code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ : str = frozenset([] ) def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) UpperCAmelCase_ : str = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) UpperCAmelCase_ : str = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_zero=lowercase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ : Optional[int] = CLIPTextModel(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : List[Any] = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : List[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Tuple = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Optional[int] = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ) if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : int = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Tuple = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" UpperCAmelCase_ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : Dict = Image.fromarray(np.uinta(lowercase_ ) ).convert("RGB" ) if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.pipeline_class , "_optional_components" ): return UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : List[str] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowercase_ , lowercase_ , lowercase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase_ : List[Any] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : Dict = pipe(**lowercase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowercase_ ) UpperCAmelCase_ : Optional[int] = self.pipeline_class.from_pretrained(lowercase_ ) pipe_loaded.to(lowercase_ ) pipe_loaded.set_progress_bar_config(disable=lowercase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowercase_ , lowercase_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) UpperCAmelCase_ : Optional[Any] = pipe_loaded(**lowercase_ )[0] UpperCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(lowercase_ , 1E-4 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = "cpu" UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Any = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Dict = self.get_dummy_mask_inputs(lowercase_ ) UpperCAmelCase_ : str = pipe.generate_mask(**lowercase_ ) UpperCAmelCase_ : Optional[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase_ : Union[str, Any] = np.array([0] * 9 ) UpperCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_ , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = "cpu" UpperCAmelCase_ : str = self.get_dummy_components() UpperCAmelCase_ : Optional[int] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Dict = self.get_dummy_inversion_inputs(lowercase_ ) UpperCAmelCase_ : Optional[Any] = pipe.invert(**lowercase_ ).images UpperCAmelCase_ : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : Optional[int] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) UpperCAmelCase_ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_ , 1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : int = "cpu" UpperCAmelCase_ : Optional[int] = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = {"beta_start": 0.0_00_85, "beta_end": 0.0_12, "beta_schedule": "scaled_linear"} UpperCAmelCase_ : Any = DPMSolverMultistepScheduler(**lowercase_ ) UpperCAmelCase_ : Dict = DPMSolverMultistepInverseScheduler(**lowercase_ ) UpperCAmelCase_ : Optional[int] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : str = self.get_dummy_inversion_inputs(lowercase_ ) UpperCAmelCase_ : Any = pipe.invert(**lowercase_ ).images UpperCAmelCase_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase_ : Optional[Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) UpperCAmelCase_ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_ , 1E-3 ) @require_torch_gpu @slow class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" UpperCAmelCase_ : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) UpperCAmelCase_ : int = raw_image.convert("RGB" ).resize((768, 768) ) UpperCAmelCase_ : List[Any] = raw_image def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : int = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=lowercase_ , torch_dtype=torch.floataa ) UpperCAmelCase_ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : Union[str, Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : Optional[Any] = "a bowl of fruit" UpperCAmelCase_ : Any = "a bowl of pears" UpperCAmelCase_ : List[str] = pipe.generate_mask( image=self.raw_image , source_prompt=lowercase_ , target_prompt=lowercase_ , generator=lowercase_ , ) UpperCAmelCase_ : List[Any] = pipe.invert( prompt=lowercase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowercase_ ).latents UpperCAmelCase_ : Tuple = pipe( prompt=lowercase_ , mask_image=lowercase_ , image_latents=lowercase_ , generator=lowercase_ , negative_prompt=lowercase_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] UpperCAmelCase_ : List[Any] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=lowercase_ , torch_dtype=torch.floataa ) UpperCAmelCase_ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase_ : List[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) UpperCAmelCase_ : List[str] = "a bowl of fruit" UpperCAmelCase_ : Optional[Any] = "a bowl of pears" UpperCAmelCase_ : List[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=lowercase_ , target_prompt=lowercase_ , generator=lowercase_ , ) UpperCAmelCase_ : Tuple = pipe.invert( prompt=lowercase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowercase_ , num_inference_steps=25 , ).latents UpperCAmelCase_ : List[str] = pipe( prompt=lowercase_ , mask_image=lowercase_ , image_latents=lowercase_ , generator=lowercase_ , negative_prompt=lowercase_ , inpaint_strength=0.7 , num_inference_steps=25 , output_type="numpy" , ).images[0] UpperCAmelCase_ : List[Any] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
61
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __magic_name__ : List[Any] = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Dict = seq_length __magic_name__ : Union[str, Any] = is_training __magic_name__ : Optional[Any] = use_attention_mask __magic_name__ : Optional[Any] = use_token_type_ids __magic_name__ : int = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Any = intermediate_size __magic_name__ : List[Any] = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : List[str] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : List[Any] = num_choices def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : str = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = config_and_inputs __magic_name__ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : Tuple = True __magic_name__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : List[str] = model(_a )[0] __magic_name__ : str = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. __magic_name__ : List[str] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Tuple = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : Tuple = model(_a )[0] # compare the actual values for a slice. __magic_name__ : Dict = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
281
0
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __snake_case : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=False , snake_case__=True , snake_case__="None" , snake_case__=3 , snake_case__=4 , snake_case__=None , ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =parent UpperCAmelCase : str =batch_size UpperCAmelCase : int =seq_length UpperCAmelCase : int =is_training UpperCAmelCase : Optional[int] =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : List[str] =use_labels UpperCAmelCase : Optional[int] =vocab_size UpperCAmelCase : int =hidden_size UpperCAmelCase : str =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[Any] =intermediate_size UpperCAmelCase : Tuple =hidden_act UpperCAmelCase : Optional[int] =hidden_dropout_prob UpperCAmelCase : List[Any] =attention_probs_dropout_prob UpperCAmelCase : List[Any] =max_position_embeddings UpperCAmelCase : str =type_vocab_size UpperCAmelCase : Optional[Any] =type_sequence_label_size UpperCAmelCase : Dict =initializer_range UpperCAmelCase : List[str] =num_labels UpperCAmelCase : Optional[Any] =num_choices UpperCAmelCase : Dict =relative_attention UpperCAmelCase : Union[str, Any] =position_biased_input UpperCAmelCase : Any =pos_att_type UpperCAmelCase : Optional[int] =scope def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Any =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[int] =None if self.use_token_type_ids: UpperCAmelCase : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Optional[int] =None UpperCAmelCase : int =None UpperCAmelCase : List[str] =None if self.use_labels: UpperCAmelCase : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Tuple =DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=snake_case__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : str =TFDebertaVaModel(config=snake_case__ ) UpperCAmelCase : Any ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase : List[str] =[input_ids, input_mask] UpperCAmelCase : Union[str, Any] =model(snake_case__ ) UpperCAmelCase : int =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =TFDebertaVaForMaskedLM(config=snake_case__ ) UpperCAmelCase : int ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Optional[Any] =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] =self.num_labels UpperCAmelCase : List[Any] =TFDebertaVaForSequenceClassification(config=snake_case__ ) UpperCAmelCase : Any ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : str =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =self.num_labels UpperCAmelCase : Optional[int] =TFDebertaVaForTokenClassification(config=snake_case__ ) UpperCAmelCase : Optional[Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Any =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =TFDebertaVaForQuestionAnswering(config=snake_case__ ) UpperCAmelCase : Dict ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase : Union[str, Any] =model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[Any] =config_and_inputs UpperCAmelCase : Optional[Any] ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase : Union[str, Any] = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase : Any = False __lowerCamelCase : Any = False def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : str =TFDebertaVaModelTester(self ) UpperCAmelCase : Union[str, Any] =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) self.assertIsNotNone(snake_case__ ) @require_tf class __snake_case ( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''' ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Optional[Any] =TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' ) UpperCAmelCase : Any =tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCAmelCase : Tuple =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase : Dict =model(snake_case__ , attention_mask=snake_case__ )[0] UpperCAmelCase : Optional[int] =tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , snake_case__ , atol=1e-4 )
348
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = """sew-d""" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__=2 , snake_case__=512 , snake_case__=256 , snake_case__=True , snake_case__=True , snake_case__=("p2c", "c2p") , snake_case__="layer_norm" , snake_case__="gelu_python" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-7 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ) -> int: '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase : Union[str, Any] =hidden_size UpperCAmelCase : Union[str, Any] =feat_extract_norm UpperCAmelCase : Optional[Any] =feat_extract_activation UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : int =list(snake_case__ ) UpperCAmelCase : List[str] =list(snake_case__ ) UpperCAmelCase : str =conv_bias UpperCAmelCase : Tuple =num_conv_pos_embeddings UpperCAmelCase : Dict =num_conv_pos_embedding_groups UpperCAmelCase : str =len(self.conv_dim ) UpperCAmelCase : Dict =num_hidden_layers UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : List[Any] =squeeze_factor UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : int =position_buckets UpperCAmelCase : Optional[int] =share_att_key UpperCAmelCase : Optional[int] =relative_attention UpperCAmelCase : Tuple =norm_rel_ebd UpperCAmelCase : List[Any] =list(snake_case__ ) UpperCAmelCase : Dict =hidden_act UpperCAmelCase : Optional[int] =num_attention_heads UpperCAmelCase : Any =hidden_dropout UpperCAmelCase : str =attention_dropout UpperCAmelCase : Union[str, Any] =activation_dropout UpperCAmelCase : str =feat_proj_dropout UpperCAmelCase : Union[str, Any] =final_dropout UpperCAmelCase : Optional[int] =layer_norm_eps UpperCAmelCase : str =feature_layer_norm_eps UpperCAmelCase : str =initializer_range UpperCAmelCase : Any =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Union[str, Any] =apply_spec_augment UpperCAmelCase : Optional[Any] =mask_time_prob UpperCAmelCase : Tuple =mask_time_length UpperCAmelCase : str =mask_time_min_masks UpperCAmelCase : Optional[int] =mask_feature_prob UpperCAmelCase : Optional[Any] =mask_feature_length UpperCAmelCase : List[Any] =mask_feature_min_masks # ctc loss UpperCAmelCase : str =ctc_loss_reduction UpperCAmelCase : Optional[int] =ctc_zero_infinity # sequence classification UpperCAmelCase : Union[str, Any] =use_weighted_layer_sum UpperCAmelCase : int =classifier_proj_size @property def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
348
1
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase (_SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : set , _SCREAMING_SNAKE_CASE : set , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : PriorityQueue , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __a : str = cst_fwd.get(__UpperCamelCase , np.inf ) __a : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __a : str = new_cost_f __a : Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __a : List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict ): __a : List[str] = -1 __a : Any = set() __a : List[str] = set() __a : Tuple = {source: 0} __a : Optional[Any] = {destination: 0} __a : int = {source: None} __a : Optional[int] = {destination: None} __a : Union[str, Any] = PriorityQueue() __a : Any = PriorityQueue() __a : Any = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __a , __a : str = queue_forward.get() visited_forward.add(__UpperCamelCase ) __a , __a : Dict = queue_backward.get() visited_backward.add(__UpperCamelCase ) __a : Optional[int] = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) __a : int = pass_and_relaxation( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __a : Tuple = shortest_distance return shortest_path_distance __lowercase : Optional[int] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowercase : Union[str, Any] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CodeGenTokenizer A_ = CodeGenTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] __a : Union[str, Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Dict = {'unk_token': '<unk>'} __a : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' __a : Tuple = 'lower newer' __a : Tuple = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a : str = 'lower newer' __a : Tuple = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) self.assertListEqual(__a , __a ) __a : List[str] = tokens + [tokenizer.unk_token] __a : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __a : List[Any] = self.get_tokenizer() __a : List[str] = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Any = 'lower newer' # Testing tokenization __a : Dict = tokenizer.tokenize(__a , add_prefix_space=__a ) __a : Dict = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids without special tokens __a : int = tokenizer.encode(__a , add_special_tokens=__a , add_prefix_space=__a ) __a : Tuple = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) # Testing conversion to ids with special tokens __a : Tuple = self.get_rust_tokenizer(add_prefix_space=__a ) __a : Union[str, Any] = tokenizer.encode(__a , add_prefix_space=__a ) __a : int = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # Testing the unknown token __a : Any = tokens + [rust_tokenizer.unk_token] __a : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__a ) , __a ) def __UpperCAmelCase ( self , *__a , **__a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __a : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # Simple input __a : List[Any] = 'This is a simple input' __a : Tuple = ['This is a simple input 1', 'This is a simple input 2'] __a : Tuple = ('This is a simple input', 'This is a pair') __a : str = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding='max_length' ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding='max_length' , ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input __a : str = 'This is a simple input' __a : Any = ['This is a simple input looooooooong', 'This is a simple input'] __a : Optional[int] = ('This is a simple input', 'This is a pair') __a : Optional[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] __a : int = tokenizer.pad_token_id __a : List[Any] = tokenizer(__a , padding='max_length' , max_length=30 , return_tensors='np' ) __a : Union[str, Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) __a : Optional[Any] = tokenizer(*__a , padding='max_length' , max_length=60 , return_tensors='np' ) __a : List[Any] = tokenizer(__a , padding=__a , truncate=__a , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = '$$$' __a : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__a , add_bos_token=__a ) __a : Union[str, Any] = 'This is a simple input' __a : List[Any] = ['This is a simple input 1', 'This is a simple input 2'] __a : List[Any] = tokenizer.bos_token_id __a : List[str] = tokenizer(__a ) __a : Optional[Any] = tokenizer(__a ) self.assertEqual(out_s.input_ids[0] , __a ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) __a : Any = tokenizer.decode(out_s.input_ids ) __a : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __a ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) __a : Optional[int] = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' __a : Tuple = '\nif len_a > len_b: result = a\nelse: result = b' __a : Optional[int] = tokenizer.encode(__a ) __a : Union[str, Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] __a : Tuple = tokenizer.decode(__a , truncate_before_pattern=__a ) self.assertEqual(__a , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' pass
294
0
'''simple docstring''' from __future__ import annotations import time a_ = list[tuple[int, int]] a_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : Any , __lowercase : str , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =pos_x SCREAMING_SNAKE_CASE__ : Any =pos_y SCREAMING_SNAKE_CASE__ : Union[str, Any] =(pos_y, pos_x) SCREAMING_SNAKE_CASE__ : int =goal_x SCREAMING_SNAKE_CASE__ : List[Any] =goal_y SCREAMING_SNAKE_CASE__ : Optional[Any] =parent class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : Dict , __lowercase : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ : Dict =Node(start[1] , start[0] , goal[1] , goal[0] , _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Node(goal[1] , goal[0] , goal[1] , goal[0] , _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int =[self.start] SCREAMING_SNAKE_CASE__ : List[str] =False def __magic_name__ ( self : List[Any] ) -> Union[str, Any]: while self.node_queue: SCREAMING_SNAKE_CASE__ : str =self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE__ : Tuple =True return self.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_successors(_UpperCAmelCase ) for node in successors: self.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def __magic_name__ ( self : int , __lowercase : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[Any] =[] for action in delta: SCREAMING_SNAKE_CASE__ : Union[str, Any] =parent.pos_x + action[1] SCREAMING_SNAKE_CASE__ : Optional[int] =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , _UpperCAmelCase ) ) return successors def __magic_name__ ( self : Any , __lowercase : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =node SCREAMING_SNAKE_CASE__ : int =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE__ : Tuple =current_node.parent path.reverse() return path class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowercase : str , __lowercase : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Optional[Any] =BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any =BreadthFirstSearch(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =False def __magic_name__ ( self : List[Any] ) -> Optional[int]: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE__ : List[str] =self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE__ : int =self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE__ : int =True return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =current_bwd_node SCREAMING_SNAKE_CASE__ : int =current_fwd_node SCREAMING_SNAKE_CASE__ : int ={ self.fwd_bfs: self.fwd_bfs.get_successors(_UpperCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(_UpperCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(_UpperCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def __magic_name__ ( self : Tuple , __lowercase : Dict , __lowercase : int ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] =self.fwd_bfs.retrace_path(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.bwd_bfs.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE__ : Dict =fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a_ = (0, 0) a_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a_ = time.time() a_ = BreadthFirstSearch(init, goal) a_ = bfs.search() a_ = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a_ = time.time() a_ = BidirectionalBreadthFirstSearch(init, goal) a_ = bd_bfs.search() a_ = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
152
"""simple docstring""" from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase = False ) -> float: if not arr: return 0 lowercase__: Any = 0 if allow_empty_subarrays else float('''-inf''' ) lowercase__: Union[str, Any] = 0.0 for num in arr: lowercase__: List[str] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase__: int = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
177
0
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowercase__ ( UpperCamelCase_): def __lt__( self : List[str] , UpperCamelCase__ : Tuple ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self : int , UpperCamelCase__ : Any ): '''simple docstring''' return self[-1] == other[-1] def A ( _lowercase ): SCREAMING_SNAKE_CASE : list[Stack] = [] # sort into stacks for element in collection: SCREAMING_SNAKE_CASE : List[str] = Stack([element] ) SCREAMING_SNAKE_CASE : int = bisect_left(_lowercase , _lowercase ) if i != len(_lowercase ): stacks[i].append(_lowercase ) else: stacks.append(_lowercase ) # use a heap-based merge to merge stack efficiently SCREAMING_SNAKE_CASE : Dict = merge(*(reversed(_lowercase ) for stack in stacks) ) return collection if __name__ == "__main__": __UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() __UpperCamelCase : int = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
360
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *_lowercase ): with open(_lowercase , '''r''' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __UpperCamelCase : Union[str, Any] = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) __UpperCamelCase : Any = torch.device('cuda', local_rank) __UpperCamelCase : Union[str, Any] = socket.gethostname() __UpperCamelCase : Tuple = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCamelCase : List[Any] = dist.get_rank() __UpperCamelCase : List[Any] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
258
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _UpperCAmelCase = "" ): """simple docstring""" A_ : Optional[int] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ : str = BeautifulSoup(requests.get(_UpperCAmelCase ).text , '''html.parser''' ) A_ : List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ : List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_UpperCAmelCase , _UpperCAmelCase ) } def lowercase_ ( _UpperCAmelCase = "IMDb_Top_250_Movies.csv" ): """simple docstring""" A_ : Any = get_imdb_top_aaa_movies() with open(_UpperCAmelCase , '''w''' , newline='''''' ) as out_file: A_ : List[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
167
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase : Tuple = 'Create a default config file for Accelerate with only a few flags set.' def lowercase_ ( _UpperCAmelCase="no" , _UpperCAmelCase = default_json_config_file , _UpperCAmelCase = False ): """simple docstring""" A_ : str = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False A_ : Optional[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) A_ : str = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): A_ : int = torch.cuda.device_count() A_ : int = num_gpus A_ : Tuple = False if num_gpus > 1: A_ : Optional[int] = '''MULTI_GPU''' else: A_ : Union[str, Any] = '''NO''' elif is_xpu_available() and use_xpu: A_ : str = torch.xpu.device_count() A_ : Optional[int] = num_xpus A_ : List[str] = False if num_xpus > 1: A_ : Any = '''MULTI_XPU''' else: A_ : Optional[Any] = '''NO''' elif is_npu_available(): A_ : Union[str, Any] = torch.npu.device_count() A_ : Optional[int] = num_npus A_ : Union[str, Any] = False if num_npus > 1: A_ : List[str] = '''MULTI_NPU''' else: A_ : Tuple = '''NO''' else: A_ : Union[str, Any] = 0 A_ : str = True A_ : str = 1 A_ : List[Any] = '''NO''' A_ : Dict = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[str] = parser.add_parser('''default''' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '''--config_file''' , default=_UpperCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_UpperCAmelCase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
167
1
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase_ : def _lowercase( self , A ) -> Dict: raise NotImplementedError() def _lowercase( self ) -> Union[str, Any]: raise NotImplementedError() class UpperCamelCase_ ( A_ ): def __init__( self , A , A = False , **A ) -> str: UpperCAmelCase : str = tokenizer UpperCAmelCase : List[Any] = skip_prompt UpperCAmelCase : List[str] = decode_kwargs # variables used in the streaming process UpperCAmelCase : Tuple = [] UpperCAmelCase : List[str] = 0 UpperCAmelCase : Optional[int] = True def _lowercase( self , A ) -> Optional[int]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: UpperCAmelCase : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCAmelCase : str = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCAmelCase : Union[str, Any] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): UpperCAmelCase : Dict = text[self.print_len :] UpperCAmelCase : Dict = [] UpperCAmelCase : Optional[Any] = 0 # If the last token is a CJK character, we print the characters. elif len(snake_case__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCAmelCase : str = text[self.print_len :] self.print_len += len(snake_case__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCAmelCase : int = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(snake_case__ ) self.on_finalized_text(snake_case__ ) def _lowercase( self ) -> List[Any]: if len(self.token_cache ) > 0: UpperCAmelCase : Dict = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCAmelCase : int = text[self.print_len :] UpperCAmelCase : Tuple = [] UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Tuple = "" UpperCAmelCase : List[str] = True self.on_finalized_text(snake_case__ , stream_end=snake_case__ ) def _lowercase( self , A , A = False ) -> Tuple: print(snake_case__ , flush=snake_case__ , end="""""" if not stream_end else None ) def _lowercase( self , A ) -> Optional[int]: if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X20000 and cp <= 0X2a6df) # or (cp >= 0X2a700 and cp <= 0X2b73f) # or (cp >= 0X2b740 and cp <= 0X2b81f) # or (cp >= 0X2b820 and cp <= 0X2ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2f800 and cp <= 0X2fa1f) # ): # return True return False class UpperCamelCase_ ( A_ ): def __init__( self , A , A = False , A = None , **A ) -> List[Any]: super().__init__(snake_case__ , snake_case__ , **snake_case__ ) UpperCAmelCase : Tuple = Queue() UpperCAmelCase : Dict = None UpperCAmelCase : Dict = timeout def _lowercase( self , A , A = False ) -> List[str]: self.text_queue.put(snake_case__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ) -> Tuple: return self def _lowercase( self ) -> int: UpperCAmelCase : Any = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
360
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType a : int = logging.get_logger(__name__) a : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off a : Tuple = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] a : Optional[int] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class UpperCamelCase_ ( __magic_name__ ): lowercase = 'whisper' lowercase = ['past_key_values'] lowercase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , A=51865 , A=80 , A=6 , A=4 , A=6 , A=4 , A=1536 , A=1536 , A=0.0 , A=0.0 , A=50257 , A=True , A=True , A="gelu" , A=256 , A=0.0 , A=0.0 , A=0.0 , A=0.0_2 , A=False , A=1500 , A=448 , A=50256 , A=50256 , A=50256 , A=None , A=[220, 50256] , A=False , A=256 , A=False , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=7 , **A , ) -> Optional[Any]: UpperCAmelCase : str = vocab_size UpperCAmelCase : Union[str, Any] = num_mel_bins UpperCAmelCase : Tuple = d_model UpperCAmelCase : Optional[int] = encoder_layers UpperCAmelCase : List[str] = encoder_attention_heads UpperCAmelCase : Optional[int] = decoder_layers UpperCAmelCase : int = decoder_attention_heads UpperCAmelCase : Optional[int] = decoder_ffn_dim UpperCAmelCase : Union[str, Any] = encoder_ffn_dim UpperCAmelCase : List[str] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Optional[Any] = activation_dropout UpperCAmelCase : Optional[Any] = activation_function UpperCAmelCase : Optional[Any] = init_std UpperCAmelCase : int = encoder_layerdrop UpperCAmelCase : Dict = decoder_layerdrop UpperCAmelCase : Optional[int] = use_cache UpperCAmelCase : List[str] = encoder_layers UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase : Union[str, Any] = max_source_positions UpperCAmelCase : Tuple = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCAmelCase : List[str] = classifier_proj_size UpperCAmelCase : Optional[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : Optional[Any] = apply_spec_augment UpperCAmelCase : int = mask_time_prob UpperCAmelCase : int = mask_time_length UpperCAmelCase : Dict = mask_time_min_masks UpperCAmelCase : List[str] = mask_feature_prob UpperCAmelCase : Optional[int] = mask_feature_length UpperCAmelCase : int = mask_feature_min_masks UpperCAmelCase : List[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class UpperCamelCase_ ( __magic_name__ ): @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : str = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: UpperCAmelCase : List[Any] = {0: """batch"""} else: UpperCAmelCase : Dict = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) return common_inputs def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , A = 22050 , A = 5.0 , A = 220 , ) -> Mapping[str, Any]: UpperCAmelCase : Optional[int] = OrderedDict() UpperCAmelCase : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) UpperCAmelCase : List[str] = encoder_inputs["""input_features"""].shape[2] UpperCAmelCase : List[Any] = encoder_sequence_length // 2 if self.use_past else seq_length UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) UpperCAmelCase : List[str] = encoder_inputs.pop("""input_features""" ) UpperCAmelCase : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: UpperCAmelCase : Union[str, Any] = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def _lowercase( self ) -> float: return 1e-3
338
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'pix2struct_text_model' lowerCamelCase = ['past_key_values'] lowerCamelCase = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[Any],lowercase_ : Union[str, Any]=5_0_2_4_4,lowercase_ : Optional[int]=7_6_8,lowercase_ : Tuple=6_4,lowercase_ : Optional[Any]=2_0_4_8,lowercase_ : Tuple=1_2,lowercase_ : List[Any]=1_2,lowercase_ : Union[str, Any]=3_2,lowercase_ : Any=1_2_8,lowercase_ : Optional[int]=0.1,lowercase_ : Tuple=1E-6,lowercase_ : List[str]=1.0,lowercase_ : str="gelu_new",lowercase_ : int=0,lowercase_ : Union[str, Any]=False,lowercase_ : Tuple=0,lowercase_ : Optional[Any]=1,lowercase_ : List[Any]=False,lowercase_ : Any=True,**lowercase_ : Dict,)-> int: '''simple docstring''' A__ = vocab_size A__ = hidden_size A__ = d_kv A__ = d_ff A__ = num_layers A__ = num_heads A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = dropout_rate A__ = layer_norm_epsilon A__ = initializer_factor A__ = use_cache A__ = eos_token_id A__ = decoder_start_token_id # for backwards compatibility A__ = dense_act_fn super().__init__( pad_token_id=lowercase_,eos_token_id=lowercase_,decoder_start_token_id=lowercase_,tie_word_embeddings=lowercase_,is_decoder=lowercase_,**lowercase_,) @classmethod def snake_case__ ( cls : str,lowercase_ : Union[str, os.PathLike],**lowercase_ : int )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) A__ , A__ = cls.get_config_dict(lowercase_,**lowercase_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": A__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase_,**lowercase_ ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'pix2struct_vision_model' def __init__( self : int,lowercase_ : str=7_6_8,lowercase_ : Optional[Any]=7_6_8,lowercase_ : Dict=2_0_4_8,lowercase_ : List[Any]=6_4,lowercase_ : int=1_2,lowercase_ : List[str]=1_2,lowercase_ : List[Any]="gelu_new",lowercase_ : List[str]=1E-6,lowercase_ : Optional[Any]=0.0,lowercase_ : Optional[Any]=0.0,lowercase_ : Union[str, Any]=1E-10,lowercase_ : Optional[Any]=1.0,lowercase_ : List[Any]=4_0_9_6,lowercase_ : Union[str, Any]=3_2,lowercase_ : Dict=1_2_8,**lowercase_ : Dict,)-> List[Any]: '''simple docstring''' super().__init__(**lowercase_ ) A__ = hidden_size A__ = patch_embed_hidden_size A__ = d_ff A__ = dropout_rate A__ = num_hidden_layers A__ = num_attention_heads A__ = initializer_range A__ = initializer_factor A__ = attention_dropout A__ = layer_norm_eps A__ = dense_act_fn A__ = seq_len A__ = relative_attention_num_buckets A__ = relative_attention_max_distance A__ = d_kv @classmethod def snake_case__ ( cls : List[str],lowercase_ : Union[str, os.PathLike],**lowercase_ : Dict )-> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowercase_ ) A__ , A__ = cls.get_config_dict(lowercase_,**lowercase_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": A__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowercase_,**lowercase_ ) class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'pix2struct' lowerCamelCase = True def __init__( self : Any,lowercase_ : Tuple=None,lowercase_ : List[str]=None,lowercase_ : Optional[int]=1.0,lowercase_ : Optional[int]=0.02,lowercase_ : Tuple=False,lowercase_ : int=False,lowercase_ : Any=True,**lowercase_ : Tuple,)-> Any: '''simple docstring''' super().__init__(tie_word_embeddings=lowercase_,is_encoder_decoder=lowercase_,**lowercase_ ) if text_config is None: A__ = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: A__ = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) A__ = PixaStructTextConfig(**lowercase_ ) A__ = PixaStructVisionConfig(**lowercase_ ) A__ = self.text_config.decoder_start_token_id A__ = self.text_config.pad_token_id A__ = self.text_config.eos_token_id A__ = initializer_factor A__ = initializer_range A__ = self.initializer_range A__ = self.initializer_range A__ = is_vqa @classmethod def snake_case__ ( cls : List[Any],lowercase_ : PixaStructTextConfig,lowercase_ : PixaStructVisionConfig,**lowercase_ : int )-> Dict: '''simple docstring''' return cls(text_config=text_config.to_dict(),vision_config=vision_config.to_dict(),**lowercase_ ) def snake_case__ ( self : Tuple )-> Any: '''simple docstring''' A__ = copy.deepcopy(self.__dict__ ) A__ = self.text_config.to_dict() A__ = self.vision_config.to_dict() A__ = self.__class__.model_type return output
7
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowercase_ = "true" def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=82 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 ) -> Optional[Any]: '''simple docstring''' set_seed(42 ) A__ = RegressionModel() A__ = deepcopy(SCREAMING_SNAKE_CASE__ ) A__ = RegressionDataset(length=SCREAMING_SNAKE_CASE__ ) A__ = DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) model.to(accelerator.device ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return model, ddp_model, dataloader def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> int: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) A__ = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : List[Any] ): A__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs with accelerator.main_process_first(): A__ = dataset.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) A__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Dict ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=16 ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> str: '''simple docstring''' A__ = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE__ , split_batches=SCREAMING_SNAKE_CASE__ ) A__ = get_dataloader(SCREAMING_SNAKE_CASE__ , not dispatch_batches ) A__ = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' A__ = [] for batch in dataloader: A__ , A__ = batch.values() with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ ) A__ , A__ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) A__ , A__ = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE__ ) targs.append(SCREAMING_SNAKE_CASE__ ) A__ , A__ = torch.cat(SCREAMING_SNAKE_CASE__ ), torch.cat(SCREAMING_SNAKE_CASE__ ) return logits, targs def _snake_case( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int=82 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=16 ) -> List[Any]: '''simple docstring''' A__ , A__ , A__ = get_basic_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ , A__ = generate_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert ( len(SCREAMING_SNAKE_CASE__ ) == num_samples ), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE__ )}' def _snake_case( SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False ) -> str: '''simple docstring''' A__ = evaluate.load('glue' , 'mrpc' ) A__ , A__ = get_mrpc_setup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # First do baseline A__ , A__ , A__ = setup['no'] model.to(SCREAMING_SNAKE_CASE__ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE__ ) with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=batch['labels'] ) A__ = metric.compute() # Then do distributed A__ , A__ , A__ = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): A__ = model(**SCREAMING_SNAKE_CASE__ ) A__ = outputs.logits.argmax(dim=-1 ) A__ = batch['labels'] A__ , A__ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ ) A__ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _snake_case( ) -> Optional[Any]: '''simple docstring''' A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: A__ = Accelerator(split_batches=SCREAMING_SNAKE_CASE__ , dispatch_batches=SCREAMING_SNAKE_CASE__ ) if accelerator.is_local_main_process: print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(SCREAMING_SNAKE_CASE__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) A__ = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE__ , 512 ) accelerator.state._reset_state() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
7
1
"""simple docstring""" class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = name snake_case = val def __str__( self ): """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , lowerCAmelCase ): """simple docstring""" return self.val < other.val class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = {} snake_case = {} snake_case = self.build_heap(lowerCAmelCase ) def __getitem__( self , lowerCAmelCase ): """simple docstring""" return self.get_value(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return (idx - 1) // 2 def snake_case ( self , lowerCAmelCase ): """simple docstring""" return idx * 2 + 1 def snake_case ( self , lowerCAmelCase ): """simple docstring""" return idx * 2 + 2 def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.heap_dict[key] def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = len(lowerCAmelCase ) - 1 snake_case = self.get_parent_idx(lowerCAmelCase ) for idx, i in enumerate(lowerCAmelCase ): snake_case = idx snake_case = i.val for i in range(lowerCAmelCase , -1 , -1 ): self.sift_down(lowerCAmelCase , lowerCAmelCase ) return array def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" while True: snake_case = self.get_left_child_idx(lowerCAmelCase ) # noqa: E741 snake_case = self.get_right_child_idx(lowerCAmelCase ) snake_case = idx if l < len(lowerCAmelCase ) and array[l] < array[idx]: snake_case = l if r < len(lowerCAmelCase ) and array[r] < array[smallest]: snake_case = r if smallest != idx: snake_case = array[smallest], array[idx] ( snake_case ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) snake_case = smallest else: break def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = self.get_parent_idx(lowerCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: snake_case = self.heap[idx], self.heap[p] snake_case = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) snake_case = p snake_case = self.get_parent_idx(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" return self.heap[0] def snake_case ( self ): """simple docstring""" snake_case = self.heap[-1], self.heap[0] snake_case = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) snake_case = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.heap.append(lowerCAmelCase ) snake_case = len(self.heap ) - 1 snake_case = node.val self.sift_up(len(self.heap ) - 1 ) def snake_case ( self ): """simple docstring""" return len(self.heap ) == 0 def snake_case ( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" snake_case = new_value snake_case = new_value self.sift_up(self.idx_of_element[node] ) SCREAMING_SNAKE_CASE__ = Node("R", -1) SCREAMING_SNAKE_CASE__ = Node("B", 6) SCREAMING_SNAKE_CASE__ = Node("A", 3) SCREAMING_SNAKE_CASE__ = Node("X", 1) SCREAMING_SNAKE_CASE__ = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array SCREAMING_SNAKE_CASE__ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=99 , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=16 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): """simple docstring""" snake_case = parent snake_case = batch_size snake_case = seq_length snake_case = is_training snake_case = use_input_mask snake_case = use_token_type_ids snake_case = use_labels snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = type_sequence_label_size snake_case = initializer_range snake_case = num_labels snake_case = num_choices snake_case = scope def snake_case ( self ): """simple docstring""" snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case = None if self.use_input_mask: snake_case = random_attention_mask([self.batch_size, self.seq_length] ) snake_case = None if self.use_token_type_ids: snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case = None snake_case = None snake_case = None if self.use_labels: snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case = ids_tensor([self.batch_size] , self.num_choices ) snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) snake_case = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): """simple docstring""" snake_case = BioGptForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # create attention mask snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) snake_case = self.seq_length // 2 snake_case = 0 # first forward pass snake_case ,snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids snake_case = ids_tensor((1,) , lowerCAmelCase ).item() + 1 snake_case = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) snake_case = random_other_next_tokens # append to next input_ids and attn_mask snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase )] , dim=1 , ) # get two different outputs snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , past_key_values=lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -1, random_slice_idx].detach() snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() snake_case = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) # first forward pass snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) snake_case ,snake_case = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase )['last_hidden_state'] snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[ 'last_hidden_state' ] # select random slice snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3 ) ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase , lowerCAmelCase=False ): """simple docstring""" snake_case = BioGptForCausalLM(lowerCAmelCase ) model.to(lowerCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() snake_case = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def snake_case ( self , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = BioGptModel(lowerCAmelCase ) snake_case = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): """simple docstring""" snake_case = self.num_labels snake_case = BioGptForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) = config_and_inputs snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCAmelCase : List[Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : str = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : str = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[str] = False def snake_case ( self ): """simple docstring""" snake_case = BioGptModelTester(self ) snake_case = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase , gradient_checkpointing=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = 'left' # Define PAD Token = EOS Token = 50256 snake_case = tokenizer.eos_token snake_case = model.config.eos_token_id # use different length sentences to test batching snake_case = [ 'Hello, my dog is a little', 'Today, I', ] snake_case = tokenizer(lowerCAmelCase , return_tensors='pt' , padding=lowerCAmelCase ) snake_case = inputs['input_ids'].to(lowerCAmelCase ) snake_case = model.generate( input_ids=lowerCAmelCase , attention_mask=inputs['attention_mask'].to(lowerCAmelCase ) , ) snake_case = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase ) snake_case = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() snake_case = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(lowerCAmelCase ) snake_case = model.generate(input_ids=lowerCAmelCase , max_length=model.config.max_length - num_paddings ) snake_case = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase ) snake_case = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def snake_case ( self ): """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case = BioGptModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): """simple docstring""" snake_case ,snake_case = self.model_tester.prepare_config_and_inputs_for_common() snake_case = 3 snake_case = 'multi_label_classification' snake_case = input_dict['input_ids'] snake_case = input_ids.ne(1 ).to(lowerCAmelCase ) snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) snake_case = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() snake_case = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) snake_case = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) snake_case = model(lowerCAmelCase )[0] snake_case = 4_23_84 snake_case = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) snake_case = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow def snake_case ( self ): """simple docstring""" snake_case = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) snake_case = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(lowerCAmelCase ) torch.manual_seed(0 ) snake_case = tokenizer('COVID-19 is' , return_tensors='pt' ).to(lowerCAmelCase ) snake_case = model.generate( **lowerCAmelCase , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=lowerCAmelCase , ) snake_case = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase ) snake_case = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
