmelCase ) , ) self.assertEqual(len(__UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__UpperCAmelCase ): # adds PAD dummy token a = min_length + idx + 1 a = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__UpperCAmelCase ) , ) pass @slow def __lowerCAmelCase ( self : str ) ->Tuple: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = XLMModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : Optional[int] ) ->int: """simple docstring""" a = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__UpperCAmelCase ) a = torch.tensor([[14, 447]] , dtype=torch.long , device=__UpperCAmelCase ) # the president a = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference a = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __UpperCAmelCase )
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class A ( __UpperCAmelCase ): __snake_case = 'vit' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=224, UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=True, UpperCamelCase__=16, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = encoder_stride class A ( __UpperCAmelCase ): __snake_case = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-4
278
0
import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __UpperCamelCase : Tuple = 'facebook/bart-large-mnli' __UpperCamelCase : Tuple = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) __UpperCamelCase : Any = 'text_classifier' __UpperCamelCase : Any = AutoTokenizer __UpperCamelCase : Dict = AutoModelForSequenceClassification __UpperCamelCase : Any = ['text', ['text']] __UpperCamelCase : int = ['text'] def __magic_name__ ( self : List[str] ): """simple docstring""" super().setup() _A: Tuple = self.model.config _A: Dict = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A: Any = int(lowerCAmelCase_ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ): """simple docstring""" _A: List[str] = labels return self.pre_processor( [text] * len(lowerCAmelCase_ ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : int ): """simple docstring""" _A: Optional[int] = outputs.logits _A: str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
356
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params UpperCAmelCase__ : Any = getLogger(__name__) UpperCAmelCase__ : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCamelCase__ ( a , a , a , a = 8 , a = DEFAULT_DEVICE , a=False , a="summarization" , a=None , **a , ) -> Dict: _A: str = Path(a ).open('''w''' , encoding='''utf-8''' ) _A: Optional[Any] = str(a ) _A: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(a ).to(a ) if fpaa: _A: Any = model.half() _A: Optional[int] = AutoTokenizer.from_pretrained(a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. _A: Any = time.time() # update config with task specific params use_task_specific_params(a , a ) if prefix is None: _A: int = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' for examples_chunk in tqdm(list(chunks(a , a ) ) ): _A: int = [prefix + text for text in examples_chunk] _A: str = tokenizer(a , return_tensors='''pt''' , truncation=a , padding='''longest''' ).to(a ) _A: str = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **a , ) _A: str = tokenizer.batch_decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) for hypothesis in dec: fout.write(hypothesis + '''\n''' ) fout.flush() fout.close() _A: Optional[int] = int(time.time() - start_time ) # seconds _A: Union[str, Any] = len(a ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCamelCase__ ( ) -> Tuple: return datetime.datetime.now().strftime('''%Y-%m-%d %H:%M:%S''' ) def lowerCamelCase__ ( a=True ) -> Optional[Any]: _A: str = argparse.ArgumentParser() parser.add_argument('''model_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''input_path''' , type=a , help='''like cnn_dm/test.source''' ) parser.add_argument('''save_path''' , type=a , help='''where to save summaries''' ) parser.add_argument('''--reference_path''' , type=a , required=a , help='''like cnn_dm/test.target''' ) parser.add_argument('''--score_path''' , type=a , required=a , default='''metrics.json''' , help='''where to save metrics''' ) parser.add_argument('''--device''' , type=a , required=a , default=a , help='''cuda, cuda:1, cpu etc.''' ) parser.add_argument( '''--prefix''' , type=a , required=a , default=a , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--task''' , type=a , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=a , default=8 , required=a , help='''batch size''' ) parser.add_argument( '''--n_obs''' , type=a , default=-1 , required=a , help='''How many observations. Defaults to all.''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--dump-args''' , action='''store_true''' , help='''print the custom hparams with the results''' ) parser.add_argument( '''--info''' , nargs='''?''' , type=a , const=datetime_now() , help=( '''use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.''' ''' lang=en-ru. If no value is passed, the current datetime string will be used.''' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate _A , _A: Tuple = parser.parse_known_args() _A: List[str] = parse_numeric_n_bool_cl_kwargs(a ) if parsed_args and verbose: print(f"""parsed the following generate kwargs: {parsed_args}""" ) _A: int = [''' ''' + x.rstrip() if '''t5''' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: _A: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=a ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f"""score_path {args.score_path} will be overwritten unless you type ctrl-c.""" ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('''Can\'t mix --fp16 and --device cpu''' ) _A: Dict = generate_summaries_or_translations( a , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **a , ) if args.reference_path is None: return {} # Compute scores _A: Dict = calculate_bleu if '''translation''' in args.task else calculate_rouge _A: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] _A: Any = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(a )] _A: dict = score_fn(a , a ) scores.update(a ) if args.dump_args: scores.update(a ) if args.info: _A: Optional[Any] = args.info if verbose: print(a ) if args.score_path is not None: json.dump(a , open(args.score_path , '''w''' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
301
0
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
65
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __snake_case ( unittest.TestCase ): def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): snake_case__ : Optional[int] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCamelCase ) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : List[str] = 'sshleifer/tiny-gpt2' snake_case__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : Optional[Any] = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = 'sgugger/tiny-distilbert-classification' snake_case__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , only_pretrain_model=__UpperCamelCase , ) snake_case__ : Dict = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Dict = 'sshleifer/tiny-gpt2' snake_case__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , torchscript=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : Optional[Any] = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : Any = 'sshleifer/tiny-gpt2' snake_case__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , fpaa=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : Optional[int] = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Union[str, Any] = 'sshleifer/tiny-gpt2' snake_case__ : Optional[int] = AutoConfig.from_pretrained(__UpperCamelCase ) # set architectures equal to `None` snake_case__ : Union[str, Any] = None snake_case__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : List[Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) snake_case__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = 'sshleifer/tiny-gpt2' snake_case__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : str = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = 'sshleifer/tiny-gpt2' snake_case__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__UpperCamelCase , multi_process=__UpperCamelCase , ) snake_case__ : List[Any] = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : Union[str, Any] = 'sshleifer/tiny-gpt2' snake_case__ : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase ) snake_case__ : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : List[str] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) snake_case__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : List[str] = 'sshleifer/tinier_bart' snake_case__ : List[str] = AutoConfig.from_pretrained(__UpperCamelCase ) snake_case__ : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : int = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) snake_case__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __a ( self ) -> int: '''simple docstring''' snake_case__ : Any = 'sshleifer/tiny-gpt2' snake_case__ : Tuple = AutoConfig.from_pretrained(__UpperCamelCase ) snake_case__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : int = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) snake_case__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = 'sshleifer/tinier_bart' snake_case__ : Union[str, Any] = AutoConfig.from_pretrained(__UpperCamelCase ) snake_case__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__UpperCamelCase , ) snake_case__ : Union[str, Any] = PyTorchBenchmark(__UpperCamelCase , configs=[config] ) snake_case__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Union[str, Any] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , save_to_csv=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__UpperCamelCase , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(__UpperCamelCase , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(__UpperCamelCase , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(__UpperCamelCase , 'train_time.csv' ) , env_info_csv_file=os.path.join(__UpperCamelCase , 'env.csv' ) , multi_process=__UpperCamelCase , ) snake_case__ : Union[str, Any] = PyTorchBenchmark(__UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCamelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCamelCase , 'env.csv' ) ).exists() ) def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCamelCase ): self.assertTrue(hasattr(__UpperCamelCase , 'sequential' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'cumulative' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'current' ) ) self.assertTrue(hasattr(__UpperCamelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__UpperCamelCase , inference=__UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__UpperCamelCase , 'log.txt' ) , log_print=__UpperCamelCase , trace_memory_line_by_line=__UpperCamelCase , multi_process=__UpperCamelCase , ) snake_case__ : int = PyTorchBenchmark(__UpperCamelCase ) snake_case__ : Optional[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCamelCase , 'log.txt' ) ).exists() )
143
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
15
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = ["image_processor", "tokenizer"] UpperCAmelCase__ : str = "ViltImageProcessor" UpperCAmelCase__ : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a=None , _a=None , **_a ) -> Any: _a : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) _a : Dict = kwargs.pop('''feature_extractor''' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) _a : int = self.image_processor def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: _a : Tuple = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask _a : str = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __lowercase ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __lowercase ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property def __lowercase ( self ) -> Optional[int]: _a : str = self.tokenizer.model_input_names _a : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self ) -> Optional[Any]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __lowercase ( self ) -> Any: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
15
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = BioGptTokenizer snake_case_ = False def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowerCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowerCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def lowercase_ ( self , lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = 'lower newer' __lowerCamelCase = 'lower newer' return input_text, output_text def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) __lowerCamelCase = 'lower' __lowerCamelCase = ['low', 'er</w>'] __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = tokens + ['<unk>'] __lowerCamelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowerCamelCase = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) __lowerCamelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
90
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() a_ : int = logging.get_logger(__name__) def __snake_case ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=False ): lowerCamelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ = "" else: lowerCamelCase_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def __snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): lowerCamelCase_ = dct.pop(UpperCAmelCase_ ) lowerCamelCase_ = val def __snake_case ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def __snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] ): lowerCamelCase_ = ViTConfig() lowerCamelCase_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCamelCase_ = True lowerCamelCase_ = int(vit_name[-12:-10] ) lowerCamelCase_ = int(vit_name[-9:-6] ) else: lowerCamelCase_ = 1000 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "imagenet-1k-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = int(vit_name[-6:-4] ) lowerCamelCase_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): lowerCamelCase_ = 192 lowerCamelCase_ = 768 lowerCamelCase_ = 12 lowerCamelCase_ = 3 elif vit_name[9:].startswith("small" ): lowerCamelCase_ = 384 lowerCamelCase_ = 1536 lowerCamelCase_ = 12 lowerCamelCase_ = 6 else: pass else: if vit_name[4:].startswith("small" ): lowerCamelCase_ = 768 lowerCamelCase_ = 2304 lowerCamelCase_ = 8 lowerCamelCase_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): lowerCamelCase_ = 1024 lowerCamelCase_ = 4096 lowerCamelCase_ = 24 lowerCamelCase_ = 16 elif vit_name[4:].startswith("huge" ): lowerCamelCase_ = 1280 lowerCamelCase_ = 5120 lowerCamelCase_ = 32 lowerCamelCase_ = 16 # load original model from timm lowerCamelCase_ = timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ = timm_model.state_dict() if base_model: remove_classification_head_(UpperCAmelCase_ ) lowerCamelCase_ = create_rename_keys(UpperCAmelCase_ , UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase_ = ViTModel(UpperCAmelCase_ ).eval() else: lowerCamelCase_ = ViTForImageClassification(UpperCAmelCase_ ).eval() model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCamelCase_ = DeiTImageProcessor(size=config.image_size ) else: lowerCamelCase_ = ViTImageProcessor(size=config.image_size ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = encoding["pixel_values"] lowerCamelCase_ = model(UpperCAmelCase_ ) if base_model: lowerCamelCase_ = timm_model.forward_features(UpperCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCAmelCase_ , outputs.pooler_output , atol=1E-3 ) else: lowerCamelCase_ = timm_model(UpperCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase_ , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a_ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
55
0
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( lowerCAmelCase : list ): """simple docstring""" if not postfix_notation: return 0 __magic_name__ : Optional[int] = {'+', '-', '*', '/'} __magic_name__ : list[Any] = [] for token in postfix_notation: if token in operations: __magic_name__ : List[str] = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(lowerCAmelCase ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import socket def lowerCamelCase ( ): """simple docstring""" __magic_name__ : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __magic_name__ : Union[str, Any] = socket.gethostname() __magic_name__ : int = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __magic_name__ : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
275
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _A : List[Any] =logging.get_logger(__name__) _A : List[str] ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _A : Optional[Any] ={ '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } _A : Optional[Any] ={ '''roberta-base''': 512, '''roberta-large''': 512, '''roberta-large-mnli''': 512, '''distilroberta-base''': 512, '''roberta-base-openai-detector''': 512, '''roberta-large-openai-detector''': 512, } class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["""input_ids""", """attention_mask"""] a = RobertaTokenizer def __init__( self: List[str] , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: Dict=None , UpperCamelCase__: int=None , UpperCamelCase__: List[Any]="replace" , UpperCamelCase__: List[Any]="<s>" , UpperCamelCase__: Optional[Any]="</s>" , UpperCamelCase__: str="</s>" , UpperCamelCase__: List[Any]="<s>" , UpperCamelCase__: Union[str, Any]="<unk>" , UpperCamelCase__: Dict="<pad>" , UpperCamelCase__: Any="<mask>" , UpperCamelCase__: str=False , UpperCamelCase__: List[Any]=True , **UpperCamelCase__: int , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : int = getattr(UpperCamelCase__ , pre_tok_state.pop("""type""" ) ) lowerCamelCase__ : Dict = add_prefix_space lowerCamelCase__ : Union[str, Any] = pre_tok_class(**UpperCamelCase__ ) lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : List[Any] = """post_processor""" lowerCamelCase__ : Optional[Any] = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) if tokenizer_component_instance: lowerCamelCase__ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Optional[Any] = tuple(state["""sep"""] ) if "cls" in state: lowerCamelCase__ : List[Any] = tuple(state["""cls"""] ) lowerCamelCase__ : int = False if state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : Optional[Any] = add_prefix_space lowerCamelCase__ : Any = True if state.get("""trim_offsets""" , UpperCamelCase__ ) != trim_offsets: lowerCamelCase__ : Optional[Any] = trim_offsets lowerCamelCase__ : Tuple = True if changes_to_apply: lowerCamelCase__ : Optional[int] = getattr(UpperCamelCase__ , state.pop("""type""" ) ) lowerCamelCase__ : Any = component_class(**UpperCamelCase__ ) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__ ) @property def lowerCamelCase_ ( self: Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self: str , UpperCamelCase__: int ): lowerCamelCase__ : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else value lowerCamelCase__ : str = value def lowerCamelCase_ ( self: Any , *UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ): lowerCamelCase__ : List[str] = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: Any , *UpperCamelCase__: Any , **UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : int = kwargs.get("""is_split_into_words""" , UpperCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): lowerCamelCase__ : Any = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Any , UpperCamelCase__: int=None ): lowerCamelCase__ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[int] , UpperCamelCase__: Optional[List[int]] = None ): lowerCamelCase__ : Optional[int] = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
41