149
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( snake_case__ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaImgaImgPipeline __magic_name__ = ['image_embeds', 'negative_image_embeds', 'image'] __magic_name__ = [ 'image_embeds', 'negative_image_embeds', 'image', ] __magic_name__ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __magic_name__ = False @property def a_ ( self ): return 3_2 @property def a_ ( self ): return 3_2 @property def a_ ( self ): return self.time_input_dim @property def a_ ( self ): return self.time_input_dim * 4 @property def a_ ( self ): return 1_0_0 @property def a_ ( self ): torch.manual_seed(0 ) snake_case = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } snake_case = UNetaDConditionModel(**__snake_case ) return model @property def a_ ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a_ ( self ): torch.manual_seed(0 ) snake_case = VQModel(**self.dummy_movq_kwargs ) return model def a_ ( self ): snake_case = self.dummy_unet snake_case = self.dummy_movq snake_case = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } snake_case = DDIMScheduler(**__snake_case ) snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a_ ( self , __snake_case , __snake_case=0 ): snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image snake_case = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__snake_case ) ).to(__snake_case ) snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case = Image.fromarray(np.uinta(__snake_case ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) if str(__snake_case ).startswith('''mps''' ): snake_case = torch.manual_seed(__snake_case ) else: snake_case = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) snake_case = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def a_ ( self ): snake_case = '''cpu''' snake_case = self.get_dummy_components() snake_case = self.pipeline_class(**__snake_case ) snake_case = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) snake_case = pipe(**self.get_dummy_inputs(__snake_case ) ) snake_case = output.images snake_case = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ): snake_case = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) snake_case = '''A red cartoon frog, 4k''' snake_case = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) snake_case = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) snake_case = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case , snake_case = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() snake_case = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , ) snake_case = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
127
_SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] _SCREAMING_SNAKE_CASE : Optional[Any] = tuple[float, float, float] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = end_pointa[0] - end_pointa[0] snake_case = end_pointa[1] - end_pointa[1] snake_case = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = ab[1] * ac[2] - ab[2] * ac[1] # *i snake_case = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j snake_case = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" return tuple(round(UpperCamelCase_ ,UpperCamelCase_ ) for x in vector ) == (0, 0, 0) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = 10 ): """simple docstring""" snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = create_vector(UpperCamelCase_ ,UpperCamelCase_ ) return is_zero_vector(get_ad_vectors_cross(UpperCamelCase_ ,UpperCamelCase_ ) ,UpperCamelCase_ )
127
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : float) ->float: '''simple docstring''' return 0.0 def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int | float, int | float]: """simple docstring""" A__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.abs(np.fft.fft(lowercase_ ) ) A__ = 20 * np.logaa(lowercase_ ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds A__ = get_bounds(lowercase_ , lowercase_ ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(lowercase_ ) plt.show() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> None: """simple docstring""" A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(lowercase_ ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.angle(np.fft.fft(lowercase_ ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(lowercase_ , -2 * pi ) ) plt.show()
231
from __future__ import annotations from collections import Counter from random import random class UpperCamelCase_ : '''simple docstring''' def __init__( self : Any) ->Optional[Any]: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str) ->None: '''simple docstring''' A__ = {} def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : float) ->None: '''simple docstring''' if nodea not in self.connections: self.add_node(UpperCAmelCase__) if nodea not in self.connections: self.add_node(UpperCAmelCase__) A__ = probability def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->list[str]: '''simple docstring''' return list(self.connections) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->str: '''simple docstring''' A__ = 0 A__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]: """simple docstring""" A__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ ) A__ = Counter(graph.get_nodes() ) A__ = start for _ in range(lowercase_ ): A__ = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
231
1
import math from datetime import datetime, timedelta def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> datetime: '''simple docstring''' __UpperCamelCase : List[str] = year % 19 __UpperCamelCase : Any = year % 4 __UpperCamelCase : Optional[Any] = year % 7 __UpperCamelCase : int = math.floor(year / 100) __UpperCamelCase : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25) __UpperCamelCase : List[Any] = leap_day_inhibits / 4 __UpperCamelCase : Optional[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __UpperCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __UpperCamelCase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __UpperCamelCase : Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18) else: return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22) + timedelta( days=int(days_to_add + days_from_phm_to_sunday)) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowercase : Dict = 'will be' if year > datetime.now().year else 'was' print(f"Easter in {year} {tense} {gauss_easter(year)}")
232
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
0
"""simple docstring""" __A : Tuple = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = set() # keep track of all the paths to be checked A = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A = queue.pop(0 ) # get the last node from the path A = path[-1] if node not in explored: A = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A = list(UpperCamelCase__ ) new_path.append(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(UpperCamelCase__ ) # in case there's no path between the 2 nodes return [] def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A = [start] A = set(UpperCamelCase__ ) # Keep tab on distances from `start` node. A = {start: 0, target: -1} while queue: A = queue.pop(0 ) if node == target: A = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(UpperCamelCase__ ) queue.append(UpperCamelCase__ ) A = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
351
"""simple docstring""" import numpy as np import datasets __A : Optional[int] = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __A : Any = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __A : List[str] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Dict): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence") , id="X"), }) , ) def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): # convert to numpy arrays A = np.array(__SCREAMING_SNAKE_CASE) A = np.array(__SCREAMING_SNAKE_CASE) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension") # Get mahalanobis distance for each prediction A = X - np.mean(__SCREAMING_SNAKE_CASE) A = np.cov(reference_distribution.T) try: A = np.linalg.inv(__SCREAMING_SNAKE_CASE) except np.linalg.LinAlgError: A = np.linalg.pinv(__SCREAMING_SNAKE_CASE) A = np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = np.dot(__SCREAMING_SNAKE_CASE , X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
57
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a__ ( ) -> None: print("Making key files..." ) make_key_files("rsa" , 1_0_2_4 ) print("Key files generation successful." ) def a__ ( __SCREAMING_SNAKE_CASE ) -> tuple[tuple[int, int], tuple[int, int]]: print("Generating prime p..." ) __lowerCAmelCase: Optional[Any] = rabinMiller.generate_large_prime(__SCREAMING_SNAKE_CASE ) print("Generating prime q..." ) __lowerCAmelCase: Dict = rabinMiller.generate_large_prime(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: __lowerCAmelCase: str = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(__SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) __lowerCAmelCase: Optional[int] = cryptoMath.find_mod_inverse(__SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) __lowerCAmelCase: int = (n, e) __lowerCAmelCase: Any = (n, d) return (public_key, private_key) def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ): print("\nWARNING:" ) print( F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __lowerCAmelCase , __lowerCAmelCase: Any = generate_key(__SCREAMING_SNAKE_CASE ) print(F"\nWriting public key to file {name}_pubkey.txt..." ) with open(F"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{public_key[0]},{public_key[1]}" ) print(F"Writing private key to file {name}_privkey.txt..." ) with open(F"{name}_privkey.txt" , "w" ) as out_file: out_file.write(F"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
217
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class snake_case ( __snake_case ): # to overwrite at feature extractactor specific tests SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = None @property def lowercase_ ( self : str)-> Any: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def lowercase_ ( self : Tuple)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(UpperCamelCase__ , "feature_size")) self.assertTrue(hasattr(UpperCamelCase__ , "sampling_rate")) self.assertTrue(hasattr(UpperCamelCase__ , "padding_value")) def lowercase_ ( self : Dict)-> Any: '''simple docstring''' __lowerCAmelCase: Tuple = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: str = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: int = feat_extract.model_input_names[0] __lowerCAmelCase: List[Any] = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(UpperCamelCase__) == len(UpperCamelCase__) for x, y in zip(UpperCamelCase__ , processed_features[input_name]))) __lowerCAmelCase: Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase__) __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="np") __lowerCAmelCase: Optional[int] = processed_features[input_name] if len(batch_features_input.shape) < 3: __lowerCAmelCase: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def lowercase_ ( self : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase__) __lowerCAmelCase: int = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Any = BatchFeature({input_name: speech_inputs} , tensor_type="pt") __lowerCAmelCase: str = processed_features[input_name] if len(batch_features_input.shape) < 3: __lowerCAmelCase: Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def lowercase_ ( self : str)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=UpperCamelCase__) __lowerCAmelCase: Optional[int] = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type="tf") __lowerCAmelCase: int = processed_features[input_name] if len(batch_features_input.shape) < 3: __lowerCAmelCase: Dict = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : List[str]=False)-> Optional[int]: '''simple docstring''' def _inputs_have_equal_length(UpperCamelCase__ : Tuple): __lowerCAmelCase: Optional[int] = len(input[0]) for input_slice in input[1:]: if len(UpperCamelCase__) != length: return False return True def _inputs_are_equal(UpperCamelCase__ : str , UpperCamelCase__ : str): if len(UpperCamelCase__) != len(UpperCamelCase__): return False for input_slice_a, input_slice_a in zip(UpperCamelCase__ , UpperCamelCase__): if not np.allclose(np.asarray(UpperCamelCase__) , np.asarray(UpperCamelCase__) , atol=1e-3): return False return True __lowerCAmelCase: List[str] = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCamelCase__) __lowerCAmelCase: Tuple = feat_extract.model_input_names[0] __lowerCAmelCase: List[Any] = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: Optional[int] = self.feat_extract_tester.seq_length_diff __lowerCAmelCase: str = self.feat_extract_tester.max_seq_length + pad_diff __lowerCAmelCase: Tuple = self.feat_extract_tester.min_seq_length __lowerCAmelCase: Union[str, Any] = self.feat_extract_tester.batch_size __lowerCAmelCase: Tuple = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __lowerCAmelCase: Optional[int] = feat_extract.pad(UpperCamelCase__ , padding=UpperCamelCase__) __lowerCAmelCase: Optional[int] = input_a[input_name] __lowerCAmelCase: List[Any] = feat_extract.pad(UpperCamelCase__ , padding="longest") __lowerCAmelCase: int = input_a[input_name] __lowerCAmelCase: Tuple = feat_extract.pad(UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[-1])) __lowerCAmelCase: Optional[Any] = input_a[input_name] __lowerCAmelCase: Union[str, Any] = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np") __lowerCAmelCase: Optional[int] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="max_length")[input_name] __lowerCAmelCase: Any = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=UpperCamelCase__ , return_tensors="np") __lowerCAmelCase: Optional[Any] = input_a[input_name] self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_are_equal(UpperCamelCase__ , UpperCamelCase__)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase: Dict = feat_extract.pad(UpperCamelCase__ , pad_to_multiple_of=1_0) __lowerCAmelCase: Tuple = input_a[input_name] __lowerCAmelCase: Tuple = feat_extract.pad(UpperCamelCase__ , padding="longest" , pad_to_multiple_of=1_0) __lowerCAmelCase: List[str] = input_a[input_name] __lowerCAmelCase: str = feat_extract.pad( UpperCamelCase__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=UpperCamelCase__) __lowerCAmelCase: str = input_a[input_name] __lowerCAmelCase: Dict = feat_extract.pad( UpperCamelCase__ , padding="max_length" , pad_to_multiple_of=1_0 , max_length=UpperCamelCase__ , return_tensors="np" , ) __lowerCAmelCase: List[str] = input_a[input_name] self.assertTrue(all(len(UpperCamelCase__) % 1_0 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(UpperCamelCase__ , UpperCamelCase__)) __lowerCAmelCase: Optional[Any] = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(UpperCamelCase__) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct __lowerCAmelCase: Any = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1e-3) def lowercase_ ( self : Optional[int] , UpperCamelCase__ : Optional[int]=False)-> str: '''simple docstring''' def _inputs_have_equal_length(UpperCamelCase__ : List[Any]): __lowerCAmelCase: List[str] = len(input[0]) for input_slice in input[1:]: if len(UpperCamelCase__) != length: return False return True def _inputs_are_equal(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any]): if len(UpperCamelCase__) != len(UpperCamelCase__): return False for input_slice_a, input_slice_a in zip(UpperCamelCase__ , UpperCamelCase__): if not np.allclose(np.asarray(UpperCamelCase__) , np.asarray(UpperCamelCase__) , atol=1e-3): return False return True __lowerCAmelCase: Dict = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=UpperCamelCase__) __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs}) # truncate to smallest __lowerCAmelCase: int = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , truncation=UpperCamelCase__) __lowerCAmelCase: Any = input_a[input_name] __lowerCAmelCase: str = feat_extract.pad(UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0])) __lowerCAmelCase: Tuple = input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) # truncate to smallest with np __lowerCAmelCase: Optional[int] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , return_tensors="np" , truncation=UpperCamelCase__ , ) __lowerCAmelCase: List[str] = input_a[input_name] __lowerCAmelCase: List[str] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , return_tensors="np") __lowerCAmelCase: Any = input_a[input_name] self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) # truncate to middle __lowerCAmelCase: Union[str, Any] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1]) , truncation=UpperCamelCase__ , return_tensors="np" , ) __lowerCAmelCase: int = input_a[input_name] __lowerCAmelCase: List[Any] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1]) , truncation=UpperCamelCase__) __lowerCAmelCase: Dict = input_a[input_name] __lowerCAmelCase: List[Any] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[1]) , return_tensors="np") __lowerCAmelCase: str = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(_inputs_are_equal(UpperCamelCase__ , UpperCamelCase__)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , truncation=UpperCamelCase__)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="longest" , truncation=UpperCamelCase__)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="longest" , truncation=UpperCamelCase__)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(UpperCamelCase__): feat_extract.pad(UpperCamelCase__ , padding="max_length" , truncation=UpperCamelCase__)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __lowerCAmelCase: Tuple = 1_2 __lowerCAmelCase: Optional[int] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , pad_to_multiple_of=UpperCamelCase__ , truncation=UpperCamelCase__ , ) __lowerCAmelCase: Dict = input_a[input_name] __lowerCAmelCase: List[str] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=len(speech_inputs[0]) , pad_to_multiple_of=UpperCamelCase__ , ) __lowerCAmelCase: str = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __lowerCAmelCase: Optional[Any] = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: __lowerCAmelCase: Optional[Any] = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(UpperCamelCase__)) self.assertFalse(_inputs_have_equal_length(UpperCamelCase__)) def lowercase_ ( self : Union[str, Any])-> Optional[Any]: '''simple docstring''' self._check_padding(numpify=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> List[str]: '''simple docstring''' self._check_padding(numpify=UpperCamelCase__) def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' self._check_truncation(numpify=UpperCamelCase__) def lowercase_ ( self : Optional[Any])-> Optional[Any]: '''simple docstring''' self._check_truncation(numpify=UpperCamelCase__) @require_torch def lowercase_ ( self : Dict)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: str = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: str = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np")[input_name] __lowerCAmelCase: Dict = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="pt")[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) @require_tf def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Dict = self.feature_extraction_class(**self.feat_extract_dict) __lowerCAmelCase: Tuple = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: List[Any] = feat_extract.model_input_names[0] __lowerCAmelCase: Any = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: Dict = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np")[input_name] __lowerCAmelCase: Any = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="tf")[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1e-2) def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_dict __lowerCAmelCase: Any = True __lowerCAmelCase: str = self.feature_extraction_class(**UpperCamelCase__) __lowerCAmelCase: List[Any] = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: Tuple = [len(UpperCamelCase__) for x in speech_inputs] __lowerCAmelCase: Optional[Any] = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: Optional[Any] = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np") self.assertIn("attention_mask" , UpperCamelCase__) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , UpperCamelCase__) def lowercase_ ( self : List[str])-> Any: '''simple docstring''' __lowerCAmelCase: Any = self.feat_extract_dict __lowerCAmelCase: str = True __lowerCAmelCase: int = self.feature_extraction_class(**UpperCamelCase__) __lowerCAmelCase: int = self.feat_extract_tester.prepare_inputs_for_common() __lowerCAmelCase: str = [len(UpperCamelCase__) for x in speech_inputs] __lowerCAmelCase: Any = feat_extract.model_input_names[0] __lowerCAmelCase: Optional[int] = BatchFeature({input_name: speech_inputs}) __lowerCAmelCase: List[str] = min(UpperCamelCase__) __lowerCAmelCase: List[str] = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="np") self.assertIn("attention_mask" , UpperCamelCase__) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
217
1
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def __init__( self : int , __a : Any , __a : Optional[int]=7 , __a : Union[str, Any]=3 , __a : int=18 , __a : List[str]=30 , __a : Any=4_00 , __a : Optional[int]=True , __a : List[Any]=None , __a : int=True , ): _a = size if size is not None else {"height": 18, "width": 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize def UpperCamelCase__ ( self : int ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self : Optional[Any] ): _a = ImageGPTImageProcessingTester(self ) @property def UpperCamelCase__ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "clusters" ) ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) def UpperCamelCase__ ( self : Dict ): _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCamelCase__ ( self : int ): _a = self.image_processing_class(**self.image_processor_dict ) _a = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , obj[key] ) ) else: self.assertEqual(obj[key] , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(__a , "image_processor.json" ) image_processor_first.to_json_file(__a ) _a = self.image_processing_class.from_json_file(__a ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__a ) _a = self.image_processing_class.from_pretrained(__a ).to_dict() _a = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__a , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __a ) @unittest.skip("ImageGPT requires clusters at initialization" ) def UpperCamelCase__ ( self : Optional[int] ): pass def _lowerCamelCase ( ) -> str: _a = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) _a = Image.open(dataset[4]["file"] ) _a = Image.open(dataset[5]["file"] ) _a = [imagea, imagea] return images @require_vision @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : str ): _a = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) _a = prepare_images() # test non-batched _a = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _a = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , __a ) # test batched _a = image_processing(__a , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _a = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __a )
358
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar lowerCAmelCase_ : List[str] = TypeVar('T') lowerCAmelCase_ : Dict = TypeVar('U') class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Union[str, Any] , __a : T | None , __a : U | None ): _a = key _a = val _a = None _a = None def __repr__( self : Any ): return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" def __init__( self : Dict ): _a = DoubleLinkedListNode(__a , __a ) _a = DoubleLinkedListNode(__a , __a ) _a , _a = self.rear, self.head def __repr__( self : str ): _a = ["DoubleLinkedList"] _a = self.head while node.next is not None: rep.append(str(__a ) ) _a = node.next rep.append(str(self.rear ) ) return ",\n ".join(__a ) def UpperCamelCase__ ( self : int , __a : DoubleLinkedListNode[T, U] ): _a = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _a = node _a = previous _a = node _a = self.rear def UpperCamelCase__ ( self : Any , __a : DoubleLinkedListNode[T, U] ): if node.prev is None or node.next is None: return None _a = node.next _a = node.prev _a = None _a = None return node class __SCREAMING_SNAKE_CASE (Generic[T, U] ): """simple docstring""" __a ={} def __init__( self : Union[str, Any] , __a : int ): _a = DoubleLinkedList() _a = capacity _a = 0 _a = 0 _a = 0 _a = {} def __repr__( self : Optional[int] ): return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str , __a : T ): return key in self.cache def UpperCamelCase__ ( self : str , __a : T ): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 _a = self.cache[key] _a = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__a ) return node.val self.miss += 1 return None def UpperCamelCase__ ( self : Tuple , __a : T , __a : U ): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _a = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__a ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _a = DoubleLinkedListNode(__a , __a ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _a = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _a = value self.list.add(__a ) @classmethod def UpperCamelCase__ ( cls : Tuple , __a : int = 1_28 ): def cache_decorator_inner(__a : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*__a : T ) -> U: if func not in cls.decorator_function_to_instance_map: _a = LRUCache(__a ) _a = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _a = func(*__a ) cls.decorator_function_to_instance_map[func].put(args[0] , __a ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__a , "cache_info" , __a ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
346
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. lowercase : Tuple = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowercase : Optional[Any] = re.compile(r"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") lowercase : Optional[Any] = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def A_ ( A__ ) -> Optional[Any]: a__ : List[str] = None # source code of `config_class` a__ : Tuple = inspect.getsource(A__ ) a__ : Any = _re_checkpoint.findall(A__ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): a__ : Union[str, Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link a__ : str = F'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: a__ : Optional[int] = ckpt_name break return checkpoint def A_ ( ) -> List[str]: a__ : Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue a__ : Dict = get_checkpoint_from_config_class(A__ ) a__ : List[str] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(A__ ) if len(A__ ) > 0: a__ : Dict = '\n'.join(sorted(A__ ) ) raise ValueError(F'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
99
"""simple docstring""" import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _snake_case = logging.getLogger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[int]=-1 ) -> Tuple: # in NER datasets, the last column is usually reserved for NER label _a : Optional[int] = label_idx def _lowercase ( self : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : Any = mode.value _a : Optional[int] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : int = 1 _a : int = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: _a : str = [] _a : str = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 _a : List[str] = [] _a : str = [] else: _a : List[Any] = line.split(""" """ ) words.append(splits[0] ) if len(UpperCAmelCase__ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" , """""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) return examples def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Union[str, Any]: _a : List[str] = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(UpperCAmelCase__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _a : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(UpperCAmelCase__ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" , line.split()[0] ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : List[Any] = f.read().splitlines() if "O" not in labels: _a : Union[str, Any] = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: _a : Optional[int] = f.read().splitlines() if "O" not in labels: _a : Optional[Any] = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[Split, str] ) -> List[InputExample]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _a : List[Any] = mode.value _a : Union[str, Any] = os.path.join(UpperCAmelCase__ , f"""{mode}.txt""" ) _a : List[str] = 1 _a : Optional[Any] = [] with open(UpperCAmelCase__ , encoding="""utf-8""" ) as f: for sentence in parse_incr(UpperCAmelCase__ ): _a : List[Any] = [] _a : Any = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) if words: examples.append(InputExample(guid=f"""{mode}-{guid_index}""" , words=UpperCAmelCase__ , labels=UpperCAmelCase__ ) ) guid_index += 1 return examples def _lowercase ( self : Tuple , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : TextIO , UpperCAmelCase__ : List ) -> Dict: _a : Optional[Any] = 0 for sentence in parse_incr(UpperCAmelCase__ ): _a : List[str] = preds_list[example_id] _a : str = """""" for token in sentence: out += f"""{token['form']} ({token['upos']}|{s_p.pop(0 )}) """ out += "\n" writer.write(UpperCAmelCase__ ) example_id += 1 def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: if path: with open(UpperCAmelCase__ , """r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
294
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa _lowerCamelCase : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = "summarization" _UpperCAmelCase : Optional[Any] = ["loss"] _UpperCAmelCase : List[str] = ROUGE_KEYS _UpperCAmelCase : Any = "rouge2" def __init__( self : Optional[Any] , lowercase : Union[str, Any] , **lowercase : List[Any] ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: _snake_case = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(lowercase , num_labels=lowercase , mode=self.mode , **lowercase ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) _snake_case = Path(self.output_dir ) / 'metrics.json' _snake_case = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) _snake_case = 0 _snake_case = defaultdict(lowercase ) _snake_case = self.config.model_type _snake_case = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size _snake_case = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _snake_case = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } _snake_case = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _snake_case = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], f'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _snake_case = get_git_info()['repo_sha'] _snake_case = hparams.num_workers _snake_case = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowercase ): _snake_case = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _snake_case = self.decoder_start_token_id _snake_case = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) _snake_case = False _snake_case = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _snake_case = self.hparams.eval_max_gen_length else: _snake_case = self.model.config.max_length _snake_case = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def A ( self : str , lowercase : Dict[str, torch.Tensor] ): '''simple docstring''' _snake_case = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(lowercase , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) _snake_case = True return readable_batch def A ( self : Dict , lowercase : List[Any] , **lowercase : Union[str, Any] ): '''simple docstring''' return self.model(lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : List[int] ): '''simple docstring''' _snake_case = self.tokenizer.batch_decode( lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) return lmap(str.strip , lowercase ) def A ( self : Optional[int] , lowercase : dict ): '''simple docstring''' _snake_case = self.tokenizer.pad_token_id _snake_case , _snake_case = batch['input_ids'], batch['attention_mask'] _snake_case = batch['labels'] if isinstance(self.model , lowercase ): _snake_case = self.model._shift_right(lowercase ) else: _snake_case = shift_tokens_right(lowercase , lowercase ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _snake_case = decoder_input_ids self.save_readable_batch(lowercase ) _snake_case = self(lowercase , attention_mask=lowercase , decoder_input_ids=lowercase , use_cache=lowercase ) _snake_case = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _snake_case = nn.CrossEntropyLoss(ignore_index=lowercase ) assert lm_logits.shape[-1] == self.vocab_size _snake_case = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _snake_case = nn.functional.log_softmax(lowercase , dim=-1 ) _snake_case , _snake_case = label_smoothed_nll_loss( lowercase , lowercase , self.hparams.label_smoothing , ignore_index=lowercase ) return (loss,) @property def A ( self : Dict ): '''simple docstring''' return self.tokenizer.pad_token_id def A ( self : Union[str, Any] , lowercase : List[Any] , lowercase : str ): '''simple docstring''' _snake_case = self._step(lowercase ) _snake_case = dict(zip(self.loss_names , lowercase ) ) # tokens per batch _snake_case = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() _snake_case = batch['input_ids'].shape[0] _snake_case = batch['input_ids'].eq(self.pad ).sum() _snake_case = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def A ( self : List[str] , lowercase : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' return self._generative_step(lowercase ) def A ( self : Union[str, Any] , lowercase : Dict , lowercase : Any="val" ): '''simple docstring''' self.step_count += 1 _snake_case = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _snake_case = losses['loss'] _snake_case = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } _snake_case = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _snake_case = torch.tensor(lowercase ).type_as(lowercase ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowercase ) _snake_case = {f'''{prefix}_avg_{k}''': x for k, x in losses.items()} _snake_case = self.step_count self.metrics[prefix].append(lowercase ) # callback writes this to self.metrics_save_path _snake_case = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'''{prefix}_loss''': loss, f'''{prefix}_{self.val_metric}''': metric_tensor, } def A ( self : Optional[int] , lowercase : List[str] , lowercase : Tuple ): '''simple docstring''' return calculate_rouge(lowercase , lowercase ) def A ( self : str , lowercase : dict ): '''simple docstring''' _snake_case = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _snake_case = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _snake_case = (time.time() - ta) / batch['input_ids'].shape[0] _snake_case = self.ids_to_clean_text(lowercase ) _snake_case = self.ids_to_clean_text(batch['labels'] ) _snake_case = self._step(lowercase ) _snake_case = dict(zip(self.loss_names , lowercase ) ) _snake_case = self.calc_generative_metrics(lowercase , lowercase ) _snake_case = np.mean(lmap(lowercase , lowercase ) ) base_metrics.update(gen_time=lowercase , gen_len=lowercase , preds=lowercase , target=lowercase , **lowercase ) return base_metrics def A ( self : Dict , lowercase : Dict , lowercase : Optional[int] ): '''simple docstring''' return self._generative_step(lowercase ) def A ( self : Any , lowercase : Optional[int] ): '''simple docstring''' return self.validation_epoch_end(lowercase , prefix='test' ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = self.n_obs[type_path] _snake_case = self.target_lens[type_path] _snake_case = self.dataset_class( self.tokenizer , type_path=lowercase , n_obs=lowercase , max_target_length=lowercase , **self.dataset_kwargs , ) return dataset def A ( self : str , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' _snake_case = self.get_dataset(lowercase ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _snake_case = dataset.make_sortish_sampler(lowercase , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _snake_case = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowercase , batch_sampler=lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowercase , batch_size=lowercase , collate_fn=dataset.collate_fn , shuffle=lowercase , num_workers=self.num_workers , sampler=lowercase , ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=lowercase ) return dataloader def A ( self : Any ): '''simple docstring''' return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def A ( self : Optional[int] ): '''simple docstring''' return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def A ( lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' BaseTransformer.add_model_specific_args(lowercase , lowercase ) add_generic_args(lowercase , lowercase ) parser.add_argument( '--max_source_length' , default=1_024 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=lowercase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=lowercase ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=lowercase ) parser.add_argument('--max_tokens_per_batch' , type=lowercase , default=lowercase ) parser.add_argument('--logger_name' , type=lowercase , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=lowercase , default=-1 , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=lowercase , default=500 , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=lowercase , default=-1 , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=lowercase , default='summarization' , required=lowercase , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=lowercase , default=0.0 , required=lowercase ) parser.add_argument('--src_lang' , type=lowercase , default='' , required=lowercase ) parser.add_argument('--tgt_lang' , type=lowercase , default='' , required=lowercase ) parser.add_argument('--eval_beams' , type=lowercase , default=lowercase , required=lowercase ) parser.add_argument( '--val_metric' , type=lowercase , default=lowercase , required=lowercase , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=lowercase , default=lowercase , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=lowercase , default=1 , required=lowercase , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=lowercase , default=-1 , required=lowercase , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : str = "translation" _UpperCAmelCase : List[str] = ["loss"] _UpperCAmelCase : Tuple = ["bleu"] _UpperCAmelCase : Union[str, Any] = "bleu" def __init__( self : List[str] , lowercase : List[str] , **lowercase : int ): '''simple docstring''' super().__init__(lowercase , **lowercase ) _snake_case = hparams.src_lang _snake_case = hparams.tgt_lang def A ( self : Dict , lowercase : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' return calculate_bleu(lowercase , lowercase ) def a_ ( __lowercase : List[str] , __lowercase : Optional[Any]=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=__lowercase ) check_output_dir(__lowercase , expected_items=3 ) if model is None: if "summarization" in args.task: _snake_case = SummarizationModule(__lowercase ) else: _snake_case = TranslationModule(__lowercase ) _snake_case = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): _snake_case = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _snake_case = os.environ.get('WANDB_PROJECT' , __lowercase ) _snake_case = WandbLogger(name=model.output_dir.name , project=__lowercase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _snake_case = WandbLogger(name=model.output_dir.name , project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _snake_case = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _snake_case = False _snake_case = args.val_metric == 'loss' _snake_case = generic_train( __lowercase , __lowercase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __lowercase ) , early_stopping_callback=__lowercase , logger=__lowercase , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model _snake_case = '' _snake_case = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=__lowercase ) ) if checkpoints: _snake_case = checkpoints[-1] _snake_case = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() _lowerCamelCase : str = pl.Trainer.add_argparse_args(parser) _lowerCamelCase : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) _lowerCamelCase : List[str] = parser.parse_args() main(args)
130
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowercase : Union[str, Any] , lowercase : str=7 , lowercase : Union[str, Any]=3 , lowercase : Tuple=30 , lowercase : Optional[Any]=400 , lowercase : List[Any]=True , lowercase : Any=None , lowercase : str=True , lowercase : Tuple=[0.5, 0.5, 0.5] , lowercase : List[Any]=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=True , lowercase : List[Any]=1 / 255 , lowercase : int=True , ): '''simple docstring''' _snake_case = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} _snake_case = parent _snake_case = batch_size _snake_case = num_channels _snake_case = min_resolution _snake_case = max_resolution _snake_case = do_resize _snake_case = size _snake_case = do_normalize _snake_case = image_mean _snake_case = image_std _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_pad def A ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : Optional[int] , lowercase : List[Any] , lowercase : Tuple=False ): '''simple docstring''' if not batched: _snake_case = image_inputs[0] if isinstance(lowercase , Image.Image ): _snake_case , _snake_case = image.size else: _snake_case , _snake_case = image.shape[1], image.shape[2] if w < h: _snake_case = int(self.size['shortest_edge'] * h / w ) _snake_case = self.size['shortest_edge'] elif w > h: _snake_case = self.size['shortest_edge'] _snake_case = int(self.size['shortest_edge'] * w / h ) else: _snake_case = self.size['shortest_edge'] _snake_case = self.size['shortest_edge'] else: _snake_case = [] for image in image_inputs: _snake_case , _snake_case = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _snake_case = max(lowercase , key=lambda lowercase : item[0] )[0] _snake_case = max(lowercase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : Dict = DeformableDetrImageProcessor if is_vision_available() else None def A ( self : List[Any] ): '''simple docstring''' _snake_case = DeformableDetrImageProcessingTester(self ) @property def A ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Dict ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , 'image_mean' ) ) self.assertTrue(hasattr(lowercase , 'image_std' ) ) self.assertTrue(hasattr(lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase , 'do_resize' ) ) self.assertTrue(hasattr(lowercase , 'do_rescale' ) ) self.assertTrue(hasattr(lowercase , 'do_pad' ) ) self.assertTrue(hasattr(lowercase , 'size' ) ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , lowercase ) _snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , lowercase ) def A ( self : Dict ): '''simple docstring''' pass def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : List[str] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input _snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values _snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A ( self : List[str] ): '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _snake_case = json.loads(f.read() ) _snake_case = {'image_id': 39_769, 'annotations': target} # encode them _snake_case = DeformableDetrImageProcessor() _snake_case = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _snake_case = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _snake_case = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) ) @slow def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _snake_case = json.loads(f.read() ) _snake_case = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} _snake_case = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _snake_case = DeformableDetrImageProcessor(format='coco_panoptic' ) _snake_case = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' ) # verify pixel values _snake_case = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , lowercase ) _snake_case = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) ) # verify area _snake_case = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) ) # verify boxes _snake_case = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase ) _snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) ) # verify image_id _snake_case = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) ) # verify is_crowd _snake_case = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) ) # verify class_labels _snake_case = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) ) # verify masks _snake_case = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase ) # verify orig_size _snake_case = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) ) # verify size _snake_case = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
130
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = KandinskyVaaControlnetPipeline a__ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a__ = ["""image_embeds""", """negative_image_embeds""", """hint"""] a__ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ = False @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return 32 @property def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return 1_00 @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' torch.manual_seed(0) a__: Union[str, Any] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } a__: Optional[int] = UNetaDConditionModel(**lowercase) return model @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' torch.manual_seed(0) a__: str = VQModel(**self.dummy_movq_kwargs) return model def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: str = self.dummy_unet a__: List[Any] = self.dummy_movq a__: str = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase , set_alpha_to_one=lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=lowercase , ) a__: Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase_ ( self , lowercase , lowercase=0) -> List[str]: '''simple docstring''' a__: Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase)).to(lowercase) a__: Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowercase) # create hint a__: Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase)).to(lowercase) if str(lowercase).startswith('mps'): a__: List[str] = torch.manual_seed(lowercase) else: a__: Union[str, Any] = torch.Generator(device=lowercase).manual_seed(lowercase) a__: Union[str, Any] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: str = 'cpu' a__: int = self.get_dummy_components() a__: Optional[int] = self.pipeline_class(**lowercase) a__: Any = pipe.to(lowercase) pipe.set_progress_bar_config(disable=lowercase) a__: Optional[Any] = pipe(**self.get_dummy_inputs(lowercase)) a__: Any = output.images a__: Any = pipe( **self.get_dummy_inputs(lowercase) , return_dict=lowercase , )[0] a__: Optional[Any] = image[0, -3:, -3:, -1] a__: Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__: List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy') a__: Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png') a__: int = torch.from_numpy(np.array(lowercase)).float() / 255.0 a__: Tuple = hint.permute(2 , 0 , 1).unsqueeze(0) a__: List[str] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa) pipe_prior.to(lowercase) a__: Tuple = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa) a__: Union[str, Any] = pipeline.to(lowercase) pipeline.set_progress_bar_config(disable=lowercase) a__: Union[str, Any] = 'A robot, 4k photo' a__: List[str] = torch.Generator(device='cuda').manual_seed(0) a__ , a__: Union[str, Any] = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() a__: Optional[Any] = torch.Generator(device='cuda').manual_seed(0) a__: Optional[int] = pipeline( image_embeds=lowercase , negative_image_embeds=lowercase , hint=lowercase , generator=lowercase , num_inference_steps=1_00 , output_type='np' , ) a__: Dict = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowercase , lowercase)
290
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ = random.Random() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: if rng is None: a__: Any = global_rng a__: int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __snake_case ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=4_00 , lowercase=20_00 , lowercase=1 , lowercase=0.0 , lowercase=1_60_00 , lowercase=True , lowercase=True , ) -> Union[str, Any]: '''simple docstring''' a__: Tuple = parent a__: Optional[int] = batch_size a__: Optional[Any] = min_seq_length a__: Optional[int] = max_seq_length a__: Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__: Dict = feature_size a__: Any = padding_value a__: Optional[Any] = sampling_rate a__: Optional[Any] = return_attention_mask a__: str = do_normalize def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase_ ( self , lowercase=False , lowercase=False) -> Tuple: '''simple docstring''' def _flatten(lowercase): return list(itertools.chain(*lowercase)) if equal_length: a__: Dict = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size a__: List[Any] = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: a__: str = [np.asarray(lowercase) for x in speech_inputs] return speech_inputs class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = WavaVecaFeatureExtractor def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Optional[int] = WavaVecaFeatureExtractionTester(self) def lowerCamelCase_ ( self , lowercase) -> List[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(lowercase , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(lowercase , axis=0) - 1) < 1e-3)) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 a__: Optional[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: List[str] = [np.asarray(lowercase) for speech_input in speech_inputs] # Test not batched input a__: Optional[Any] = feat_extract(speech_inputs[0] , return_tensors='np').input_values a__: Dict = feat_extract(np_speech_inputs[0] , return_tensors='np').input_values self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) # Test batched a__: Dict = feat_extract(lowercase , return_tensors='np').input_values a__: int = feat_extract(lowercase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) # Test 2-D numpy arrays are batched. a__: int = [floats_list((1, x))[0] for x in (8_00, 8_00, 8_00)] a__: Union[str, Any] = np.asarray(lowercase) a__: int = feat_extract(lowercase , return_tensors='np').input_values a__: Any = feat_extract(lowercase , return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(lowercase , lowercase): self.assertTrue(np.allclose(lowercase , lowercase , atol=1e-3)) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: List[Any] = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Optional[int] = ['longest', 'max_length', 'do_not_pad'] a__: List[Any] = [None, 16_00, None] for max_length, padding in zip(lowercase , lowercase): a__: Dict = feat_extract(lowercase , padding=lowercase , max_length=lowercase , return_tensors='np') a__: Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self.assertTrue(input_values[0][8_00:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self.assertTrue(input_values[0][10_00:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Optional[int] = range(8_00 , 14_00 , 2_00) a__: List[str] = [floats_list((1, x))[0] for x in lengths] a__: Tuple = ['longest', 'max_length', 'do_not_pad'] a__: Dict = [None, 16_00, None] for max_length, padding in zip(lowercase , lowercase): a__: int = feat_extract(lowercase , max_length=lowercase , padding=lowercase) a__: Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00]) self._check_zero_mean_unit_variance(input_values[1][:10_00]) self._check_zero_mean_unit_variance(input_values[2][:12_00]) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Any = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Dict = feat_extract( lowercase , truncation=lowercase , max_length=10_00 , padding='max_length' , return_tensors='np') a__: int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: int = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: str = feat_extract( lowercase , truncation=lowercase , max_length=10_00 , padding='longest' , return_tensors='np') a__: Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00)) a__: Dict = [floats_list((1, x))[0] for x in range(8_00 , 14_00 , 2_00)] a__: Tuple = feat_extract( lowercase , truncation=lowercase , max_length=20_00 , padding='longest' , return_tensors='np') a__: str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00]) self._check_zero_mean_unit_variance(input_values[1, :10_00]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00)) @require_torch def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' import torch a__: Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) a__: Tuple = np.random.rand(1_00).astype(np.floataa) a__: Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__: Any = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) a__: Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) @slow @require_torch def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: a__: str = WavaVecaConfig.from_pretrained(lowercase) a__: str = WavaVecaFeatureExtractor.from_pretrained(lowercase) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer')
290
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCamelCase : Tuple = HfArgumentParser(InitializationArguments) _lowerCamelCase : Union[str, Any] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCamelCase : str = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) _lowerCamelCase : List[str] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCamelCase : List[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
159
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case (_a ): lowerCAmelCase__ = "ibert" def __init__( self : int , _UpperCAmelCase : Optional[int]=3_0522 , _UpperCAmelCase : Union[str, Any]=768 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=3072 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Any="none" , **_UpperCAmelCase : Optional[int] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = max_position_embeddings _lowerCAmelCase : Union[str, Any] = type_vocab_size _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : str = position_embedding_type _lowerCAmelCase : int = quant_mode _lowerCAmelCase : str = force_dequant class __snake_case (_a ): @property def SCREAMING_SNAKE_CASE ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
159
1
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) a_ = _symbol_database.Default() a_ = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) a_ = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: a_ = None a_ = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" a_ = 45 a_ = 1_581 a_ = 1_517 a_ = 1_570 a_ = 1_584 a_ = 1_793 a_ = 1_795 a_ = 1_916 a_ = 1_864 a_ = 1_905 a_ = 1_919 a_ = 2_429 a_ = 2_208 a_ = 2_418 a_ = 2_323 a_ = 2_407 # @@protoc_insertion_point(module_scope)
330
from string import ascii_lowercase, ascii_uppercase def a__ ( _UpperCamelCase : str ): if not sentence: return "" __lowerCamelCase = dict(zip(_UpperCamelCase ,_UpperCamelCase ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["MaskFormerFeatureExtractor"] _snake_case = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] _snake_case = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
343
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __UpperCamelCase ( _A : str , _A : Dict , _A : Any ) ->Tuple: """simple docstring""" lowerCamelCase_ =state_dict.pop(UpperCAmelCase__ ) lowerCamelCase_ =val def __UpperCamelCase ( _A : List[str] ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCamelCase_ =key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) lowerCamelCase_ =value else: lowerCamelCase_ =value return new_state_dict def __UpperCamelCase ( _A : int ) ->Tuple: """simple docstring""" lowerCamelCase_ ="""""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase_ =state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowerCamelCase_ =state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[:256, :] lowerCamelCase_ =in_proj_bias[:256] lowerCamelCase_ =in_proj_weight[256:512, :] lowerCamelCase_ =in_proj_bias[256:512] lowerCamelCase_ =in_proj_weight[-256:, :] lowerCamelCase_ =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCamelCase_ =state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowerCamelCase_ =state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ =in_proj_weight[:256, :] lowerCamelCase_ =in_proj_bias[:256] lowerCamelCase_ =in_proj_weight[256:512, :] lowerCamelCase_ =in_proj_bias[256:512] lowerCamelCase_ =in_proj_weight[-256:, :] lowerCamelCase_ =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCamelCase_ =state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) lowerCamelCase_ =state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCamelCase_ =in_proj_weight_cross_attn[:256, :] lowerCamelCase_ =in_proj_bias_cross_attn[:256] lowerCamelCase_ =in_proj_weight_cross_attn[256:512, :] lowerCamelCase_ =in_proj_bias_cross_attn[256:512] lowerCamelCase_ =in_proj_weight_cross_attn[-256:, :] lowerCamelCase_ =in_proj_bias_cross_attn[-256:] def __UpperCamelCase ( _A : int , _A : Optional[int] ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =image.size lowerCamelCase_ =max(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ =800 if """detection""" in checkpoint_url else 1000 lowerCamelCase_ =target_max_size / current_max_size lowerCamelCase_ =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCamelCase ( _A : List[Any] ) ->Union[str, Any]: """simple docstring""" lowerCamelCase_ =F.to_tensor(UpperCAmelCase__ ) lowerCamelCase_ =F.normalize(UpperCAmelCase__ , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : List[str] , _A : Optional[Any] ) ->Union[str, Any]: """simple docstring""" logger.info("""Converting model...""" ) # load original state dict lowerCamelCase_ =torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ =rename_backbone_keys(UpperCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase_ ="""model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowerCamelCase_ =state_dict.pop(UpperCAmelCase__ ) lowerCamelCase_ =val # create HuggingFace model and load state dict lowerCamelCase_ =TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowerCamelCase_ =15 lowerCamelCase_ =2 lowerCamelCase_ ={0: """table""", 1: """table rotated"""} lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} else: lowerCamelCase_ =125 lowerCamelCase_ =6 lowerCamelCase_ ={ 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} lowerCamelCase_ =DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) lowerCamelCase_ =TableTransformerForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # verify our conversion lowerCamelCase_ ="""example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" lowerCamelCase_ =hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=UpperCAmelCase__ ) lowerCamelCase_ =Image.open(UpperCAmelCase__ ).convert("""RGB""" ) lowerCamelCase_ =normalize(resize(UpperCAmelCase__ , UpperCAmelCase__ ) ).unsqueeze(0 ) lowerCamelCase_ =model(UpperCAmelCase__ ) if "detection" in checkpoint_url: lowerCamelCase_ =(1, 15, 3) lowerCamelCase_ =torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) lowerCamelCase_ =torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: lowerCamelCase_ =(1, 125, 7) lowerCamelCase_ =torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) lowerCamelCase_ =torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) lowerCamelCase_ =( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(UpperCAmelCase__ ) image_processor.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : Dict = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
154
'''simple docstring''' import os def lowerCamelCase ( UpperCAmelCase__ : str = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(UpperCAmelCase__ ) , UpperCAmelCase__ ) ) as input_file: lowercase_ : str = [ [int(UpperCAmelCase__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) lowercase_ : Any = len(matrix[0] ) lowercase_ : Union[str, Any] = [[-1 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] for i in range(UpperCAmelCase__ ): lowercase_ : int = matrix[i][0] for j in range(1 , UpperCAmelCase__ ): for i in range(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , UpperCAmelCase__ ): lowercase_ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase_ : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
239
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = AudioLDMPipeline _a = TEXT_TO_AUDIO_PARAMS _a = TEXT_TO_AUDIO_BATCH_PARAMS _a = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def a__ ( self ) -> Any: torch.manual_seed(0 ) _A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_a , ) _A : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _A : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _A : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _A : Optional[int] = ClapTextModelWithProjection(_a ) _A : Union[str, Any] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _A : int = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_a , ) _A : Optional[int] = SpeechTaHifiGan(_a ) _A : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a__ ( self , _a , _a=0 ) -> Optional[Any]: if str(_a ).startswith("""mps""" ): _A : int = torch.manual_seed(_a ) else: _A : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _A : str = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a__ ( self ) -> Tuple: _A : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Tuple = self.get_dummy_components() _A : List[Any] = AudioLDMPipeline(**_a ) _A : Any = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : List[str] = audioldm_pipe(**_a ) _A : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_a ) == 256 _A : Tuple = audio[:10] _A : Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a__ ( self ) -> Optional[int]: _A : List[str] = self.get_dummy_components() _A : int = AudioLDMPipeline(**_a ) _A : List[Any] = audioldm_pipe.to(_a ) _A : Any = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = self.get_dummy_inputs(_a ) _A : Any = 3 * [inputs["""prompt"""]] # forward _A : Tuple = audioldm_pipe(**_a ) _A : Optional[int] = output.audios[0] _A : Union[str, Any] = self.get_dummy_inputs(_a ) _A : Optional[int] = 3 * [inputs.pop("""prompt""" )] _A : Tuple = audioldm_pipe.tokenizer( _a , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""pt""" , ) _A : List[Any] = text_inputs["""input_ids"""].to(_a ) _A : Dict = audioldm_pipe.text_encoder( _a , ) _A : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _A : Optional[int] = F.normalize(_a , dim=-1 ) _A : List[Any] = prompt_embeds # forward _A : Dict = audioldm_pipe(**_a ) _A : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a__ ( self ) -> List[str]: _A : int = self.get_dummy_components() _A : Union[str, Any] = AudioLDMPipeline(**_a ) _A : int = audioldm_pipe.to(_a ) _A : Optional[int] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : str = 3 * ["""this is a negative prompt"""] _A : List[str] = negative_prompt _A : Any = 3 * [inputs["""prompt"""]] # forward _A : Union[str, Any] = audioldm_pipe(**_a ) _A : Union[str, Any] = output.audios[0] _A : str = self.get_dummy_inputs(_a ) _A : Dict = 3 * [inputs.pop("""prompt""" )] _A : Any = [] for p in [prompt, negative_prompt]: _A : Optional[int] = audioldm_pipe.tokenizer( _a , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""pt""" , ) _A : Dict = text_inputs["""input_ids"""].to(_a ) _A : str = audioldm_pipe.text_encoder( _a , ) _A : List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _A : int = F.normalize(_a , dim=-1 ) embeds.append(_a ) _A , _A : str = embeds # forward _A : Dict = audioldm_pipe(**_a ) _A : Dict = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a__ ( self ) -> Any: _A : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Tuple = self.get_dummy_components() _A : Tuple = PNDMScheduler(skip_prk_steps=_a ) _A : List[Any] = AudioLDMPipeline(**_a ) _A : int = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : List[str] = """egg cracking""" _A : Dict = audioldm_pipe(**_a , negative_prompt=_a ) _A : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_a ) == 256 _A : Tuple = audio[:10] _A : Union[str, Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a__ ( self ) -> List[str]: _A : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : List[str] = self.get_dummy_components() _A : Any = PNDMScheduler(skip_prk_steps=_a ) _A : Tuple = AudioLDMPipeline(**_a ) _A : List[Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _A : Tuple = audioldm_pipe(_a , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _A : int = 2 _A : str = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _A : Union[str, Any] = 2 _A : str = audioldm_pipe(_a , num_inference_steps=2 , num_waveforms_per_prompt=_a ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _A : List[Any] = 2 _A : Optional[int] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_a ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a__ ( self ) -> Any: _A : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[Any] = self.get_dummy_components() _A : List[str] = AudioLDMPipeline(**_a ) _A : Optional[Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : Tuple = audioldm_pipe(audio_length_in_s=0.016 , **_a ) _A : List[str] = output.audios[0] assert audio.ndim == 1 assert len(_a ) / vocoder_sampling_rate == 0.016 _A : Union[str, Any] = audioldm_pipe(audio_length_in_s=0.032 , **_a ) _A : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_a ) / vocoder_sampling_rate == 0.032 def a__ ( self ) -> str: _A : List[Any] = self.get_dummy_components() _A : Optional[Any] = AudioLDMPipeline(**_a ) _A : Union[str, Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : str = ["""hey"""] _A : Union[str, Any] = audioldm_pipe(_a , num_inference_steps=1 ) _A : Optional[int] = output.audios.shape assert audio_shape == (1, 256) _A : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _A : Dict = SpeechTaHifiGan(_a ).to(_a ) _A : Tuple = audioldm_pipe(_a , num_inference_steps=1 ) _A : Tuple = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a__ ( self ) -> Any: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_a ) def a__ ( self ) -> Optional[int]: self._test_inference_batch_single_identical(test_mean_pixel_difference=_a ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a__ ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_a ) @slow class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> int: _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Any = np.random.RandomState(_a ).standard_normal((1, 8, 128, 16) ) _A : Dict = torch.from_numpy(_a ).to(device=_a , dtype=_a ) _A : List[str] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a__ ( self ) -> Any: _A : List[Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _A : Tuple = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = self.get_inputs(_a ) _A : Dict = 25 _A : Union[str, Any] = audioldm_pipe(**_a ).audios[0] assert audio.ndim == 1 assert len(_a ) == 8_1920 _A : int = audio[7_7230:7_7240] _A : Dict = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _A : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a__ ( self ) -> Any: _A : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _A : Union[str, Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _A : List[Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_inputs(_a ) _A : Optional[int] = audioldm_pipe(**_a ).audios[0] assert audio.ndim == 1 assert len(_a ) == 8_1920 _A : Any = audio[2_7780:2_7790] _A : int = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _A : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
343
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
1
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : Optional[Any] = len(lowerCAmelCase__ ) for i in range(length - 1 ): UpperCAmelCase__ : Optional[Any] = i for k in range(i + 1 , lowerCAmelCase__ ): if collection[k] < collection[least]: UpperCAmelCase__ : Union[str, Any] = k if least != i: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
181
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') UpperCamelCase__ , UpperCamelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') UpperCamelCase__ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: UpperCamelCase__ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) UpperCamelCase__ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
181
1
import math from collections.abc import Callable def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: UpperCamelCase_: float = xa UpperCamelCase_: float = xa while True: if x_n == x_na or function(lowerCamelCase ) == function(lowerCamelCase ): raise ZeroDivisionError("""float division by zero, could not find root""" ) UpperCamelCase_: float = x_na - ( function(lowerCamelCase ) / ((function(lowerCamelCase ) - function(lowerCamelCase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na UpperCamelCase_: Optional[int] = x_na UpperCamelCase_: Optional[int] = x_na def A__ ( lowerCamelCase ) -> float: return math.pow(lowerCamelCase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
369
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : int = """ctrl""" __UpperCamelCase : Dict = ["""past_key_values"""] __UpperCamelCase : List[str] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Dict , snake_case_ : Any=24_6534 , snake_case_ : Dict=256 , snake_case_ : str=1280 , snake_case_ : Optional[int]=8192 , snake_case_ : Union[str, Any]=48 , snake_case_ : Any=16 , snake_case_ : Optional[int]=0.1 , snake_case_ : Any=0.1 , snake_case_ : Any=1e-6 , snake_case_ : Optional[Any]=0.02 , snake_case_ : Optional[int]=True , **snake_case_ : Union[str, Any] , ): UpperCamelCase_: Union[str, Any] = vocab_size UpperCamelCase_: Union[str, Any] = n_positions UpperCamelCase_: Optional[int] = n_embd UpperCamelCase_: int = n_layer UpperCamelCase_: str = n_head UpperCamelCase_: Optional[int] = dff UpperCamelCase_: Optional[Any] = resid_pdrop UpperCamelCase_: Union[str, Any] = embd_pdrop UpperCamelCase_: List[str] = layer_norm_epsilon UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = use_cache super().__init__(**snake_case_ )
223
0
def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" snake_case__ : int = 0 snake_case__ : List[Any] = len(__lowerCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , __lowerCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" if len(__lowerCAmelCase ) <= 1: return arr, 0 snake_case__ : Optional[Any] = len(__lowerCAmelCase ) // 2 snake_case__ : List[Any] = arr[0:mid] snake_case__ : int = arr[mid:] snake_case__ , snake_case__ : Tuple = count_inversions_recursive(__lowerCAmelCase ) snake_case__ , snake_case__ : Union[str, Any] = count_inversions_recursive(__lowerCAmelCase ) snake_case__ , snake_case__ : Optional[Any] = _count_cross_inversions(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : List[str] = [] snake_case__ : Tuple = 0 while i < len(__lowerCAmelCase ) and j < len(__lowerCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__lowerCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__lowerCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCAmelCase ( ) -> str: """simple docstring""" snake_case__ : List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) snake_case__ : Any = count_inversions_bf(__lowerCAmelCase ) snake_case__ , snake_case__ : Dict = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __lowerCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() snake_case__ : Union[str, Any] = count_inversions_bf(__lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __lowerCAmelCase ) # an empty list should also have zero inversions snake_case__ : Optional[int] = [] snake_case__ : str = count_inversions_bf(__lowerCAmelCase ) snake_case__ , snake_case__ : List[str] = count_inversions_recursive(__lowerCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __lowerCAmelCase ) if __name__ == "__main__": main()
230
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = [] for part_id in partition_order: snake_case__ : Any = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(__lowerCAmelCase ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Optional[Any] = spark.range(100 ).repartition(1 ) snake_case__ : Optional[int] = Spark(__lowerCAmelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(10 ).repartition(2 ) snake_case__ : Any = [1, 0] snake_case__ : Tuple = _generate_iterable_examples(__lowerCAmelCase , __lowerCAmelCase ) # Reverse the partitions. snake_case__ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , __lowerCAmelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__ , snake_case__ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Any: """simple docstring""" snake_case__ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : List[Any] = spark.range(10 ).repartition(1 ) snake_case__ : int = SparkExamplesIterable(__lowerCAmelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Tuple = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: snake_case__ : Union[str, Any] = lambda __lowerCAmelCase : x.reverse() snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [2, 1, 0] ) snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shuffle_data_sources(__lowerCAmelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : List[str] = SparkExamplesIterable(__lowerCAmelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowerCAmelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowerCAmelCase ): snake_case__ , snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : int = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() snake_case__ : Dict = spark.range(100 ).repartition(1 ) snake_case__ : Tuple = Spark(__lowerCAmelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
230
1
from __future__ import annotations from typing import Any def lowerCAmelCase_ ( _lowercase : list) -> int: """simple docstring""" if not postfix_notation: return 0 a__ : int = {"""+""", """-""", """*""", """/"""} a__ : list[Any] = [] for token in postfix_notation: if token in operations: a__ : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b) elif token == "-": stack.append(a - b) elif token == "*": stack.append(a * b) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1) else: stack.append(a // b) else: stack.append(int(_lowercase)) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
358
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Union[str, Any] = ProphetNetTokenizer __lowerCAmelCase :Any = False def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" super().setUp() a__ : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" a__ : Any = """UNwant\u00E9d,running""" a__ : Dict = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Tuple = self.tokenizer_class(self.vocab_file ) a__ : int = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__lowercase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" a__ : int = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[Any] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : str = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = BasicTokenizer(do_lower_case=__lowercase , strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = BasicTokenizer(do_lower_case=__lowercase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] a__ : Dict = {} for i, token in enumerate(__lowercase ): a__ : Optional[Any] = i a__ : str = WordpieceTokenizer(vocab=__lowercase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : List[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : List[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a__ : Optional[Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] a__ : List[Any] = tokenizer(__lowercase , padding=__lowercase , return_tensors="""pt""" ) self.assertIsInstance(__lowercase , __lowercase ) a__ : Optional[int] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Optional[Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) a__ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=__lowercase ) a__ : str = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__lowercase ) a__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase ) a__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowercase , __lowercase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
266
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case : Tuple = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys _snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
292
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case : Optional[Any] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
124
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=1_0_2_4 ) -> Optional[Any]: '''simple docstring''' __lowercase, __lowercase= [], [] __lowercase= list(zip(_a , _a ) ) __lowercase, __lowercase= sorted_examples[0] def is_too_big(lowercase__ ): return tok(_a , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowercase= new_src + ' ' + src __lowercase= new_tgt + ' ' + tgt if is_too_big(_a ) or is_too_big(_a ): # cant fit, finalize example finished_src.append(_a ) finished_tgt.append(_a ) __lowercase, __lowercase= src, tgt else: # can fit, keep adding __lowercase, __lowercase= cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_a ) finished_tgt.append(_a ) return finished_src, finished_tgt def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' __lowercase= Path(_a ) save_path.mkdir(exist_ok=_a ) for split in ["train"]: __lowercase, __lowercase= data_dir / F'{split}.source', data_dir / F'{split}.target' __lowercase= [x.rstrip() for x in Path(_a ).open().readlines()] __lowercase= [x.rstrip() for x in Path(_a ).open().readlines()] __lowercase, __lowercase= pack_examples(_a , _a , _a , _a ) print(F'packed {split} split from {len(_a )} examples -> {len(_a )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(_a ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(_a ) ) for split in ["val", "test"]: __lowercase, __lowercase= data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(_a , save_path / F'{split}.source' ) shutil.copyfile(_a , save_path / F'{split}.target' ) def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' __lowercase= argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_a , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=_a , default=1_2_8 ) parser.add_argument('--data_dir' , type=_a ) parser.add_argument('--save_path' , type=_a ) __lowercase= parser.parse_args() __lowercase= AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): if hor == 1_28: __lowerCAmelCase = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase = (32, 1_28, 2_56) __lowerCAmelCase = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: __lowerCAmelCase = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __lowerCAmelCase = (32, 64, 1_28, 2_56) __lowerCAmelCase = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") __lowerCAmelCase = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) __lowerCAmelCase = model.state_dict() __lowerCAmelCase = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } __lowerCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } __lowerCAmelCase = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) __lowerCAmelCase = model __lowerCAmelCase = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __lowerCAmelCase = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
92
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
92
1
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase =['text', 'image', 'audio'] def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase : Any =[] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): inputs.append(create_inputs(__lowerCamelCase ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def lowerCamelCase__ ( __lowerCamelCase : Dict ): '''simple docstring''' _UpperCAmelCase : Optional[int] =[] for output in outputs: if isinstance(__lowerCamelCase , (str, AgentText) ): output_types.append('text' ) elif isinstance(__lowerCamelCase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(__lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __magic_name__ : def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs')) self.assertTrue(hasattr(self.tool , 'outputs')) _UpperCAmelCase : Union[str, Any] =self.tool.inputs for _input in inputs: if isinstance(_input , _SCREAMING_SNAKE_CASE): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) _UpperCAmelCase : Dict =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] =create_inputs(self.tool.inputs) _UpperCAmelCase : Optional[int] =self.tool(*_SCREAMING_SNAKE_CASE) # There is a single output if len(self.tool.outputs) == 1: _UpperCAmelCase : Tuple =[outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE) , self.tool.outputs) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description')) self.assertTrue(hasattr(self.tool , 'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : Dict =create_inputs(self.tool.inputs) _UpperCAmelCase : Dict =self.tool(*_SCREAMING_SNAKE_CASE) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any =[outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(self.tool.outputs)) for output, output_type in zip(_SCREAMING_SNAKE_CASE , self.tool.outputs): _UpperCAmelCase : List[Any] =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Dict =create_inputs(self.tool.inputs) _UpperCAmelCase : Dict =[] for _input, input_type in zip(_SCREAMING_SNAKE_CASE , self.tool.inputs): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error _UpperCAmelCase : Union[str, Any] =self.tool(*_SCREAMING_SNAKE_CASE) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] =[outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(self.tool.outputs))
371
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Dict ='ZinengTang/tvlt-base' _UpperCAmelCase : Dict =tempfile.mkdtemp() def lowerCAmelCase ( self , **snake_case) -> Union[str, Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **snake_case) def lowerCAmelCase ( self , **snake_case) -> Dict: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **snake_case) def lowerCAmelCase ( self) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.get_image_processor() _UpperCAmelCase : Optional[Any] =self.get_feature_extractor() _UpperCAmelCase : str =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) processor.save_pretrained(self.tmpdirname) _UpperCAmelCase : str =TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , snake_case) self.assertIsInstance(processor.image_processor , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str =self.get_image_processor() _UpperCAmelCase : List[Any] =self.get_feature_extractor() _UpperCAmelCase : str =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Optional[int] =np.ones([1_2_0_0_0]) _UpperCAmelCase : str =feature_extractor(snake_case , return_tensors='np') _UpperCAmelCase : Dict =processor(audio=snake_case , return_tensors='np') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def lowerCAmelCase ( self) -> int: '''simple docstring''' _UpperCAmelCase : Dict =self.get_image_processor() _UpperCAmelCase : int =self.get_feature_extractor() _UpperCAmelCase : int =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Union[str, Any] =np.ones([3, 2_2_4, 2_2_4]) _UpperCAmelCase : Optional[Any] =image_processor(snake_case , return_tensors='np') _UpperCAmelCase : List[Any] =processor(images=snake_case , return_tensors='np') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] =self.get_image_processor() _UpperCAmelCase : Dict =self.get_feature_extractor() _UpperCAmelCase : Optional[int] =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) _UpperCAmelCase : Optional[int] =np.ones([1_2_0_0_0]) _UpperCAmelCase : str =np.ones([3, 2_2_4, 2_2_4]) _UpperCAmelCase : Optional[int] =processor(audio=snake_case , images=snake_case) self.assertListEqual(list(inputs.keys()) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask']) # test if it raises when no input is passed with pytest.raises(snake_case): processor() def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] =self.get_image_processor() _UpperCAmelCase : Tuple =self.get_feature_extractor() _UpperCAmelCase : Dict =TvltProcessor(image_processor=snake_case , feature_extractor=snake_case) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
242
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __UpperCAmelCase = (7_20, 12_80) # Height, Width __UpperCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. __UpperCAmelCase = 1 / 1_00 __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = '' __UpperCAmelCase = 2_50 def _snake_case ( ) -> None: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ :Tuple = get_dataset(lowercase__ , lowercase__ ) for index in range(lowercase__ ): lowerCAmelCase_ :Union[str, Any] = random.sample(range(len(lowercase__ ) ) , 4 ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[str] = update_image_and_anno( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , filter_scale=lowercase__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase_ :Any = random_chars(3_2 ) lowerCAmelCase_ :Any = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCAmelCase_ :str = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowercase__ , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) lowerCAmelCase_ :Union[str, Any] = [] for anno in new_annos: lowerCAmelCase_ :str = anno[3] - anno[1] lowerCAmelCase_ :Union[str, Any] = anno[4] - anno[2] lowerCAmelCase_ :Optional[Any] = anno[1] + width / 2 lowerCAmelCase_ :Any = anno[2] + height / 2 lowerCAmelCase_ :Optional[Any] = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowercase__ ) with open(f"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _snake_case ( lowercase__ : str , lowercase__ : str ) -> tuple[list, list]: '''simple docstring''' lowerCAmelCase_ :List[str] = [] lowerCAmelCase_ :Optional[int] = [] for label_file in glob.glob(os.path.join(lowercase__ , """*.txt""" ) ): lowerCAmelCase_ :Any = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(lowercase__ ) as in_file: lowerCAmelCase_ :Any = in_file.readlines() lowerCAmelCase_ :Union[str, Any] = os.path.join(lowercase__ , f"""{label_name}.jpg""" ) lowerCAmelCase_ :List[Any] = [] for obj_list in obj_lists: lowerCAmelCase_ :Any = obj_list.rstrip("""\n""" ).split(""" """ ) lowerCAmelCase_ :str = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase_ :Dict = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase_ :Union[str, Any] = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase_ :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase__ ) labels.append(lowercase__ ) return img_paths, labels def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : list[int] , lowercase__ : tuple[int, int] , lowercase__ : tuple[float, float] , lowercase__ : float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' lowerCAmelCase_ :Tuple = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase_ :List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ :Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase_ :Union[str, Any] = int(scale_x * output_size[1] ) lowerCAmelCase_ :Tuple = int(scale_y * output_size[0] ) lowerCAmelCase_ :Dict = [] lowerCAmelCase_ :Optional[Any] = [] for i, index in enumerate(lowercase__ ): lowerCAmelCase_ :int = all_img_list[index] path_list.append(lowercase__ ) lowerCAmelCase_ :Tuple = all_annos[index] lowerCAmelCase_ :Optional[Any] = cva.imread(lowercase__ ) if i == 0: # top-left lowerCAmelCase_ :Optional[int] = cva.resize(lowercase__ , (divid_point_x, divid_point_y) ) lowerCAmelCase_ :Optional[int] = img for bbox in img_annos: lowerCAmelCase_ :Union[str, Any] = bbox[1] * scale_x lowerCAmelCase_ :Any = bbox[2] * scale_y lowerCAmelCase_ :str = bbox[3] * scale_x lowerCAmelCase_ :Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase_ :List[Any] = cva.resize(lowercase__ , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase_ :Dict = img for bbox in img_annos: lowerCAmelCase_ :int = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ :Optional[Any] = bbox[2] * scale_y lowerCAmelCase_ :Any = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ :List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase_ :Any = cva.resize(lowercase__ , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase_ :Union[str, Any] = img for bbox in img_annos: lowerCAmelCase_ :Tuple = bbox[1] * scale_x lowerCAmelCase_ :Dict = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ :Optional[Any] = bbox[3] * scale_x lowerCAmelCase_ :Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase_ :Tuple = cva.resize( lowercase__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase_ :Union[str, Any] = img for bbox in img_annos: lowerCAmelCase_ :str = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase_ :Any = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase_ :Any = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase_ :str = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase_ :Any = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _snake_case ( lowercase__ : int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase_ :Optional[int] = ascii_lowercase + digits return "".join(random.choice(lowercase__ ) for _ in range(lowercase__ ) ) if __name__ == "__main__": main() print('DONE ✅')
84
def _lowercase ( lowercase__ ): if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __lowerCAmelCase : int = sorted(string.lower() ) return len(lowercase__ ) == len(set(lowercase__ ) ) if __name__ == "__main__": _UpperCamelCase = input("Enter a string ").strip() _UpperCamelCase = is_isogram(input_str) print(F"{input_str} is {'an' if isogram else 'not an'} isogram.")