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=_lowerCamelCase ): snake_case_ = ["transformers", "torch", "note_seq"] def __init__( self : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : int ): requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A_ ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A_ ( cls : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
56
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __SCREAMING_SNAKE_CASE : list[list[int]] ): """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__SCREAMING_SNAKE_CASE ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
264
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case_ ( __A ): def __init__( self : Optional[Any] , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() self.register_modules( vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def __UpperCamelCase ( self : Tuple , lowercase_ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: self.enable_attention_slicing(lowercase_ ) @torch.no_grad() def __call__( self : int , lowercase_ : Union[str, List[str]] , lowercase_ : int = 5_12 , lowercase_ : int = 5_12 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , lowercase_ : Optional[torch.FloatTensor] = None , **lowercase_ : int , ) -> List[Any]: if isinstance(lowercase_ , lowercase_ ): lowercase__ : Optional[int] = 1 elif isinstance(lowercase_ , lowercase_ ): lowercase__ : List[Any] = len(lowercase_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(lowercase_ )}.''' ) # get prompt text embeddings lowercase__ : List[str] = self.tokenizer( lowercase_ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowercase__ : str = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ : str = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ : List[Any] = text_embeddings.shape lowercase__ : Union[str, Any] = text_embeddings.repeat(1 , lowercase_ , 1 ) lowercase__ : Dict = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ : List[str] if negative_prompt is None: lowercase__ : int = [""] elif type(lowercase_ ) is not type(lowercase_ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_ )} !=''' F''' {type(lowercase_ )}.''' ) elif isinstance(lowercase_ , lowercase_ ): lowercase__ : str = [negative_prompt] elif batch_size != len(lowercase_ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(lowercase_ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: lowercase__ : Union[str, Any] = negative_prompt lowercase__ : List[Any] = text_input_ids.shape[-1] lowercase__ : Any = self.tokenizer( lowercase_ , padding="max_length" , max_length=lowercase_ , truncation=lowercase_ , return_tensors="pt" , ) lowercase__ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ : Union[str, Any] = uncond_embeddings.shape[1] lowercase__ : str = uncond_embeddings.repeat(lowercase_ , lowercase_ , 1 ) lowercase__ : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ : int = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ : Tuple = torch.randn( lowercase_ , generator=lowercase_ , device="cpu" , dtype=lowercase_ ).to(self.device ) lowercase__ : Union[str, Any] = torch.randn(lowercase_ , generator=lowercase_ , device="cpu" , dtype=lowercase_ ).to( self.device ) else: lowercase__ : Any = torch.randn( lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) lowercase__ : Tuple = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ : Dict = latents_reference.to(self.device ) lowercase__ : str = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ : Union[str, Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ : str = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ : int = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ : Any = 0 if dx < 0 else dx lowercase__ : Optional[Any] = 0 if dy < 0 else dy lowercase__ : List[Any] = max(-dx , 0 ) lowercase__ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ : Any = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Tuple = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : int = {} if accepts_eta: lowercase__ : List[Any] = eta for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ : Any = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual lowercase__ : Optional[int] = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ : List[str] = noise_pred.chunk(2 ) lowercase__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[int] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = 1 / 0.1_82_15 * latents lowercase__ : Dict = self.vae.decode(lowercase_ ).sample lowercase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ : List[str] = self.feature_extractor(self.numpy_to_pil(lowercase_ ) , return_tensors="pt" ).to( self.device ) lowercase__ , lowercase__ : int = self.safety_checker( images=lowercase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ : List[str] = None if output_type == "pil": lowercase__ : List[str] = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_ )
87
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _SCREAMING_SNAKE_CASE ( *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=2 ): from .. import __version__ A_ : Union[str, Any] = take_from A_ : Optional[Any] = () if not isinstance(args[0] , SCREAMING_SNAKE_CASE ): A_ : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(SCREAMING_SNAKE_CASE ).base_version ) >= version.parse(SCREAMING_SNAKE_CASE ): raise ValueError( f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' f''' version {__version__} is >= {version_name}''' ) A_ : List[Any] = None if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(SCREAMING_SNAKE_CASE ),) A_ : Optional[Any] = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): values += (getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ),) A_ : int = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: A_ : List[Any] = f'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: A_ : Union[str, Any] = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , SCREAMING_SNAKE_CASE , stacklevel=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: A_ : Dict = inspect.getouterframes(inspect.currentframe() )[1] A_ : Optional[int] = call_frame.filename A_ : Optional[int] = call_frame.lineno A_ : str = call_frame.function A_ , A_ : List[str] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(SCREAMING_SNAKE_CASE ) == 0: return elif len(SCREAMING_SNAKE_CASE ) == 1: return values[0] return values
186
0
from ....utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None , UpperCamelCase : List[str]=20_48 ): '''simple docstring''' _snake_case : Union[str, Any] = config.__dict__ _snake_case : Optional[int] = modal_hidden_size if num_labels: _snake_case : Tuple = num_labels
260
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase_ = open # noqa: we just need to have a builtin inside this module to test it properly
260
1
'''simple docstring''' import qiskit def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> qiskit.result.counts.Counts: UpperCAmelCase__ : List[Any] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase__ : List[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCAmelCase__ : str = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
181
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
181
1
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> int: assert column_title.isupper() lowercase__ : Tuple = 0 lowercase__ : int = len(lowerCamelCase_ ) - 1 lowercase__ : Any = 0 while index >= 0: lowercase__ : Dict = (ord(column_title[index] ) - 64) * pow(26 , lowerCamelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
368
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ = logging.get_logger(__name__) class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Optional[int] = "maskformer" lowerCAmelCase : Any = {"hidden_size": "mask_feature_size"} lowerCAmelCase : Optional[int] = ["resnet", "swin"] lowerCAmelCase : str = ["detr"] def __init__( self : int ,_snake_case : int = 256 ,_snake_case : int = 256 ,_snake_case : float = 0.1 ,_snake_case : bool = False ,_snake_case : Optional[Dict] = None ,_snake_case : Optional[Dict] = None ,_snake_case : float = 0.02 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 1.0 ,_snake_case : float = 20.0 ,_snake_case : Optional[bool] = None ,**_snake_case : Optional[Any] ,) -> Dict: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ : Any = SwinConfig( image_size=384 ,in_channels=3 ,patch_size=4 ,embed_dim=128 ,depths=[2, 2, 18, 2] ,num_heads=[4, 8, 16, 32] ,window_size=12 ,drop_path_rate=0.3 ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) if isinstance(_snake_case ,_snake_case ): lowercase__ : List[str] = backbone_config.pop('''model_type''' ) lowercase__ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase__ : str = config_class.from_dict(_snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported lowercase__ : Tuple = ( decoder_config.pop('''model_type''' ) if isinstance(_snake_case ,_snake_case ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_snake_case ,_snake_case ): lowercase__ : Optional[int] = CONFIG_MAPPING[decoder_type] lowercase__ : Optional[Any] = config_class.from_dict(_snake_case ) lowercase__ : List[Any] = backbone_config lowercase__ : List[Any] = decoder_config # main feature dimension for the model lowercase__ : List[str] = fpn_feature_size lowercase__ : int = mask_feature_size # initializer lowercase__ : str = init_std lowercase__ : str = init_xavier_std # Hungarian matcher && loss lowercase__ : Optional[int] = cross_entropy_weight lowercase__ : List[Any] = dice_weight lowercase__ : List[str] = mask_weight lowercase__ : str = use_auxiliary_loss lowercase__ : Optional[int] = no_object_weight lowercase__ : Optional[Any] = output_auxiliary_logits lowercase__ : Optional[Any] = self.decoder_config.encoder_attention_heads lowercase__ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**_snake_case ) @classmethod def UpperCAmelCase ( cls : Any ,_snake_case : PretrainedConfig ,_snake_case : PretrainedConfig ,**_snake_case : Union[str, Any] ) -> List[Any]: """simple docstring""" return cls( backbone_config=_snake_case ,decoder_config=_snake_case ,**_snake_case ,) def UpperCAmelCase ( self : str ) -> Dict[str, any]: """simple docstring""" lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : int = self.backbone_config.to_dict() lowercase__ : List[Any] = self.decoder_config.to_dict() lowercase__ : List[str] = self.__class__.model_type return output
302
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCamelCase__ = logging.get_logger(__name__) @dataclass class lowerCamelCase_ : def __init__( self : str , _A : Union[str, Any]=False , _A : Tuple=False , _A : Union[str, Any]=6.0 , _A : Any=None , _A : Tuple=False , _A : Optional[int]=False , _A : Tuple=None , _A : Union[str, Any]="fp4" , _A : Tuple=False , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : List[str] = load_in_abit UpperCAmelCase__ : str = load_in_abit UpperCAmelCase__ : List[str] = llm_inta_threshold UpperCAmelCase__ : Tuple = llm_inta_skip_modules UpperCAmelCase__ : str = llm_inta_enable_fpaa_cpu_offload UpperCAmelCase__ : Tuple = llm_inta_has_fpaa_weight UpperCAmelCase__ : Tuple = bnb_abit_quant_type UpperCAmelCase__ : int = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCAmelCase__ : str = torch.floataa elif isinstance(_A , _A ): UpperCAmelCase__ : Optional[int] = getattr(_A , _A ) elif isinstance(_A , torch.dtype ): UpperCAmelCase__ : Union[str, Any] = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def lowercase_ ( self : Dict ): '''simple docstring''' if not isinstance(self.llm_inta_threshold , _A ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _A ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _A ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _A ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _A ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _A ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' return self.load_in_abit or self.load_in_abit def lowercase_ ( self : int ): '''simple docstring''' if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowercase_ ( cls : Tuple , _A : int , _A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = cls(**_A ) UpperCAmelCase__ : int = [] for key, value in kwargs.items(): if hasattr(_A , _A ): setattr(_A , _A , _A ) to_remove.append(_A ) for key in to_remove: kwargs.pop(_A , _A ) if return_unused_kwargs: return config, kwargs else: return config def lowercase_ ( self : Optional[int] , _A : Union[str, os.PathLike] ): '''simple docstring''' with open(_A , '''w''' , encoding='''utf-8''' ) as writer: UpperCAmelCase__ : List[str] = self.to_dict() UpperCAmelCase__ : Optional[int] = json.dumps(_A , indent=2 , sort_keys=_A ) + '''\n''' writer.write(_A ) def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ : List[str] = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self : Tuple ): '''simple docstring''' return f"""{self.__class__.__name__} {self.to_json_string()}""" def lowercase_ ( self : Optional[Any] , _A : bool = True ): '''simple docstring''' if use_diff is True: UpperCAmelCase__ : str = self.to_diff_dict() else: UpperCAmelCase__ : List[Any] = self.to_dict() return json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.to_dict() # get the default config dict UpperCAmelCase__ : str = BitsAndBytesConfig().to_dict() UpperCAmelCase__ : Union[str, Any] = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCAmelCase__ : str = value return serializable_config_dict
181
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase_ ( __a ): def __init__( self : List[str] , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[str] = None , _A : Optional[int] = None , **_A : Union[str, Any] , ): '''simple docstring''' super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) UpperCAmelCase__ : List[str] = field UpperCAmelCase__ : Optional[Any] = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} UpperCAmelCase__ : Any = Json( cache_dir=_A , data_files=_A , features=_A , field=_A , **_A , ) def lowercase_ ( self : Dict ): '''simple docstring''' if self.streaming: UpperCAmelCase__ : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[Any] = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) UpperCAmelCase__ : str = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , _A : Optional[int] = None , **_A : List[str] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) UpperCAmelCase__ : Dict = dataset UpperCAmelCase__ : Any = path_or_buf UpperCAmelCase__ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase__ : Tuple = num_proc UpperCAmelCase__ : Any = '''utf-8''' UpperCAmelCase__ : Optional[int] = to_json_kwargs def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.to_json_kwargs.pop('''path_or_buf''' , _A ) UpperCAmelCase__ : Optional[int] = self.to_json_kwargs.pop('''orient''' , '''records''' ) UpperCAmelCase__ : Tuple = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) UpperCAmelCase__ : str = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) UpperCAmelCase__ : Optional[Any] = self.to_json_kwargs.pop('''compression''' , _A ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=_A ) as buffer: UpperCAmelCase__ : Union[str, Any] = self._write(file_obj=_A , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) UpperCAmelCase__ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) return written def lowercase_ ( self : Optional[int] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = args UpperCAmelCase__ : Dict = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase__ : str = batch.to_pandas().to_json( path_or_buf=_A , orient=_A , lines=_A , index=_A , **_A ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def lowercase_ ( self : Union[str, Any] , _A : BinaryIO , _A : Optional[int] , _A : int , _A : Any , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): UpperCAmelCase__ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_A ) else: UpperCAmelCase__ , UpperCAmelCase__ : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_A ) return written
181
1
import socket def SCREAMING_SNAKE_CASE ( ) -> str: lowerCamelCase__ : List[str] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase__ : Optional[int] = socket.gethostname() lowerCamelCase__ : str = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: lowerCamelCase__ : List[str] = sock.recv(1024 ) if not data: break out_file.write(_UpperCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
45
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase : List[str] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
45
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase ( A_="ro" , A_="en" , A_="wmt16" , A_=None )-> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) a : List[Any] = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) a : Tuple = datasets.load_dataset(A_ , A_ ) if save_dir is None: a : Dict = F'''{dataset}-{pair}''' a : str = Path(A_ ) save_dir.mkdir(exist_ok=A_ ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets a : Any = "val" if split == "validation" else split a : Tuple = save_dir.joinpath(F'''{fn}.source''' ) a : Any = save_dir.joinpath(F'''{fn}.target''' ) a : Tuple = src_path.open("w+" ) a : List[Any] = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): a : Any = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
40
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case_ = s_dict.pop(__UpperCAmelCase ) elif "subsample" in key: snake_case_ = s_dict.pop(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ ,snake_case_ = emb.weight.shape snake_case_ = nn.Linear(__UpperCAmelCase, __UpperCAmelCase, bias=__UpperCAmelCase ) snake_case_ = emb.weight.data return lin_layer def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) snake_case_ = mam_aaa['''args'''] snake_case_ = mam_aaa['''model'''] snake_case_ = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__UpperCAmelCase ) rename_keys(__UpperCAmelCase ) snake_case_ = state_dict['''decoder.embed_tokens.weight'''].shape[0] snake_case_ = args.share_decoder_input_output_embed snake_case_ = [int(__UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] snake_case_ = SpeechaTextConfig( vocab_size=__UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', num_conv_layers=len(__UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=__UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=__UpperCAmelCase, num_beams=5, max_length=200, use_cache=__UpperCAmelCase, decoder_start_token_id=2, early_stopping=__UpperCAmelCase, ) snake_case_ = SpeechaTextForConditionalGeneration(__UpperCAmelCase ) snake_case_ ,snake_case_ = model.model.load_state_dict(__UpperCAmelCase, strict=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0 and not set(__UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F" but all the following weights are missing {missing}" ) if tie_embeds: snake_case_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ = lm_head_weights model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') a : List[Any] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
56