275
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCAmelCase : Any = random.Random() def _A ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None ): """simple docstring""" if rng is None: a__ : Union[str, Any] =global_rng a__ : Tuple =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=2_0_0_0 , lowerCAmelCase__=1_0 , lowerCAmelCase__=1_6_0 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=4_0_0_0 , lowerCAmelCase__=False , lowerCAmelCase__=True , ) -> Any: '''simple docstring''' a__ : str =parent a__ : List[str] =batch_size a__ : Any =min_seq_length a__ : Tuple =max_seq_length a__ : Dict =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ : Any =padding_value a__ : Optional[Any] =sampling_rate a__ : Optional[int] =return_attention_mask a__ : Optional[Any] =do_normalize a__ : Optional[int] =feature_size a__ : Tuple =chunk_length a__ : Optional[int] =hop_length def _lowercase ( self ) -> int: '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowercase ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> List[Any]: '''simple docstring''' def _flatten(lowerCAmelCase__ ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: a__ : Optional[int] =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__ : List[Any] =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__ : Tuple =[np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( __lowercase , unittest.TestCase): _lowercase : Dict = WhisperFeatureExtractor if is_speech_available() else None def _lowercase ( self ) -> str: '''simple docstring''' a__ : Optional[Any] =WhisperFeatureExtractionTester(self ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : str =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : Optional[int] =feat_extract_first.save_pretrained(lowerCAmelCase__ )[0] check_json_file_has_correct_format(lowerCAmelCase__ ) a__ : List[Any] =self.feature_extraction_class.from_pretrained(lowerCAmelCase__ ) a__ : int =feat_extract_first.to_dict() a__ : str =feat_extract_second.to_dict() a__ : str =feat_extract_first.mel_filters a__ : Union[str, Any] =feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[str] =os.path.join(lowerCAmelCase__ , "feat_extract.json" ) feat_extract_first.to_json_file(lowerCAmelCase__ ) a__ : Union[str, Any] =self.feature_extraction_class.from_json_file(lowerCAmelCase__ ) a__ : Dict =feat_extract_first.to_dict() a__ : List[str] =feat_extract_second.to_dict() a__ : int =feat_extract_first.mel_filters a__ : List[str] =feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Tuple =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ : str =[floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ : Union[str, Any] =[np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size a__ : Tuple =feature_extractor(lowerCAmelCase__ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a__ : List[str] =feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features a__ : str =feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched a__ : Tuple =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a__ : int =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a__ : Optional[Any] =[floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__ : int =np.asarray(lowerCAmelCase__ ) a__ : Union[str, Any] =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a__ : Tuple =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test truncation required a__ : Optional[int] =[floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] a__ : List[str] =[np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] a__ : str =[x[: feature_extractor.n_samples] for x in speech_inputs] a__ : List[str] =[np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs_truncated] a__ : Optional[Any] =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features a__ : Any =feature_extractor(lowerCAmelCase__ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' import torch a__ : List[Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : Optional[Any] =np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) a__ : Optional[Any] =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ : List[Any] =feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a__ : List[Any] =feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowercase ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Any =load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech a__ : str =ds.sort("id" ).select(range(lowerCAmelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] =torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on a__ : List[str] =self._load_datasamples(1 ) a__ : List[str] =WhisperFeatureExtractor() a__ : int =feature_extractor(lowerCAmelCase__ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , lowerCAmelCase__ , atol=1E-4 ) ) def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : Union[str, Any] =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ : str =self._load_datasamples(1 )[0] a__ : int =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue a__ : List[str] =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCAmelCase__ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ ) - 1 ) < 1E-3 ) )
363
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip_vision_model""" def __init__( self , lowerCAmelCase__=1_4_0_8 , lowerCAmelCase__=6_1_4_4 , lowerCAmelCase__=3_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2_2_4 , lowerCAmelCase__=1_4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=1E-6 , lowerCAmelCase__=0.0 , lowerCAmelCase__=1E-10 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) a__ : Tuple =hidden_size a__ : Any =intermediate_size a__ : Union[str, Any] =num_hidden_layers a__ : Optional[Any] =num_attention_heads a__ : List[str] =patch_size a__ : int =image_size a__ : Tuple =initializer_range a__ : Any =attention_dropout a__ : List[Any] =layer_norm_eps a__ : Optional[Any] =hidden_act a__ : Optional[Any] =qkv_bias @classmethod def _lowercase ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) a__ , a__ : Optional[Any] =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": a__ : Any =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip_qformer""" def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=2 , lowerCAmelCase__=1_4_0_8 , **lowerCAmelCase__ , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Optional[int] =vocab_size a__ : Optional[Any] =hidden_size a__ : str =num_hidden_layers a__ : Optional[int] =num_attention_heads a__ : Dict =hidden_act a__ : Optional[int] =intermediate_size a__ : Union[str, Any] =hidden_dropout_prob a__ : Optional[int] =attention_probs_dropout_prob a__ : List[Any] =max_position_embeddings a__ : Union[str, Any] =initializer_range a__ : Optional[int] =layer_norm_eps a__ : int =position_embedding_type a__ : int =cross_attention_frequency a__ : Tuple =encoder_hidden_size @classmethod def _lowercase ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCAmelCase__ ) a__ , a__ : str =cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": a__ : Optional[int] =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """instructblip""" _lowercase : List[Any] = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=3_2 , **lowerCAmelCase__ ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if vision_config is None: a__ : List[Any] ={} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: a__ : Tuple ={} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: a__ : Dict ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) a__ : Dict =InstructBlipVisionConfig(**lowerCAmelCase__ ) a__ : Union[str, Any] =InstructBlipQFormerConfig(**lowerCAmelCase__ ) a__ : Tuple =text_config["model_type"] if "model_type" in text_config else "opt" a__ : List[str] =CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) a__ : Union[str, Any] =self.text_config.tie_word_embeddings a__ : Optional[Any] =self.text_config.is_encoder_decoder a__ : str =num_query_tokens a__ : List[Any] =self.vision_config.hidden_size a__ : str =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES a__ : List[Any] =1.0 a__ : List[str] =0.02 @classmethod def _lowercase ( cls , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> int: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : int =copy.deepcopy(self.__dict__ ) a__ : int =self.vision_config.to_dict() a__ : str =self.qformer_config.to_dict() a__ : str =self.text_config.to_dict() a__ : List[str] =self.__class__.model_type return output
148
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowercase_ : List[str] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = ['BeitFeatureExtractor'] lowercase_ : List[Any] = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowercase_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
133
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowercase_ : Tuple = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : str , *snake_case__ : Any , **snake_case__ : str ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type(snake_case__ ) def __call__( self : Dict , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : List[Any] ): """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def UpperCamelCase ( self : List[Any] , **snake_case__ : Tuple ): """simple docstring""" return {}, {}, {} def UpperCamelCase ( self : Any , snake_case__ : Optional[int] ): """simple docstring""" _UpperCAmelCase = load_image(snake_case__ ) _UpperCAmelCase = image.size _UpperCAmelCase = self.image_processor(images=snake_case__ , return_tensors=self.framework ) return model_inputs def UpperCamelCase ( self : int , snake_case__ : int ): """simple docstring""" _UpperCAmelCase = self.model(**snake_case__ ) return model_outputs def UpperCamelCase ( self : List[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = model_outputs.predicted_depth _UpperCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=snake_case__ ) _UpperCAmelCase = prediction.squeeze().cpu().numpy() _UpperCAmelCase = (output * 255 / np.max(snake_case__ )).astype("uint8" ) _UpperCAmelCase = Image.fromarray(snake_case__ ) _UpperCAmelCase = {} _UpperCAmelCase = predicted_depth _UpperCAmelCase = depth return output_dict
133
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = 3_84 A_ : Dict = 7 if "tiny" in model_name: A_ : Dict = 96 A_ : Dict = (2, 2, 6, 2) A_ : int = (3, 6, 12, 24) elif "small" in model_name: A_ : List[str] = 96 A_ : Dict = (2, 2, 18, 2) A_ : Optional[int] = (3, 6, 12, 24) elif "base" in model_name: A_ : Union[str, Any] = 1_28 A_ : List[Any] = (2, 2, 18, 2) A_ : Optional[Any] = (4, 8, 16, 32) A_ : Optional[int] = 12 A_ : Dict = 5_12 elif "large" in model_name: A_ : str = 1_92 A_ : Tuple = (2, 2, 18, 2) A_ : int = (6, 12, 24, 48) A_ : str = 12 A_ : List[Any] = 7_68 # set label information A_ : Optional[int] = 1_50 A_ : Dict = """huggingface/label-files""" A_ : Dict = """ade20k-id2label.json""" A_ : List[str] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : int = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : int = {v: k for k, v in idalabel.items()} A_ : Union[str, Any] = SwinConfig( embed_dim=lowerCamelCase__ , depths=lowerCamelCase__ , num_heads=lowerCamelCase__ , window_size=lowerCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) A_ : Union[str, Any] = UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : str = dct.pop(lowerCamelCase__ ) A_ : Any = val def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ : List[str] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ : Dict = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A_ : int = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:dim, :] A_ : Union[str, Any] = in_proj_bias[: dim] A_ : Optional[Any] = in_proj_weight[ dim : dim * 2, : ] A_ : List[Any] = in_proj_bias[ dim : dim * 2 ] A_ : Optional[int] = in_proj_weight[ -dim :, : ] A_ : str = in_proj_bias[-dim :] # fmt: on def a ( lowerCamelCase__ ): '''simple docstring''' A_, A_ : Any = x.shape A_ : List[Any] = x.reshape(lowerCamelCase__ , 4 , in_channel // 4 ) A_ : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase__ , lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_, A_ : Tuple = x.shape A_ : List[Any] = x.reshape(lowerCamelCase__ , in_channel // 4 , 4 ) A_ : List[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase__ , lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = x.shape[0] A_ : Optional[Any] = x.reshape(4 , in_channel // 4 ) A_ : Tuple = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase__ ) return x def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[Any] = x.shape[0] A_ : int = x.reshape(in_channel // 4 , 4 ) A_ : Optional[Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase__ ) return x def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } A_ : Union[str, Any] = model_name_to_url[model_name] A_ : List[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="""cpu""" , file_name=lowerCamelCase__ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase__ , param.shape ) A_ : Union[str, Any] = get_upernet_config(lowerCamelCase__ ) A_ : Optional[int] = UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ : Any = state_dict.pop(lowerCamelCase__ ) if "bn" in key: A_ : Optional[Any] = key.replace("""bn""" , """batch_norm""" ) A_ : Union[str, Any] = val # rename keys A_ : Optional[int] = create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A_ : Dict = reverse_correct_unfold_reduction_order(lowerCamelCase__ ) if "norm" in key: A_ : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image A_ : List[str] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" A_ : Any = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("""RGB""" ) A_ : List[str] = SegformerImageProcessor() A_ : List[Any] = processor(lowerCamelCase__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): A_ : int = model(lowerCamelCase__ ) A_ : Any = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A_ : str = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": A_ : Dict = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": A_ : Union[str, Any] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": A_ : int = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"upernet-swin-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
135
'''simple docstring''' lowerCamelCase :Any = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on lowerCamelCase :Any = {value: key for key, value in MORSE_CODE_DICT.items()} def a ( lowerCamelCase__ ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def a ( lowerCamelCase__ ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def a ( ): '''simple docstring''' A_ : List[str] = """Morse code here!""" print(lowerCamelCase__ ) A_ : str = encrypt(lowerCamelCase__ ) print(lowerCamelCase__ ) A_ : Dict = decrypt(lowerCamelCase__ ) print(lowerCamelCase__ ) if __name__ == "__main__": main()
135
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = (DEISMultistepScheduler,) lowercase__ = (("num_inference_steps", 25),) def __lowerCAmelCase ( self : Optional[Any] ,**lowercase_ : List[str] ): lowerCAmelCase__ : List[Any] = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**lowercase_ ) return config def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Optional[int]=0 ,**lowercase_ : Any ): lowerCAmelCase__ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''num_inference_steps''' ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.dummy_sample lowerCAmelCase__ : str = 0.1 * sample lowerCAmelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : List[Any] = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase__ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowerCAmelCase__ : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowerCAmelCase__ : Optional[Any] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowerCAmelCase__ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase__ ,lowerCAmelCase__ : int = sample, sample for t in range(lowercase_ ,time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase__ : Tuple = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ).prev_sample lowerCAmelCase__ : int = new_scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : List[str] ): pass def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : str=0 ,**lowercase_ : List[Any] ): lowerCAmelCase__ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop('''num_inference_steps''' ,lowercase_ ) lowerCAmelCase__ : Optional[int] = self.dummy_sample lowerCAmelCase__ : Any = 0.1 * sample lowerCAmelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowerCAmelCase__ : Any = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase__ : Tuple = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ).prev_sample lowerCAmelCase__ : Any = new_scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self : Dict ,lowercase_ : str=None ,**lowercase_ : str ): if scheduler is None: lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase__ : Tuple = scheduler_class(**lowercase_ ) lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config(**lowercase_ ) lowerCAmelCase__ : List[str] = scheduler_class(**lowercase_ ) lowerCAmelCase__ : Union[str, Any] = 1_0 lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : Optional[int] = model(lowercase_ ,lowercase_ ) lowerCAmelCase__ : int = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ).prev_sample return sample def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Union[str, Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : Dict = kwargs.pop('''num_inference_steps''' ,lowercase_ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**lowercase_ ) lowerCAmelCase__ : int = self.dummy_sample lowerCAmelCase__ : int = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ ,'''set_timesteps''' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ ,'''set_timesteps''' ): lowerCAmelCase__ : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase__ : int = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase__ : str = scheduler.timesteps[5] lowerCAmelCase__ : Optional[Any] = scheduler.timesteps[6] lowerCAmelCase__ : Dict = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ).prev_sample lowerCAmelCase__ : List[str] = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ,**lowercase_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def __lowerCAmelCase ( self : int ): # make sure that iterating over schedulers with same config names gives same results # for defaults lowerCAmelCase__ : str = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase__ : str = self.full_loop(scheduler=lowercase_ ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 lowerCAmelCase__ : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : str = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase__ : List[Any] = self.full_loop(scheduler=lowercase_ ) lowerCAmelCase__ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def __lowerCAmelCase ( self : Optional[int] ): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def __lowerCAmelCase ( self : Tuple ): self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ ,prediction_type=lowercase_ ,sample_max_value=lowercase_ ,algorithm_type='''deis''' ,solver_order=lowercase_ ,solver_type=lowercase_ ,) def __lowerCAmelCase ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def __lowerCAmelCase ( self : List[Any] ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ ,solver_type=lowercase_ ,prediction_type=lowercase_ ,algorithm_type=lowercase_ ,) lowerCAmelCase__ : str = self.full_loop( solver_order=lowercase_ ,solver_type=lowercase_ ,prediction_type=lowercase_ ,algorithm_type=lowercase_ ,) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self : List[Any] ): self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase_ ,time_step=0 ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Optional[Any] = self.full_loop() lowerCAmelCase__ : Any = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1E-3 def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Tuple = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ : Union[str, Any] = self.get_scheduler_config(thresholding=lowercase_ ,dynamic_thresholding_ratio=0 ) lowerCAmelCase__ : Optional[Any] = scheduler_class(**lowercase_ ) lowerCAmelCase__ : Optional[Any] = 1_0 lowerCAmelCase__ : Optional[Any] = self.dummy_model() lowerCAmelCase__ : str = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = model(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[Any] = scheduler.step(lowercase_ ,lowercase_ ,lowercase_ ).prev_sample assert sample.dtype == torch.floataa
106
"""simple docstring""" __UpperCamelCase : Optional[Any] = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] __UpperCamelCase : Tuple = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] __UpperCamelCase : Optional[int] = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] __UpperCamelCase : Tuple = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] __UpperCamelCase : str = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] __UpperCamelCase : Dict = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] __UpperCamelCase : int = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] __UpperCamelCase : Optional[int] = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
106
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __A : List[str] = pytest.mark.integration __A : List[Any] = {'''comet'''} __A : List[str] = importlib.util.find_spec('''fairseq''') is not None __A : Dict = {'''code_eval'''} __A : List[Any] = os.name == '''nt''' __A : Tuple = {'''bertscore''', '''frugalscore''', '''perplexity'''} __A : Union[str, Any] = importlib.util.find_spec('''transformers''') is not None def A_ ( snake_case_ : Optional[int] ): '''simple docstring''' @wraps(snake_case_ ) def wrapper(self : Union[str, Any] ,snake_case_ : List[Any] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self ,snake_case_ ) return wrapper def A_ ( snake_case_ : Dict ): '''simple docstring''' @wraps(snake_case_ ) def wrapper(self : Optional[int] ,snake_case_ : Optional[Any] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self ,snake_case_ ) return wrapper def A_ ( snake_case_ : Union[str, Any] ): '''simple docstring''' @wraps(snake_case_ ) def wrapper(self : Optional[Any] ,snake_case_ : Dict ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self ,snake_case_ ) return wrapper def A_ ( ): '''simple docstring''' UpperCamelCase : Optional[Any] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @local class lowerCamelCase ( parameterized.TestCase ): lowercase : List[str] = {} lowercase : Optional[Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = """[...]""" UpperCamelCase : List[str] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) ).module_path ) UpperCamelCase : int = datasets.load.import_main_class(metric_module.__name__ , dataset=SCREAMING_SNAKE_CASE_ ) # check parameters UpperCamelCase : int = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(SCREAMING_SNAKE_CASE_ , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCamelCase : int = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = """[...]""" UpperCamelCase : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCamelCase : str = doctest.testmod(SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , raise_on_error=SCREAMING_SNAKE_CASE_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](SCREAMING_SNAKE_CASE_ ): yield else: yield @contextmanager def a_ ( self ): def load_local_metric(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return load_metric(os.path.join("""metrics""" , SCREAMING_SNAKE_CASE_ ) , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with patch("""datasets.load_metric""" ) as mock_load_metric: UpperCamelCase : Any = load_local_metric yield @classmethod def a_ ( cls , SCREAMING_SNAKE_CASE_ ): def wrapper(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = contextmanager(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" ,"""""" ,"""""" ) # handle pytest cli flags class lowerCamelCase ( _UpperCAmelCase ): def a_ ( self , SCREAMING_SNAKE_CASE_ ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: UpperCamelCase : Tuple = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def A_ ( snake_case_ : Any ): '''simple docstring''' import torch def bert_cos_score_idf(snake_case_ : List[Any] ,snake_case_ : int ,*snake_case_ : List[Any] ,**snake_case_ : Tuple ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: UpperCamelCase : Optional[int] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def A_ ( snake_case_ : Dict ): '''simple docstring''' def load_from_checkpoint(snake_case_ : List[str] ): class lowerCamelCase : def a_ ( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): assert len(SCREAMING_SNAKE_CASE_ ) == 2 UpperCamelCase : Dict = [0.19, 0.92] return scores, sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: UpperCamelCase : Dict = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: UpperCamelCase : Tuple = load_from_checkpoint yield def A_ ( ): '''simple docstring''' UpperCamelCase : List[str] = load_metric(os.path.join("""metrics""" ,"""seqeval""" ) ) UpperCamelCase : List[Any] = """ERROR""" UpperCamelCase : Union[str, Any] = f'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(snake_case_ ,match=re.escape(snake_case_ ) ): metric.compute(predictions=[] ,references=[] ,scheme=snake_case_ )
27
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase ( _UpperCAmelCase ): lowercase : Union[str, Any] = 'EncodecFeatureExtractor' lowercase : List[Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = self.feature_extractor UpperCamelCase : Any = False def a_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ): return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ ) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = kwargs.pop("""sampling_rate""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = kwargs.pop("""text""" , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : Any = args[0] UpperCamelCase : str = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: UpperCamelCase : Optional[int] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is not None: UpperCamelCase : str = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCamelCase : int = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: UpperCamelCase : Optional[Any] = audio_inputs["""padding_mask"""] return inputs def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = kwargs.pop("""audio""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = kwargs.pop("""padding_mask""" , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: UpperCamelCase : Optional[int] = args[0] UpperCamelCase : Any = args[1:] if audio_values is not None: return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ ) else: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Dict = to_numpy(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = audio_values.shape if padding_mask is None: return list(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCamelCase : List[str] = seq_len - padding_mask.shape[-1] UpperCamelCase : Optional[int] = 1 - self.feature_extractor.padding_value UpperCamelCase : Any = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , """constant""" , constant_values=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = audio_values.tolist() for i in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCamelCase : Optional[Any] = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 ) return audio_values
27
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowercase = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) __lowercase = dataset.iloc[:, 1:2].values __lowercase = dataset.iloc[:, 2].values __lowercase , __lowercase , __lowercase , __lowercase = train_test_split(X, y, test_size=0.2, random_state=0) __lowercase = PolynomialFeatures(degree=4) __lowercase = poly_reg.fit_transform(X) __lowercase = LinearRegression() pol_reg.fit(X_poly, y) def lowercase ( )-> List[Any]: '''simple docstring''' plt.scatter(A_ , A_ , color="red" ) plt.plot(A_ , pol_reg.predict(poly_reg.fit_transform(A_ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
40
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : Union[str, Any] = logging.get_logger(__name__) def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' a_ : Tuple = original_name.split(""".""")[0] a_ : List[Any] = key.split(""".""") a_ : List[Any] = int(key_list[key_list.index(a__) - 2]) a_ : Dict = int(key_list[key_list.index(a__) - 1]) a_ : Any = orig_block_num - offset a_ : Optional[int] = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' , f'''block.{new_block_num}.{layer_num}.{new_name}''') return key def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = OrderedDict() a_ , a_ : Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith("""network"""): a_ : str = key.replace("""network""" , """poolformer.encoder""") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""") and "patch_embed" not in key: patch_emb_offset += 1 a_ : Tuple = key[: key.find("""proj""")] a_ : Dict = key.replace(a__ , f'''patch_embeddings.{total_embed_found}.''') a_ : Optional[Any] = key.replace("""proj""" , """projection""") if key.endswith("""bias"""): total_embed_found += 1 if "patch_embeddings" in key: a_ : int = """poolformer.encoder.""" + key if "mlp.fc1" in key: a_ : Union[str, Any] = replace_key_with_offset(a__ , a__ , """mlp.fc1""" , """output.conv1""") if "mlp.fc2" in key: a_ : str = replace_key_with_offset(a__ , a__ , """mlp.fc2""" , """output.conv2""") if "norm1" in key: a_ : str = replace_key_with_offset(a__ , a__ , """norm1""" , """before_norm""") if "norm2" in key: a_ : Any = replace_key_with_offset(a__ , a__ , """norm2""" , """after_norm""") if "layer_scale_1" in key: a_ : List[Any] = replace_key_with_offset(a__ , a__ , """layer_scale_1""" , """layer_scale_1""") if "layer_scale_2" in key: a_ : Optional[Any] = replace_key_with_offset(a__ , a__ , """layer_scale_2""" , """layer_scale_2""") if "head" in key: a_ : Optional[Any] = key.replace("""head""" , """classifier""") a_ : Union[str, Any] = value return new_state_dict def _UpperCAmelCase ( ): '''simple docstring''' a_ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" a_ : Any = Image.open(requests.get(a__ , stream=a__).raw) return image @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : str = PoolFormerConfig() # set attributes based on model_name a_ : Union[str, Any] = """huggingface/label-files""" a_ : str = model_name[-3:] a_ : Tuple = 1_0_0_0 a_ : List[str] = """imagenet-1k-id2label.json""" a_ : Any = (1, 1_0_0_0) # set config attributes a_ : Optional[Any] = json.load(open(hf_hub_download(a__ , a__ , repo_type="""dataset""") , """r""")) a_ : List[Any] = {int(a__): v for k, v in idalabel.items()} a_ : Tuple = idalabel a_ : int = {v: k for k, v in idalabel.items()} if size == "s12": a_ : Optional[int] = [2, 2, 6, 2] a_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : List[Any] = 4.0 a_ : Tuple = 0.9 elif size == "s24": a_ : List[Any] = [4, 4, 1_2, 4] a_ : str = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : List[Any] = 4.0 a_ : Optional[Any] = 0.9 elif size == "s36": a_ : str = [6, 6, 1_8, 6] a_ : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] a_ : Optional[int] = 4.0 a_ : Optional[int] = 1e-6 a_ : Tuple = 0.9 elif size == "m36": a_ : str = [6, 6, 1_8, 6] a_ : List[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] a_ : str = 4.0 a_ : Union[str, Any] = 1e-6 a_ : str = 0.95 elif size == "m48": a_ : List[Any] = [8, 8, 2_4, 8] a_ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] a_ : int = 4.0 a_ : int = 1e-6 a_ : List[Any] = 0.95 else: raise ValueError(f'''Size {size} not supported''') # load image processor a_ : Tuple = PoolFormerImageProcessor(crop_pct=a__) # Prepare image a_ : List[Any] = prepare_img() a_ : List[str] = image_processor(images=a__ , return_tensors="""pt""").pixel_values logger.info(f'''Converting model {model_name}...''') # load original state dict a_ : List[str] = torch.load(a__ , map_location=torch.device("""cpu""")) # rename keys a_ : List[Any] = rename_keys(a__) # create HuggingFace model and load state dict a_ : List[str] = PoolFormerForImageClassification(a__) model.load_state_dict(a__) model.eval() # Define image processor a_ : Tuple = PoolFormerImageProcessor(crop_pct=a__) a_ : Any = image_processor(images=prepare_img() , return_tensors="""pt""").pixel_values # forward pass a_ : Any = model(a__) a_ : Any = outputs.logits # define expected logit slices for different models if size == "s12": a_ : Union[str, Any] = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": a_ : Optional[Any] = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": a_ : int = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": a_ : List[str] = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": a_ : Union[str, Any] = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(f'''Size {size} not supported''') # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a__ , atol=1e-2) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(a__).mkdir(exist_ok=a__) model.save_pretrained(a__) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(a__) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""poolformer_s12""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) __snake_case : Optional[int] = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
248
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ = logging.get_logger(__name__) class __snake_case ( __lowerCAmelCase ): a__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = None , lowercase = PIL.Image.BICUBIC , lowercase = True , lowercase = None , lowercase = 1 / 2_55 , lowercase = True , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase) a__: str = size if size is not None else {'height': 2_56, 'width': 2_56} a__: str = get_size_dict(lowercase) a__: List[str] = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__: List[str] = get_size_dict(lowercase , param_name='crop_size') a__: Tuple = do_resize a__: Tuple = size a__: Union[str, Any] = resample a__: int = do_center_crop a__: Tuple = crop_size a__: Optional[int] = do_rescale a__: Optional[Any] = rescale_factor a__: Optional[int] = do_normalize a__: Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__: Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = PIL.Image.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__: int = get_size_dict(lowercase) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return resize( lowercase , size=(size['height'], size['width']) , resample=lowercase , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__: Union[str, Any] = get_size_dict(lowercase) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}') return center_crop(lowercase , size=(size['height'], size['width']) , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Dict: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' a__: Any = do_resize if do_resize is not None else self.do_resize a__: Union[str, Any] = resample if resample is not None else self.resample a__: int = do_center_crop if do_center_crop is not None else self.do_center_crop a__: Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale a__: Dict = rescale_factor if rescale_factor is not None else self.rescale_factor a__: Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize a__: Union[str, Any] = image_mean if image_mean is not None else self.image_mean a__: Any = image_std if image_std is not None else self.image_std a__: str = size if size is not None else self.size a__: Optional[int] = get_size_dict(lowercase) a__: str = crop_size if crop_size is not None else self.crop_size a__: Optional[int] = get_size_dict(lowercase , param_name='crop_size') a__: List[Any] = make_list_of_images(lowercase) if not valid_images(lowercase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # All transformations expect numpy arrays. a__: Optional[int] = [to_numpy_array(lowercase) for image in images] if do_resize: a__: str = [self.resize(image=lowercase , size=lowercase , resample=lowercase) for image in images] if do_center_crop: a__: List[str] = [self.center_crop(image=lowercase , size=lowercase) for image in images] if do_rescale: a__: Tuple = [self.rescale(image=lowercase , scale=lowercase) for image in images] if do_normalize: a__: Any = [self.normalize(image=lowercase , mean=lowercase , std=lowercase) for image in images] a__: Dict = [to_channel_dimension_format(lowercase , lowercase) for image in images] a__: Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase)
203
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __snake_case ( unittest.TestCase ): @property def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' torch.manual_seed(0) a__: str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' torch.manual_seed(0) a__: List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0) a__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Union[str, Any] = self.dummy_uncond_unet a__: Optional[int] = DDIMScheduler() a__: Optional[int] = self.dummy_vq_model a__: Union[str, Any] = LDMPipeline(unet=lowercase , vqvae=lowercase , scheduler=lowercase) ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: str = torch.manual_seed(0) a__: Dict = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy').images a__: Union[str, Any] = torch.manual_seed(0) a__: int = ldm(generator=lowercase , num_inference_steps=2 , output_type='numpy' , return_dict=lowercase)[0] a__: Union[str, Any] = image[0, -3:, -3:, -1] a__: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a__: int = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) a__: Optional[Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance @slow @require_torch class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256') ldm.to(lowercase) ldm.set_progress_bar_config(disable=lowercase) a__: List[str] = torch.manual_seed(0) a__: Optional[int] = ldm(generator=lowercase , num_inference_steps=5 , output_type='numpy').images a__: Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) a__: int = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) a__: Any = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
203
1
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __UpperCAmelCase ( __a : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def __UpperCAmelCase ( __a : np.ndarray ,__a : np.ndarray ) -> XGBClassifier: """simple docstring""" _a : Optional[Any] = XGBClassifier() classifier.fit(__a ,__a ) return classifier def __UpperCAmelCase ( ) -> None: """simple docstring""" _a : Union[str, Any] = load_iris() _a , _a : Union[str, Any] = data_handling(__a ) _a , _a , _a , _a : str = train_test_split( __a ,__a ,test_size=0.25 ) _a : List[Any] = iris['''target_names'''] # Create an XGBoost Classifier from the training data _a : Optional[int] = xgboost(__a ,__a ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __a ,__a ,__a ,display_labels=__a ,cmap='''Blues''' ,normalize='''true''' ,) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
235
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a__ = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=__lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __lowercase ( self ) -> List[Any]: _a : List[Any] = self.task_name.lower() class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : List[str] = "train" UpperCAmelCase__ : List[str] = "dev" UpperCAmelCase__ : Union[str, Any] = "test" class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : GlueDataTrainingArguments UpperCAmelCase__ : str UpperCAmelCase__ : List[InputFeatures] def __init__( self , _a , _a , _a = None , _a = Split.train , _a = None , ) -> str: warnings.warn( '''This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' , _a , ) _a : List[str] = args _a : List[str] = glue_processors[args.task_name]() _a : List[Any] = glue_output_modes[args.task_name] if isinstance(_a , _a ): try: _a : Any = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) # Load data features from cache or dataset file _a : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) _a : str = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _a , _a : Optional[int] = label_list[2], label_list[1] _a : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a : Optional[int] = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: _a : List[Any] = time.time() _a : str = torch.load(_a ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(F"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: _a : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _a : Any = self.processor.get_test_examples(args.data_dir ) else: _a : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _a : Dict = examples[:limit_length] _a : Union[str, Any] = glue_convert_examples_to_features( _a , _a , max_length=args.max_seq_length , label_list=_a , output_mode=self.output_mode , ) _a : Optional[int] = time.time() torch.save(self.features , _a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> Optional[int]: return len(self.features ) def __getitem__( self , _a ) -> InputFeatures: return self.features[i] def __lowercase ( self ) -> Tuple: return self.label_list
235
1
def snake_case__ ( SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' def merge(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(SCREAMING_SNAKE_CASE_ ) <= 1: return collection lowercase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = input('''Enter numbers separated by a comma:\n''').strip() snake_case_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
216
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } snake_case_ = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } snake_case_ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Tuple = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , a) != do_lower_case or pre_tok_state.get('strip_accents' , a) != strip_accents ): lowercase__ : Optional[int] = getattr(a , pre_tok_state.pop('type')) lowercase__ : str = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : int = pre_tok_class(**a) lowercase__ : Optional[int] = do_lower_case def __getstate__( self): lowercase__ : str = self.__dict__.copy() lowercase__ : Any = BertPreTokenizer() return state def __setstate__( self , a): lowercase__ : Union[str, Any] = d lowercase__ : int = self.__dict__['_tokenizer'].get_vocab() lowercase__ : List[str] = PreTokenizer.custom(JiebaPreTokenizer(a)) def snake_case_ ( self , a , a=None): lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a , a = None): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , a , a = None): lowercase__ : Optional[Any] = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a , a=None , a=None , a=False , **a , ): lowercase__ : List[str] = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a)
216
1
"""simple docstring""" from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Tuple , *UpperCamelCase : List[str] , **UpperCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(*UpperCamelCase , **UpperCamelCase ) requires_backends(self , """decord""" ) self.check_model_type(UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : Union[str, Any]=None ): '''simple docstring''' __UpperCAmelCase : Tuple = {} if frame_sampling_rate is not None: __UpperCAmelCase : Dict = frame_sampling_rate if num_frames is not None: __UpperCAmelCase : Union[str, Any] = num_frames __UpperCAmelCase : int = {} if top_k is not None: __UpperCAmelCase : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : Tuple , UpperCamelCase : Union[str, List[str]] , **UpperCamelCase : Dict ): '''simple docstring''' return super().__call__(UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : str , UpperCamelCase : str , UpperCamelCase : Any=None , UpperCamelCase : Optional[Any]=1 ): '''simple docstring''' if num_frames is None: __UpperCAmelCase : str = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): __UpperCAmelCase : Any = BytesIO(requests.get(UpperCamelCase ).content ) __UpperCAmelCase : List[str] = VideoReader(UpperCamelCase ) videoreader.seek(0 ) __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Optional[Any] = num_frames * frame_sampling_rate - 1 __UpperCAmelCase : str = np.linspace(UpperCamelCase , UpperCamelCase , num=UpperCamelCase , dtype=np.intaa ) __UpperCAmelCase : str = videoreader.get_batch(UpperCamelCase ).asnumpy() __UpperCAmelCase : List[Any] = list(UpperCamelCase ) __UpperCAmelCase : Tuple = self.image_processor(UpperCamelCase , return_tensors=self.framework ) return model_inputs def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = self.model(**UpperCamelCase ) return model_outputs def lowerCamelCase__ ( self : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __UpperCAmelCase : Optional[int] = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase : List[Any] = model_outputs.logits.softmax(-1 )[0] __UpperCAmelCase ,__UpperCAmelCase : Any = probs.topk(UpperCamelCase ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase : Optional[Any] = scores.tolist() __UpperCAmelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase , UpperCamelCase )]
115
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Any = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
115
1