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class A__ ( unittest.TestCase): def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __lowerCAmelCase : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = 'sshleifer/tiny-gpt2' __lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = 'sgugger/tiny-distilbert-classification' __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , only_pretrain_model=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Union[str, Any] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'sshleifer/tiny-gpt2' __lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : Any = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[Any] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , [config] ) __lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'patrickvonplaten/t5-tiny-random' __lowerCAmelCase : int = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE , configs=[config] ) __lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'sshleifer/tiny-gpt2' __lowerCAmelCase : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_SCREAMING_SNAKE_CASE , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , save_to_csv=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Tuple = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) benchmark.run() self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'env.csv' ) ).exists() ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_SCREAMING_SNAKE_CASE ): self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'sequential' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'cumulative' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'current' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) , log_print=_SCREAMING_SNAKE_CASE , trace_memory_line_by_line=_SCREAMING_SNAKE_CASE , eager_mode=_SCREAMING_SNAKE_CASE , multi_process=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = TensorFlowBenchmark(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_SCREAMING_SNAKE_CASE , 'log.txt' ) ).exists() )
182
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase ): if len(_UpperCamelCase ) <= 1: return lst __lowerCAmelCase : str = 1 while i < len(_UpperCamelCase ): if lst[i - 1] <= lst[i]: i += 1 else: __lowerCAmelCase , __lowerCAmelCase : List[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: __lowerCAmelCase : int = 1 return lst if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
182
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE :List[Any] = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "yolos" def __init__( self : Any ,A : Optional[Any]=7_68 ,A : Dict=12 ,A : Any=12 ,A : str=30_72 ,A : Any="gelu" ,A : str=0.0 ,A : List[str]=0.0 ,A : Dict=0.02 ,A : int=1E-12 ,A : Tuple=[5_12, 8_64] ,A : List[Any]=16 ,A : str=3 ,A : str=True ,A : Any=1_00 ,A : Dict=True ,A : Dict=False ,A : Tuple=1 ,A : Union[str, Any]=5 ,A : Optional[Any]=2 ,A : Union[str, Any]=5 ,A : int=2 ,A : int=0.1 ,**A : List[str] ,): super().__init__(**A ) __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = initializer_range __A = layer_norm_eps __A = image_size __A = patch_size __A = num_channels __A = qkv_bias __A = num_detection_tokens __A = use_mid_position_embeddings __A = auxiliary_loss # Hungarian matcher __A = class_cost __A = bbox_cost __A = giou_cost # Loss coefficients __A = bbox_loss_coefficient __A = giou_loss_coefficient __A = eos_coefficient class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = version.parse("1.11" ) @property def UpperCamelCase_ ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase_ ( self : List[Any] ): return 1E-4 @property def UpperCamelCase_ ( self : Optional[Any] ): return 12
15
1
"""simple docstring""" from math import ceil def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = list(range(0 , lowercase__ ) ) A = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check A = [] for i in device_map_blocks: if device_map_blocks.count(lowercase__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase__ ) # Missing blocks A = [i for i in blocks if i not in device_map_blocks] A = [i for i in device_map_blocks if i not in blocks] if len(lowercase__ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(lowercase__ ) ) if len(lowercase__ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(lowercase__ ) ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" A = list(range(lowercase__ ) ) A = int(ceil(n_layers / len(lowercase__ ) ) ) A = [layers[i : i + n_blocks] for i in range(0 , lowercase__ , lowercase__ )] return dict(zip(lowercase__ , lowercase__ ) )
57
"""simple docstring""" __A : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
57
1
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(snake_case ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(snake_case ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
250
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a__ : Dict = logging.getLogger(__name__) def snake_case ( UpperCAmelCase , UpperCAmelCase )-> Optional[int]: """simple docstring""" return (preds == labels).mean() @dataclass class UpperCamelCase__ : UpperCAmelCase__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) UpperCAmelCase__ : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) UpperCAmelCase__ : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) UpperCAmelCase__ : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class UpperCamelCase__ : UpperCAmelCase__ : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys())}) UpperCAmelCase__ : str = field(metadata={'help': 'Should contain the data files for the task.'}) UpperCAmelCase__ : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCAmelCase__ : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'}) def snake_case ( )-> int: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __A , __A , __A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: __A = processors[data_args.task_name]() __A = processor.get_labels() __A = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __A = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets __A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: __A = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator __A = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __A = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __A = trainer.evaluate() __A = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def snake_case ( UpperCAmelCase )-> List[str]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
161
0
"""simple docstring""" from collections.abc import Sequence def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(__lowerCAmelCase ) ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = 0.0 for coeff in reversed(__lowerCAmelCase ): UpperCamelCase = result * x + coeff return result if __name__ == "__main__": lowerCAmelCase__ = (0.0, 0.0, 5.0, 9.3, 7.0) lowerCAmelCase__ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
350
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''T''') def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return (position - 1) // 2 def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return (2 * position) + 1 def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" return (2 * position) + 2 class _lowerCamelCase ( Generic[T] ): def __init__(self ) -> None: UpperCamelCase = [] UpperCamelCase = {} UpperCamelCase = 0 def __len__(self ) -> int: return self.elements def __repr__(self ) -> str: return str(self.heap ) def snake_case_ (self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def snake_case_ (self , __a , __a ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) UpperCamelCase = self.elements self.elements += 1 self._bubble_up(__a ) def snake_case_ (self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) UpperCamelCase , UpperCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: UpperCamelCase , UpperCamelCase = self.heap[0] self._bubble_down(__a ) return elem def snake_case_ (self , __a , __a ) -> None: # Update the weight of the given key UpperCamelCase = self.position_map[elem] UpperCamelCase = (elem, weight) if position > 0: UpperCamelCase = get_parent_position(__a ) UpperCamelCase , UpperCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__a ) else: self._bubble_down(__a ) else: self._bubble_down(__a ) def snake_case_ (self , __a ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] UpperCamelCase = self.position_map[elem] if curr_pos == 0: return None UpperCamelCase = get_parent_position(__a ) UpperCamelCase , UpperCamelCase = self.heap[curr_pos] UpperCamelCase , UpperCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__a , __a ) return self._bubble_up(__a ) return None def snake_case_ (self , __a ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] UpperCamelCase = self.position_map[elem] UpperCamelCase , UpperCamelCase = self.heap[curr_pos] UpperCamelCase = get_child_left_position(__a ) UpperCamelCase = get_child_right_position(__a ) if child_left_position < self.elements and child_right_position < self.elements: UpperCamelCase , UpperCamelCase = self.heap[child_left_position] UpperCamelCase , UpperCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) if child_left_position < self.elements: UpperCamelCase , UpperCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) else: return None if child_right_position < self.elements: UpperCamelCase , UpperCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) return None def snake_case_ (self , __a , __a ) -> None: # Swap the nodes at the given positions UpperCamelCase = self.heap[nodea_pos][0] UpperCamelCase = self.heap[nodea_pos][0] UpperCamelCase , UpperCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) UpperCamelCase = nodea_pos UpperCamelCase = nodea_pos class _lowerCamelCase ( Generic[T] ): def __init__(self ) -> None: UpperCamelCase = {} UpperCamelCase = 0 def __repr__(self ) -> str: return str(self.connections ) def __len__(self ) -> int: return self.nodes def snake_case_ (self , __a ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: UpperCamelCase = {} self.nodes += 1 def snake_case_ (self , __a , __a , __a ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__a ) self.add_node(__a ) UpperCamelCase = weight UpperCamelCase = weight def a__ ( _SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase = {node: maxsize for node in graph.connections} UpperCamelCase = {node: None for node in graph.connections} UpperCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization UpperCamelCase = priority_queue.extract_min() UpperCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) UpperCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): UpperCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: UpperCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) UpperCamelCase = node return dist, parent
244
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time a : str = Lock() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> str: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowercase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCAmelCase : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCAmelCase : Optional[int] = min(_lowercase , _lowercase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowercase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCAmelCase : Optional[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCAmelCase : Dict = max(_lowercase , _lowercase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowercase ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: UpperCAmelCase : int = [] UpperCAmelCase : str = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCAmelCase : List[str] = Pipe() UpperCAmelCase : Union[str, Any] = Pipe() process_array_.append( Process( target=_lowercase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCAmelCase : Union[str, Any] = temp_rs UpperCAmelCase : Any = temp_rr for i in range(1 , len(_lowercase ) - 1 ): UpperCAmelCase : Optional[Any] = Pipe() UpperCAmelCase : Optional[int] = Pipe() process_array_.append( Process( target=_lowercase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCAmelCase : int = temp_rs UpperCAmelCase : Any = temp_rr process_array_.append( Process( target=_lowercase , args=( len(_lowercase ) - 1, arr[len(_lowercase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowercase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowercase ) ): UpperCAmelCase : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCamelCase ( ) -> List[str]: UpperCAmelCase : Any = list(range(1_0 , 0 , -1 ) ) print("""Initial List""" ) print(*_lowercase ) UpperCAmelCase : Dict = odd_even_transposition(_lowercase ) print("""Sorted List\n""" ) print(*_lowercase ) if __name__ == "__main__": main()
265
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : List[Any] = logging.get_logger(__name__) a : Union[str, Any] = torch.device("""cpu""") def __lowerCamelCase ( ) -> Any: UpperCAmelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im def __lowerCamelCase ( _lowercase ) -> Dict: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Union[str, Any] = dct.pop(_lowercase ) UpperCAmelCase : str = val def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCAmelCase : Tuple = [] for k in state_dict.keys(): UpperCAmelCase : Dict = k if ".pwconv" in k: UpperCAmelCase : Union[str, Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCAmelCase : Dict = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCAmelCase : Dict = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCAmelCase : Optional[Any] = k_new.split(""".""" ) if ls[2].isdigit(): UpperCAmelCase : Any = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCAmelCase : Any = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase : List[Any] = 1_0_0_0 UpperCAmelCase : List[str] = """huggingface/label-files""" UpperCAmelCase : Tuple = """imagenet-1k-id2label.json""" UpperCAmelCase : Dict = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase : Tuple = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase : Tuple = idalabel UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase : List[Any] = [3, 3, 6, 4] UpperCAmelCase : int = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": UpperCAmelCase : str = [3, 3, 9, 6] UpperCAmelCase : str = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase : List[Any] = [4, 3, 1_0, 5] UpperCAmelCase : Union[str, Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase : Any = [4, 4, 1_2, 6] UpperCAmelCase : List[Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(_lowercase , map_location="""cpu""" , check_hash=_lowercase ) else: UpperCAmelCase : Dict = torch.load(_lowercase , map_location="""cpu""" ) UpperCAmelCase : str = checkpoint UpperCAmelCase : Tuple = create_rename_keys(_lowercase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) # load HuggingFace model UpperCAmelCase : str = SwiftFormerForImageClassification(_lowercase ).eval() hf_model.load_state_dict(_lowercase ) # prepare test inputs UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCAmelCase : List[str] = processor(images=_lowercase , return_tensors="""pt""" ) # compare outputs from both models UpperCAmelCase : List[str] = get_expected_output(_lowercase ) UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _lowercase , atol=1e-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") a : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
265
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=8 ): """simple docstring""" lowercase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _a ( UpperCamelCase__ ): def __init__( self: Optional[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) lowercase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: List[str] ) -> List[Any]: """simple docstring""" if latents is None: lowercase__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowercase__ = latents.to(UpperCamelCase_ ) lowercase__ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase_ ( self: int , UpperCamelCase_: List[str]=0 ) -> Tuple: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) lowercase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: List[str]=0 ) -> Dict: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowercase__ = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase__ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase__ , lowercase__ = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. lowercase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: List[str] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: int = 512 , UpperCamelCase_: int = 512 , UpperCamelCase_: int = 100 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ) -> str: """simple docstring""" lowercase__ = self._execution_device lowercase__ = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = torch.cat(UpperCamelCase_ , dim=0 ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = torch.cat(UpperCamelCase_ , dim=0 ) lowercase__ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowercase__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = hint.repeat_interleave(UpperCamelCase_ , dim=0 ) lowercase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) lowercase__ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) lowercase__ = self.scheduler.timesteps lowercase__ = self.movq.config.latent_channels lowercase__ , lowercase__ = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent lowercase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = {'''image_embeds''': image_embeds, '''hint''': hint} lowercase__ = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ , lowercase__ = variance_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase__ , lowercase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing lowercase__ = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowercase__ = image * 0.5 + 0.5 lowercase__ = image.clamp(0 , 1 ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
362
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : int = '''git_vision_model''' def __init__( self: Tuple , UpperCamelCase_: Optional[int]=768 , UpperCamelCase_: Optional[int]=3_072 , UpperCamelCase_: Optional[int]=12 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Any=3 , UpperCamelCase_: str=224 , UpperCamelCase_: int=16 , UpperCamelCase_: Any="quick_gelu" , UpperCamelCase_: Union[str, Any]=1E-5 , UpperCamelCase_: Tuple=0.0 , UpperCamelCase_: Tuple=0.02 , **UpperCamelCase_: str , ) -> Optional[int]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = hidden_size lowercase__ = intermediate_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = num_channels lowercase__ = patch_size lowercase__ = image_size lowercase__ = initializer_range lowercase__ = attention_dropout lowercase__ = layer_norm_eps lowercase__ = hidden_act @classmethod def lowerCamelCase_ ( cls: Optional[Any] , UpperCamelCase_: Union[str, os.PathLike] , **UpperCamelCase_: List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(UpperCamelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": lowercase__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _a ( UpperCamelCase__ ): _lowercase : Optional[int] = '''git''' def __init__( self: Optional[Any] , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: List[str]=30_522 , UpperCamelCase_: List[Any]=768 , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Union[str, Any]=12 , UpperCamelCase_: Any=3_072 , UpperCamelCase_: Any="gelu" , UpperCamelCase_: List[Any]=0.1 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: str=1_024 , UpperCamelCase_: Any=0.02 , UpperCamelCase_: str=1E-1_2 , UpperCamelCase_: Optional[int]=0 , UpperCamelCase_: Optional[Any]="absolute" , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: List[Any]=False , UpperCamelCase_: List[Any]=101 , UpperCamelCase_: int=102 , UpperCamelCase_: List[str]=None , **UpperCamelCase_: int , ) -> Union[str, Any]: """simple docstring""" super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) if vision_config is None: lowercase__ = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) lowercase__ = GitVisionConfig(**UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = tie_word_embeddings lowercase__ = num_image_with_embedding lowercase__ = bos_token_id lowercase__ = eos_token_id def lowerCamelCase_ ( self: Dict ) -> Tuple: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
93
0
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
'''simple docstring''' _snake_case = 8.3_1_4_4_5_9_8 def _A ( snake_case , snake_case ) -> float: if temperature < 0: raise Exception("Temperature cannot be less than 0 K" ) if molar_mass <= 0: raise Exception("Molar mass cannot be less than or equal to 0 kg/mol" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _snake_case = 300 _snake_case = 28 _snake_case = rms_speed_of_molecule(temperature, molar_mass) print(F'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
250
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = '''▁''' __a = {'''vocab_file''': '''spiece.model'''} __a = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } __a = { '''google/reformer-crime-and-punishment''': 52_42_88, } class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = VOCAB_FILES_NAMES A : Any = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__=[] , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowercase : Optional[Any] = vocab_file lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return self.sp_model.get_piece_size() def __lowerCamelCase ( self ): lowercase : int = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase : List[Any] = self.__dict__.copy() lowercase : str = None return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Union[str, Any] = {} lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if index < self.sp_model.get_piece_size(): lowercase : Optional[int] = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[int] = [] lowercase : Dict = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowercase : Any = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Any = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
356
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'''vocab_file''': '''spiece.model'''} __a = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __a = { '''albert-base-v1''': 5_12, '''albert-large-v1''': 5_12, '''albert-xlarge-v1''': 5_12, '''albert-xxlarge-v1''': 5_12, '''albert-base-v2''': 5_12, '''albert-large-v2''': 5_12, '''albert-xlarge-v2''': 5_12, '''albert-xxlarge-v2''': 5_12, } __a = '''▁''' class __SCREAMING_SNAKE_CASE ( A__ ): A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase : Optional[Any] = ( AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ , normalized=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token ) lowercase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) lowercase : List[str] = do_lower_case lowercase : Tuple = remove_space lowercase : Tuple = keep_accents lowercase : str = vocab_file lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return len(self.sp_model ) def __lowerCamelCase ( self ): lowercase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): lowercase : List[Any] = self.__dict__.copy() lowercase : Optional[Any] = None return state def __setstate__( self , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : Any = {} lowercase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): if self.remove_space: lowercase : int = ''' '''.join(inputs.strip().split() ) else: lowercase : List[Any] = inputs lowercase : int = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowercase : Optional[Any] = unicodedata.normalize('''NFKD''' , SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__ )] ) if self.do_lower_case: lowercase : Union[str, Any] = outputs.lower() return outputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = self.preprocess_text(SCREAMING_SNAKE_CASE__ ) lowercase : Any = self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) lowercase : Any = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowercase : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowercase : Optional[int] = cur_pieces[1:] else: lowercase : Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE__ ) else: new_pieces.append(SCREAMING_SNAKE_CASE__ ) return new_pieces def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : str = [] lowercase : Tuple = '''''' lowercase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token lowercase : Union[str, Any] = True lowercase : int = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Optional[Any] = [self.sep_token_id] lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Optional[int] = [self.sep_token_id] lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , '''wb''' ) as fi: lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
173
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return model @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , ) return model @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , ) snake_case_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , ) return vqvae, unet @slow def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) snake_case_ = DDPMScheduler() snake_case_ = AudioDiffusionPipeline(vqvae=a__ , unet=self.dummy_unet , mel=a__ , scheduler=a__ ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = torch.Generator(device=a__ ).manual_seed(42 ) snake_case_ = pipe(generator=a__ , steps=4 ) snake_case_ = output.audios[0] snake_case_ = output.images[0] snake_case_ = torch.Generator(device=a__ ).manual_seed(42 ) snake_case_ = pipe(generator=a__ , steps=4 , return_dict=a__ ) snake_case_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] snake_case_ = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10] snake_case_ = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 snake_case_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) snake_case_ = DDIMScheduler() snake_case_ = self.dummy_vqvae_and_unet snake_case_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=a__ , scheduler=a__ ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) np.random.seed(0 ) snake_case_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) snake_case_ = torch.Generator(device=a__ ).manual_seed(42 ) snake_case_ = pipe(raw_audio=a__ , generator=a__ , start_step=5 , steps=10 ) snake_case_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] snake_case_ = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 snake_case_ = self.dummy_unet_condition snake_case_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=a__ , mel=a__ , scheduler=a__ ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) np.random.seed(0 ) snake_case_ = torch.rand((1, 1, 10) ) snake_case_ = pipe(generator=a__ , encoding=a__ ) snake_case_ = output.images[0] snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] snake_case_ = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = torch_device snake_case_ = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = torch.Generator(device=a__ ).manual_seed(42 ) snake_case_ = pipe(generator=a__ ) snake_case_ = output.audios[0] snake_case_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] snake_case_ = np.frombuffer(image.tobytes() , dtype="uint8" )[:10] snake_case_ = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
85
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_efficientnet""": [ """EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientNetConfig""", """EfficientNetOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientNetImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientNetForImageClassification""", """EfficientNetModel""", """EfficientNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
302
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowercase_ = logging.get_logger(__name__) class _snake_case ( _lowerCAmelCase): def __init__( self : Optional[Any], *__lowercase : str, **__lowercase : Tuple ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead.", _lowercase, ) super().__init__(*_lowercase, **_lowercase )
370
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = "huggingface/label-files" lowercase__ = "imagenet-1k-id2label.json" lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase__ = BitConfig( conv_layer=SCREAMING_SNAKE_CASE_ , num_labels=1000 , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if "stem.conv" in name: lowercase__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowercase__ = name.replace("blocks" , "layers" ) if "head.fc" in name: lowercase__ = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): lowercase__ = "bit." + name if "bit" not in name and "classifier" not in name: lowercase__ = "bit.encoder." + name return name def __lowerCAmelCase ( ): lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase__ = get_config(SCREAMING_SNAKE_CASE_ ) # load original model from timm lowercase__ = create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model lowercase__ = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val.squeeze() if "head" in key else val # load HuggingFace model lowercase__ = BitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE_ ) ) lowercase__ = transform.transforms lowercase__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowercase__ = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE_ ) lowercase__ = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase__ = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
224
0
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __magic_name__ = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _lowerCAmelCase ( UpperCamelCase_ = "dhaka" , UpperCamelCase_ = 5 ): __SCREAMING_SNAKE_CASE = min(UpperCamelCase_ , 50 ) # Prevent abuse! __SCREAMING_SNAKE_CASE = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } __SCREAMING_SNAKE_CASE = requests.get("""https://www.google.com/search""" , params=UpperCamelCase_ , headers=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = BeautifulSoup(html.text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """""".join( re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) __SCREAMING_SNAKE_CASE = json.dumps(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = json.loads(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = re.findall( r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , UpperCamelCase_ , ) if not matched_google_image_data: return 0 __SCREAMING_SNAKE_CASE = re.sub( r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(UpperCamelCase_ ) , ) __SCREAMING_SNAKE_CASE = re.findall( r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , UpperCamelCase_ , ) for index, fixed_full_res_image in enumerate(UpperCamelCase_ ): if index >= max_images: return index __SCREAMING_SNAKE_CASE = bytes(UpperCamelCase_ , """ascii""" ).decode( """unicode-escape""" ) __SCREAMING_SNAKE_CASE = bytes(UpperCamelCase_ , """ascii""" ).decode( """unicode-escape""" ) __SCREAMING_SNAKE_CASE = urllib.request.build_opener() __SCREAMING_SNAKE_CASE = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = f"query_{query.replace(' ' , '_' )}" if not os.path.exists(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) urllib.request.urlretrieve( # noqa: S310 UpperCamelCase_ , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: __magic_name__ = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("Please provide a search term.") raise
100
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a__ : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :List[str] , **_A :Any ) -> Tuple: '''simple docstring''' super().__init__(**_A ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self :Any , _A :Union[str, List[str], "Image", List["Image"]] , **_A :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self :Optional[int] , **_A :Dict ) -> Optional[Any]: '''simple docstring''' __A = {} if "candidate_labels" in kwargs: __A = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __A = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self :Optional[int] , _A :str , _A :str=None , _A :Tuple="This is a photo of {}." ) -> Optional[int]: '''simple docstring''' __A = load_image(_A ) __A = self.image_processor(images=[image] , return_tensors=self.framework ) __A = candidate_labels __A = [hypothesis_template.format(_A ) for x in candidate_labels] __A = self.tokenizer(_A , return_tensors=self.framework , padding=_A ) __A = [text_inputs] return inputs def lowercase_ ( self :List[str] , _A :Tuple ) -> Tuple: '''simple docstring''' __A = model_inputs.pop('candidate_labels' ) __A = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _A ): __A = text_inputs[0] else: # Batching case. __A = text_inputs[0][0] __A = self.model(**_A , **_A ) __A = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowercase_ ( self :List[str] , _A :Optional[int] ) -> Dict: '''simple docstring''' __A = model_outputs.pop('candidate_labels' ) __A = model_outputs['logits'][0] if self.framework == "pt": __A = logits.softmax(dim=-1 ).squeeze(-1 ) __A = probs.tolist() if not isinstance(_A , _A ): __A = [scores] elif self.framework == "tf": __A = stable_softmax(_A , axis=-1 ) __A = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __A = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
161
0
"""simple docstring""" from __future__ import annotations from math import pi def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
365
def A_ ( _UpperCAmelCase = 10**9 ): SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Optional[int] = 2 SCREAMING_SNAKE_CASE_: int = 0 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[str] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE_: Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
127
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _a , _a , _a , unittest.TestCase ): _a = StableDiffusionInpaintPipeline _a = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def __lowercase ( self : Dict ): torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase , ) lowerCAmelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowerCAmelCase = CLIPTextModel(lowerCAmelCase ) lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def __lowercase ( self : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) lowerCAmelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowerCAmelCase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowerCAmelCase ) else: lowerCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def __lowercase ( self : Any ): lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = StableDiffusionInpaintPipeline(**lowerCAmelCase ) lowerCAmelCase = sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) lowerCAmelCase = sd_pipe(**lowerCAmelCase ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowercase ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Optional[int] ): lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) lowerCAmelCase = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase , safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , generator=lowerCAmelCase , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def __lowercase ( self : Dict ): lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) lowerCAmelCase = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase , torch_dtype=torch.floataa , safety_checker=lowerCAmelCase , ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , generator=lowerCAmelCase , output_type="""np""" , ) lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def __lowercase ( self : Optional[int] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) lowerCAmelCase = """stabilityai/stable-diffusion-2-inpainting""" lowerCAmelCase = PNDMScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) lowerCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( lowerCAmelCase , safety_checker=lowerCAmelCase , scheduler=lowerCAmelCase , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
155
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): _a = ['audio_values', 'audio_mask'] def __init__( self : Optional[int] , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Optional[Any]=[16, 16] , lowerCAmelCase : Optional[Any]=128 , lowerCAmelCase : Union[str, Any]=4_4100 , lowerCAmelCase : Any=86 , lowerCAmelCase : List[Any]=2048 , lowerCAmelCase : List[str]=0.0 , **lowerCAmelCase : Any , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) lowerCAmelCase = spectrogram_length lowerCAmelCase = num_channels lowerCAmelCase = patch_size lowerCAmelCase = feature_size // self.patch_size[1] lowerCAmelCase = n_fft lowerCAmelCase = sampling_rate // hop_length_to_sampling_rate lowerCAmelCase = sampling_rate lowerCAmelCase = padding_value lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=lowerCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T def __lowercase ( self : int , lowerCAmelCase : np.array ): lowerCAmelCase = spectrogram( lowerCAmelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = log_spec - 20.0 lowerCAmelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Dict , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , **lowerCAmelCase : Dict , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCAmelCase = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): lowerCAmelCase = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCAmelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): lowerCAmelCase = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCAmelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCAmelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCAmelCase = np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding lowerCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCAmelCase = np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCAmelCase = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): lowerCAmelCase = audio_features[i] lowerCAmelCase = feature # return as BatchFeature if return_attention_mask: lowerCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCAmelCase = {"""audio_values""": padded_audio_features} lowerCAmelCase = BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
155
1
'''simple docstring''' import math import sys def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : List[str] = '' try: with open(lowerCamelCase_ , 'rb' ) as binary_file: UpperCAmelCase_ : str = binary_file.read() for dat in data: UpperCAmelCase_ : List[Any] = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = {'0': '0', '1': '1'} UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = '', '' UpperCAmelCase_ : List[Any] = len(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Optional[int] = lexicon[curr_string] result += last_match_id UpperCAmelCase_ : Optional[int] = last_match_id + '0' if math.loga(lowerCamelCase_ ).is_integer(): UpperCAmelCase_ : List[Any] = {} for curr_key in list(lowerCamelCase_ ): UpperCAmelCase_ : str = lexicon.pop(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = new_lex UpperCAmelCase_ : int = last_match_id + '1' index += 1 UpperCAmelCase_ : str = '' return result def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : List[Any] = 8 try: with open(lowerCamelCase_ , 'wb' ) as opened_file: UpperCAmelCase_ : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCamelCase_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ : List[Any] = data_bits[counter:] UpperCAmelCase_ : Optional[int] = data_bits[counter + 1 :] return data_bits def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : int = read_file_binary(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = remove_prefix(lowerCamelCase_ ) UpperCAmelCase_ : Dict = decompress_data(lowerCamelCase_ ) write_file_binary(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
274