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase_ = HfApi() lowercase_ = {} # fmt: off lowercase_ = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowercase_ = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowercase_ = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowercase_ = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowercase_ = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowercase_ = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowercase_ = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowercase_ = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowercase_ = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowercase_ = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowercase_ = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowercase_ = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowercase_ = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowercase_ = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowercase_ = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowercase_ = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase_ = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): lowercase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: lowercase_ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase_ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase_ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
362
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase_ = getLogger(__name__) lowercase_ = "cuda" if torch.cuda.is_available() else "cpu" def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict="summarization" , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: '''simple docstring''' A__ = Path(SCREAMING_SNAKE_CASE__ ).open('w' , encoding='utf-8' ) A__ = str(SCREAMING_SNAKE_CASE__ ) A__ = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) if fpaa: A__ = model.half() A__ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. A__ = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if prefix is None: A__ = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ): A__ = [prefix + text for text in examples_chunk] A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE__ , padding='longest' ).to(SCREAMING_SNAKE_CASE__ ) A__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE__ , ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() A__ = int(time.time() - start_time ) # seconds A__ = len(SCREAMING_SNAKE_CASE__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _snake_case( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int]=True ) -> Dict: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE__ , default=8 , required=SCREAMING_SNAKE_CASE__ , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate A__ , A__ = parser.parse_known_args() A__ = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE__ ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) A__ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: A__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) A__ = generate_summaries_or_translations( SCREAMING_SNAKE_CASE__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE__ , ) if args.reference_path is None: return {} # Compute scores A__ = calculate_bleu if 'translation' in args.task else calculate_rouge A__ = [x.rstrip() for x in open(args.save_path ).readlines()] A__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE__ )] A__ = score_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) scores.update(SCREAMING_SNAKE_CASE__ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE__ ) if args.info: A__ = args.info if verbose: print(SCREAMING_SNAKE_CASE__ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
282
0
def lowerCamelCase__ ( a = 10_00 ) -> int: _A , _A: Tuple = 1, 1 _A: Optional[Any] = [] for i in range(1 , n + 1 ): _A: Dict = prev_numerator + 2 * prev_denominator _A: Union[str, Any] = prev_numerator + prev_denominator if len(str(a ) ) > len(str(a ) ): result.append(a ) _A: Tuple = numerator _A: str = denominator return len(a ) if __name__ == "__main__": print(F"""{solution() = }""")
121
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase__ ( a ) -> int: _A: int = filter(lambda a : p.requires_grad , model.parameters() ) _A: Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCAmelCase__ : str = logging.getLogger(__name__) def lowerCamelCase__ ( a , a ) -> Dict: if metric == "rouge2": _A: Tuple = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": _A: List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": _A: str = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) _A: List[str] = ModelCheckpoint( dirpath=a , filename=a , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase__ ( a , a ) -> Optional[Any]: return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a , verbose=a , ) class UpperCAmelCase ( pl.Callback ): '''simple docstring''' def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ): """simple docstring""" _A: Union[str, Any] = {F"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=True ): """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _A: Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results _A: Tuple = Path(pl_module.hparams.output_dir ) if type_path == "test": _A: List[str] = od / '''test_results.txt''' _A: Optional[int] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A: Any = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _A: Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , '''a+''' ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue _A: Optional[int] = metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): _A: List[str] = val.item() _A: List[Any] = F"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: _A: Optional[int] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(lowerCAmelCase_ ) @rank_zero_only def __magic_name__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" try: _A: Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _A: Any = pl_module.model.num_parameters() _A: Optional[int] = count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __magic_name__ ( self : List[str] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , '''test''' ) @rank_zero_only def __magic_name__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
121
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __lowerCAmelCase ( lowercase : str , lowercase : str , lowercase : str , lowercase : PreTrainedTokenizer , lowercase : int , lowercase : Optional[int] = None , ) -> Optional[int]: """simple docstring""" snake_case : Any = {} if train_file is not None: snake_case : str = [train_file] if eval_file is not None: snake_case : Optional[Any] = [eval_file] if test_file is not None: snake_case : Tuple = [test_file] snake_case : List[str] = datasets.load_dataset("csv" , data_files=lowercase ) snake_case : str = list(ds[list(files.keys() )[0]].features.keys() ) snake_case : int = features_name.pop(lowercase ) snake_case : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case : Any = {label: i for i, label in enumerate(lowercase )} snake_case : List[Any] = tokenizer.model_input_names snake_case : Union[str, Any] = {} if len(lowercase ) == 1: for k in files.keys(): snake_case : Any = ds[k].map( lambda lowercase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase , max_length=lowercase , padding="max_length" ) , batched=lowercase , ) elif len(lowercase ) == 2: for k in files.keys(): snake_case : Union[str, Any] = ds[k].map( lambda lowercase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase , max_length=lowercase , padding="max_length" , ) , batched=lowercase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case : List[str] = {k: v for k, v in ex.items() if k in input_names} snake_case : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} snake_case : Tuple = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case : int = {k: v for k, v in ex.items() if k in input_names} snake_case : List[str] = labelaid[ex[label_name]] yield (d, label) snake_case : Optional[Any] = ( tf.data.Dataset.from_generator( lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case : Optional[int] = ( tf.data.Dataset.from_generator( lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case : Optional[Any] = ( tf.data.Dataset.from_generator( lowercase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case : int = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __snake_case = logging.getLogger(__name__) @dataclass class _lowerCAmelCase : __UpperCAmelCase : int = field(metadata={'''help''': '''Which column contains the label'''} ) __UpperCAmelCase : str = field(default=snake_case_ , metadata={'''help''': '''The path of the training file'''} ) __UpperCAmelCase : Optional[str] = field(default=snake_case_ , metadata={'''help''': '''The path of the development file'''} ) __UpperCAmelCase : Optional[str] = field(default=snake_case_ , metadata={'''help''': '''The path of the test file'''} ) __UpperCAmelCase : int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCAmelCase : bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _lowerCAmelCase : __UpperCAmelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCAmelCase : bool = field(default=snake_case_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __UpperCAmelCase : Optional[str] = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __lowerCAmelCase ( ) -> str: """simple docstring""" snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase ) , labelaid=lowercase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase : EvalPrediction ) -> Dict: snake_case : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case : Any = TFTrainer( model=lowercase , args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , compute_metrics=lowercase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case : Any = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case : Optional[Any] = trainer.evaluate() snake_case : Dict = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(lowercase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase ) return results if __name__ == "__main__": main()
358
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""ConditionalDetrFeatureExtractor"""] __snake_case = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
112
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
343
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ :List[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[Any] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A_ :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
from math import pow, sqrt def A ( *a_ ) -> bool: __UpperCamelCase : Union[str, Any] =len(a_ ) > 0 and all(value > 0.0 for value in values ) return result def A ( a_ ,a_ ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def A ( a_ ,a_ ,a_ ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
245
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = "▁" SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } SCREAMING_SNAKE_CASE = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off SCREAMING_SNAKE_CASE = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( A_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ['''input_ids''', '''attention_mask'''] lowercase__ = [] lowercase__ = [] def __init__( self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str]="<s>" , snake_case_ : Tuple="</s>" , snake_case_ : str="</s>" , snake_case_ : Dict="<s>" , snake_case_ : Any="<unk>" , snake_case_ : Union[str, Any]="<pad>" , snake_case_ : Union[str, Any]="<mask>" , snake_case_ : Tuple=None , snake_case_ : Dict=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : Union[str, Any]=None , **snake_case_ : List[str] , ) -> str: '''simple docstring''' A__ = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , tokenizer_file=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) A__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A__ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A__ = 1 A__ = len(self.sp_model ) A__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case_ ) } A__ = {v: k for k, v in self.lang_code_to_id.items()} A__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A__ = src_lang if src_lang is not None else "en_XX" A__ = self.lang_code_to_id[self._src_lang] A__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) -> str: '''simple docstring''' A__ = self.__dict__.copy() A__ = None A__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __magic_name__ ( self : Tuple , snake_case_ : str ) -> None: '''simple docstring''' A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def __magic_name__ ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : Tuple , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self : List[str] , snake_case_ : Dict , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : Tuple ) -> int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A__ = src_lang A__ = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) A__ = self.convert_tokens_to_ids(snake_case_ ) A__ = tgt_lang_id return inputs def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self : Union[str, Any] , snake_case_ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : int ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A__ = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self : List[Any] , snake_case_ : Tuple ) -> Union[str, Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self : Any , snake_case_ : List[Any] ) -> Optional[int]: '''simple docstring''' A__ = "".join(snake_case_ ).replace(snake_case_ , " " ).strip() return out_string def __magic_name__ ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def __magic_name__ ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : str = "en_XX" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "ro_RO" , **snake_case_ : int , ) -> BatchEncoding: '''simple docstring''' A__ = src_lang A__ = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __magic_name__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : List[str] , snake_case_ : List[Any] ) -> None: '''simple docstring''' A__ = self.lang_code_to_id[src_lang] A__ = [] A__ = [self.eos_token_id, self.cur_lang_code] def __magic_name__ ( self : Any , snake_case_ : str ) -> None: '''simple docstring''' A__ = self.lang_code_to_id[lang] A__ = [] A__ = [self.eos_token_id, self.cur_lang_code]
247
"""simple docstring""" import qiskit def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> qiskit.result.counts.Counts: A__ = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register A__ = qiskit.QuantumCircuit(lowercase_ , lowercase_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator A__ = qiskit.execute(lowercase_ , lowercase_ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
247
1
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,*A : Dict ,**A : Dict ): warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." ,A ,) super().__init__(*A ,**A )
124
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] ,A : Optional[Any] ,A : List[Any] ): super().__init__() # make sure scheduler can always be converted to DDIM __A = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : Tuple ,A : int = 1 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : float = 0.0 ,A : int = 50 ,A : Optional[bool] = None ,A : Optional[str] = "pil" ,A : bool = True ,): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size ,A ): __A = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __A = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __A = randn_tensor(A ,generator=A ,device=self.device ,dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __A = self.unet(A ,A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A = self.scheduler.step( A ,A ,A ,eta=A ,use_clipped_model_output=A ,generator=A ).prev_sample __A = (image / 2 + 0.5).clamp(0 ,1 ) __A = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): __a : List[str] = list(_SCREAMING_SNAKE_CASE ) __a : List[Any] = list(_SCREAMING_SNAKE_CASE ) __a : Tuple = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count += 1 __a : Any = '_' if count > 1: return False else: return "".join(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : list[str] ): __a : Any = [] while True: __a : Union[str, Any] = ['$'] * len(_SCREAMING_SNAKE_CASE ) __a : Tuple = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): __a : List[Any] = compare_string(binary[i] , binary[j] ) if k is False: __a : Dict = '*' __a : Optional[Any] = '*' temp.append('X' ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_SCREAMING_SNAKE_CASE ) == 0: return pi __a : Union[str, Any] = list(set(_SCREAMING_SNAKE_CASE ) ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Sequence[float] ): __a : Optional[Any] = [] for minterm in minterms: __a : List[Any] = '' for _ in range(_SCREAMING_SNAKE_CASE ): __a : List[str] = str(minterm % 2 ) + string minterm //= 2 temp.append(_SCREAMING_SNAKE_CASE ) return temp def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): __a : List[str] = list(_SCREAMING_SNAKE_CASE ) __a : Tuple = list(_SCREAMING_SNAKE_CASE ) __a : Tuple = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase (_SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[str] ): __a : int = [] __a : str = [0] * len(_SCREAMING_SNAKE_CASE ) for i in range(len(chart[0] ) ): __a : Any = 0 __a : Union[str, Any] = -1 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if chart[j][i] == 1: count += 1 __a : Optional[int] = j if count == 1: __a : Optional[Any] = 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_SCREAMING_SNAKE_CASE ) ): __a : List[Any] = 0 temp.append(prime_implicants[i] ) while True: __a : Any = 0 __a : Any = -1 __a : int = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): __a : Any = chart[i].count(1 ) if count_n > max_n: __a : str = count_n __a : Any = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_SCREAMING_SNAKE_CASE ) ): __a : List[str] = 0 def lowerCamelCase (_SCREAMING_SNAKE_CASE : list[str] , _SCREAMING_SNAKE_CASE : list[str] ): __a : int = [[0 for x in range(len(_SCREAMING_SNAKE_CASE ) )] for x in range(len(_SCREAMING_SNAKE_CASE ) )] for i in range(len(_SCREAMING_SNAKE_CASE ) ): __a : Union[str, Any] = prime_implicants[i].count('_' ) for j in range(len(_SCREAMING_SNAKE_CASE ) ): if is_for_table(prime_implicants[i] , binary[j] , _SCREAMING_SNAKE_CASE ): __a : int = 1 return chart def lowerCamelCase (): __a : Any = int(input('Enter the no. of variables\n' ) ) __a : Union[str, Any] = [ float(_SCREAMING_SNAKE_CASE ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] __a : List[str] = decimal_to_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = check(_SCREAMING_SNAKE_CASE ) print('Prime Implicants are:' ) print(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = prime_implicant_chart(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : List[str] = selection(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print('Essential Prime Implicants are:' ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
27
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): A_ = StableDiffusionInpaintPipeline A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A_ = frozenset([] ) def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) __a : str = PNDMScheduler(skip_prk_steps=__a ) torch.manual_seed(0 ) __a : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a : Dict = CLIPTextModel(__a ) __a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) __a : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a : Tuple = Image.fromarray(np.uinta(__a ) ).convert('RGB' ).resize((64, 64) ) __a : Tuple = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(__a ).startswith('mps' ): __a : Any = torch.manual_seed(__a ) else: __a : str = torch.Generator(device=__a ).manual_seed(__a ) __a : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __a : str = self.get_dummy_components() __a : Union[str, Any] = StableDiffusionInpaintPipeline(**__a ) __a : List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __a : List[Any] = self.get_dummy_inputs(__a ) __a : Dict = sd_pipe(**__a ).images __a : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) __a : Optional[int] = 'stabilityai/stable-diffusion-2-inpainting' __a : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Dict = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : int = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : List[str] = StableDiffusionInpaintPipeline.from_pretrained( __a , torch_dtype=torch.floataa , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __a : Union[str, Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : int = torch.manual_seed(0 ) __a : Optional[Any] = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , output_type='np' , ) __a : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __a : str = 'stabilityai/stable-diffusion-2-inpainting' __a : Any = PNDMScheduler.from_pretrained(__a , subfolder='scheduler' ) __a : str = StableDiffusionInpaintPipeline.from_pretrained( __a , safety_checker=__a , scheduler=__a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a : str = 'Face of a yellow cat, high resolution, sitting on a park bench' __a : Tuple = torch.manual_seed(0 ) __a : str = pipe( prompt=__a , image=__a , mask_image=__a , generator=__a , num_inference_steps=2 , output_type='np' , ) __a : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
27
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( a__ ): _lowercase = (KDPMaDiscreteScheduler,) _lowercase = 1_0 def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Any = { '''num_train_timesteps''': 1100, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def _UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Optional[Any] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Tuple = model(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : str = output.prev_sample _UpperCAmelCase : int = torch.sum(torch.abs(_lowerCamelCase ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(_lowerCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' if torch_device == "mps": return _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Dict = model(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Optional[Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Any = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' if torch_device == "mps": return _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter.to(_lowerCamelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCAmelCase : Any = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Optional[Any] = model(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : int = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : str = output.prev_sample _UpperCAmelCase : Optional[int] = torch.sum(torch.abs(_lowerCamelCase ) ) _UpperCAmelCase : Dict = torch.mean(torch.abs(_lowerCamelCase ) ) if str(_lowerCamelCase ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
354
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: str ) -> bool: _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase ) + 1 _UpperCAmelCase : Optional[int] = len(lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _UpperCAmelCase : List[str] = [[0 for i in range(lowerCAmelCase )] for j in range(lowerCAmelCase )] # since string of zero length match pattern of zero length _UpperCAmelCase : List[Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , lowerCAmelCase ): _UpperCAmelCase : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , lowerCAmelCase ): _UpperCAmelCase : Tuple = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , lowerCAmelCase ): for j in range(1 , lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _UpperCAmelCase : Optional[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _UpperCAmelCase : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _UpperCAmelCase : str = dp[i - 1][j] else: _UpperCAmelCase : int = 0 else: _UpperCAmelCase : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE_ = 'aab' SCREAMING_SNAKE_CASE_ = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
189
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _A = [ """good first issue""", """feature request""", """wip""", ] def a__ ( ) -> str: UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Dict = g.get_repo("""huggingface/accelerate""" ) UpperCAmelCase__ : str = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Optional[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowerCAmelCase : i.created_at , reverse=lowerCAmelCase ) UpperCAmelCase__ : List[Any] = comments[0] if len(lowerCAmelCase ) > 0 else None UpperCAmelCase__ : Optional[Any] = dt.utcnow() UpperCAmelCase__ : List[str] = (current_time - issue.updated_at).days UpperCAmelCase__ : Optional[int] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
171
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__(self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase__ : List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : str = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase__ : str = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) UpperCAmelCase__ : int = do_resize UpperCAmelCase__ : Any = size UpperCAmelCase__ : int = resample UpperCAmelCase__ : Union[str, Any] = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : str = do_center_crop UpperCAmelCase__ : Dict = crop_size UpperCAmelCase__ : List[str] = do_flip_channel_order def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(_lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" return flip_channel_order(_lowerCamelCase , data_format=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[str] = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : str = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) UpperCAmelCase__ : List[str] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase__ : Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ : Tuple = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: UpperCAmelCase__ : Optional[Any] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[Any] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase__ : Any = [self.flip_channel_order(image=_lowerCamelCase ) for image in images] UpperCAmelCase__ : int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCAmelCase__ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = target_sizes.numpy() UpperCAmelCase__ : Tuple = [] for idx in range(len(_lowerCamelCase ) ): UpperCAmelCase__ : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowerCamelCase ) UpperCAmelCase__ : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCamelCase ) else: UpperCAmelCase__ : str = logits.argmax(dim=1 ) UpperCAmelCase__ : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
171
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCamelCase = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCamelCase = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCamelCase = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) UpperCamelCase = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions UpperCamelCase = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) UpperCamelCase = tf.keras.preprocessing.image.img_to_array(test_image) UpperCamelCase = np.expand_dims(test_image, axis=0) UpperCamelCase = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCamelCase = '''Normal''' if result[0][0] == 1: UpperCamelCase = '''Abnormality detected'''
351
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCamelCase = { '''camembert-base''': 512, } UpperCamelCase = '''▁''' class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""] UpperCamelCase_ : int = CamembertTokenizer def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="</s>" , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE_ : str="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=["<s>NOTUSED", "</s>NOTUSED"] , **SCREAMING_SNAKE_CASE_ : Any , ) -> Any: '''simple docstring''' A: Tuple = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Any = vocab_file A: Any = False if not self.vocab_file else True def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: List[str] = [self.cls_token_id] A: List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: List[str] = [self.sep_token_id] A: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Dict = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
334
0
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL lowerCAmelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): """simple docstring""" output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def _A ( A__ , A__ , A__ , A__ = False ): """simple docstring""" __lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __lowercase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __lowercase = '''cpu''' __lowercase = Path(A__ ) # VAE DECODER __lowercase = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) __lowercase = vae_decoder.config.latent_channels # forward only through the decoder part __lowercase = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
104
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = x __lowercase = y for step in range(A__ ): # noqa: B007 __lowercase = a * a - b * b + x __lowercase = 2 * a * b + y __lowercase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _A ( A__ ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _A ( A__ ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(A__ , 1 , 1 ) ) def _A ( A__ = 800 , A__ = 600 , A__ = -0.6 , A__ = 0 , A__ = 3.2 , A__ = 50 , A__ = True , ): """simple docstring""" __lowercase = Image.new('''RGB''' , (image_width, image_height) ) __lowercase = img.load() # loop through the image-coordinates for image_x in range(A__ ): for image_y in range(A__ ): # determine the figure-coordinates based on the image-coordinates __lowercase = figure_width / image_width * image_height __lowercase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowercase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowercase = get_distance(A__ , A__ , A__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowercase = get_color_coded_rgb(A__ ) else: __lowercase = get_black_and_white_rgb(A__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
104
1
'''simple docstring''' import requests UpperCamelCase = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def SCREAMING_SNAKE_CASE( __lowercase ) -> None: # fetching a list of articles in json format A: Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F"""{i}.) {article['title']}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
370
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ["""input_features""", """attention_mask"""] def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_60_00 , SCREAMING_SNAKE_CASE_ : int=80 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = num_mel_bins A: str = do_ceptral_normalize A: int = normalize_means A: List[Any] = normalize_vars A: Any = True def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : np.ndarray , ) -> np.ndarray: '''simple docstring''' A: Optional[int] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A: Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) A: List[Any] = ta_kaldi.fbank(SCREAMING_SNAKE_CASE_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : float = 0.0 , ) -> np.ndarray: '''simple docstring''' if normalize_means: A: str = x[:input_length].mean(axis=0 ) A: Dict = np.subtract(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if normalize_vars: A: Tuple = x[:input_length].std(axis=0 ) A: List[Any] = np.divide(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if input_length < x.shape[0]: A: Optional[int] = padding_value # make sure array is in float32 A: Optional[Any] = x.astype(np.floataa ) return x def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : Optional[np.ndarray] = None ) -> List[np.ndarray]: '''simple docstring''' A: int = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A: Any = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) A: Optional[Any] = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A: Optional[int] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): A: int = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A: Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A: Union[str, Any] = [raw_speech] # extract fbank features A: str = [self._extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in raw_speech] # convert into correct format for padding A: int = BatchFeature({'''input_features''': features} ) A: int = self.pad( SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # make sure list is in array format A: List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ): A: Optional[Any] = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features] A: List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A: Dict = ( np.array(SCREAMING_SNAKE_CASE_ , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) is not PaddingStrategy.DO_NOT_PAD else None ) A: List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE_ ) if return_tensors is not None: A: Dict = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
334
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : List[str] = [] embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", F"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", F"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", F"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", F"stage{idx}.patch_embed.norm.bias", ) ) return embed def __lowerCAmelCase ( snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = [] attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", F"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", F"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", F"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", F"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", F"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", F"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", F"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", F"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : List[str] = [] token.append((F"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token") ) return token def __lowerCAmelCase ( ): __UpperCamelCase : str = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = "imagenet-1k-id2label.json" __UpperCamelCase : Dict = 1_000 __UpperCamelCase : Union[str, Any] = "huggingface/label-files" __UpperCamelCase : List[str] = num_labels __UpperCamelCase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type="dataset" ) ) , "r" ) ) __UpperCamelCase : Optional[int] = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCamelCase : Union[str, Any] = idalabel __UpperCamelCase : List[Any] = {v: k for k, v in idalabel.items()} __UpperCamelCase : Union[str, Any] = CvtConfig(num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __UpperCamelCase : Dict = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __UpperCamelCase : Optional[Any] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __UpperCamelCase : int = [2, 2, 20] __UpperCamelCase : Optional[int] = [3, 12, 16] __UpperCamelCase : Dict = [192, 768, 1_024] __UpperCamelCase : List[str] = CvtForImageClassification(snake_case__ ) __UpperCamelCase : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __UpperCamelCase : Union[str, Any] = image_size __UpperCamelCase : Any = torch.load(snake_case__ , map_location=torch.device("cpu" ) ) __UpperCamelCase : str = OrderedDict() __UpperCamelCase : int = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __UpperCamelCase : List[Any] = list_of_state_dict + cls_token(snake_case__ ) __UpperCamelCase : Union[str, Any] = list_of_state_dict + embeddings(snake_case__ ) for cnt in range(config.depth[idx] ): __UpperCamelCase : Any = list_of_state_dict + attention(snake_case__ , snake_case__ ) __UpperCamelCase : Optional[int] = list_of_state_dict + final() for gg in list_of_state_dict: print(snake_case__ ) for i in range(len(snake_case__ ) ): __UpperCamelCase : str = original_weights[list_of_state_dict[i][1]] model.load_state_dict(snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
298
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase = '''src/transformers''' _lowerCAmelCase = '''docs/source/en/tasks''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCamelCase : str = f.readlines() # Find the start prompt. __UpperCamelCase : Dict = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCamelCase : Dict = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) __UpperCamelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCamelCase : List[str] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
298
1
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCamelCase (lowercase_: int ) -> str: if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) A__ : Any = precision A__ : Tuple = ceil(precision / 14 ) A__ : Optional[int] = 426880 * Decimal(10005 ).sqrt() A__ : Dict = 1 A__ : Dict = 13591409 A__ : Optional[int] = Decimal(lowercase_ ) for k in range(1 , lowercase_ ): A__ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": A_ : List[str] = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[int] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('''T''') class snake_case_ ( Generic[T] ): '''simple docstring''' SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self : Dict , _UpperCamelCase : int ) ->None: snake_case_ = deque() snake_case_ = set() if not n: snake_case_ = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: snake_case_ = n def snake_case__( self : Dict , _UpperCamelCase : T ) ->None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ = self.dq_store.pop() self.key_reference.remove(_UpperCamelCase ) else: self.dq_store.remove(_UpperCamelCase ) self.dq_store.appendleft(_UpperCamelCase ) self.key_reference.add(_UpperCamelCase ) def snake_case__( self : List[Any] ) ->None: for k in self.dq_store: print(_UpperCamelCase ) def __repr__( self : Optional[Any] ) ->str: return f'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
8
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : List[Any]=10 , lowerCAmelCase_ : Any=[10, 20, 30, 40] , lowerCAmelCase_ : Any=[1, 1, 2, 1] , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=None , ) -> str: UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Tuple = embeddings_size UpperCAmelCase_ : Union[str, Any] = hidden_sizes UpperCAmelCase_ : int = depths UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : str = scope UpperCAmelCase_ : str = len(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str: UpperCAmelCase_ : List[Any] = TFRegNetModel(config=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : List[Any] = TFRegNetForImageClassification(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = config_and_inputs UpperCAmelCase_ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ (__A , __A , unittest.TestCase ): __magic_name__ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __magic_name__ = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = TFRegNetModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: pass def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: def check_hidden_states_output(lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): UpperCAmelCase_ : str = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : Any = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) UpperCAmelCase_ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : List[Any] = layer_type UpperCAmelCase_ : int = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]={} ): UpperCAmelCase_ : Tuple = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = model(lowerCAmelCase_ , return_dict=lowerCAmelCase_ , **lowerCAmelCase_ ).to_tuple() def recursive_check(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): if isinstance(lowerCAmelCase_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase_ , lowerCAmelCase_ ) ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : str = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) UpperCAmelCase_ : List[str] = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) check_equivalence(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , {"output_hidden_states": True} ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFRegNetModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case ( ): UpperCAmelCase_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class UpperCamelCase_ (unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : Any = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : int = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="tf" ) # forward pass UpperCAmelCase_ : Tuple = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits UpperCAmelCase_ : List[str] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 )
268
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase : Dict = logging.get_logger(__name__) # General docstring lowercase : Optional[Any] = "ResNetConfig" # Base docstring lowercase : int = "microsoft/resnet-50" lowercase : List[Any] = [1, 2048, 7, 7] # Image classification docstring lowercase : Tuple = "microsoft/resnet-50" lowercase : Dict = "tiger cat" lowercase : Union[str, Any] = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ): """simple docstring""" super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ): """simple docstring""" super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ): """simple docstring""" super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ): """simple docstring""" super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ): """simple docstring""" super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class __UpperCAmelCase ( nn.Module ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ): """simple docstring""" _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ResNetConfig __lowercase = """resnet""" __lowercase = """pixel_values""" __lowercase = True def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value lowercase : Tuple = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowercase : str = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , _lowerCamelCase , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , _lowerCamelCase , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ): """simple docstring""" _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , _lowerCamelCase , ) class __UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ): """simple docstring""" super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): """simple docstring""" _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
160
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase : Any = logging.get_logger(__name__) class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=None , lowerCAmelCase_=None ): """simple docstring""" if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__( self , lowerCAmelCase_ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) _snake_case = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _snake_case = text def lowerCamelCase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" self.generated_responses.append(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" _snake_case = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _snake_case = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( _lowerCamelCase , r""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowerCamelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): """simple docstring""" _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_=0 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = super().__call__(lowerCAmelCase_ , num_workers=lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=32 ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _snake_case = self.tokenizer._build_conversation_input_ids(lowerCAmelCase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(lowerCAmelCase_ ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=10 , **lowerCAmelCase_ ): """simple docstring""" _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) _snake_case = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs['attention_mask'][:, -trim:] _snake_case = model_inputs.pop('conversation' ) _snake_case = max_length _snake_case = self.model.generate(**lowerCAmelCase_ , **lowerCAmelCase_ ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=True ): """simple docstring""" _snake_case = model_outputs['output_ids'] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) _snake_case = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(lowerCAmelCase_ ) return conversation def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
160
1