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS snake_case__ : Optional[Any] = logging.get_logger(__name__) snake_case__ : List[Any] = { '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, '''constant''': get_constant_schedule, '''constant_w_warmup''': get_constant_schedule_with_warmup, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_=None , snake_case_=None , *snake_case_ , **snake_case_ ): '''simple docstring''' super().__init__(*snake_case_ , **snake_case_ ) if config is None: assert isinstance(self.model , snake_case_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) UpperCAmelCase_ : Tuple = self.model.config else: UpperCAmelCase_ : Optional[Any] = config UpperCAmelCase_ : Optional[Any] = data_args UpperCAmelCase_ : Dict = self.config.tgt_vocab_size if isinstance(self.config , snake_case_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ' padding..' ) if self.args.label_smoothing == 0: UpperCAmelCase_ : Dict = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase_ : Union[str, Any] = label_smoothed_nll_loss def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if self.optimizer is None: UpperCAmelCase_ : Optional[Any] = ['bias', 'LayerNorm.weight'] UpperCAmelCase_ : Union[str, Any] = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] UpperCAmelCase_ : Optional[Any] = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase_ : List[str] = Adafactor UpperCAmelCase_ : int = {'scale_parameter': False, 'relative_step': False} else: UpperCAmelCase_ : Union[str, Any] = AdamW UpperCAmelCase_ : Optional[int] = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } UpperCAmelCase_ : Optional[int] = self.args.learning_rate if self.sharded_ddp: UpperCAmelCase_ : Optional[Any] = OSS( params=snake_case_ , optim=snake_case_ , **snake_case_ , ) else: UpperCAmelCase_ : Tuple = optimizer_cls(snake_case_ , **snake_case_ ) if self.lr_scheduler is None: UpperCAmelCase_ : int = self._get_lr_scheduler(snake_case_ ) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.' ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase_ : List[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase_ : Optional[Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase_ : int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=snake_case_ ) return scheduler def _UpperCamelCase ( self ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase_ : Any = model(**snake_case_ , use_cache=snake_case_ )[0] UpperCAmelCase_ : int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase_ , UpperCAmelCase_ : List[str] = model(**snake_case_ , labels=snake_case_ , use_cache=snake_case_ )[:2] else: # compute label smoothed loss UpperCAmelCase_ : List[str] = model(**snake_case_ , use_cache=snake_case_ )[0] UpperCAmelCase_ : Optional[int] = torch.nn.functional.log_softmax(snake_case_ , dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.loss_fn(snake_case_ , snake_case_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = inputs.pop('labels' ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = self._compute_loss(snake_case_ , snake_case_ , snake_case_ ) return loss def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self._prepare_inputs(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase_ : Tuple = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **snake_case_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ : Tuple = self._pad_tensors_to_max_len(snake_case_ , gen_kwargs['max_length'] ) UpperCAmelCase_ : List[str] = inputs.pop('labels' ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self._compute_loss(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ : Optional[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase_ : str = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ : List[Any] = self._pad_tensors_to_max_len(snake_case_ , gen_kwargs['max_length'] ) return (loss, logits, labels) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Any = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' F''' padded to `max_length`={max_length}''' ) UpperCAmelCase_ : Tuple = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase_ : Dict = tensor return padded_tensor
274
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint lowerCAmelCase_ = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } lowerCAmelCase_ = { '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = list(state_dict.keys() ) for name in state_dict_keys: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) # emb -> embedding if name.startswith('''emb.''' ): snake_case_ = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): snake_case_ = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention snake_case_ = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , SCREAMING_SNAKE_CASE__ ) # ffn -> feed_forward snake_case_ = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , SCREAMING_SNAKE_CASE__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): snake_case_ = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): snake_case_ = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): snake_case_ = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": snake_case_ = '''rwkv.''' + name snake_case_ = weight return state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) snake_case_ = 50277 snake_case_ = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: snake_case_ = PreTrainedTokenizerFast(tokenizer_file=SCREAMING_SNAKE_CASE__ ) snake_case_ = len(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 2. Build the config snake_case_ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case_ = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) snake_case_ = RwkvConfig( vocab_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 3. Download model file then convert state_dict snake_case_ = hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' ) snake_case_ = convert_state_dict(SCREAMING_SNAKE_CASE__ ) # 4. Split in shards and save snake_case_, snake_case_ = shard_checkpoint(SCREAMING_SNAKE_CASE__ ) for shard_file, shard in shards.items(): torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if index is not None: snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save the index as well with open(SCREAMING_SNAKE_CASE__ , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ ) + '''\n''' f.write(SCREAMING_SNAKE_CASE__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) snake_case_ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case_ = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) snake_case_ = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) lowerCAmelCase_ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
8
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A : Union[str, Any] = imread(R"digital_image_processing/image_data/lena_small.jpg") A : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): '''simple docstring''' with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCAmelCase = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): '''simple docstring''' assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCAmelCase = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def _lowerCamelCase ( ): '''simple docstring''' assert med.median_filter(_UpperCamelCase , 3 ).any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = sp.make_sepia(_UpperCamelCase , 20 ) assert sepia.all() def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowerCAmelCase = bs.Burkes(imread(_UpperCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( _UpperCamelCase = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowerCAmelCase = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. __lowerCAmelCase = imread(_UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = image[x_coordinate][y_coordinate] __lowerCAmelCase = lbp.get_neighbors_pixel( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowerCAmelCase = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert lbp_image.any()
57
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.model'''} __UpperCamelCase = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } __UpperCamelCase = { '''google/rembert''': 256, } class UpperCamelCase ( __lowercase ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, lowerCAmelCase__, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__="[CLS]", lowerCAmelCase__="[SEP]", lowerCAmelCase__="[UNK]", lowerCAmelCase__="[SEP]", lowerCAmelCase__="[PAD]", lowerCAmelCase__="[CLS]", lowerCAmelCase__="[MASK]", **lowerCAmelCase__, ) -> List[Any]: super().__init__( do_lower_case=UpperCAmelCase__, remove_space=UpperCAmelCase__, keep_accents=UpperCAmelCase__, bos_token=UpperCAmelCase__, eos_token=UpperCAmelCase__, unk_token=UpperCAmelCase__, sep_token=UpperCAmelCase__, pad_token=UpperCAmelCase__, cls_token=UpperCAmelCase__, mask_token=UpperCAmelCase__, **UpperCAmelCase__, ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(UpperCAmelCase__) @property def a_ ( self) -> List[Any]: return len(self.sp_model) def a_ ( self) -> int: snake_case_ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self, lowerCAmelCase__) -> Dict: snake_case_ = d snake_case_ = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__=False) -> Any: snake_case_ = self.sp_model.EncodeAsPieces(UpperCAmelCase__) return pieces def a_ ( self, lowerCAmelCase__) -> Any: return self.sp_model.PieceToId(UpperCAmelCase__) def a_ ( self, lowerCAmelCase__) -> Optional[int]: return self.sp_model.IdToPiece(UpperCAmelCase__) def a_ ( self, lowerCAmelCase__) -> int: snake_case_ = self.sp_model.decode_pieces(UpperCAmelCase__) return out_string def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = False) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) + [1] return [1] + ([0] * len(UpperCAmelCase__)) + [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__): logger.error('Vocabulary path ({}) should be a directory'.format(UpperCAmelCase__)) return snake_case_ = os.path.join( UpperCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__): copyfile(self.vocab_file, UpperCAmelCase__) return (out_vocab_file,)
361
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(UpperCAmelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) return min( minimax(depth + 1 , node_index * 2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) , ) def UpperCAmelCase ( ) -> None: snake_case_ = [90, 23, 6, 33, 21, 65, 123, 34423] snake_case_ = math.log(len(UpperCAmelCase ) , 2 ) print('Optimal value : ' , end='' ) print(minimax(0 , 0 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
312
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def __init__( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Optional[Any]=18 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : List[str]=400 , lowerCamelCase_ : Any=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=None , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Optional[int]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCamelCase_ : Tuple=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCamelCase_ : Dict=True , ): """simple docstring""" UpperCamelCase = size if size is not None else {"""height""": 224, """width""": 224} UpperCamelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_convert_rgb def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=False , lowerCamelCase_ : Optional[int]=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCamelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCamelCase = [] for i in range(self.batch_size ): UpperCamelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCamelCase = [Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCamelCase = [torch.from_numpy(A__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=A__ ) @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) self.assertTrue(hasattr(A__ , """do_center_crop""" ) ) self.assertTrue(hasattr(A__ , """center_crop""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) self.assertTrue(hasattr(A__ , """do_convert_rgb""" ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A__ ) UpperCamelCase = 3 @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """do_resize""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) self.assertTrue(hasattr(A__ , """do_center_crop""" ) ) self.assertTrue(hasattr(A__ , """center_crop""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) self.assertTrue(hasattr(A__ , """do_convert_rgb""" ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" pass def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = self.image_processor_tester.prepare_inputs(equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCamelCase = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
343
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[int] = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _UpperCamelCase = Lock() def lowercase_ ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase : List[Any] = min(lowerCAmelCase__ , lowerCAmelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCAmelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase : Dict = max(lowerCAmelCase__ , lowerCAmelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase : int = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __UpperCAmelCase : Dict = temp_rs __UpperCAmelCase : List[Any] = temp_rr for i in range(1 , len(lowerCAmelCase__ ) - 1 ): __UpperCAmelCase : Any = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=lowerCAmelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __UpperCAmelCase : Dict = temp_rs __UpperCAmelCase : Union[str, Any] = temp_rr process_array_.append( Process( target=lowerCAmelCase__ , args=( len(lowerCAmelCase__ ) - 1, arr[len(lowerCAmelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCAmelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Optional[int] = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = list(range(10 , 0 , -1 ) ) print("""Initial List""" ) print(*lowerCAmelCase__ ) __UpperCAmelCase : List[Any] = odd_even_transposition(lowerCAmelCase__ ) print("""Sorted List\n""" ) print(*lowerCAmelCase__ ) if __name__ == "__main__": main()
352
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _A : def __init__( self , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=None ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = np.random.default_rng(__UpperCAmelCase ) __UpperCAmelCase : List[str] = length __UpperCAmelCase : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __UpperCAmelCase : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> int: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __UpperCAmelCase : Any = True def __A ( self , __UpperCAmelCase=None ) -> str: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : Optional[int] = False return x * self.a[0] + self.b[0] class _A ( torch.nn.Module ): def __init__( self , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : List[str] = torch.nn.Parameter(torch.tensor(__UpperCAmelCase ).float() ) __UpperCAmelCase : str = True def __A ( self , __UpperCAmelCase=None ) -> Tuple: '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __UpperCAmelCase : int = False return x * self.a + self.b def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __UpperCAmelCase : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase : List[str] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __UpperCAmelCase : Tuple = load_dataset("""csv""" , data_files=lowerCAmelCase__ ) __UpperCAmelCase : Optional[Any] = datasets["""train"""].unique("""label""" ) __UpperCAmelCase : str = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase : List[Any] = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="""max_length""" ) if "label" in examples: __UpperCAmelCase : Optional[Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __UpperCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCAmelCase__ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __UpperCAmelCase : Optional[Any] = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __UpperCAmelCase : List[Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
16
0
def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [1] lowerCamelCase , lowerCamelCase , lowerCamelCase = 0, 0, 0 lowerCamelCase = ugly_nums[ia] * 2 lowerCamelCase = ugly_nums[ia] * 3 lowerCamelCase = ugly_nums[ia] * 5 for _ in range(1 , lowerCamelCase__ ): lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ugly_nums.append(lowerCamelCase__ ) if next_num == next_a: ia += 1 lowerCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_00) = }""")
252
import re import string import numpy as np import datasets UpperCAmelCase : List[str] = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" UpperCAmelCase : str = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" UpperCAmelCase : Dict = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __A ( self , A , A , A=None , A=False , A=False , A=False , ) -> List[str]: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in predictions] ) lowerCamelCase = np.array([re.sub(A , """""" , A ) for x in references] ) else: lowerCamelCase = np.asarray(A ) lowerCamelCase = np.asarray(A ) if ignore_case: lowerCamelCase = np.char.lower(A ) lowerCamelCase = np.char.lower(A ) if ignore_punctuation: lowerCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = np.char.translate(A , table=A ) if ignore_numbers: lowerCamelCase = string.digits.maketrans("""""" , """""" , string.digits ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = np.char.translate(A , table=A ) lowerCamelCase = predictions == references return {"exact_match": np.mean(A ) * 1_00}
252
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCamelCase_( _snake_case : Union[str, Any]=32 , _snake_case : Any=10 , _snake_case : Optional[Any]=100 , _snake_case : List[Any]=1026 , _snake_case : List[str]=True , _snake_case : str="data/tokenized_stories_train_wikitext103.jbl" , _snake_case : List[str]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set __a , __a =generate_datasets( _snake_case , _snake_case , number=_snake_case , min_len=1026 , trim=_snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __a =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __a =load_gpta('gpt2' ).to(_snake_case ) print('computing perplexity on objective set' ) __a =compute_perplexity(_snake_case , _snake_case , _snake_case ).item() print('perplexity on objective set:' , _snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : str=15 , _snake_case : Dict=128 , _snake_case : Union[str, Any]=100 , _snake_case : Dict="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model __a =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __a =SecondaryLearner(_snake_case ) # Train secondary learner __a =train_secondary_learner( _snake_case , _snake_case , max_epochs=_snake_case , batch_size=_snake_case , eval_freq=100 , igf_model_path=_snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[str]=32 , _snake_case : int=1000 , _snake_case : Union[str, Any]=16 , _snake_case : str=1.0 , _snake_case : Union[str, Any]=recopy_gpta , _snake_case : Union[str, Any]=None , _snake_case : int=10 , _snake_case : Any="gpt2_finetuned.pt" , ): """simple docstring""" __a =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __a =RandomSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case ) __a =max_steps // (len(_snake_case )) + 1 __a =0 __a =torch.zeros((1, context_len) , dtype=torch.long , device=_snake_case ) __a , __a , __a =recopy_model(_snake_case , _snake_case , _snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(_snake_case ) secondary_learner.eval() __a =[] __a =0 __a =[] __a =[] # Compute the performance of the transformer model at the beginning __a =compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print('Test perplexity, step' , _snake_case , ':' , _snake_case ) for epoch in range(int(_snake_case ) ): for step, example in enumerate(_snake_case ): torch.cuda.empty_cache() __a =random.randint(0 , example.size(2 ) - context_len - 1 ) __a =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __a =model(_snake_case , labels=_snake_case ) __a =True if secondary_learner is not None: __a =secondary_learner.forward( torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __a =-1 if predicted_q < threshold: __a =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __a =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __a =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __a =compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print('Test perplexity, step' , _snake_case , ':' , _snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_snake_case , default=_snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_snake_case , default=_snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_snake_case , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_snake_case , default=_snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_snake_case , type=_snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_snake_case , type=_snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __a =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __a =training_secondary_learner( _snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __a =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __a , __a =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _snake_case , _snake_case , _snake_case , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_snake_case , secondary_learner=_snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): __lowerCAmelCase = filter(lambda SCREAMING_SNAKE_CASE_ : p.requires_grad , model.parameters() ) __lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase__ = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ): if metric == "rouge2": __lowerCAmelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __lowerCAmelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __lowerCAmelCase = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) __lowerCAmelCase = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , monitor=F"""val_{metric}""" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , ) class a__ ( pl.Callback ): def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A=True ): """simple docstring""" logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __lowerCAmelCase = od / "test_results.txt" __lowerCAmelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __lowerCAmelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __lowerCAmelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , "a+" ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __lowerCAmelCase = metrics[key] if isinstance(_A , torch.Tensor ): __lowerCAmelCase = val.item() __lowerCAmelCase = f"""{key}: {val:.6f}\n""" writer.write(_A ) if not save_generations: return if "preds" in metrics: __lowerCAmelCase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_A ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" try: __lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __lowerCAmelCase = pl_module.model.num_parameters() __lowerCAmelCase = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , "test" ) @rank_zero_only def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
92
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : set ): A__ , A__ = len(UpperCAmelCase_ ), len(grid[0] ) if ( min(UpperCAmelCase_ , UpperCAmelCase_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A__ = 0 count += depth_first_search(UpperCAmelCase_ , row + 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , row - 1 , UpperCAmelCase_ , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col + 1 , UpperCAmelCase_ ) count += depth_first_search(UpperCAmelCase_ , UpperCAmelCase_ , col - 1 , UpperCAmelCase_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
335
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = [] def parse_line(a__ ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: __SCREAMING_SNAKE_CASE = """\n""".join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: __SCREAMING_SNAKE_CASE = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def a__ ( a__ ): """simple docstring""" return values.split(""",""" ) UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) UpperCAmelCase : Tuple = parser.parse_args() UpperCAmelCase : int = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase : Dict = extract_warnings(args.output_dir, args.targets) UpperCAmelCase : Union[str, Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
366
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCAmelCase : Any = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] UpperCAmelCase : Optional[Any] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] UpperCAmelCase : Optional[int] = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[str] = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) UpperCAmelCase : List[Any] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def a__ ( a__ , a__ ): """simple docstring""" for tf_name, hf_name in patterns: __SCREAMING_SNAKE_CASE = k.replace(a__ , a__ ) return k def a__ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = BigBirdPegasusConfig(**a__ ) __SCREAMING_SNAKE_CASE = BigBirdPegasusForConditionalGeneration(a__ ) __SCREAMING_SNAKE_CASE = torch_model.state_dict() __SCREAMING_SNAKE_CASE = {} # separating decoder weights __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )} __SCREAMING_SNAKE_CASE = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )} for k, v in tqdm(decoder_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = DECODER_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , """tf -> hf conversion""" ): __SCREAMING_SNAKE_CASE = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE] if any(a__ ): continue __SCREAMING_SNAKE_CASE = REMAINING_PATTERNS __SCREAMING_SNAKE_CASE = rename_state_dict_key(a__ , a__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ): __SCREAMING_SNAKE_CASE = v.T __SCREAMING_SNAKE_CASE = torch.from_numpy(a__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __SCREAMING_SNAKE_CASE = mapping["""model.embed_positions.weight"""] __SCREAMING_SNAKE_CASE = mapping.pop("""model.embed_positions.weight""" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = torch_model.load_state_dict(a__ , strict=a__ ) __SCREAMING_SNAKE_CASE = [ k for k in missing if k not in [ """final_logits_bias""", """model.encoder.embed_tokens.weight""", """model.decoder.embed_tokens.weight""", """lm_head.weight""", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = tf.train.list_variables(a__ ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = ["""global_step"""] for name, shape in tqdm(a__ , desc="""converting tf checkpoint to dict""" ): __SCREAMING_SNAKE_CASE = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE = tf.train.load_variable(a__ , a__ ) __SCREAMING_SNAKE_CASE = array return tf_weights def a__ ( a__ , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = get_tf_weights_as_numpy(a__ ) __SCREAMING_SNAKE_CASE = convert_bigbird_pegasus(a__ , a__ ) torch_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase : int = parser.parse_args() UpperCAmelCase : Dict = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
331
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None @property def __a ( self : Tuple ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (3, 32, 1_28) SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on SCREAMING_SNAKE_CASE__ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowercase ) + """\n""" ) SCREAMING_SNAKE_CASE__ = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , _lowercase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowercase , _lowercase ) def __a ( self : Tuple , **_lowercase : Any ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def __a ( self : List[Any] , **_lowercase : Optional[Any] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowercase ) def __a ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) SCREAMING_SNAKE_CASE__ = Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) return image_input def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_lowercase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) SCREAMING_SNAKE_CASE__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = image_processor(_lowercase , return_tensors="""np""" ) SCREAMING_SNAKE_CASE__ = processor(images=_lowercase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = """test""" SCREAMING_SNAKE_CASE__ = processor(text=_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = """test""" SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE__ = processor.char_decode(_lowercase ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(_lowercase ) SCREAMING_SNAKE_CASE__ = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(_lowercase , _lowercase ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE__ = processor(text=_lowercase , images=_lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.get_image_processor() SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = MgpstrProcessor(tokenizer=_lowercase , image_processor=_lowercase ) SCREAMING_SNAKE_CASE__ = torch.randn(1 , 27 , 38 ) SCREAMING_SNAKE_CASE__ = torch.randn(1 , 27 , 5_02_57 ) SCREAMING_SNAKE_CASE__ = torch.randn(1 , 27 , 3_05_22 ) SCREAMING_SNAKE_CASE__ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
219
import socket def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) SCREAMING_SNAKE_CASE__ = socket.gethostname() SCREAMING_SNAKE_CASE__ = 1_23_12 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: SCREAMING_SNAKE_CASE__ = sock.recv(10_24 ) if not data: break out_file.write(__UpperCamelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
219
1
import re def __snake_case ( _UpperCAmelCase ): __a = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __snake_case :Dict = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
131
def __snake_case ( _UpperCAmelCase ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''Input value must be an \'int\' type''' ) __a = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
131
1
from __future__ import annotations UpperCAmelCase_ : Tuple = [] def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(len(__A ) ): if board[row][i] == 1: return False for i in range(len(__A ) ): if board[i][column] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__A , -1 , -1 ) , range(__A , len(__A ) ) ): if board[i][j] == 1: return False return True def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] , __A : int ) -> bool: """simple docstring""" if row >= len(__A ): solution.append(__A ) printboard(__A ) print() return True for i in range(len(__A ) ): if is_safe(__A , __A , __A ): a_ : Any = 1 solve(__A , row + 1 ) a_ : Tuple = 0 return False def SCREAMING_SNAKE_CASE_ ( __A : list[list[int]] ) -> None: """simple docstring""" for i in range(len(__A ) ): for j in range(len(__A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCAmelCase_ : List[str] = 8 UpperCAmelCase_ : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('The total no. of solutions are :', len(solution))
32
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : str = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
127
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class UpperCAmelCase ( __A , __A ): '''simple docstring''' lowerCamelCase_ = '''dinat''' lowerCamelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowercase=4 , lowercase=3 , lowercase=6_4 , lowercase=[3, 4, 6, 5] , lowercase=[2, 4, 8, 1_6] , lowercase=7 , lowercase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , lowercase=3.0 , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=0.1 , lowercase="gelu" , lowercase=0.02 , lowercase=1E-5 , lowercase=0.0 , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Union[str, Any] = patch_size A_ : Union[str, Any] = num_channels A_ : int = embed_dim A_ : Dict = depths A_ : List[Any] = len(lowercase ) A_ : Tuple = num_heads A_ : str = kernel_size A_ : int = dilations A_ : Any = mlp_ratio A_ : Dict = qkv_bias A_ : Any = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[Any] = drop_path_rate A_ : int = hidden_act A_ : Union[str, Any] = layer_norm_eps A_ : str = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ : Any = int(embed_dim * 2 ** (len(lowercase ) - 1) ) A_ : Tuple = layer_scale_init_value A_ : Tuple = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] A_ : Tuple = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
355
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): A_ : Dict = getattr(lowercase , normalizer_state.pop('type' ) ) A_ : Optional[int] = do_lower_case A_ : Optional[Any] = strip_accents A_ : str = tokenize_chinese_chars A_ : Any = normalizer_class(**lowercase ) A_ : Tuple = do_lower_case def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
192
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = CLIPTokenizer __UpperCAmelCase : Union[str, Any] = CLIPTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : int = {} __UpperCAmelCase : List[str] = False def __snake_case ( self : str ) -> Union[str, Any]: super().setUp() # fmt: off __snake_case : int = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on __snake_case : Any = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __snake_case : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] __snake_case : Optional[int] = {"unk_token": "<unk>"} __snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase ) ) def __snake_case ( self : Tuple , **lowerCamelCase : List[Any] ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : Union[str, Any] , **lowerCamelCase : str ) -> List[str]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : Optional[int] , lowerCamelCase : List[Any] ) -> Any: __snake_case : Any = "lower newer" __snake_case : Any = "lower newer" return input_text, output_text def __snake_case ( self : Any ) -> int: __snake_case : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __snake_case : List[str] = "lower newer" __snake_case : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] __snake_case : int = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) __snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] __snake_case : Dict = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) @require_ftfy def __snake_case ( self : int ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) __snake_case : Tuple = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." __snake_case : int = tokenizer_s.tokenize(lowerCamelCase ) __snake_case : Dict = tokenizer_r.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __snake_case : int = "xa\u0303y" + " " + "x\xe3y" __snake_case : str = tokenizer_s.tokenize(lowerCamelCase ) __snake_case : Optional[int] = tokenizer_r.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # Test that the tokenization is identical on unicode of space type __snake_case : Optional[int] = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __snake_case : Union[str, Any] = tokenizer_s.tokenize(lowerCamelCase ) __snake_case : Optional[int] = tokenizer_r.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) # Test that the tokenization is identical on unicode of line break type __snake_case : Tuple = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __snake_case : str = tokenizer_s.tokenize(lowerCamelCase ) __snake_case : List[str] = tokenizer_r.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __snake_case : Optional[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __snake_case : Tuple = F'{text_of_1_token} {text_of_1_token}' __snake_case : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , ) __snake_case : Optional[int] = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase ) + 1, len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) __snake_case : Union[str, Any] = F' {text}' __snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase , use_fast=lowerCamelCase , ) __snake_case : Optional[Any] = tokenizer_r(lowerCamelCase , return_offsets_mapping=lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase ) + 1, 1 + len(lowerCamelCase ) + 1 + len(lowerCamelCase )) , ) def __snake_case ( self : Union[str, Any] ) -> List[str]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __snake_case ( self : Optional[Any] ) -> List[Any]: super().test_tokenization_python_rust_equals() def __snake_case ( self : Dict ) -> Union[str, Any]: # CLIP always lower cases letters pass
123
def lowerCAmelCase_ ( __lowerCamelCase ): if edge <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Length must be a positive." ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCAmelCase_ ( __lowerCamelCase ): if edge <= 0 or not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("Length must be a positive." ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
123
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __a : Any , __a : int=1_00 , __a : Dict=13 , __a : Union[str, Any]=30 , __a : Any=2 , __a : Optional[Any]=3 , __a : Optional[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Optional[int]=5 , __a : int=4 , __a : Any=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : List[str]=0.1 , __a : Dict=10 , __a : str=0.02 , __a : int=3 , ): _a = parent _a = vocab_size _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = num_patches + 1 def UpperCamelCase__ ( self : int ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values, labels def UpperCamelCase__ ( self : Dict , __a : Tuple , __a : str , __a : Dict ): _a = FlaxBeitModel(config=__a ) _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[Any] , __a : List[Any] , __a : List[str] ): _a = FlaxBeitForMaskedImageModeling(config=__a ) _a = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCamelCase__ ( self : int , __a : Any , __a : Any , __a : Optional[Any] ): _a = self.type_sequence_label_size _a = FlaxBeitForImageClassification(config=__a ) _a = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = FlaxBeitForImageClassification(__a ) _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def UpperCamelCase__ ( self : Dict ): _a = FlaxBeitModelTester(self ) _a = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : Dict ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : Tuple ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a = self._prepare_for_class(__a , __a ) _a = model_class(__a ) @jax.jit def model_jitted(__a : Union[str, Any] , **__a : Optional[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): _a = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _a = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ ( self : Optional[Any] ): for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) _a = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ) -> Optional[Any]: _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self : Union[str, Any] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self : str ): _a = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="np" ).pixel_values # prepare bool_masked_pos _a = np.ones((1, 1_96) , dtype=__a ) # forward pass _a = model(pixel_values=__a , bool_masked_pos=__a ) _a = outputs.logits # verify the logits _a = (1, 1_96, 81_92) self.assertEqual(logits.shape , __a ) _a = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __a , atol=1e-2 ) ) @slow def UpperCamelCase__ ( self : Tuple ): _a = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="np" ) # forward pass _a = model(**__a ) _a = outputs.logits # verify the logits _a = (1, 10_00) self.assertEqual(logits.shape , __a ) _a = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , __a , atol=1e-4 ) ) _a = 2_81 self.assertEqual(logits.argmax(-1 ).item() , __a ) @slow def UpperCamelCase__ ( self : List[Any] ): _a = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="np" ) # forward pass _a = model(**__a ) _a = outputs.logits # verify the logits _a = (1, 2_18_41) self.assertEqual(logits.shape , __a ) _a = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , __a , atol=1e-4 ) ) _a = 23_96 self.assertEqual(logits.argmax(-1 ).item() , __a )
346