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase__ = float("""nan""") class a__ : """simple docstring""" def __init__( self , lowercase ) -> Optional[Any]: '''simple docstring''' A__ = sys.stdout A__ = open(lowercase , "a" ) def __getattr__( self , lowercase ) -> List[Any]: '''simple docstring''' return getattr(self.stdout , lowercase ) def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' self.stdout.write(lowercase ) # strip tqdm codes self.file.write(re.sub(R"^.*\r" , "" , lowercase , 0 , re.M ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int]=8_0 , SCREAMING_SNAKE_CASE_: List[Any]=False ) -> Union[str, Any]: '''simple docstring''' A__ = [] # deal with critical env vars A__ = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: A__ = os.environ.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) A__ = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(SCREAMING_SNAKE_CASE_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A__ = [] A__ = "" while len(SCREAMING_SNAKE_CASE_ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(SCREAMING_SNAKE_CASE_ ) == 0 or len(SCREAMING_SNAKE_CASE_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(SCREAMING_SNAKE_CASE_ ) A__ = "" return "\\\n".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: int ) -> Union[str, Any]: '''simple docstring''' A__ = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own A__ = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A__ = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: str ) -> int: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_0_0 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) A__ = subprocess.run(SCREAMING_SNAKE_CASE_ , capture_output=SCREAMING_SNAKE_CASE_ , text=SCREAMING_SNAKE_CASE_ ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams A__ = variation.replace(" " , "-" ) with open(Path(SCREAMING_SNAKE_CASE_ ) / F'log.{prefix}.stdout.txt' , "w" ) as f: f.write(result.stdout ) with open(Path(SCREAMING_SNAKE_CASE_ ) / F'log.{prefix}.stderr.txt' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json' , "r" , encoding="utf-8" ) as f: A__ = json.load(SCREAMING_SNAKE_CASE_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: str , ) -> List[Any]: '''simple docstring''' A__ = [] A__ = [] A__ = F'{id}: {variation:<{longest_variation_len}}' A__ = F'{preamble}: ' A__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(SCREAMING_SNAKE_CASE_ ) , desc=SCREAMING_SNAKE_CASE_ , leave=SCREAMING_SNAKE_CASE_ ): A__ = process_run_single( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = single_run_metrics[target_metric_key] if not math.isnan(SCREAMING_SNAKE_CASE_ ): metrics.append(SCREAMING_SNAKE_CASE_ ) results.append(SCREAMING_SNAKE_CASE_ ) outcome += "✓" else: outcome += "✘" A__ = F'\33[2K\r{outcome}' if len(SCREAMING_SNAKE_CASE_ ) > 0: A__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A__ = round(mean_metrics[target_metric_key] , 2 ) A__ = F'{outcome} {mean_target}' if len(SCREAMING_SNAKE_CASE_ ) > 1: results_str += F' {tuple(round(SCREAMING_SNAKE_CASE_ , 2 ) for x in results )}' print(SCREAMING_SNAKE_CASE_ ) A__ = variation return mean_metrics else: print(SCREAMING_SNAKE_CASE_ ) return {variation_key: variation, target_metric_key: nan} def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' A__ = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**3_0:0.2f}GB\n' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Optional[int] , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = pd.DataFrame(SCREAMING_SNAKE_CASE_ ) A__ = "variation" A__ = "diff_%" A__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(SCREAMING_SNAKE_CASE_ ): # as a fallback, use the minimal value as the sentinel A__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(SCREAMING_SNAKE_CASE_ ): A__ = df.apply( lambda SCREAMING_SNAKE_CASE_ : round(1_0_0 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns A__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] A__ = df.reindex(SCREAMING_SNAKE_CASE_ , axis="columns" ) # reorder cols # capitalize A__ = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible A__ = df.rename(lambda SCREAMING_SNAKE_CASE_ : c.replace("_" , "<br>" ) , axis="columns" ) A__ = df.rename(lambda SCREAMING_SNAKE_CASE_ : c.replace("_" , "\n" ) , axis="columns" ) A__ = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=SCREAMING_SNAKE_CASE_ , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=SCREAMING_SNAKE_CASE_ , floatfmt=".2f" )] print("\n\n".join(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Base cmd" , ) parser.add_argument( "--variations" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , nargs="+" , required=SCREAMING_SNAKE_CASE_ , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=SCREAMING_SNAKE_CASE_ , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=SCREAMING_SNAKE_CASE_ , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=SCREAMING_SNAKE_CASE_ , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) A__ = parser.parse_args() A__ = args.output_dir Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) A__ = get_base_command(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # split each dimension into its --foo variations A__ = [list(map(str.strip , re.split(R"\|" , SCREAMING_SNAKE_CASE_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A__ = list(map(str.strip , map(" ".join , itertools.product(*SCREAMING_SNAKE_CASE_ ) ) ) ) A__ = max(len(SCREAMING_SNAKE_CASE_ ) for x in variations ) # split wanted keys A__ = args.report_metric_keys.split() # capture prints into a log file for convenience A__ = F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) A__ = Tee(SCREAMING_SNAKE_CASE_ ) print(F'\n*** Running {len(SCREAMING_SNAKE_CASE_ )} benchmarks:' ) print(F'Base command: {" ".join(SCREAMING_SNAKE_CASE_ )}' ) A__ = "variation" A__ = [] for id, variation in enumerate(tqdm(SCREAMING_SNAKE_CASE_ , desc="Total completion: " , leave=SCREAMING_SNAKE_CASE_ ) ): A__ = base_cmd + variation.split() results.append( process_run( id + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , args.target_metric_key , SCREAMING_SNAKE_CASE_ , args.repeat_times , SCREAMING_SNAKE_CASE_ , args.verbose , ) ) process_results(SCREAMING_SNAKE_CASE_ , args.target_metric_key , SCREAMING_SNAKE_CASE_ , args.base_variation , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
68
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ ) ) def _lowercase ( self : Union[str, Any] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ ) ) def _lowercase ( self : str ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase__ ) ) def _lowercase ( self : Tuple ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ ) ) def _lowercase ( self : Tuple ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase__ ) ) def _lowercase ( self : int ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE : str = """fp16""" self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) ) def _lowercase ( self : List[str] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE : Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) ) def _lowercase ( self : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] SCREAMING_SNAKE_CASE : str = """fp16""" self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) ) def _lowercase ( self : Dict ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] SCREAMING_SNAKE_CASE : List[str] = """fp16""" self.assertFalse(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) ) def _lowercase ( self : str ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE : Any = """fp16""" self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) ) def _lowercase ( self : str ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] SCREAMING_SNAKE_CASE : Tuple = """fp16""" self.assertTrue(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) ) def _lowercase ( self : Optional[Any] ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] SCREAMING_SNAKE_CASE : Optional[Any] = """fp16""" self.assertFalse(is_safetensors_compatible(UpperCAmelCase__ , variant=UpperCAmelCase__ ) )
245
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" A_ = MODEL_FOR_MASKED_LM_MAPPING A_ = TF_MODEL_FOR_MASKED_LM_MAPPING def __A ( self: Tuple ) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __A ( self: str ) -> Tuple: _A = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) _A = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 3_80_15, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 2_55_06, '''token_str''': ''' accuser'''}, ] , ) _A = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 3_80_15, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 2_55_06, '''token_str''': ''' accuser''', }, ] , ) _A = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def __A ( self: List[Any] ) -> Tuple: _A = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) _A = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 3_56_76, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) _A = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) _A = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 29_41, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, ] , ) _A = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__A , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def __A ( self: Any ) -> Optional[Any]: _A = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() _A = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__A , __A ) @slow @require_torch def __A ( self: List[Any] ) -> Tuple: _A = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__A ) @slow @require_tf def __A ( self: Tuple ) -> Union[str, Any]: _A = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__A ) def __A ( self: int , __A: str ) -> Dict: _A = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__A ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_10, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 15_73, '''token_str''': ''' Chris'''}, ] , ) _A = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__A ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 22_01, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_27_90, '''token_str''': ''' Lyon''', }, ] , ) _A = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__A ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def __A ( self: List[str] ) -> Tuple: _A = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) _A = None _A = None self.run_pipeline_test(__A , [] ) @require_tf def __A ( self: List[str] ) -> List[str]: _A = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) _A = None _A = None self.run_pipeline_test(__A , [] ) def __A ( self: Dict , __A: str , __A: List[str] , __A: List[str] ) -> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) _A = FillMaskPipeline(model=__A , tokenizer=__A ) _A = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __A ( self: Optional[Any] , __A: Any , __A: Any ) -> List[Any]: _A = fill_masker.tokenizer _A = fill_masker.model _A = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __A , [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ] , ) _A = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __A , [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ] , ) _A = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __A , [ [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ], [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ], ] , ) with self.assertRaises(__A ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__A ): fill_masker('''This is''' ) self.run_test_top_k(__A , __A ) self.run_test_targets(__A , __A ) self.run_test_top_k_targets(__A , __A ) self.fill_mask_with_duplicate_targets_and_top_k(__A , __A ) self.fill_mask_with_multiple_masks(__A , __A ) def __A ( self: List[str] , __A: Any , __A: List[str] ) -> List[str]: _A = tokenizer.get_vocab() _A = sorted(vocab.keys() )[:2] # Pipeline argument _A = FillMaskPipeline(model=__A , tokenizer=__A , targets=__A ) _A = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __A , [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ] , ) _A = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __A ) _A = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__A ) ) # Call argument _A = FillMaskPipeline(model=__A , tokenizer=__A ) _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__A ) self.assertEqual( __A , [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ] , ) _A = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __A ) _A = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__A ) ) # Score equivalence _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__A ) _A = [top_mask['''token_str'''] for top_mask in outputs] _A = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__A ) == set(__A ): _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__A ) _A = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__A ) , nested_simplify(__A ) ) # Raises with invalid with self.assertRaises(__A ): _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__A ): _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[''''''] ) with self.assertRaises(__A ): _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets='''''' ) def __A ( self: str , __A: str , __A: int ) -> List[Any]: _A = FillMaskPipeline(model=__A , tokenizer=__A , top_k=2 ) _A = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __A , [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ] , ) _A = FillMaskPipeline(model=__A , tokenizer=__A ) _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __A , [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ] , ) self.assertEqual(nested_simplify(__A ) , nested_simplify(__A ) ) def __A ( self: Optional[Any] , __A: List[Any] , __A: List[str] ) -> Tuple: _A = tokenizer.get_vocab() _A = FillMaskPipeline(model=__A , tokenizer=__A ) # top_k=2, ntargets=3 _A = sorted(vocab.keys() )[:3] _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__A ) # If we use the most probably targets, and filter differently, we should still # have the same results _A = [el['''token_str'''] for el in sorted(__A , key=lambda __A : x["score"] , reverse=__A )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__A ).issubset(__A ): _A = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__A ) # They should yield exactly the same result self.assertEqual(nested_simplify(__A ) , nested_simplify(__A ) ) def __A ( self: List[str] , __A: Union[str, Any] , __A: Any ) -> Dict: _A = FillMaskPipeline(model=__A , tokenizer=__A ) _A = tokenizer.get_vocab() # String duplicates + id duplicates _A = sorted(vocab.keys() )[:3] _A = [targets[0], targets[1], targets[0], targets[2], targets[1]] _A = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=__A , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__A ) , 3 ) def __A ( self: Tuple , __A: List[Any] , __A: List[str] ) -> Optional[Any]: _A = FillMaskPipeline(model=__A , tokenizer=__A ) _A = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __A , [ [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ], [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ], [ {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, {'''sequence''': ANY(__A ), '''score''': ANY(__A ), '''token''': ANY(__A ), '''token_str''': ANY(__A )}, ], ] , )
368
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @property def __A ( self: Dict ) -> Union[str, Any]: torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self: Any ) -> Union[str, Any]: _A = self.dummy_uncond_unet _A = ScoreSdeVeScheduler() _A = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A ).images _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A , return_dict=__A )[ 0 ] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __A ( self: Dict ) -> Any: _A = '''google/ncsnpp-church-256''' _A = UNetaDModel.from_pretrained(__A ) _A = ScoreSdeVeScheduler.from_pretrained(__A ) _A = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) _A = torch.manual_seed(0 ) _A = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__A ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _A = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
75
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCAmelCase_ : List[str] = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' UpperCAmelCase_ : Optional[Any] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' UpperCAmelCase_ : Dict = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def _A ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def _A ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Any="auto" , __lowerCamelCase : List[Any]=-1 , __lowerCamelCase : Optional[int]=0.9 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Optional[Any]=500 , __lowerCamelCase : int="gpt2-large" , __lowerCamelCase : Union[str, Any]=-1 , __lowerCamelCase : List[str]=1_024 , __lowerCamelCase : Dict=25 , __lowerCamelCase : Any=5 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=25 , ): UpperCamelCase :int = compute_mauve( p_text=__lowerCamelCase , q_text=__lowerCamelCase , p_features=__lowerCamelCase , q_features=__lowerCamelCase , p_tokens=__lowerCamelCase , q_tokens=__lowerCamelCase , num_buckets=__lowerCamelCase , pca_max_data=__lowerCamelCase , kmeans_explained_var=__lowerCamelCase , kmeans_num_redo=__lowerCamelCase , kmeans_max_iter=__lowerCamelCase , featurize_model_name=__lowerCamelCase , device_id=__lowerCamelCase , max_text_length=__lowerCamelCase , divergence_curve_discretization_size=__lowerCamelCase , mauve_scaling_factor=__lowerCamelCase , verbose=__lowerCamelCase , seed=__lowerCamelCase , ) return out
38
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor a = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : str ): warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
155
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : int = {'vocab_file': 'sentencepiece.bpe.model'} A_ : List[Any] = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } A_ : Dict = { 'camembert-base': 512, } A_ : Optional[Any] = '▁' class _a (__lowercase ): '''simple docstring''' UpperCAmelCase__: str = VOCAB_FILES_NAMES UpperCAmelCase__: Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: str = ["input_ids", "attention_mask"] def __init__( self , A__ , A__="<s>" , A__="</s>" , A__="</s>" , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__=["<s>NOTUSED", "</s>NOTUSED"] , A__ = None , **A__ , ): # Mask token behave like a normal word, i.e. include the space before it A__ : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token A__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) A__ : str = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> A__ : Tuple = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} A__ : Union[str, Any] = len(self.fairseq_tokens_to_ids ) A__ : str = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) A__ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __A ( self , A__ , A__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict = [self.cls_token_id] A__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __A ( self , A__ , A__ = None ): A__ : Any = [self.sep_token_id] A__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def __A ( self ): A__ : List[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , A__ ): return self.sp_model.encode(_a , out_type=_a ) def __A ( self , A__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_a ) def __A ( self , A__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self , A__ ): A__ : Dict = [] A__ : int = '''''' A__ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token A__ : Optional[int] = True A__ : Any = [] else: current_sub_tokens.append(_a ) A__ : str = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self ): A__ : Optional[Any] = self.__dict__.copy() A__ : int = None return state def __setstate__( self , A__ ): A__ : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : List[str] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , A__ , A__ = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : int = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: A__ : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
365
import argparse from collections import defaultdict def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Any ) -> int: A__ : Optional[Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , """r""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : str = f"""class {class_name}(""" A__ : Optional[Any] = f"""{4 * ' '}def {test_name}(""" A__ : Union[str, Any] = f"""{8 * ' '}{correct_line.split()[0]}""" A__ : Optional[int] = f"""{16 * ' '}{correct_line.split()[0]}""" A__ : int = False A__ : str = False A__ : Tuple = False A__ : Optional[int] = False A__ : Optional[Any] = 0 A__ : Dict = 0 A__ : List[str] = [] for line in lines: if line.startswith(lowercase_ ): A__ : Dict = True elif in_class and line.startswith(lowercase_ ): A__ : Optional[Any] = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): A__ : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A__ : Any = True if in_class and in_func and in_line: if ")" not in line: continue else: A__ : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) A__ : List[str] = False else: new_lines.append(lowercase_ ) with open(lowercase_ , """w""" ) as f: for line in new_lines: f.write(lowercase_ ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[Any]=None ) -> Any: if fail is not None: with open(lowercase_ , """r""" ) as f: A__ : Dict = {l.strip() for l in f.readlines()} else: A__ : List[str] = None with open(lowercase_ , """r""" ) as f: A__ : int = f.readlines() A__ : Union[str, Any] = defaultdict(lowercase_ ) for line in correct_lines: A__ , A__ , A__ , A__ : Optional[int] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) A_ : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
141
0
from numpy import exp, pi, sqrt def lowerCAmelCase__(__snake_case ,__snake_case = 0.0 ,__snake_case = 1.0 ) -> Dict: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
209
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _UpperCAmelCase = Vector() def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(snake_case__ ) , "(0,0,0,0,0,1)" ) def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3, 4] ) self.assertEqual(len(snake_case__ ) , 4 ) def UpperCamelCase ( self : int ): """simple docstring""" _UpperCAmelCase = Vector([1, 2] ) _UpperCAmelCase = Vector([1, 2, 3, 4, 5] ) _UpperCAmelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _UpperCAmelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([2, -1, 4] ) # for test of dot product _UpperCAmelCase = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def UpperCamelCase ( self : Any ): """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = Vector([1, 2, 3] ) _UpperCAmelCase = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , snake_case__ , snake_case__ ) ) , "(3,4,7)" ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0, 0, 0, 0] ) _UpperCAmelCase = x.copy() self.assertEqual(str(snake_case__ ) , str(snake_case__ ) ) def UpperCamelCase ( self : Dict ): """simple docstring""" _UpperCAmelCase = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(snake_case__ ) , "(0,1,0)" ) def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(snake_case__ ) ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(snake_case__ , snake_case__ ) ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(snake_case__ , snake_case__ ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _UpperCAmelCase = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(snake_case__ ) ) def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _UpperCAmelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def UpperCamelCase ( self : str ): """simple docstring""" self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
133
0
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : str , snake_case_ : List[str] , snake_case_ : List[str]=13 , snake_case_ : Optional[int]=7 , snake_case_ : Optional[int]=True , snake_case_ : Any=True , snake_case_ : Tuple=True , snake_case_ : Any=True , snake_case_ : int=99 , snake_case_ : int=32 , snake_case_ : Tuple=5 , snake_case_ : Union[str, Any]=4 , snake_case_ : Dict=37 , snake_case_ : Tuple="gelu" , snake_case_ : Tuple=0.1 , snake_case_ : str=0.1 , snake_case_ : int=512 , snake_case_ : Dict=16 , snake_case_ : Optional[Any]=2 , snake_case_ : int=0.02 , snake_case_ : List[Any]=False , snake_case_ : str=True , snake_case_ : Any="None" , snake_case_ : int=3 , snake_case_ : Tuple=4 , snake_case_ : List[Any]=None , ): UpperCamelCase_: Union[str, Any] = parent UpperCamelCase_: Optional[int] = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: int = is_training UpperCamelCase_: Optional[Any] = use_input_mask UpperCamelCase_: str = use_token_type_ids UpperCamelCase_: str = use_labels UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: Any = num_hidden_layers UpperCamelCase_: Union[str, Any] = num_attention_heads UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: List[Any] = hidden_act UpperCamelCase_: Optional[Any] = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: Optional[Any] = max_position_embeddings UpperCamelCase_: Tuple = type_vocab_size UpperCamelCase_: Any = type_sequence_label_size UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Union[str, Any] = num_labels UpperCamelCase_: Tuple = num_choices UpperCamelCase_: List[str] = relative_attention UpperCamelCase_: List[str] = position_biased_input UpperCamelCase_: str = pos_att_type UpperCamelCase_: Any = scope def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Optional[int] = None if self.use_input_mask: UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase_: List[str] = None if self.use_token_type_ids: UpperCamelCase_: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: Any = None UpperCamelCase_: List[str] = None UpperCamelCase_: Tuple = None if self.use_labels: UpperCamelCase_: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Union[str, Any] ): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: List[str] = self.get_config() UpperCamelCase_: Union[str, Any] = 300 return config def lowerCAmelCase__ ( self : List[Any] , snake_case_ : str ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : Optional[int] ): UpperCamelCase_: Any = DebertaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: List[Any] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase_: Tuple = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase_: Optional[int] = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCAmelCase__ ( self : int , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : str ): UpperCamelCase_: List[Any] = DebertaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): UpperCamelCase_: Tuple = self.num_labels UpperCamelCase_: Optional[int] = DebertaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Dict = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[str] ): UpperCamelCase_: int = self.num_labels UpperCamelCase_: List[str] = DebertaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : int , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : List[str] ): UpperCamelCase_: Dict = DebertaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ): List[str] = config_and_inputs UpperCamelCase_: str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase : Optional[int] = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : List[Any] = True __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Dict = False def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Union[str, Any] = DebertaModelTester(self ) UpperCamelCase_: Tuple = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self : Dict ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) @slow def lowerCAmelCase__ ( self : Any ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: Optional[Any] = DebertaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCAmelCase__ ( self : List[str] ): pass @slow def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Tuple = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) UpperCamelCase_: int = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase_: str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase_: str = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase_: List[str] = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
223
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Tuple = CTRLTokenizer __UpperCamelCase : int = False __UpperCamelCase : List[str] = False def lowerCAmelCase__ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase_: int = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCamelCase_: int = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase_: Union[str, Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCamelCase_: Tuple = {"""unk_token""": """<unk>"""} UpperCamelCase_: Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def lowerCAmelCase__ ( self : Optional[int] , **snake_case_ : int ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : List[str] ): UpperCamelCase_: Dict = """adapt react readapt apt""" UpperCamelCase_: List[str] = """adapt react readapt apt""" return input_text, output_text def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: str = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase_: List[Any] = """adapt react readapt apt""" UpperCamelCase_: Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCamelCase_: int = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase_: List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase_: Union[str, Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ )
223
1
'''simple docstring''' def _A ( A__ ): """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __lowercase = grid[0] for row_n in range(1 , len(A__ ) ): __lowercase = grid[row_n] __lowercase = fill_row(A__ , A__ ) __lowercase = grid[row_n] return grid[-1][-1] def _A ( A__ , A__ ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(A__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
104
from __future__ import annotations def __magic_name__ ( A : list ): '''simple docstring''' if len(A ) == 0: return [] a , a = min(A ), max(A ) a = int(max_value - min_value ) + 1 a = [[] for _ in range(A )] for i in my_list: buckets[int(i - min_value )].append(A ) return [v for bucket in buckets for v in sorted(A )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
107
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
280
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase__ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Any = """maskformer""" UpperCAmelCase_ : Union[str, Any] = {"""hidden_size""": """mask_feature_size"""} UpperCAmelCase_ : Union[str, Any] = ["""resnet""", """swin"""] UpperCAmelCase_ : Optional[int] = ["""detr"""] def __init__( self : Union[str, Any] , lowercase_ : int = 256 , lowercase_ : int = 256 , lowercase_ : float = 0.1 , lowercase_ : bool = False , lowercase_ : Optional[Dict] = None , lowercase_ : Optional[Dict] = None , lowercase_ : float = 0.02 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 1.0 , lowercase_ : float = 20.0 , lowercase_ : Optional[bool] = None , **lowercase_ : int , ) -> Optional[Any]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = backbone_config.pop('model_type' ) UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : List[Any] = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase : Dict = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase : Tuple = ( decoder_config.pop('model_type' ) if isinstance(lowercase_ , lowercase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Union[str, Any] = CONFIG_MAPPING[decoder_type] UpperCAmelCase : str = config_class.from_dict(lowercase_ ) UpperCAmelCase : int = backbone_config UpperCAmelCase : Tuple = decoder_config # main feature dimension for the model UpperCAmelCase : Union[str, Any] = fpn_feature_size UpperCAmelCase : Optional[Any] = mask_feature_size # initializer UpperCAmelCase : Union[str, Any] = init_std UpperCAmelCase : List[str] = init_xavier_std # Hungarian matcher && loss UpperCAmelCase : int = cross_entropy_weight UpperCAmelCase : Tuple = dice_weight UpperCAmelCase : int = mask_weight UpperCAmelCase : Any = use_auxiliary_loss UpperCAmelCase : Tuple = no_object_weight UpperCAmelCase : str = output_auxiliary_logits UpperCAmelCase : Dict = self.decoder_config.encoder_attention_heads UpperCAmelCase : Union[str, Any] = self.decoder_config.num_hidden_layers super().__init__(**lowercase_ ) @classmethod def UpperCAmelCase_ ( cls : Any , lowercase_ : PretrainedConfig , lowercase_ : PretrainedConfig , **lowercase_ : Optional[Any] ) -> str: return cls( backbone_config=lowercase_ , decoder_config=lowercase_ , **lowercase_ , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict[str, any]: UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : List[str] = self.backbone_config.to_dict() UpperCAmelCase : Any = self.decoder_config.to_dict() UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output
280
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _A ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = '''ZinengTang/tvlt-base''' __a = tempfile.mkdtemp() def _lowerCamelCase ( self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[Any] , **__SCREAMING_SNAKE_CASE : Union[str, Any]): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.get_image_processor() __a = self.get_feature_extractor() __a = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE) processor.save_pretrained(self.tmpdirname) __a = TvltProcessor.from_pretrained(self.tmpdirname) self.assertIsInstance(processor.feature_extractor , __SCREAMING_SNAKE_CASE) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.get_image_processor() __a = self.get_feature_extractor() __a = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE) __a = np.ones([12_000]) __a = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = processor(audio=__SCREAMING_SNAKE_CASE , return_tensors='''np''') for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = self.get_image_processor() __a = self.get_feature_extractor() __a = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE) __a = np.ones([3, 224, 224]) __a = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''') for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2) def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = self.get_image_processor() __a = self.get_feature_extractor() __a = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE) __a = np.ones([12_000]) __a = np.ones([3, 224, 224]) __a = processor(audio=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask''']) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.get_image_processor() __a = self.get_feature_extractor() __a = TvltProcessor(image_processor=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
49
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a__( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = StableUnCLIPImgaImgPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowercase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase__ = frozenset([] ) def lowercase_ ( self : int ): a : Dict = 32 a : str = embedder_hidden_size # image encoding components a : List[Any] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) a : Dict = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__snake_case , projection_dim=__snake_case , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) a : Dict = StableUnCLIPImageNormalizer(embedding_dim=__snake_case ) a : Optional[int] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) a : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) a : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__snake_case , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) a : Union[str, Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__snake_case , layers_per_block=1 , upcast_attention=__snake_case , use_linear_projection=__snake_case , ) torch.manual_seed(0 ) a : List[Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=__snake_case , steps_offset=1 , ) torch.manual_seed(0 ) a : List[str] = AutoencoderKL() a : str = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def lowercase_ ( self : Tuple , __snake_case : List[str] , __snake_case : Union[str, Any]=0 , __snake_case : Tuple=True ): if str(__snake_case ).startswith('mps' ): a : Tuple = torch.manual_seed(__snake_case ) else: a : List[Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) if pil_image: a : Optional[Any] = input_image * 0.5 + 0.5 a : Optional[Any] = input_image.clamp(0 , 1 ) a : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a : int = DiffusionPipeline.numpy_to_pil(__snake_case )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase_ ( self : Optional[Any] ): a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator a : Union[str, Any] = self.get_dummy_components() a : Any = StableUnCLIPImgaImgPipeline(**__snake_case ) a : Tuple = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) a : Union[str, Any] = self.get_dummy_inputs(__snake_case ) inputs.update({'image_embeds': None} ) a : str = sd_pipe(**__snake_case ).images a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ): a : int = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=__snake_case ) def lowercase_ ( self : int ): a : Optional[int] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def lowercase_ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__snake_case ) @slow @require_torch_gpu class a__( unittest.TestCase ): def lowercase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[Any] ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) a : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) a : Optional[int] = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Optional[int] ): a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) a : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) a : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) a : str = pipe(__snake_case , 'anime turle' , generator=__snake_case , output_type='np' ) a : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__snake_case , __snake_case ) def lowercase_ ( self : Any ): a : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) a : Optional[Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() a : Optional[int] = pipe( __snake_case , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) a : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
297
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
217
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : List[Any] = CanineTokenizer a : Union[str, Any] = False def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' super().setUp() __lowercase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def _UpperCAmelCase (self ,**_lowerCamelCase ) -> CanineTokenizer: '''simple docstring''' __lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ,**_lowerCamelCase ) __lowercase = 1024 return tokenizer @require_torch def _UpperCAmelCase (self ) -> Optional[int]: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off __lowercase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase ,_lowerCamelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertEqual((2, 39) ,batch.input_ids.shape ) self.assertEqual((2, 39) ,batch.attention_mask.shape ) @require_torch def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] __lowercase = tokenizer(_lowerCamelCase ,padding=_lowerCamelCase ,return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' ,_lowerCamelCase ) self.assertIn('''attention_mask''' ,_lowerCamelCase ) self.assertIn('''token_type_ids''' ,_lowerCamelCase ) @require_torch def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.canine_tokenizer __lowercase = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] __lowercase = tokenizer( text_target=_lowerCamelCase ,max_length=32 ,padding='''max_length''' ,truncation=_lowerCamelCase ,return_tensors='''pt''' ) self.assertEqual(32 ,targets['''input_ids'''].shape[1] ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length ,42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) shutil.rmtree(_lowerCamelCase ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __lowercase = chr(0xe_0_0_7 ) additional_special_tokens.append(_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ) __lowercase = after_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) self.assertIn(_lowerCamelCase ,after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length ,42 ) __lowercase = tokenizer.__class__.from_pretrained(_lowerCamelCase ,model_max_length=43 ) self.assertEqual(tokenizer.model_max_length ,43 ) shutil.rmtree(_lowerCamelCase ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase , __lowercase = self.get_clean_sequence(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_5 __lowercase = chr(_lowerCamelCase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) __lowercase = tokenizer.decode(ids + encoded_special_token ,clean_up_tokenization_spaces=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase ,input_encoded + special_token_id ) __lowercase = tokenizer.decode(_lowerCamelCase ,skip_special_tokens=_lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = chr(0xe_0_0_5 ) __lowercase = chr(0xe_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] ,special_tokens=_lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = tokenizer.tokenize(_lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(len(_lowerCamelCase ) ,1 ) self.assertEqual(token_a[0] ,_lowerCamelCase ) self.assertEqual(token_a[0] ,_lowerCamelCase ) @require_tokenizers def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(_lowerCamelCase ) tokenizer.from_pretrained(_lowerCamelCase ) def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,encoding='''utf-8''' ) as json_file: __lowercase = json.load(_lowerCamelCase ) # a special token for Canine can be defined as follows: __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) __lowercase = [new_token_a] __lowercase = [new_token_a] with open(os.path.join(_lowerCamelCase ,'''special_tokens_map.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) with open(os.path.join(_lowerCamelCase ,'''tokenizer_config.json''' ) ,'''w''' ,encoding='''utf-8''' ) as outfile: json.dump(_lowerCamelCase ,_lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained(_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) ,) __lowercase = 0xe_0_0_7 __lowercase = chr(_lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = [AddedToken(_lowerCamelCase ,lstrip=_lowerCamelCase )] __lowercase = tokenizer_class.from_pretrained( _lowerCamelCase ,additional_special_tokens=_lowerCamelCase ,extra_ids=0 ) self.assertIn(_lowerCamelCase ,tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] ,tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCAmelCase (self ) -> Union[str, Any]: '''simple docstring''' __lowercase = self.get_tokenizers(do_lower_case=_lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = '''hello world''' if self.space_between_special_tokens: __lowercase = '''[CLS] hello world [SEP]''' else: __lowercase = input __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = tokenizer.decode(_lowerCamelCase ,spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(_lowerCamelCase ,[output, output.lower()] ) def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = '''a''' __lowercase = ord(_lowerCamelCase ) for attr in attributes_list: setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,attr + '''_id''' ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(getattr(_lowerCamelCase ,attr + '''_id''' ) ,_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[] ) __lowercase = 0xe_0_0_6 __lowercase = chr(_lowerCamelCase ) setattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ,[additional_special_token_id] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens''' ) ,[additional_special_token] ) self.assertListEqual(getattr(_lowerCamelCase ,'''additional_special_tokens_ids''' ) ,[additional_special_token_id] ) def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' pass def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Any: '''simple docstring''' pass def _UpperCAmelCase (self ) -> int: '''simple docstring''' pass def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' pass
217
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(__magic_name__ ) lowercase__ = flatten_dict(__magic_name__ ) return flax_params def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = {} lowercase__ = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } lowercase__ = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(__magic_name__ , __magic_name__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(__magic_name__ , __magic_name__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , __magic_name__ ) lowercase__ = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , __magic_name__ ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any]=False , __magic_name__ : List[Any]=False ) -> int: """simple docstring""" lowercase__ = get_flax_param(__magic_name__ ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__magic_name__ ) lowercase__ = PixaStructForConditionalGeneration(__magic_name__ ) lowercase__ = rename_and_convert_flax_params(__magic_name__ ) model.load_state_dict(__magic_name__ ) lowercase__ = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=__magic_name__ , tokenizer=__magic_name__ ) if use_large: lowercase__ = 4096 lowercase__ = True # mkdir if needed os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) print("""Model saved in {}""".format(__magic_name__ ) ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') A : Union[str, Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
305
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=512 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : List[str]=4 , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_choices def lowerCamelCase__ (self : List[str] ) -> Dict: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ (self : Tuple ) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = True lowercase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class A ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = True A__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ (self : Optional[int] ) -> List[str]: """simple docstring""" lowercase__ = FlaxBertModelTester(self ) @slow def lowerCamelCase__ (self : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBertModel.from_pretrained("""bert-base-cased""" ) lowercase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase )
305
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class a (_lowerCAmelCase ): """simple docstring""" def __snake_case ( self : str ) -> List[str]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __snake_case ( self : Optional[Any] ) -> Union[str, Any]: __snake_case : List[str] = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> int: __snake_case : List[str] = self._create_example_records() __snake_case : Tuple = Dataset.from_list(lowerCamelCase ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(lowerCamelCase ): self.assertDictEqual(lowerCamelCase , example_records[i] ) def __snake_case ( self : int ) -> Tuple: __snake_case : Dict = self._create_example_records() __snake_case : Union[str, Any] = Dataset.from_list(lowerCamelCase ) __snake_case : Optional[int] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __snake_case ( self : Optional[Any] ) -> int: # checks what happens with missing columns __snake_case : Optional[Any] = [{"col_1": 1}, {"col_2": "x"}] __snake_case : Tuple = Dataset.from_list(lowerCamelCase ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def __snake_case ( self : Dict ) -> int: # checks if the type can be inferred from the second record __snake_case : Optional[Any] = [{"col_1": []}, {"col_1": [1, 2]}] __snake_case : Dict = Dataset.from_list(lowerCamelCase ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def __snake_case ( self : Any ) -> Union[str, Any]: __snake_case : int = Dataset.from_list([] ) self.assertEqual(len(lowerCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
134
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : Union[str, Any] = ["small", "medium", "large"] _snake_case : List[Any] = "lm_head.decoder.weight" _snake_case : Optional[Any] = "lm_head.weight" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = torch.load(__lowerCamelCase ) __snake_case : Dict = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _snake_case : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') _snake_case : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
134
1
"""simple docstring""" import math def __A ( a_ :int) -> int: if not isinstance(a_ , a_): __a : List[Any] = F"""Input value of [number={number}] must be an integer""" raise TypeError(a_) if number < 1: __a : List[Any] = F"""Input value of [number={number}] must be > 0""" raise ValueError(a_) elif number == 1: return 3 elif number == 2: return 5 else: __a : Optional[int] = int(math.log(number // 3 , 2)) + 2 __a : Any = [3, 5] __a : Optional[Any] = 2 __a : Dict = 3 for block in range(1 , a_): for _ in range(a_): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1]) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A = 0 try: A = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
160
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = """▁""" lowercase_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } lowercase_ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } lowercase_ = { """facebook/s2t-small-librispeech-asr""": 1_024, } lowercase_ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] lowercase_ = {"""mustc""": MUSTC_LANGS} class SCREAMING_SNAKE_CASE (lowercase__ ): _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = MAX_MODEL_INPUT_SIZES _UpperCamelCase : Dict = ["""input_ids""", """attention_mask"""] _UpperCamelCase : List[int] = [] def __init__( self : List[str] , a : Dict , a : int , a : Tuple="<s>" , a : Optional[int]="</s>" , a : Optional[Any]="<pad>" , a : Dict="<unk>" , a : Optional[int]=False , a : Optional[Any]=False , a : str=None , a : Optional[Any]=None , a : List[Any] = None , **a : Tuple , )-> Tuple: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , do_upper_case=lowercase_ , do_lower_case=lowercase_ , tgt_lang=lowercase_ , lang_codes=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) lowercase__ = do_upper_case lowercase__ = do_lower_case lowercase__ = load_json(lowercase_ ) lowercase__ = {v: k for k, v in self.encoder.items()} lowercase__ = spm_file lowercase__ = load_spm(lowercase_ , self.sp_model_kwargs ) if lang_codes is not None: lowercase__ = lang_codes lowercase__ = LANGUAGES[lang_codes] lowercase__ = [f"""<lang:{lang}>""" for lang in self.langs] lowercase__ = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} lowercase__ = self.lang_tokens lowercase__ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: lowercase__ = {} @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Optional[int]: """simple docstring""" return len(self.encoder ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[str]: """simple docstring""" return self._tgt_lang @tgt_lang.setter def SCREAMING_SNAKE_CASE_ ( self : int , a : Any )-> Union[str, Any]: """simple docstring""" lowercase__ = new_tgt_lang self.set_tgt_lang_special_tokens(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , a : Optional[Any] )-> List[Any]: """simple docstring""" lowercase__ = self.lang_code_to_id[tgt_lang] lowercase__ = [lang_code_id] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , a : Tuple )-> int: """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : Tuple )-> List[str]: """simple docstring""" return self.encoder.get(lowercase_ , self.encoder[self.unk_token] ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Optional[Any] )-> List[str]: """simple docstring""" return self.decoder.get(lowercase_ , self.unk_token ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Optional[int] )-> Optional[Any]: """simple docstring""" lowercase__ = [] lowercase__ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: lowercase__ = self.sp_model.decode(lowercase_ ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " lowercase__ = [] else: current_sub_tokens.append(lowercase_ ) lowercase__ = self.sp_model.decode(lowercase_ ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : Any , a : List[Any] , a : Optional[Any]=None )-> int: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Any , a : Tuple = None , a : Union[str, Any] = False )-> Optional[Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowercase_ )) + suffix_ones return prefix_ones + ([0] * len(lowercase_ )) + ([0] * len(lowercase_ )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )-> Any: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Tuple , a : Optional[int] )-> Optional[int]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = load_spm(self.spm_file , self.sp_model_kwargs ) def SCREAMING_SNAKE_CASE_ ( self : int , a : str , a : Tuple = None )-> str: """simple docstring""" lowercase__ = Path(lowercase_ ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" lowercase__ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) lowercase__ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowercase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowercase_ ) elif not os.path.isfile(self.spm_file ): with open(lowercase_ , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (str(lowercase_ ), str(lowercase_ )) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: lowercase__ = sentencepiece.SentencePieceProcessor(**__lowerCamelCase ) spm.Load(str(__lowerCamelCase ) ) return spm def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Optional[int]: with open(__lowerCamelCase , 'r' ) as f: return json.load(__lowerCamelCase ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: with open(__lowerCamelCase , 'w' ) as f: json.dump(__lowerCamelCase , __lowerCamelCase , indent=2 )
351
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowercase__ = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase__ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: lowercase__ = 'relu' lowercase__ = state_dict['decoder.embed_tokens.weight'] lowercase__ = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") lowercase_ = parser.parse_args() lowercase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
269
0
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase = threading.Lock() UpperCAmelCase = None UpperCAmelCase = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } UpperCAmelCase = logging.WARNING UpperCAmelCase = True def __UpperCamelCase ( ): '''simple docstring''' __lowercase =os.getenv('TRANSFORMERS_VERBOSITY', lowercase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def __UpperCamelCase ( ): '''simple docstring''' return __name__.split('.' )[0] def __UpperCamelCase ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def __UpperCamelCase ( ): '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __lowercase =logging.StreamHandler() # Set sys.stderr as stream. __lowercase =sys.stderr.flush # Apply our default configuration to the library root logger. __lowercase =_get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __lowercase =False def __UpperCamelCase ( ): '''simple docstring''' global _default_handler with _lock: if not _default_handler: return __lowercase =_get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __lowercase =None def __UpperCamelCase ( ): '''simple docstring''' return log_levels def __UpperCamelCase ( lowercase__ : Optional[str] = None ): '''simple docstring''' if name is None: __lowercase =_get_library_name() _configure_library_root_logger() return logging.getLogger(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' return set_verbosity(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' return set_verbosity(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' return set_verbosity(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' return set_verbosity(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __UpperCamelCase ( ): '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __UpperCamelCase ( lowercase__ : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowercase__ ) def __UpperCamelCase ( lowercase__ : logging.Handler ): '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' _configure_library_root_logger() __lowercase =False def __UpperCamelCase ( ): '''simple docstring''' _configure_library_root_logger() __lowercase =True def __UpperCamelCase ( ): '''simple docstring''' __lowercase =_get_library_root_logger().handlers for handler in handlers: __lowercase =logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' __lowercase =_get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowercase__ ) def __UpperCamelCase ( self : Optional[int], *lowercase__ : int, **lowercase__ : str ): '''simple docstring''' __lowercase =os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS', lowercase__ ) if no_advisory_warnings: return self.warning(*lowercase__, **lowercase__ ) UpperCAmelCase = warning_advice @functools.lru_cache(lowercase__ ) def __UpperCamelCase ( self : Union[str, Any], *lowercase__ : Optional[Any], **lowercase__ : Optional[int] ): '''simple docstring''' self.warning(*lowercase__, **lowercase__ ) UpperCAmelCase = warning_once class lowerCAmelCase : def __init__( self : List[Any] , *__lowercase : str , **__lowercase : Optional[Any] ): # pylint: disable=unused-argument """simple docstring""" __lowercase =args[0] if args else None def __iter__( self : str ): """simple docstring""" return iter(self._iterator ) def __getattr__( self : str , __lowercase : Dict ): """simple docstring""" def empty_fn(*__lowercase : Any , **__lowercase : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ): """simple docstring""" return self def __exit__( self : List[Any] , __lowercase : Union[str, Any] , __lowercase : Any , __lowercase : List[Any] ): """simple docstring""" return class lowerCAmelCase : def __call__( self : Tuple , *__lowercase : int , **__lowercase : Union[str, Any] ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*__lowercase , **__lowercase ) else: return EmptyTqdm(*__lowercase , **__lowercase ) def snake_case ( self : Tuple , *__lowercase : Tuple , **__lowercase : Dict ): """simple docstring""" __lowercase =None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowercase , **__lowercase ) def snake_case ( self : int ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase = _tqdm_cls() def __UpperCamelCase ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def __UpperCamelCase ( ): '''simple docstring''' global _tqdm_active __lowercase =True hf_hub_utils.enable_progress_bars() def __UpperCamelCase ( ): '''simple docstring''' global _tqdm_active __lowercase =False hf_hub_utils.disable_progress_bars()
141
'''simple docstring''' def __UpperCamelCase ( lowercase__ : Union[str, Any]=2_81_23 ): '''simple docstring''' __lowercase =[1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __lowercase =set() __lowercase =0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
141
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , __lowerCAmelCase , ) -> Optional[Any]: lowercase__ : List[str] = parent lowercase__ : List[Any] = 13 lowercase__ : Union[str, Any] = 7 lowercase__ : Dict = True lowercase__ : Dict = True lowercase__ : str = True lowercase__ : str = 99 lowercase__ : Optional[int] = 32 lowercase__ : str = 2 lowercase__ : str = 4 lowercase__ : Any = 37 lowercase__ : Any = '''gelu''' lowercase__ : List[Any] = 0.1 lowercase__ : str = 0.1 lowercase__ : Union[str, Any] = 512 lowercase__ : Any = 16 lowercase__ : Tuple = 2 lowercase__ : List[str] = 0.0_2 lowercase__ : str = 3 lowercase__ : str = 4 lowercase__ : str = None def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : Dict = None lowercase__ : Any = None lowercase__ : str = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Optional[int] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase( self ) -> int: ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : int = self.prepare_config_and_inputs() lowercase__ : List[Any] = True lowercase__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: lowercase__ : Optional[int] = TFEsmModel(config=__lowerCAmelCase ) lowercase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ : List[Any] = model(__lowerCAmelCase ) lowercase__ : List[str] = [input_ids, input_mask] lowercase__ : str = model(__lowerCAmelCase ) lowercase__ : List[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Union[str, Any]: lowercase__ : List[Any] = True lowercase__ : Union[str, Any] = TFEsmModel(config=__lowerCAmelCase ) lowercase__ : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } lowercase__ : Dict = model(__lowerCAmelCase ) lowercase__ : int = [input_ids, input_mask] lowercase__ : Tuple = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed lowercase__ : Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : List[str] = TFEsmForMaskedLM(config=__lowerCAmelCase ) lowercase__ : int = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: lowercase__ : Tuple = self.num_labels lowercase__ : Any = TFEsmForTokenClassification(config=__lowerCAmelCase ) lowercase__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} lowercase__ : str = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase( self ) -> int: lowercase__ : List[str] = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Any = config_and_inputs lowercase__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : str = TFEsmModelTester(self ) lowercase__ : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def _lowerCAmelCase( self ) -> Dict: self.config_tester.run_common_tests() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> int: lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def _lowerCAmelCase( self ) -> int: lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def _lowerCAmelCase( self ) -> Tuple: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : int = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def _lowerCAmelCase( self ) -> Union[str, Any]: pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def _lowerCAmelCase( self ) -> str: pass def _lowerCAmelCase( self ) -> List[Any]: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Any = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase__ : int = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: lowercase__ : Any = model.get_output_embeddings() assert x is None lowercase__ : Optional[int] = model.get_bias() assert name is None @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase( self ) -> Dict: lowercase__ : Any = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowercase__ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__ : Optional[Any] = model(__lowerCAmelCase )[0] lowercase__ : List[Any] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. lowercase__ : Union[str, Any] = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def _lowerCAmelCase( self ) -> str: lowercase__ : Any = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) lowercase__ : Optional[Any] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase__ : Optional[Any] = model(__lowerCAmelCase )[0] # compare the actual values for a slice. lowercase__ : int = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
214
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , UpperCAmelCase ) lowercase__ : List[Any] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__ : str = dataset_size < in_memory_max_size else: lowercase__ : Optional[int] = False lowercase__ : Optional[Any] = is_small_dataset(UpperCAmelCase ) assert result == expected
214
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowercase (snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowercase (snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[Any]=True ) -> List[str]: '''simple docstring''' model.train() lowerCAmelCase = model(snake_case__ ) lowerCAmelCase = F.mse_loss(snake_case__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case__ ) def lowercase (snake_case__ : int , snake_case__ : Optional[int]=False ) -> int: '''simple docstring''' set_seed(42 ) lowerCAmelCase = RegressionModel() lowerCAmelCase = deepcopy(snake_case__ ) lowerCAmelCase = RegressionDataset(length=80 ) lowerCAmelCase = DataLoader(snake_case__ , batch_size=16 ) model.to(accelerator.device ) if sched: lowerCAmelCase = AdamW(params=model.parameters() , lr=1e-3 ) lowerCAmelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) lowerCAmelCase = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.65 ) lowerCAmelCase = LambdaLR(snake_case__ , lr_lambda=lambda snake_case__ : epoch**0.65 ) # Make a copy of `model` if sched: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = accelerator.prepare(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase , lowerCAmelCase = accelerator.prepare(snake_case__ , snake_case__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowercase (snake_case__ : Any ) -> int: '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_training_setup(snake_case__ ) # Use a single batch lowerCAmelCase , lowerCAmelCase = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowerCAmelCase = ddp_input[torch.randperm(len(snake_case__ ) )] def lowercase (snake_case__ : Optional[int] ) -> Any: '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_training_setup(snake_case__ ) # Use a single batch lowerCAmelCase , lowerCAmelCase = next(iter(snake_case__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) else: # Sync grads step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowerCAmelCase = ddp_input[torch.randperm(len(snake_case__ ) )] def lowercase (snake_case__ : List[str]=False , snake_case__ : List[str]=False ) -> Any: '''simple docstring''' lowerCAmelCase = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_training_setup(snake_case__ ) for iteration, batch in enumerate(snake_case__ ): lowerCAmelCase , lowerCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) lowerCAmelCase = ddp_input[torch.randperm(len(snake_case__ ) )] GradientState._reset_state() def lowercase (snake_case__ : List[Any]=False , snake_case__ : int=False ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = Accelerator( split_batches=snake_case__ , dispatch_batches=snake_case__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = get_training_setup(snake_case__ , snake_case__ ) for iteration, batch in enumerate(snake_case__ ): lowerCAmelCase , lowerCAmelCase = batch.values() # Gather the distributed inputs and targs for the base model lowerCAmelCase , lowerCAmelCase = accelerator.gather((ddp_input, ddp_target) ) lowerCAmelCase , lowerCAmelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case__ ): step_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' lowerCAmelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case__ )) if accelerator.num_processes > 1: check_model_parameters(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def lowercase () -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = Accelerator() lowerCAmelCase = RegressionDataset(length=80 ) lowerCAmelCase = DataLoader(snake_case__ , batch_size=16 ) lowerCAmelCase = RegressionDataset(length=96 ) lowerCAmelCase = DataLoader(snake_case__ , batch_size=16 ) lowerCAmelCase , lowerCAmelCase = accelerator.prepare(snake_case__ , snake_case__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if iteration < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case__ ) if batch_num < len(snake_case__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowercase () -> Dict: '''simple docstring''' lowerCAmelCase = Accelerator() lowerCAmelCase = accelerator.state if state.local_process_index == 0: print("""**Test `accumulate` gradient accumulation with dataloader break**""" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("""**Test NOOP `no_sync` context manager**""" ) test_noop_sync(snake_case__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("""**Test Distributed `no_sync` context manager**""" ) test_distributed_sync(snake_case__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(snake_case__ , snake_case__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( """**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case__ , snake_case__ ) def lowercase (snake_case__ : Dict ) -> int: '''simple docstring''' main() if __name__ == "__main__": main()
155
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = CLIPTokenizer _a = CLIPTokenizerFast _a = True _a = {} _a = False def __lowercase ( self : Tuple ): super().setUp() # fmt: off lowerCAmelCase = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on lowerCAmelCase = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) lowerCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] lowerCAmelCase = {"""unk_token""": """<unk>"""} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase ) ) def __lowercase ( self : Optional[Any] , **lowerCAmelCase : str ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __lowercase ( self : Any , **lowerCAmelCase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : Dict ): lowerCAmelCase = """lower newer""" lowerCAmelCase = """lower newer""" return input_text, output_text def __lowercase ( self : int ): lowerCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase = """lower newer""" lowerCAmelCase = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = tokens + [tokenizer.unk_token] lowerCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) @require_ftfy def __lowercase ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) lowerCAmelCase = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase = """xa\u0303y""" + """ """ + """x\xe3y""" lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase = tokenizer_s.tokenize(lowerCAmelCase ) lowerCAmelCase = tokenizer_r.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : Any ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase = f'''{text_of_1_token} {text_of_1_token}''' lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , ) lowerCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase ) + 1, len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) lowerCAmelCase = f''' {text}''' lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , use_fast=lowerCAmelCase , ) lowerCAmelCase = tokenizer_r(lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase ) + 1, 1 + len(lowerCAmelCase ) + 1 + len(lowerCAmelCase )) , ) def __lowercase ( self : Dict ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def __lowercase ( self : Optional[int] ): super().test_tokenization_python_rust_equals() def __lowercase ( self : Optional[int] ): # CLIP always lower cases letters pass
155
1
"""simple docstring""" def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : int = len(UpperCamelCase_ ) _lowerCAmelCase : int = len(UpperCamelCase_ ) _lowerCAmelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCAmelCase : list = [] for char_count in range(UpperCamelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCamelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
362
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowerCamelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __snake_case : lowerCAmelCase__ = field( default=_a , metadata={"help": "Model type selected in the list: " + ", ".join(_a )} ) lowerCAmelCase__ = field( default=_a , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) lowerCAmelCase__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase__ = field( default=1_2_8 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) lowerCAmelCase__ = field( default=6_4 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) lowerCAmelCase__ = field( default=3_0 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) lowerCAmelCase__ = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCAmelCase__ = field( default=_a , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) lowerCAmelCase__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase__ = field( default=2_0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) lowerCAmelCase__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) lowerCAmelCase__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class __snake_case (_a ): lowerCAmelCase__ = "train" lowerCAmelCase__ = "dev" class __snake_case (_a ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Tuple , _UpperCAmelCase : SquadDataTrainingArguments , _UpperCAmelCase : PreTrainedTokenizer , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Union[str, Split] = Split.train , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = "pt" , ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : Optional[Any] = args _lowerCAmelCase : Union[str, Any] = is_language_sensitive _lowerCAmelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: _lowerCAmelCase : List[str] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase : List[str] = mode # Load data features from cache or dataset file _lowerCAmelCase : List[Any] = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase : Any = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : Union[str, Any] = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : Any = torch.load(_UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase : List[str] = self.old_features["""features"""] _lowerCAmelCase : List[Any] = self.old_features.get("""dataset""" , _UpperCAmelCase ) _lowerCAmelCase : int = self.old_features.get("""examples""" , _UpperCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase : Optional[Any] = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase : Optional[Any] = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase : List[str] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_UpperCAmelCase , ) _lowerCAmelCase : List[str] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Any , _UpperCAmelCase : Dict ) -> Dict[str, torch.Tensor]: '''simple docstring''' _lowerCAmelCase : str = self.features[i] _lowerCAmelCase : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase : Tuple = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase : int = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase : Optional[int] = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase : Tuple = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
159
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'sail/poolformer_s12': 'https://huggingface.co/sail/poolformer_s12/resolve/main/config.json', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = "poolformer" def __init__( self , __A=3 , __A=16 , __A=16 , __A=3 , __A=4.0 , __A=[2, 2, 6, 2] , __A=[64, 128, 320, 512] , __A=[7, 3, 3, 3] , __A=[4, 2, 2, 2] , __A=[2, 1, 1, 1] , __A=4 , __A=0.0 , __A="gelu" , __A=True , __A=1E-5 , __A=0.0_2 , **__A , ) -> Optional[Any]: lowerCAmelCase_ :Tuple = num_channels lowerCAmelCase_ :Tuple = patch_size lowerCAmelCase_ :Tuple = stride lowerCAmelCase_ :Optional[int] = padding lowerCAmelCase_ :int = pool_size lowerCAmelCase_ :List[str] = hidden_sizes lowerCAmelCase_ :str = mlp_ratio lowerCAmelCase_ :Optional[int] = depths lowerCAmelCase_ :str = patch_sizes lowerCAmelCase_ :Optional[int] = strides lowerCAmelCase_ :Optional[int] = num_encoder_blocks lowerCAmelCase_ :Dict = drop_path_rate lowerCAmelCase_ :int = hidden_act lowerCAmelCase_ :Optional[int] = use_layer_scale lowerCAmelCase_ :Tuple = layer_scale_init_value lowerCAmelCase_ :List[Any] = initializer_range super().__init__(**__A ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Dict = version.parse("1.11" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 2E-3
84
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "bert-generation" def __init__( self , __A=5_0358 , __A=1024 , __A=24 , __A=16 , __A=4096 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.0_2 , __A=1E-12 , __A=0 , __A=2 , __A=1 , __A="absolute" , __A=True , **__A , ) -> Tuple: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) lowerCAmelCase_ :Any = vocab_size lowerCAmelCase_ :List[Any] = hidden_size lowerCAmelCase_ :Optional[int] = num_hidden_layers lowerCAmelCase_ :int = num_attention_heads lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Optional[Any] = intermediate_size lowerCAmelCase_ :List[Any] = hidden_dropout_prob lowerCAmelCase_ :int = attention_probs_dropout_prob lowerCAmelCase_ :Tuple = max_position_embeddings lowerCAmelCase_ :List[str] = initializer_range lowerCAmelCase_ :Union[str, Any] = layer_norm_eps lowerCAmelCase_ :List[str] = position_embedding_type lowerCAmelCase_ :Optional[int] = use_cache
84
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Any = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowercase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowercase__ : Dict = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowercase__ : Any = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( __snake_case : Any ) -> Optional[Any]: __A : Dict = (images / 2 + 0.5).clamp(0 , 1 ) __A : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __A : Dict = numpy_to_pil(__snake_case ) return images def _lowerCAmelCase ( __snake_case : List[Any] ) -> Optional[Any]: if images.ndim == 3: __A : List[Any] = images[None, ...] __A : List[str] = (images * 2_55).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __A : str = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __A : str = [Image.fromarray(__snake_case ) for image in images] return pil_images
190
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[Any] = '''marian''' SCREAMING_SNAKE_CASE_ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE_ : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self ,SCREAMING_SNAKE_CASE__=5_81_01 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=10_24 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=10_24 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=5_81_00 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=5_81_00 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE :Tuple = decoder_vocab_size or vocab_size __SCREAMING_SNAKE_CASE :Tuple = max_position_embeddings __SCREAMING_SNAKE_CASE :List[str] = d_model __SCREAMING_SNAKE_CASE :Optional[Any] = encoder_ffn_dim __SCREAMING_SNAKE_CASE :List[Any] = encoder_layers __SCREAMING_SNAKE_CASE :Union[str, Any] = encoder_attention_heads __SCREAMING_SNAKE_CASE :List[Any] = decoder_ffn_dim __SCREAMING_SNAKE_CASE :List[Any] = decoder_layers __SCREAMING_SNAKE_CASE :Optional[int] = decoder_attention_heads __SCREAMING_SNAKE_CASE :Dict = dropout __SCREAMING_SNAKE_CASE :Dict = attention_dropout __SCREAMING_SNAKE_CASE :Optional[Any] = activation_dropout __SCREAMING_SNAKE_CASE :Any = activation_function __SCREAMING_SNAKE_CASE :List[Any] = init_std __SCREAMING_SNAKE_CASE :List[str] = encoder_layerdrop __SCREAMING_SNAKE_CASE :Optional[Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE :Tuple = use_cache __SCREAMING_SNAKE_CASE :Dict = encoder_layers __SCREAMING_SNAKE_CASE :int = scale_embedding # scale factor will be sqrt(d_model) if True __SCREAMING_SNAKE_CASE :Dict = share_encoder_decoder_embeddings super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,is_encoder_decoder=SCREAMING_SNAKE_CASE__ ,decoder_start_token_id=SCREAMING_SNAKE_CASE__ ,forced_eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,) class _SCREAMING_SNAKE_CASE( A ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE :Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE :Optional[Any] = {0: '''batch'''} __SCREAMING_SNAKE_CASE :Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE :List[str] = {0: '''batch''', 1: '''decoder_sequence'''} __SCREAMING_SNAKE_CASE :List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __SCREAMING_SNAKE_CASE :int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} __SCREAMING_SNAKE_CASE :Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __SCREAMING_SNAKE_CASE :Union[str, Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE :Tuple = super().outputs else: __SCREAMING_SNAKE_CASE :Optional[Any] = super(SCREAMING_SNAKE_CASE__ ,self ).outputs if self.use_past: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Union[str, Any] = self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE :Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} __SCREAMING_SNAKE_CASE :str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) # Generate decoder inputs __SCREAMING_SNAKE_CASE :Optional[Any] = seq_length if not self.use_past else 1 __SCREAMING_SNAKE_CASE :List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __SCREAMING_SNAKE_CASE :int = dict(**SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = common_inputs['''input_ids'''].shape __SCREAMING_SNAKE_CASE :Union[str, Any] = common_inputs['''decoder_input_ids'''].shape[1] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :int = self.num_attention_heads __SCREAMING_SNAKE_CASE :int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE :List[str] = decoder_seq_length + 3 __SCREAMING_SNAKE_CASE :str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __SCREAMING_SNAKE_CASE :Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )] ,dim=1 ) __SCREAMING_SNAKE_CASE :Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :str = self.num_layers __SCREAMING_SNAKE_CASE :Optional[int] = min(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = max(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) - min_num_layers __SCREAMING_SNAKE_CASE :List[str] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), ) ) # TODO: test this. __SCREAMING_SNAKE_CASE :List[str] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) ) return common_inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE :List[Any] = seqlen + 2 __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Tuple = self.num_layers __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :List[str] = self.num_attention_heads __SCREAMING_SNAKE_CASE :str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __SCREAMING_SNAKE_CASE :Tuple = common_inputs['''attention_mask'''].dtype __SCREAMING_SNAKE_CASE :int = torch.cat( [common_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,dtype=SCREAMING_SNAKE_CASE__ )] ,dim=1 ) __SCREAMING_SNAKE_CASE :Dict = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(SCREAMING_SNAKE_CASE__ ) ] return common_inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __SCREAMING_SNAKE_CASE :Tuple = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[Any] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence __SCREAMING_SNAKE_CASE :Dict = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __SCREAMING_SNAKE_CASE :Dict = dict(tokenizer(SCREAMING_SNAKE_CASE__ ,return_tensors=SCREAMING_SNAKE_CASE__ ) ) return common_inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE :Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,seq_length=SCREAMING_SNAKE_CASE__ ,is_pair=SCREAMING_SNAKE_CASE__ ,framework=SCREAMING_SNAKE_CASE__ ) else: __SCREAMING_SNAKE_CASE :Any = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE__ ,batch_size=SCREAMING_SNAKE_CASE__ ,seq_length=SCREAMING_SNAKE_CASE__ ,is_pair=SCREAMING_SNAKE_CASE__ ,framework=SCREAMING_SNAKE_CASE__ ) return common_inputs def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __SCREAMING_SNAKE_CASE :List[str] = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) else: __SCREAMING_SNAKE_CASE :Dict = super(SCREAMING_SNAKE_CASE__ ,self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) @property def _UpperCamelCase ( self ) -> float: """simple docstring""" return 1E-4
191
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Any = '''xmod''' def __init__( self ,SCREAMING_SNAKE_CASE__=3_05_22 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__="absolute" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=("en_XX",) ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = vocab_size __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :List[str] = num_attention_heads __SCREAMING_SNAKE_CASE :Optional[int] = hidden_act __SCREAMING_SNAKE_CASE :Tuple = intermediate_size __SCREAMING_SNAKE_CASE :Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE :str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE :str = initializer_range __SCREAMING_SNAKE_CASE :List[Any] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[Any] = position_embedding_type __SCREAMING_SNAKE_CASE :Any = use_cache __SCREAMING_SNAKE_CASE :List[str] = classifier_dropout __SCREAMING_SNAKE_CASE :Any = pre_norm __SCREAMING_SNAKE_CASE :Dict = adapter_reduction_factor __SCREAMING_SNAKE_CASE :Dict = adapter_layer_norm __SCREAMING_SNAKE_CASE :Dict = adapter_reuse_layer_norm __SCREAMING_SNAKE_CASE :Tuple = ln_before_adapter __SCREAMING_SNAKE_CASE :Any = list(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = default_language class _SCREAMING_SNAKE_CASE( A ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE :Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
191
1
'''simple docstring''' import re import string import numpy as np import datasets _UpperCamelCase = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' _UpperCamelCase = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' _UpperCamelCase = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def __A ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) -> Any: '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: __UpperCAmelCase : List[Any] = np.array([re.sub(__UpperCAmelCase , """""" , __UpperCAmelCase ) for x in predictions] ) __UpperCAmelCase : int = np.array([re.sub(__UpperCAmelCase , """""" , __UpperCAmelCase ) for x in references] ) else: __UpperCAmelCase : str = np.asarray(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = np.asarray(__UpperCAmelCase ) if ignore_case: __UpperCAmelCase : Tuple = np.char.lower(__UpperCAmelCase ) __UpperCAmelCase : str = np.char.lower(__UpperCAmelCase ) if ignore_punctuation: __UpperCAmelCase : Union[str, Any] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) __UpperCAmelCase : Optional[Any] = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase ) __UpperCAmelCase : str = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase ) if ignore_numbers: __UpperCAmelCase : Union[str, Any] = string.digits.maketrans("""""" , """""" , string.digits ) __UpperCAmelCase : Dict = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = np.char.translate(__UpperCAmelCase , table=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = predictions == references return {"exact_match": np.mean(__UpperCAmelCase ) * 100}
368
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _A : @staticmethod def __A ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) __UpperCAmelCase : Tuple = len(__UpperCAmelCase ) self.assertGreater(__UpperCAmelCase , 0 ) self.assertEqual( __UpperCAmelCase , [ { """score""": ANY(__UpperCAmelCase ), """label""": ANY(__UpperCAmelCase ), """box""": {"""xmin""": ANY(__UpperCAmelCase ), """ymin""": ANY(__UpperCAmelCase ), """xmax""": ANY(__UpperCAmelCase ), """ymax""": ANY(__UpperCAmelCase )}, } for i in range(__UpperCAmelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @require_torch def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) __UpperCAmelCase : str = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) __UpperCAmelCase : Any = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass @require_torch @slow def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[int] = 0.2 __UpperCAmelCase : List[Any] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : Optional[int] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = 2 __UpperCAmelCase : Optional[int] = pipeline("""zero-shot-object-detection""" ) __UpperCAmelCase : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=__UpperCAmelCase , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
16
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _UpperCAmelCase ( __lowerCamelCase : List[str] ) -> Optional[int]: if not is_accelerate_available(): return method _snake_case = version.parse(accelerate.__version__ ).base_version if version.parse(__lowerCamelCase ) < version.parse('''0.17.0''' ): return method def wrapper(self : Tuple , *__lowerCamelCase : Dict , **__lowerCamelCase : List[str] ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *__lowerCamelCase , **__lowerCamelCase ) return wrapper
288
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig UpperCAmelCase__ = logging.getLogger(__name__) class lowerCAmelCase__ ( A_ ): __a = """masked_bert""" def __init__( self : Union[str, Any] , _lowerCamelCase : Any=30522 , _lowerCamelCase : Union[str, Any]=768 , _lowerCamelCase : Tuple=12 , _lowerCamelCase : Any=12 , _lowerCamelCase : str=3072 , _lowerCamelCase : str="gelu" , _lowerCamelCase : int=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Dict=512 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : int=0.0_2 , _lowerCamelCase : Union[str, Any]=1e-12 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : List[str]="topK" , _lowerCamelCase : Optional[Any]="constant" , _lowerCamelCase : Optional[Any]=0.0 , **_lowerCamelCase : str , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = pruning_method _snake_case = mask_init _snake_case = mask_scale
288
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Optional[int]: a_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/")) a_ = self.transformer_dir shutil.copy( os.path.join(__UpperCAmelCase , "src/transformers/models/bert/modeling_bert.py") , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py") , ) def UpperCAmelCase__ ( self) ->int: a_ = "src/transformers" shutil.rmtree(self.transformer_dir) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Dict: a_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: a_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19) a_ = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase) a_ = os.path.join(self.transformer_dir , "new_code.py") with open(__UpperCAmelCase , "w" , newline="\n") as f: f.write(__UpperCAmelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCAmelCase)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCAmelCase) with open(__UpperCAmelCase , "r") as f: self.assertTrue(f.read() , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __UpperCAmelCase) , ) # Copy consistency with a really long name a_ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("Bert" , __UpperCAmelCase , __UpperCAmelCase) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __UpperCAmelCase , overwrite_result=re.sub("Bert" , "TestModel" , __UpperCAmelCase) , ) def UpperCAmelCase__ ( self) ->int: a_ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) self.assertFalse(__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__UpperCAmelCase) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(__UpperCAmelCase , __UpperCAmelCase)
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
1