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowerCAmelCase_ : List[Any] = logging.getLogger(__name__) lowerCAmelCase_ : List[Any] = {'facebook/bart-base': BartForConditionalGeneration} lowerCAmelCase_ : int = {'facebook/bart-base': BartTokenizer} def _lowerCamelCase ( ) -> Union[str, Any]: _a = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=lowercase , default=lowercase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=lowercase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=lowercase , default=lowercase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=lowercase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=lowercase , ) parser.add_argument( "--config_name" , type=lowercase , default=lowercase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=lowercase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=lowercase , default=lowercase , help="Where to store the final ONNX file." ) _a = parser.parse_args() return args def _lowerCamelCase ( lowercase : Any , lowercase : Tuple="cpu" ) -> Optional[Any]: _a = model_dict[model_name].from_pretrained(lowercase ).to(lowercase ) _a = tokenizer_dict[model_name].from_pretrained(lowercase ) if model_name in ["facebook/bart-base"]: _a = 0 _a = None _a = 0 return huggingface_model, tokenizer def _lowerCamelCase ( lowercase : List[str] , lowercase : Tuple , lowercase : int , lowercase : Any , lowercase : Dict ) -> Any: model.eval() _a = None _a = torch.jit.script(BARTBeamSearchGenerator(lowercase ) ) with torch.no_grad(): _a = "My friends are cool but they eat too many carbs." _a = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) _a = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=lowercase , ) logger.info("Model exported to {}".format(lowercase ) ) _a = remove_dup_initializers(os.path.abspath(lowercase ) ) logger.info("Deduplicated and optimized model written to {}".format(lowercase ) ) _a = onnxruntime.InferenceSession(lowercase ) _a = ort_sess.run( lowercase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(lowercase ), "max_length": np.array(lowercase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _lowerCamelCase ( ) -> Any: _a = parse_args() _a = 5 _a = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _a = torch.device(args.device ) _a , _a = load_model_tokenizer(args.model_name_or_path , lowercase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(lowercase ) if args.max_length: _a = args.max_length if args.num_beams: _a = args.num_beams if args.output_file_path: _a = args.output_file_path else: _a = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": main()
346
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCAmelCase : def __init__( self : List[str] , A : List[str] , A : List[str]=2 , A : Tuple=True , A : Union[str, Any]=False , A : Optional[int]=10 , A : Dict=3 , A : Union[str, Any]=32 * 8 , A : Union[str, Any]=32 * 8 , A : Optional[int]=4 , A : Any=64 , ) -> str: lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Union[str, Any] = is_training lowercase_ : Optional[Any] = use_auxiliary_loss lowercase_ : List[Any] = num_queries lowercase_ : Any = num_channels lowercase_ : Tuple = min_size lowercase_ : List[str] = max_size lowercase_ : str = num_labels lowercase_ : Tuple = hidden_dim lowercase_ : int = hidden_dim def A ( self : int ) -> Dict: lowercase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( A ) lowercase_ : Dict = torch.ones([self.batch_size, self.min_size, self.max_size] , device=A ) lowercase_ : Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=A ) > 0.5 ).float() lowercase_ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=A ) > 0.5).long() lowercase_ : List[str] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A ( self : Optional[int] ) -> Optional[Any]: lowercase_ : Optional[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase_ : str = self.num_queries lowercase_ : Dict = self.num_labels lowercase_ : Union[str, Any] = [1, 1, 1, 1] lowercase_ : Tuple = self.num_channels lowercase_ : int = 64 lowercase_ : Optional[Any] = 1_28 lowercase_ : int = self.hidden_dim lowercase_ : List[Any] = self.hidden_dim lowercase_ : Union[str, Any] = self.hidden_dim return config def A ( self : Optional[int] ) -> Dict: lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = self.prepare_config_and_inputs() lowercase_ : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def A ( self : List[Any] , A : int , A : int ) -> Tuple: lowercase_ : List[str] = output.encoder_hidden_states lowercase_ : Tuple = output.pixel_decoder_hidden_states lowercase_ : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(A ) , config.decoder_layers ) def A ( self : Any , A : Optional[Any] , A : Optional[Any] , A : int , A : int=False ) -> Union[str, Any]: with torch.no_grad(): lowercase_ : List[Any] = MaskaFormerModel(config=A ) model.to(A ) model.eval() lowercase_ : Any = model(pixel_values=A , pixel_mask=A ) lowercase_ : Tuple = model(A , output_hidden_states=A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(A , A ) def A ( self : Optional[int] , A : Union[str, Any] , A : Tuple , A : str , A : Optional[Any] , A : Tuple ) -> Optional[Any]: lowercase_ : Union[str, Any] = MaskaFormerForUniversalSegmentation(config=A ) model.to(A ) model.eval() def comm_check_on_output(A : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Dict = model(pixel_values=A , pixel_mask=A ) lowercase_ : Dict = model(A ) comm_check_on_output(A ) lowercase_ : str = model( pixel_values=A , pixel_mask=A , mask_labels=A , class_labels=A ) comm_check_on_output(A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : int = False def A ( self : Dict ) -> Dict: lowercase_ : Any = MaskaFormerModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A ) def A ( self : Union[str, Any] ) -> List[str]: self.config_tester.run_common_tests() def A ( self : Optional[Any] ) -> Optional[Any]: lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A , **A , output_hidden_states=A ) def A ( self : List[str] ) -> Any: lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*A ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def A ( self : Dict ) -> List[Any]: pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def A ( self : Union[str, Any] ) -> Optional[Any]: pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def A ( self : int ) -> List[Any]: pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def A ( self : Tuple ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A ( self : Dict ) -> List[str]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : Tuple ) -> int: pass def A ( self : Optional[int] ) -> int: lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(A ) lowercase_ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) @slow def A ( self : Tuple ) -> Optional[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase_ : Tuple = MaskaFormerModel.from_pretrained(A ) self.assertIsNotNone(A ) def A ( self : Tuple ) -> List[Any]: lowercase_ : Dict = (self.model_tester.min_size,) * 2 lowercase_ : Optional[Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=A ), '''mask_labels''': torch.randn((2, 10, *size) , device=A ), '''class_labels''': torch.zeros(2 , 10 , device=A ).long(), } lowercase_ : int = self.model_tester.get_config() lowercase_ : str = MaskaFormerForUniversalSegmentation(A ).to(A ) lowercase_ : Optional[int] = model(**A ) self.assertTrue(outputs.loss is not None ) def A ( self : str ) -> List[str]: lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(A , **A , output_hidden_states=A ) def A ( self : List[Any] ) -> Optional[int]: lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(A ).to(A ) lowercase_ : Any = model(**A , output_attentions=A ) self.assertTrue(outputs.attentions is not None ) def A ( self : int ) -> str: if not self.model_tester.is_training: return lowercase_ : Any = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() lowercase_ : Tuple = model_class(A ) model.to(A ) model.train() lowercase_ : Optional[int] = model(A , mask_labels=A , class_labels=A ).loss loss.backward() def A ( self : Any ) -> Union[str, Any]: lowercase_ : Optional[int] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowercase_ : int = True lowercase_ : Tuple = True lowercase_ : List[str] = model_class(A ).to(A ) model.train() lowercase_ : Dict = model(A , mask_labels=A , class_labels=A ) lowercase_ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase_ : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __A : Any = 1E-4 def lowercase ( ): lowercase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Optional[int] ) -> str: return "facebook/mask2former-swin-small-coco-instance" @cached_property def A ( self : Optional[int] ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A ( self : Tuple ) -> Tuple: lowercase_ : Optional[Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(A ) lowercase_ : Any = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : Optional[int] = image_processor(A , return_tensors='''pt''' ).to(A ) lowercase_ : Dict = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A , (1, 3, 3_84, 3_84) ) with torch.no_grad(): lowercase_ : Dict = model(**A ) lowercase_ : List[str] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , A , atol=A ) ) lowercase_ : str = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , A , atol=A ) ) lowercase_ : Tuple = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , A , atol=A ) ) def A ( self : Union[str, Any] ) -> Dict: lowercase_ : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A ).eval() lowercase_ : Optional[int] = self.default_image_processor lowercase_ : List[str] = prepare_img() lowercase_ : List[Any] = image_processor(A , return_tensors='''pt''' ).to(A ) lowercase_ : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(A , (1, 3, 3_84, 3_84) ) with torch.no_grad(): lowercase_ : List[Any] = model(**A ) # masks_queries_logits lowercase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase_ : Optional[int] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowercase_ : str = torch.tensor(A ).to(A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , A , atol=A ) ) # class_queries_logits lowercase_ : List[str] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase_ : Optional[Any] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , A , atol=A ) ) def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(A ).eval() lowercase_ : List[str] = self.default_image_processor lowercase_ : Union[str, Any] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) lowercase_ : Optional[int] = inputs['''pixel_values'''].to(A ) lowercase_ : Union[str, Any] = [el.to(A ) for el in inputs['''mask_labels''']] lowercase_ : str = [el.to(A ) for el in inputs['''class_labels''']] with torch.no_grad(): lowercase_ : List[Any] = model(**A ) self.assertTrue(outputs.loss is not None )
33
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list: if len(SCREAMING_SNAKE_CASE_ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : Optional[Any] = [] def generate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , SCREAMING_SNAKE_CASE_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowerCAmelCase__ , lowerCAmelCase__ : str = arr[k - 1], arr[i] else: # k is odd lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = arr[k - 1], arr[0] generate(k - 1 , SCREAMING_SNAKE_CASE_ ) generate(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(heaps(arr))
212
0
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return number | (1 << position) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return number & ~(1 << position) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return number ^ (1 << position) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
362
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Any = BertTokenizer __snake_case : Dict = BertTokenizerFast __snake_case : Tuple = True __snake_case : List[Any] = True __snake_case : Optional[Any] = filter_non_english def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = """a\n'll !!to?'d of, can't.""" SCREAMING_SNAKE_CASE = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,return_offsets_mapping=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ ,"""do_lower_case""" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
193
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase__ : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[List[ImageInput]]: if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class SCREAMING_SNAKE_CASE (A_ ): lowerCAmelCase = ["pixel_values"] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_snake_case) __A : int = size if size is not None else {'''shortest_edge''': 256} __A : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case) __A : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __A : Optional[Any] = get_size_dict(_snake_case , param_name='crop_size') __A : List[Any] = do_resize __A : Optional[int] = size __A : Union[str, Any] = do_center_crop __A : int = crop_size __A : List[str] = resample __A : int = do_rescale __A : Tuple = rescale_factor __A : List[Any] = offset __A : Optional[int] = do_normalize __A : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Optional[int] = get_size_dict(_snake_case , default_to_square=_snake_case) if "shortest_edge" in size: __A : Optional[int] = get_resize_output_image_size(_snake_case , size['shortest_edge'] , default_to_square=_snake_case) elif "height" in size and "width" in size: __A : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}') return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Dict = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}') return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : List[Any] = image.astype(np.floataa) if offset: __A : List[str] = image - (scale / 2) return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.') # All transformations expect numpy arrays. __A : Dict = to_numpy_array(_snake_case) if do_resize: __A : Union[str, Any] = self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) if do_center_crop: __A : Optional[Any] = self.center_crop(_snake_case , size=_snake_case) if do_rescale: __A : List[Any] = self.rescale(image=_snake_case , scale=_snake_case , offset=_snake_case) if do_normalize: __A : List[Any] = self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case) __A : List[str] = to_channel_dimension_format(_snake_case , _snake_case) return image def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __A : int = resample if resample is not None else self.resample __A : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __A : str = do_rescale if do_rescale is not None else self.do_rescale __A : int = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[Any] = offset if offset is not None else self.offset __A : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize __A : Any = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(_snake_case , default_to_square=_snake_case) __A : Tuple = crop_size if crop_size is not None else self.crop_size __A : Union[str, Any] = get_size_dict(_snake_case , param_name='crop_size') if not valid_images(_snake_case): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') __A : Any = make_batched(_snake_case) __A : Optional[int] = [ [ self._preprocess_image( image=_snake_case , do_resize=_snake_case , size=_snake_case , resample=_snake_case , do_center_crop=_snake_case , crop_size=_snake_case , do_rescale=_snake_case , rescale_factor=_snake_case , offset=_snake_case , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , data_format=_snake_case , ) for img in video ] for video in videos ] __A : Dict = {'''pixel_values''': videos} return BatchFeature(data=_snake_case , tensor_type=_snake_case)
190
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _UpperCAmelCase : Tuple = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _UpperCAmelCase : Tuple = { """allenai/longformer-base-4096""": 4_0_9_6, """allenai/longformer-large-4096""": 4_0_9_6, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_0_9_6, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_0_9_6, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __magic_name__( ): __lowerCAmelCase = ( list(range(ord('''!'''), ord('''~''') + 1)) + list(range(ord('''¡'''), ord('''¬''') + 1)) + list(range(ord('''®'''), ord('''ÿ''') + 1)) ) __lowerCAmelCase = bs[:] __lowerCAmelCase = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase) cs.append(2**8 + n) n += 1 __lowerCAmelCase = [chr(lowerCamelCase) for n in cs] return dict(zip(lowerCamelCase, lowerCamelCase)) def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char)) __lowerCAmelCase = char return pairs class a__ ( __A ): """simple docstring""" __UpperCamelCase : Any = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ['input_ids', 'attention_mask'] def __init__(self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ): __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: __lowerCAmelCase = json.load(__lowercase ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} __lowerCAmelCase = errors # how to handle errors in decoding __lowerCAmelCase = bytes_to_unicode() __lowerCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: __lowerCAmelCase = merges_handle.read().split('''\n''' )[1:-1] __lowerCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = {} __lowerCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowerCAmelCase = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case (self ): return len(self.encoder ) def _snake_case (self ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case (self , __lowercase ): if token in self.cache: return self.cache[token] __lowerCAmelCase = tuple(__lowercase ) __lowerCAmelCase = get_pairs(__lowercase ) if not pairs: return token while True: __lowerCAmelCase = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(__lowercase ): try: __lowerCAmelCase = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(__lowercase ) __lowerCAmelCase = new_word if len(__lowercase ) == 1: break else: __lowerCAmelCase = get_pairs(__lowercase ) __lowerCAmelCase = ''' '''.join(__lowercase ) __lowerCAmelCase = word return word def _snake_case (self , __lowercase ): __lowerCAmelCase = [] for token in re.findall(self.pat , __lowercase ): __lowerCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) ) return bpe_tokens def _snake_case (self , __lowercase ): return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def _snake_case (self , __lowercase ): return self.decoder.get(__lowercase ) def _snake_case (self , __lowercase ): __lowerCAmelCase = ''''''.join(__lowercase ) __lowerCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case (self , __lowercase , __lowercase = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) __lowerCAmelCase = 0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __lowerCAmelCase = token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case (self , __lowercase , __lowercase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case (self , __lowercase , __lowercase = None , __lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case (self , __lowercase , __lowercase=False , **__lowercase ): __lowerCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): __lowerCAmelCase = ''' ''' + text return (text, kwargs)
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ): _A : str = 0 _A : Tuple = len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _A : Dict = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None _A : Union[str, Any] = sorted_collection[point] if current_item == item: return point else: if point < left: _A : List[str] = left _A : Union[str, Any] = point elif point > right: _A : Any = right _A : Any = point else: if item < current_item: _A : Union[str, Any] = point - 1 else: _A : List[str] = point + 1 return None def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _A : List[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , point + 1 , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): if collection != sorted(UpperCamelCase__ ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys lowerCAmelCase__ = 0 if debug == 1: lowerCAmelCase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') lowerCAmelCase__ = 67 lowerCAmelCase__ = interpolation_search(collection, target) if result is not None: print(f"{target} found at positions: {result}") else: print('Not found')
11
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __snake_case : Tuple = random.Random() def _UpperCAmelCase ( a__ , a__=1.0 , a__=None , a__=None): '''simple docstring''' if rng is None: a_ : Optional[int] = global_rng a_ : int = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class A__(unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=400 , _lowercase=2_000 , _lowercase=10 , _lowercase=160 , _lowercase=8 , _lowercase=0.0 , _lowercase=4_000 , _lowercase=False , _lowercase=True , ) -> Dict: a_ : Any = parent a_ : Any = batch_size a_ : Union[str, Any] = min_seq_length a_ : Any = max_seq_length a_ : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a_ : Dict = padding_value a_ : Dict = sampling_rate a_ : Optional[Any] = return_attention_mask a_ : Dict = do_normalize a_ : Any = feature_size a_ : List[str] = chunk_length a_ : Tuple = hop_length def UpperCamelCase__ ( self ) -> Dict: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , _lowercase=False , _lowercase=False ) -> Tuple: def _flatten(_lowercase ): return list(itertools.chain(*_lowercase ) ) if equal_length: a_ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a_ : Any = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a_ : Optional[Any] = [np.asarray(_lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__(a_, unittest.TestCase ): """simple docstring""" _A : List[str] = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase__ ( self ) -> Tuple: a_ : Any = WhisperFeatureExtractionTester(self ) def UpperCamelCase__ ( self ) -> Tuple: a_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Optional[int] = feat_extract_first.save_pretrained(_lowercase )[0] check_json_file_has_correct_format(_lowercase ) a_ : Optional[Any] = self.feature_extraction_class.from_pretrained(_lowercase ) a_ : Optional[int] = feat_extract_first.to_dict() a_ : Union[str, Any] = feat_extract_second.to_dict() a_ : List[str] = feat_extract_first.mel_filters a_ : Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> Optional[int]: a_ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : int = os.path.join(_lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowercase ) a_ : str = self.feature_extraction_class.from_json_file(_lowercase ) a_ : Dict = feat_extract_first.to_dict() a_ : Tuple = feat_extract_second.to_dict() a_ : Dict = feat_extract_first.mel_filters a_ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowercase , _lowercase ) ) self.assertEqual(_lowercase , _lowercase ) def UpperCamelCase__ ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus a_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a_ : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a_ : List[str] = [np.asarray(_lowercase ) for speech_input in speech_inputs] # Test feature size a_ : str = feature_extractor(_lowercase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a_ : Any = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features a_ : Any = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # Test batched a_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features a_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a_ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] a_ : List[str] = np.asarray(_lowercase ) a_ : Optional[Any] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features a_ : Dict = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) # Test truncation required a_ : Optional[int] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a_ : str = [np.asarray(_lowercase ) for speech_input in speech_inputs] a_ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] a_ : Any = [np.asarray(_lowercase ) for speech_input in speech_inputs_truncated] a_ : Union[str, Any] = feature_extractor(_lowercase , return_tensors="""np""" ).input_features a_ : str = feature_extractor(_lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_lowercase , _lowercase ): self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCamelCase__ ( self ) -> Dict: import torch a_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a_ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) a_ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a_ : int = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a_ : Dict = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase__ ( self , _lowercase ) -> Dict: a_ : Any = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech a_ : Union[str, Any] = ds.sort("""id""" ).select(range(_lowercase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def UpperCamelCase__ ( self ) -> int: # fmt: off a_ : Union[str, Any] = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on a_ : List[str] = self._load_datasamples(1 ) a_ : List[Any] = WhisperFeatureExtractor() a_ : Union[str, Any] = feature_extractor(_lowercase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _lowercase , atol=1e-4 ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a_ : Any = self._load_datasamples(1 )[0] a_ : List[str] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue a_ : Dict = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowercase )[0] self.assertTrue(np.all(np.mean(_lowercase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowercase ) - 1 ) < 1e-3 ) )
248
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase): _UpperCamelCase:Optional[Any] = 42 class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase): @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 88 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , )-> Optional[int]: super().__init__() lowerCamelCase_ =num_attention_heads lowerCamelCase_ =attention_head_dim lowerCamelCase_ =num_attention_heads * attention_head_dim lowerCamelCase_ =in_channels lowerCamelCase_ =torch.nn.GroupNorm(num_groups=SCREAMING_SNAKE_CASE_ , num_channels=SCREAMING_SNAKE_CASE_ , eps=1E-6 , affine=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. Define transformers blocks lowerCamelCase_ =nn.ModuleList( [ BasicTransformerBlock( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dropout=SCREAMING_SNAKE_CASE_ , cross_attention_dim=SCREAMING_SNAKE_CASE_ , activation_fn=SCREAMING_SNAKE_CASE_ , attention_bias=SCREAMING_SNAKE_CASE_ , double_self_attention=SCREAMING_SNAKE_CASE_ , norm_elementwise_affine=SCREAMING_SNAKE_CASE_ , ) for d in range(SCREAMING_SNAKE_CASE_ ) ] ) lowerCamelCase_ =nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , )-> List[Any]: lowerCamelCase_ =hidden_states.shape lowerCamelCase_ =batch_frames // num_frames lowerCamelCase_ =hidden_states lowerCamelCase_ =hidden_states[None, :].reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase_ =self.norm(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =self.proj_in(SCREAMING_SNAKE_CASE_ ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase_ =block( SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , cross_attention_kwargs=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ , ) # 3. Output lowerCamelCase_ =self.proj_out(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =( hidden_states[None, None, :] .reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase_ =hidden_states.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ =hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=SCREAMING_SNAKE_CASE_ )
365
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( _A : List[Any] , _A : Tuple , _A : Union[str, Any] , _A : Optional[Any] ) ->Any: """simple docstring""" # Initialise PyTorch model lowerCamelCase_ =BigBirdConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: lowerCamelCase_ =BigBirdForQuestionAnswering(_A ) else: lowerCamelCase_ =BigBirdForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_A , _A , is_trivia_qa=_A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_A ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) __A : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
49
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , A_ : int , A_ : List[str]=7 , A_ : Dict=3 , A_ : List[str]=10 , A_ : str=18 , A_ : str=30 , A_ : List[str]=400 , A_ : Tuple=True , A_ : Dict=None , A_ : Optional[int]=True , A_ : Any=[0.5, 0.5, 0.5] , A_ : Any=[0.5, 0.5, 0.5] , A_ : Optional[Any]=None , ) -> List[str]: """simple docstring""" lowerCamelCase_ = size if size is not None else {'shortest_edge': 18} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_frames lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = crop_size def a__ ( self : str ) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = VivitImageProcessor if is_vision_available() else None def a__ ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ = VivitImageProcessingTester(self ) @property def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCamelCase_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
204
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A( UpperCamelCase ): '''simple docstring''' def __init__( self : str , A_ : TransformeraDModel , A_ : AutoencoderKL , A_ : KarrasDiffusionSchedulers , A_ : Optional[Dict[int, str]] = None , ) -> str: """simple docstring""" super().__init__() self.register_modules(transformer=A_ , vae=A_ , scheduler=A_ ) # create a imagenet -> id dictionary for easier use lowerCamelCase_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(',' ): lowerCamelCase_ = int(A_ ) lowerCamelCase_ = dict(sorted(self.labels.items() ) ) def a__ ( self : Optional[int] , A_ : Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(A_ , A_ ): lowerCamelCase_ = list(A_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Any , A_ : List[int] , A_ : float = 4.0 , A_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A_ : int = 50 , A_ : Optional[str] = "pil" , A_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowerCamelCase_ = len(A_ ) lowerCamelCase_ = self.transformer.config.sample_size lowerCamelCase_ = self.transformer.config.in_channels lowerCamelCase_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=A_ , device=self.device , dtype=self.transformer.dtype , ) lowerCamelCase_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowerCamelCase_ = torch.tensor(A_ , device=self.device ).reshape(-1 ) lowerCamelCase_ = torch.tensor([1000] * batch_size , device=self.device ) lowerCamelCase_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowerCamelCase_ = latent_model_input[: len(A_ ) // 2] lowerCamelCase_ = torch.cat([half, half] , dim=0 ) lowerCamelCase_ = self.scheduler.scale_model_input(A_ , A_ ) lowerCamelCase_ = t if not torch.is_tensor(A_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowerCamelCase_ = latent_model_input.device.type == 'mps' if isinstance(A_ , A_ ): lowerCamelCase_ = torch.floataa if is_mps else torch.floataa else: lowerCamelCase_ = torch.intaa if is_mps else torch.intaa lowerCamelCase_ = torch.tensor([timesteps] , dtype=A_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowerCamelCase_ = self.transformer( A_ , timestep=A_ , class_labels=A_ ).sample # perform guidance if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , len(A_ ) // 2 , dim=0 ) lowerCamelCase_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowerCamelCase_ = torch.cat([half_eps, half_eps] , dim=0 ) lowerCamelCase_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowerCamelCase_ , lowerCamelCase_ = torch.split(A_ , A_ , dim=1 ) else: lowerCamelCase_ = noise_pred # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample if guidance_scale > 1: lowerCamelCase_ , lowerCamelCase_ = latent_model_input.chunk(2 , dim=0 ) else: lowerCamelCase_ = latent_model_input lowerCamelCase_ = 1 / self.vae.config.scaling_factor * latents lowerCamelCase_ = self.vae.decode(A_ ).sample lowerCamelCase_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=A_ )
204
1
def snake_case_(_UpperCamelCase , _UpperCamelCase ) -> list[int]: """simple docstring""" _snake_case = int(_UpperCamelCase ) # Initialize Result _snake_case = [] # Traverse through all denomination for denomination in reversed(_UpperCamelCase ): # Find denominations while int(_UpperCamelCase ) >= int(_UpperCamelCase ): total_value -= int(_UpperCamelCase ) answer.append(_UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __A = [] __A = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __A = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __A = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __A = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __A = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __A = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
354
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , A__ : int , A__ : List[str]=7 , A__ : Tuple=3 , A__ : List[str]=10 , A__ : Optional[int]=18 , A__ : int=30 , A__ : Tuple=400 , A__ : Dict=True , A__ : str=None , A__ : str=True , A__ : List[str]=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : List[Any]=None , ) -> int: _snake_case = size if size is not None else {'''shortest_edge''': 18} _snake_case = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = num_frames _snake_case = image_size _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = crop_size def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Tuple = VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Optional[int] ) -> Optional[Any]: _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , '''image_mean''' ) ) self.assertTrue(hasattr(A__ , '''image_std''' ) ) self.assertTrue(hasattr(A__ , '''do_normalize''' ) ) self.assertTrue(hasattr(A__ , '''do_resize''' ) ) self.assertTrue(hasattr(A__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(A__ , '''size''' ) ) def UpperCamelCase_ ( self : int ) -> List[Any]: _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Any ) -> List[str]: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase_ ( self : Optional[Any] ) -> int: # Initialize image_processing _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_video_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for video in video_inputs: self.assertIsInstance(A__ , A__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _snake_case = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _snake_case = image_processing(A__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
278
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase = 16 lowerCamelCase = 32 def lowerCamelCase_ ( _a , _a = 16 ): """simple docstring""" lowerCAmelCase__ : int = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_a ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Tuple = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : Any = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Optional[int] = 8 else: lowerCAmelCase__ : List[Any] = None return tokenizer.pad( _a , padding='''longest''' , max_length=_a , pad_to_multiple_of=_a , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase__ : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=_a ) lowerCAmelCase__ : Union[str, Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Optional[int] = config['''lr'''] lowerCAmelCase__ : str = int(config['''num_epochs'''] ) lowerCAmelCase__ : List[Any] = int(config['''seed'''] ) lowerCAmelCase__ : Optional[Any] = int(config['''batch_size'''] ) lowerCAmelCase__ : List[str] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ : Dict = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ : Any = MAX_GPU_BATCH_SIZE set_seed(_a ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(_a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Any = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=_a ) # Instantiate scheduler lowerCAmelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=100 , num_training_steps=(len(_a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.prepare( _a , _a , _a , _a , _a ) # Now we train the model for epoch in range(_a ): model.train() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ : Any = model(**_a ) lowerCAmelCase__ : Optional[Any] = outputs.loss lowerCAmelCase__ : Dict = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : str = model(**_a ) lowerCAmelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_a , references=_a , ) lowerCAmelCase__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _a ) def lowerCamelCase_ ( ): """simple docstring""" lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_a , default=_a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCAmelCase__ : List[str] = parser.parse_args() lowerCAmelCase__ : Tuple = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_a , _a ) if __name__ == "__main__": main()
131
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : _a : Dict = None def UpperCAmelCase__( self : Union[str, Any] )-> int: lowerCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : List[str] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: lowerCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.feature_extraction_class.from_json_file(_SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase__( self : Optional[int] )-> Union[str, Any]: lowerCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = feat_extract_first.save_pretrained(_SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase__( self : int )-> str: lowerCAmelCase__ : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
131
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a = None , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , **_a , ): super().__init__( _a , split=_a , features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , num_proc=_a , **_a , ) __a = field __a = path_or_paths if isinstance(_a , _a ) else {self.split: path_or_paths} __a = Json( cache_dir=_a , data_files=_a , features=_a , field=_a , **_a , ) def __UpperCAmelCase ( self ): # Build iterable dataset if self.streaming: __a = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , num_proc=self.num_proc , ) __a = self.builder.as_dataset( split=self.split , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a = None , _a = None , **_a , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __a = dataset __a = path_or_buf __a = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __a = num_proc __a = '''utf-8''' __a = to_json_kwargs def __UpperCAmelCase ( self ): __a = self.to_json_kwargs.pop('''path_or_buf''' , _a ) __a = self.to_json_kwargs.pop('''orient''' , '''records''' ) __a = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __a = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __a = self.to_json_kwargs.pop('''compression''' , _a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=_a ) as buffer: __a = self._write(file_obj=_a , orient=_a , lines=_a , index=_a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) __a = self._write( file_obj=self.path_or_buf , orient=_a , lines=_a , index=_a , **self.to_json_kwargs ) return written def __UpperCAmelCase ( self , _a ): __a , __a , __a , __a , __a = args __a = query_table( table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , ) __a = batch.to_pandas().to_json( path_or_buf=_a , orient=_a , lines=_a , index=_a , **_a ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def __UpperCAmelCase ( self , _a , _a , _a , _a , **_a , ): __a = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __a = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_a ) else: __a , __a = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_a ) return written
364
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
0