import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A_ ( _UpperCAmelCase ): return 1.0 / (1.0 + np.exp(-_outputs )) def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = np.max(_outputs , axis=-1 , keepdims=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_UpperCAmelCase ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[Any] = '''sigmoid''' _UpperCAmelCase : str = '''softmax''' _UpperCAmelCase : List[Any] = '''none''' @add_end_docstrings( UpperCAmelCase_ , r''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Tuple = ClassificationFunction.NONE def __init__( self : Union[str, Any] , **lowerCAmelCase__ : int): super().__init__(**lowerCAmelCase__) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]="" , **lowerCAmelCase__ : Union[str, Any]): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" SCREAMING_SNAKE_CASE_: int = tokenizer_kwargs SCREAMING_SNAKE_CASE_: Dict = {} if hasattr(self.model.config , "return_all_scores") and return_all_scores is None: SCREAMING_SNAKE_CASE_: List[str] = self.model.config.return_all_scores if isinstance(lowerCAmelCase__ , lowerCAmelCase__) or top_k is None: SCREAMING_SNAKE_CASE_: Any = top_k SCREAMING_SNAKE_CASE_: Union[str, Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , lowerCAmelCase__ , ) if return_all_scores: SCREAMING_SNAKE_CASE_: int = None else: SCREAMING_SNAKE_CASE_: str = 1 if isinstance(lowerCAmelCase__ , lowerCAmelCase__): SCREAMING_SNAKE_CASE_: List[str] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: SCREAMING_SNAKE_CASE_: List[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : int , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = super().__call__(*lowerCAmelCase__ , **lowerCAmelCase__) # TODO try and retrieve it in a nicer way from _sanitize_parameters. SCREAMING_SNAKE_CASE_: Tuple = "top_k" not in kwargs if isinstance(args[0] , lowerCAmelCase__) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = self.framework if isinstance(lowerCAmelCase__ , lowerCAmelCase__): return self.tokenizer(**lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1 and isinstance(inputs[0] , lowerCAmelCase__) and len(inputs[0]) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.") return self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : List[Any]): return self.model(**lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Optional[Any]=True): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: SCREAMING_SNAKE_CASE_: List[Any] = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: SCREAMING_SNAKE_CASE_: Optional[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply") and function_to_apply is None: SCREAMING_SNAKE_CASE_: Tuple = self.model.config.function_to_apply else: SCREAMING_SNAKE_CASE_: List[str] = ClassificationFunction.NONE SCREAMING_SNAKE_CASE_: List[Any] = model_outputs["logits"][0] SCREAMING_SNAKE_CASE_: Optional[int] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: SCREAMING_SNAKE_CASE_: List[str] = sigmoid(lowerCAmelCase__) elif function_to_apply == ClassificationFunction.SOFTMAX: SCREAMING_SNAKE_CASE_: Tuple = softmax(lowerCAmelCase__) elif function_to_apply == ClassificationFunction.NONE: SCREAMING_SNAKE_CASE_: List[str] = outputs else: raise ValueError(F"Unrecognized `function_to_apply` argument: {function_to_apply}") if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} SCREAMING_SNAKE_CASE_: Dict = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(lowerCAmelCase__) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase__: x["score"] , reverse=lowerCAmelCase__) if top_k is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] = dict_scores[:top_k] return dict_scores
13
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : int =9 A__ : int =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A__ : Optional[Any] =kruskal(__snake_case, __snake_case ) A__ : List[str] =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
134
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
85
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _lowercase ( __a ): """simple docstring""" lowercase__ = '''facebook/bart-large-mnli''' lowercase__ = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowercase__ = '''text_classifier''' lowercase__ = AutoTokenizer lowercase__ = AutoModelForSequenceClassification lowercase__ = ['''text''', ['''text''']] lowercase__ = ['''text'''] def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' super().setup() __UpperCamelCase =self.model.config __UpperCamelCase =-1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): __UpperCamelCase =int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any ) -> Any: '''simple docstring''' __UpperCamelCase =labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Any ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =outputs.logits __UpperCamelCase =torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
85
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) __lowerCAmelCase : Dict = getLogger(__name__) def a__ ( A_, A_, A_, A_ = 8, A_ = 1024, A_="val", A_=None, A_=False, A_="summarization", A_=None, A_=1, A_ = None, A_="", **A_, ): '''simple docstring''' __magic_name__ = str(A_ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""", rank=A_ ) __magic_name__ = Path(A_ ) __magic_name__ = save_dir.joinpath(f'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(A_ ) __magic_name__ = AutoModelForSeqaSeqLM.from_pretrained(A_ ).cuda() if fpaa: __magic_name__ = model.half() # determine if we need to increase num_beams use_task_specific_params(A_, A_ ) # update config with task specific params __magic_name__ = generate_kwargs.pop("""num_beams""", model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __magic_name__ = num_return_sequences __magic_name__ = AutoTokenizer.from_pretrained(A_ ) logger.info(f'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: __magic_name__ = tokenizer.model_max_length if prefix is None: __magic_name__ = prefix or getattr(model.config, """prefix""", """""" ) or '' __magic_name__ = SeqaSeqDataset( A_, A_, A_, max_target_length=1024, type_path=A_, n_obs=A_, prefix=A_, **A_, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __magic_name__ = ds.make_sortish_sampler(A_, distributed=A_, add_extra_examples=A_, shuffle=A_ ) __magic_name__ = DataLoader(A_, sampler=A_, batch_size=A_, collate_fn=ds.collate_fn ) __magic_name__ = [] for batch in tqdm(A_ ): __magic_name__ = model.generate( input_ids=batch["""input_ids"""].to(model.device ), attention_mask=batch["""attention_mask"""].to(model.device ), num_return_sequences=A_, num_beams=A_, **A_, ) __magic_name__ = tokenizer.batch_decode(A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ ) __magic_name__ = batch['ids'] if num_return_sequences > 1: __magic_name__ = chunks(A_, A_ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(A_ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(A_, A_ ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""", type=A_, help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""", type=A_, help="""like facebook/bart-large-cnn,t5-base, etc.""", default="""sshleifer/distilbart-xsum-12-3""", ) parser.add_argument("""--save_dir""", type=A_, help="""where to save""", default="""tmp_gen""" ) parser.add_argument("""--max_source_length""", type=A_, default=A_ ) parser.add_argument( """--type_path""", type=A_, default="""test""", help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""", type=A_, default="""summarization""", help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""", type=A_, default=8, required=A_, help="""batch size""" ) parser.add_argument( """--local_rank""", type=A_, default=-1, required=A_, help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""", type=A_, default=A_, required=A_, help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""", type=A_, default=1, required=A_, help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""", type=A_, default=600, required=A_, help="""How long should master process wait for other processes to finish.""", ) parser.add_argument("""--src_lang""", type=A_, default=A_, required=A_ ) parser.add_argument("""--tgt_lang""", type=A_, default=A_, required=A_ ) parser.add_argument( """--prefix""", type=A_, required=A_, default=A_, help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""", action="""store_true""" ) parser.add_argument("""--debug""", action="""store_true""" ) __magic_name__ = time.time() __magic_name__ = parser.parse_known_args() __magic_name__ = parse_numeric_n_bool_cl_kwargs(A_ ) if generate_kwargs and args.local_rank <= 0: print(f'''parsed the following generate kwargs: {generate_kwargs}''' ) __magic_name__ = Path(args.save_dir + """_tmp""" ) Path(A_ ).mkdir(exist_ok=A_ ) # this handles locking. __magic_name__ = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __magic_name__ = {} if args.src_lang is not None: __magic_name__ = args.src_lang if args.tgt_lang is not None: __magic_name__ = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=A_ ) __magic_name__ = eval_data_dir( args.data_dir, A_, args.model_name, type_path=args.type_path, bs=args.bs, fpaa=args.fpaa, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=A_, **A_, ) if args.local_rank <= 0: __magic_name__ = Path(args.save_dir ) save_dir.mkdir(exist_ok=A_ ) __magic_name__ = gather_results_from_each_node(A_, A_, args.sync_timeout ) __magic_name__ = combine_partial_results(A_ ) if args.num_return_sequences > 1: __magic_name__ = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(A_, A_ ) return __magic_name__ = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(A_ ) as f: __magic_name__ = [x.rstrip() for x in f.readlines()][: len(A_ )] # Calculate metrics, save metrics, and save _generations.txt __magic_name__ = 'translation' in args.task __magic_name__ = calculate_bleu if calc_bleu else calculate_rouge __magic_name__ = 'bleu' if calc_bleu else 'rouge' __magic_name__ = score_fn(A_, A_ ) __magic_name__ = len(A_ ) __magic_name__ = time.time() - start_time __magic_name__ = round(runtime / metrics["""n_obs"""], 4 ) __magic_name__ = num_replicas # TODO(@stas00): add whatever metadata to metrics __magic_name__ = save_dir.joinpath(f'''{args.type_path}_{metric_name}.json''' ) save_json(A_, A_, indent=A_ ) print(A_ ) write_txt_file(A_, save_dir.joinpath(f'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(A_, save_dir.joinpath(f'''{args.type_path}.target''' ) ) else: shutil.rmtree(A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] for partial_result in partial_results: records.extend(A_ ) __magic_name__ = sorted(A_, key=lambda A_ : x["id"] ) __magic_name__ = [x['pred'] for x in records] return preds def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = time.time() logger.info("""waiting for all nodes to finish""" ) __magic_name__ = None while (time.time() - start_wait) < timeout: __magic_name__ = list(save_dir.glob("""rank_*.json""" ) ) if len(A_ ) < num_replicas: continue try: # make sure all json files are fully saved __magic_name__ = lmap(A_, A_ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
88
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str=1_3 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=False , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=9_9 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=3_2 , UpperCAmelCase : int=5 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=5_1_2 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict="last" , UpperCAmelCase : int=True , UpperCAmelCase : Dict=None , UpperCAmelCase : Union[str, Any]=0 , ) -> Dict: __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Tuple = seq_length __lowerCAmelCase: Tuple = is_training __lowerCAmelCase: Optional[Any] = use_input_lengths __lowerCAmelCase: List[str] = use_token_type_ids __lowerCAmelCase: Dict = use_labels __lowerCAmelCase: int = gelu_activation __lowerCAmelCase: Optional[int] = sinusoidal_embeddings __lowerCAmelCase: Tuple = causal __lowerCAmelCase: Optional[Any] = asm __lowerCAmelCase: int = n_langs __lowerCAmelCase: Tuple = vocab_size __lowerCAmelCase: List[Any] = n_special __lowerCAmelCase: List[Any] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: int = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Dict = max_position_embeddings __lowerCAmelCase: List[str] = type_sequence_label_size __lowerCAmelCase: str = initializer_range __lowerCAmelCase: List[str] = num_labels __lowerCAmelCase: List[str] = num_choices __lowerCAmelCase: Optional[int] = summary_type __lowerCAmelCase: Any = use_proj __lowerCAmelCase: Optional[Any] = scope __lowerCAmelCase: Dict = bos_token_id def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: str = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Any = None if self.use_input_lengths: __lowerCAmelCase: Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase: str = None if self.use_token_type_ids: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowerCAmelCase: int = None __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Optional[int] = None if self.use_labels: __lowerCAmelCase: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase: Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __lowerCAmelCase: str = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase: Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCAmelCase ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str] , ) -> Optional[int]: __lowerCAmelCase: List[str] = XLMModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Any = model(UpperCAmelCase , lengths=UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , langs=UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , ) -> int: __lowerCAmelCase: str = XLMWithLMHeadModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: __lowerCAmelCase: Dict = XLMForQuestionAnsweringSimple(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: str = model(UpperCAmelCase ) __lowerCAmelCase: List[str] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ) -> Tuple: __lowerCAmelCase: Union[str, Any] = XLMForQuestionAnswering(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[str] = model(UpperCAmelCase ) __lowerCAmelCase: Union[str, Any] = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , p_mask=UpperCAmelCase , ) __lowerCAmelCase: Any = model( UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , cls_index=UpperCAmelCase , is_impossible=UpperCAmelCase , ) ((__lowerCAmelCase) , ): List[str] = result_with_labels.to_tuple() __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase ) ((__lowerCAmelCase) , ): List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , ) -> List[Any]: __lowerCAmelCase: Optional[Any] = XLMForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = model(UpperCAmelCase ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: Tuple = XLMForTokenClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: Optional[int] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = self.num_choices __lowerCAmelCase: Optional[Any] = XLMForMultipleChoice(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCAmelCase: List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase: Any = model( UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self : Tuple ) -> int: __lowerCAmelCase: Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = config_and_inputs __lowerCAmelCase: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A_ ( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) _lowercase : Any = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _lowercase : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : str ) -> int: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False ) -> Dict: __lowerCAmelCase: Optional[Any] = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowerCAmelCase: str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase ) return inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> int: __lowerCAmelCase: int = XLMModelTester(self ) __lowerCAmelCase: Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , emb_dim=3_7 ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*UpperCAmelCase ) def UpperCAmelCase ( self : List[Any] ) -> int: __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*UpperCAmelCase ) def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*UpperCAmelCase ) def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Dict=1 ) -> Dict: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_attentions in attentions] , [True] * len(UpperCAmelCase ) ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: int = min_length + idx + 1 __lowerCAmelCase: Union[str, Any] = min_length + idx + 1 __lowerCAmelCase: Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(UpperCAmelCase ) ) def UpperCAmelCase ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=1 ) -> Union[str, Any]: self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual( [isinstance(UpperCAmelCase , UpperCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(UpperCAmelCase ) , ) self.assertEqual(len(UpperCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(UpperCAmelCase ): # adds PAD dummy token __lowerCAmelCase: Any = min_length + idx + 1 __lowerCAmelCase: str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(UpperCAmelCase ) , ) pass @slow def UpperCAmelCase ( self : int ) -> Tuple: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: List[Any] = XLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(UpperCAmelCase ) __lowerCAmelCase: Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=UpperCAmelCase ) # the president __lowerCAmelCase: Union[str, Any] = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowerCAmelCase: str = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , UpperCAmelCase )
322
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ :List[str] = logging.get_logger(__name__) A_ :Any = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A_ :Optional[Any] = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } A_ :Union[str, Any] = {'''facebook/blenderbot-3B''': 128} class __A ( a ): """simple docstring""" UpperCamelCase__ : Dict =VOCAB_FILES_NAMES UpperCamelCase__ : List[str] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] =["""input_ids""", """attention_mask"""] UpperCamelCase__ : Optional[int] =BlenderbotTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCamelCase : Any =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __UpperCamelCase : List[str] =getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __UpperCamelCase : Union[str, Any] =add_prefix_space __UpperCamelCase : int =pre_tok_class(**lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =add_prefix_space __UpperCamelCase : Dict ='post_processor' __UpperCamelCase : List[Any] =getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: __UpperCamelCase : Dict =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase : Tuple =tuple(state['sep'] ) if "cls" in state: __UpperCamelCase : List[Any] =tuple(state['cls'] ) __UpperCamelCase : List[Any] =False if state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __UpperCamelCase : Tuple =add_prefix_space __UpperCamelCase : Tuple =True if state.get('trim_offsets' , lowerCamelCase__ ) != trim_offsets: __UpperCamelCase : Dict =trim_offsets __UpperCamelCase : List[str] =True if changes_to_apply: __UpperCamelCase : str =getattr(lowerCamelCase__ , state.pop('type' ) ) __UpperCamelCase : Tuple =component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowercase ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value __UpperCamelCase : Dict =value def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =kwargs.get('is_split_into_words' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : Any =[self.sep_token_id] __UpperCamelCase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase__ ) __UpperCamelCase : int =' '.join(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =self.encode(lowerCamelCase__ ) if len(lowerCamelCase__ ) > self.model_max_length: __UpperCamelCase : List[str] =input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
350
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): A_ :Any = yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) A_ :Dict = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } A_ :str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[str] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } A_ :int = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) A_ :Tuple = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Optional[int] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) A_ :Dict = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' A_ :Optional[Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' A_ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' A_ :Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' A_ :Optional[Any] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' A_ :Tuple = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' A_ :Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' A_ :Optional[Any] = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :Dict = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' A_ :Union[str, Any] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' A_ :Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' A_ :str = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :str = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' A_ :str = '''''' A_ :Optional[int] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' A_ :Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' A_ :List[str] = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def A ( a_ ,a_ ) -> List[str]: assert ReadMe.from_string(a_ ,a_ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def A ( a_ ,a_ ) -> int: with pytest.raises(a_ ,match=re.escape(expected_error.format(path='root' ) ) ): __UpperCamelCase : List[Any] =ReadMe.from_string(a_ ,a_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ,a_ ) -> Union[str, Any]: with pytest.raises(a_ ,match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(a_ ,a_ ) @pytest.mark.parametrize( 'readme_md,' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ) -> Tuple: ReadMe.from_string(a_ ,a_ ,suppress_parsing_errors=a_ ) @pytest.mark.parametrize( 'readme_md, expected_dict' ,[ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] ,) def A ( a_ ,a_ ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Dict =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[Any] =ReadMe.from_readme(a_ ,a_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] ,) def A ( a_ ,a_ ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Any =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[int] =expected_error.format(path=a_ ) with pytest.raises(a_ ,match=re.escape(a_ ) ): __UpperCamelCase : List[str] =ReadMe.from_readme(a_ ,a_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' ,[ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ,a_ ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Optional[Any] =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) __UpperCamelCase : Optional[int] =expected_error.format(path=a_ ) with pytest.raises(a_ ,match=re.escape(a_ ) ): ReadMe.from_readme(a_ ,a_ ) @pytest.mark.parametrize( 'readme_md,' ,[ (README_MULTIPLE_SAME_HEADING_1), ] ,) def A ( a_ ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase : Union[str, Any] =Path(a_ ) / 'README.md' with open(a_ ,'w+' ) as readme_file: readme_file.write(a_ ) ReadMe.from_readme(a_ ,a_ ,suppress_parsing_errors=a_ )
245
0
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = StableDiffusionControlNetImgaImgPipeline __UpperCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) __UpperCAmelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _a : Any = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) _a : int = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) _a : Any = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=_a ,set_alpha_to_one=_a ,) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) _a : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _a : int = CLIPTextModel(_a ) _a : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _a : List[str] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self : str ,_a : Optional[Any] ,_a : Union[str, Any]=0 ): '''simple docstring''' if str(_a ).startswith('mps' ): _a : Optional[Any] = torch.manual_seed(_a ) else: _a : Dict = torch.Generator(device=_a ).manual_seed(_a ) _a : str = 2 _a : Union[str, Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_a ,device=torch.device(_a ) ,) _a : Optional[Any] = floats_tensor(control_image.shape ,rng=random.Random(_a ) ).to(_a ) _a : Any = image.cpu().permute(0 ,2 ,3 ,1 )[0] _a : Dict = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) _a : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __lowercase ( self : str ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowercase ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowercase ( self : List[Any] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = StableDiffusionControlNetImgaImgPipeline __UpperCAmelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : List[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowercase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) _a : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(_a : Any ): if isinstance(_a ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _a : List[str] = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) _a : Optional[Any] = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) _a : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=_a ,set_alpha_to_one=_a ,) torch.manual_seed(0 ) _a : Tuple = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) _a : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) _a : int = CLIPTextModel(_a ) _a : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _a : Optional[int] = MultiControlNetModel([controlneta, controlneta] ) _a : List[Any] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self : Any ,_a : Optional[Any] ,_a : str=0 ): '''simple docstring''' if str(_a ).startswith('mps' ): _a : Dict = torch.manual_seed(_a ) else: _a : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) _a : Dict = 2 _a : List[str] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_a ,device=torch.device(_a ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=_a ,device=torch.device(_a ) ,), ] _a : List[Any] = floats_tensor(control_image[0].shape ,rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 ,2 ,3 ,1 )[0] _a : Any = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((64, 64) ) _a : List[Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Any = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) pipe.to(_a ) _a : str = 10.0 _a : List[str] = 4 _a : int = self.get_dummy_inputs(_a ) _a : Tuple = steps _a : Optional[int] = scale _a : Dict = pipe(**_a )[0] _a : Tuple = self.get_dummy_inputs(_a ) _a : Tuple = steps _a : Dict = scale _a : List[Any] = pipe(**_a ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] _a : Optional[Any] = self.get_dummy_inputs(_a ) _a : int = steps _a : List[str] = scale _a : Any = pipe(**_a ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] _a : Union[str, Any] = self.get_dummy_inputs(_a ) _a : List[str] = steps _a : List[Any] = scale _a : Union[str, Any] = pipe(**_a ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowercase ( self : List[str] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() ,reason='XFormers attention is only available with CUDA and `xformers` installed' ,) def __lowercase ( self : Dict ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowercase ( self : List[Any] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowercase ( self : Any ): '''simple docstring''' _a : str = self.get_dummy_components() _a : List[str] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self : Any ): '''simple docstring''' _a : Dict = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) _a : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,safety_checker=_a ,controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) _a : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) _a : str = 'evil space-punk bird' _a : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) _a : Union[str, Any] = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) _a : Any = pipe( _a ,_a ,control_image=_a ,generator=_a ,output_type='np' ,num_inference_steps=50 ,strength=0.6 ,) _a : int = output.images[0] assert image.shape == (512, 512, 3) _a : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
271
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ (__a : Optional[Any] , __a : str , __a : Optional[Any]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : str = nn.Parameter(__a ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : Any = nn.Parameter(__a ) def UpperCAmelCase_ (__a : int , __a : Optional[Any] , __a : int ): """simple docstring""" _a : Tuple = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Optional[Any] , __a : Optional[int] , __a : List[str] ): """simple docstring""" _a : Dict = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : str = np.asarray(weights[2] ) _a : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__a ).transpose(1 , 2 ).contiguous().view(-1 , __a ) , ) set_param( torch_layer.output.dense , torch.tensor(__a ).view(-1 , __a ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase_ (__a : Any , __a : Any , __a : Optional[Any] ): """simple docstring""" _a : List[str] = weights[0][0][0] _a : List[Any] = np.asarray(layer_norm_a[0] ) _a : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # lsh weights + output _a : List[str] = weights[0][1] if len(__a ) < 4: set_layer_weights_in_torch_lsh(__a , torch_block.attention , __a ) else: set_layer_weights_in_torch_local(__a , torch_block.attention , __a ) # intermediate weighs _a : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(__a ) == 4: _a : Union[str, Any] = intermediate_weights[2] # layernorm 2 _a : Any = np.asarray(intermediate_weights[0][0] ) _a : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # intermediate dense _a : Any = np.asarray(intermediate_weights[1][0] ) _a : Any = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) # intermediate out _a : Optional[int] = np.asarray(intermediate_weights[4][0] ) _a : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Dict , __a : Dict , __a : List[Any] ): """simple docstring""" _a : Optional[int] = torch_model.reformer # word embeds _a : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__a ) , ) if isinstance(weights[3] , __a ): _a : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : List[Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : Any = nn.Parameter(torch.tensor(__a ) ) _a : List[str] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __a ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : Tuple = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__a , __a , __a ) # output layer norm _a : Optional[Any] = np.asarray(weights[7][0] ) _a : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__a ) , torch.tensor(__a ) , ) # output embeddings _a : List[str] = np.asarray(weights[9][0] ) _a : int = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__a ).transpose(0 , 1 ).contiguous() , torch.tensor(__a ) , ) def UpperCAmelCase_ (__a : Tuple , __a : Optional[Any] , __a : Dict ): """simple docstring""" _a : List[Any] = ReformerConfig.from_json_file(__a ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : int = ReformerModelWithLMHead(__a ) with open(__a , 'rb' ) as f: _a : Optional[Any] = pickle.load(__a )['weights'] set_model_weights_in_torch(__a , __a , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __a ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __lowerCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
271
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case__ : str = '''Create a default config file for Accelerate with only a few flags set.''' def _lowerCamelCase ( lowerCamelCase_ : Optional[Any]="no" , lowerCamelCase_ : str = default_json_config_file , lowerCamelCase_ : bool = False ): """simple docstring""" UpperCAmelCase_ : Tuple = Path(lowerCamelCase_ ) path.parent.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCAmelCase_ : Tuple = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCAmelCase_ : Optional[int] = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase_ : Any = torch.cuda.device_count() UpperCAmelCase_ : Optional[Any] = num_gpus UpperCAmelCase_ : Tuple = False if num_gpus > 1: UpperCAmelCase_ : Tuple = 'MULTI_GPU' else: UpperCAmelCase_ : Tuple = 'NO' elif is_xpu_available() and use_xpu: UpperCAmelCase_ : Dict = torch.xpu.device_count() UpperCAmelCase_ : int = num_xpus UpperCAmelCase_ : Dict = False if num_xpus > 1: UpperCAmelCase_ : str = 'MULTI_XPU' else: UpperCAmelCase_ : Tuple = 'NO' elif is_npu_available(): UpperCAmelCase_ : Union[str, Any] = torch.npu.device_count() UpperCAmelCase_ : List[Any] = num_npus UpperCAmelCase_ : Optional[Any] = False if num_npus > 1: UpperCAmelCase_ : Any = 'MULTI_NPU' else: UpperCAmelCase_ : Any = 'NO' else: UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Tuple = 'NO' UpperCAmelCase_ : Optional[int] = ClusterConfig(**lowerCamelCase_ ) config.to_json_file(lowerCamelCase_ ) return path def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCAmelCase_ : List[str] = parser.add_parser('default' , parents=lowerCamelCase_ , help=lowerCamelCase_ , formatter_class=lowerCamelCase_ ) parser.add_argument( '--config_file' , default=lowerCamelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCamelCase_ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=lowerCamelCase_ ) return parser def _lowerCamelCase ( lowerCamelCase_ : Dict ): """simple docstring""" UpperCAmelCase_ : Dict = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
274
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _UpperCamelCase ( *snake_case_ , **snake_case_ ): '''simple docstring''' pass def _lowerCamelCase ( lowerCamelCase_ : Image ): """simple docstring""" UpperCAmelCase_ : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase_ :Optional[int] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = DepthEstimationPipeline(model=snake_case_ , image_processor=snake_case_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , snake_case_ ) import datasets UpperCAmelCase_ : Optional[int] = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) UpperCAmelCase_ : Union[str, Any] = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , snake_case_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @slow @require_torch def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Any = 'Intel/dpt-large' UpperCAmelCase_ : Dict = pipeline('depth-estimation' , model=snake_case_ ) UpperCAmelCase_ : Optional[int] = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) UpperCAmelCase_ : Union[str, Any] = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def _UpperCamelCase ( self ): '''simple docstring''' self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
274
1
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( a__ ): def __init__( self, *SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> None: warnings.warn( 'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use DeformableDetrImageProcessor instead.', SCREAMING_SNAKE_CASE_, ) super().__init__(*SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
119
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = "canine" def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1_6384, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=0XE000, SCREAMING_SNAKE_CASE_=0XE001, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1_6384, SCREAMING_SNAKE_CASE_=128, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = max_position_embeddings UpperCamelCase : Tuple = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Tuple = intermediate_size UpperCamelCase : List[str] = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Optional[int] = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Tuple = type_vocab_size UpperCamelCase : Any = layer_norm_eps # Character config: UpperCamelCase : List[Any] = downsampling_rate UpperCamelCase : Optional[int] = upsampling_kernel_size UpperCamelCase : Tuple = num_hash_functions UpperCamelCase : Union[str, Any] = num_hash_buckets UpperCamelCase : str = local_transformer_stride
119
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowercase_ = 5_0_0_0_3 lowercase_ = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = PLBartTokenizer __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = False def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = PLBartTokenizer(_a , language_codes='''base''' , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self ): __a = PLBartTokenizer(_a , language_codes='''base''' , keep_accents=_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __a = tokenizer.vocab_size __a = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 4 , _a )] self.assertListEqual(_a , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) __a = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __a = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) def __UpperCAmelCase ( self ): __a = PLBartTokenizer(_a , language_codes='''multi''' , keep_accents=_a ) __a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) __a = tokenizer.vocab_size __a = [tokenizer.convert_ids_to_tokens(_a ) for x in range(end - 7 , _a )] self.assertListEqual( _a , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) __a = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' __a = tokenizer(_a ).input_ids self.assertEqual( tokenizer.decode(_a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) , _a , ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'uclanlp/plbart-python-en_XX' __UpperCAmelCase : str = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __UpperCAmelCase : str = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __UpperCAmelCase : Optional[int] = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def __UpperCAmelCase ( cls ): __a = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) __a = 1 return cls def __UpperCAmelCase ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def __UpperCAmelCase ( self ): __a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __UpperCAmelCase ( self ): self.assertIn(_a , self.tokenizer.all_special_ids ) __a = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] __a = self.tokenizer.decode(_a , skip_special_tokens=_a ) __a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __UpperCAmelCase ( self ): __a = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , _a ) __a = 10 __a = self.tokenizer(_a , max_length=_a , truncation=_a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _a ) self.assertEqual(len(_a ) , _a ) def __UpperCAmelCase ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def __UpperCAmelCase ( self ): __a = tempfile.mkdtemp() __a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) __a = PLBartTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _a ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors='''pt''' ) __a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_a , truncation=_a , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __a = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __UpperCAmelCase ( self ): __a = self.tokenizer(self.src_text , padding=_a , truncation=_a , max_length=3 , return_tensors='''pt''' ) __a = self.tokenizer( text_target=self.tgt_text , padding=_a , truncation=_a , max_length=10 , return_tensors='''pt''' ) __a = targets['''input_ids'''] __a = shift_tokens_right(_a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __UpperCAmelCase ( self ): __a = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(_a ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
11
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: __a = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = 1 __a = FrozenDict(_a ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: __a = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _a , standard_warn=_a ) __a = dict(scheduler.config ) __a = True __a = FrozenDict(_a ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=_a , segmentation_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , safety_checker=_a , feature_extractor=_a , ) def __UpperCAmelCase ( self , _a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def __UpperCAmelCase ( self ): self.enable_attention_slicing(_a ) def __UpperCAmelCase ( self ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) __a = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self ): if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _a , _a , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): __a = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) __a = self.segmentation_model(**_a ) __a = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a = self.numpy_to_pil(_a )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_a , image=_a , mask_image=_a , height=_a , width=_a , num_inference_steps=_a , guidance_scale=_a , negative_prompt=_a , num_images_per_prompt=_a , eta=_a , generator=_a , latents=_a , output_type=_a , return_dict=_a , callback=_a , callback_steps=_a , )
11
1
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__ ( A_ , unittest.TestCase ): __a = MobileBertTokenizer __a = MobileBertTokenizerFast __a = True __a = True __a = filter_non_english __a = """google/mobilebert-uncased""" def lowercase ( self : Optional[int] ): super().setUp() _snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _snake_case = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowercase ( self : Any , _lowerCamelCase : List[str] ): _snake_case = '''UNwant\u00E9d,running''' _snake_case = '''unwanted, running''' return input_text, output_text def lowercase ( self : Any ): _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_lowerCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [9, 6, 7, 12, 10, 11] ) def lowercase ( self : Optional[Any] ): if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = '''UNwant\u00E9d,running''' _snake_case = tokenizer.tokenize(_lowerCamelCase ) _snake_case = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _snake_case = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(_lowerCamelCase ) _snake_case = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=_lowerCamelCase ) _snake_case = self.get_rust_tokenizer(do_lower_case=_lowerCamelCase ) _snake_case = '''UNwant\u00E9d,running''' _snake_case = tokenizer.tokenize(_lowerCamelCase ) _snake_case = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _snake_case = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(_lowerCamelCase ) _snake_case = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Any ): _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def lowercase ( self : int ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase ( self : Tuple ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def lowercase ( self : Optional[int] ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase ( self : Tuple ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def lowercase ( self : str ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase ( self : Optional[Any] ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase ( self : str ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase , strip_accents=_lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def lowercase ( self : Dict ): _snake_case = BasicTokenizer(do_lower_case=_lowerCamelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def lowercase ( self : Dict ): _snake_case = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _snake_case = {} for i, token in enumerate(_lowerCamelCase ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def lowercase ( self : str ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def lowercase ( self : Any ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def lowercase ( self : int ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def lowercase ( self : Dict ): _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_lowerCamelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def lowercase ( self : Optional[Any] ): _snake_case = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) _snake_case = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) _snake_case = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowercase ( self : List[str] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _snake_case = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( _lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase , ) _snake_case = tokenizer_r.do_lower_case if hasattr(_lowerCamelCase , '''do_lower_case''' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def lowercase ( self : List[str] ): _snake_case = ['''的''', '''人''', '''有'''] _snake_case = ''''''.join(_lowerCamelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _snake_case = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _snake_case = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) _snake_case = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _snake_case = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) _snake_case = tokenizer_r.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer_p.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) _snake_case = tokenizer_r.convert_ids_to_tokens(_lowerCamelCase ) _snake_case = tokenizer_p.convert_ids_to_tokens(_lowerCamelCase ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_lowerCamelCase ) ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
288
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : list , __lowerCamelCase : int = 0 ) -> list: _snake_case = length or len(__lowerCamelCase ) _snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _snake_case , _snake_case = list_data[i + 1], list_data[i] _snake_case = True return list_data if not swapped else bubble_sort(__lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
288
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : List[Any] = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
360
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A__ : List[Any] ='''sshleifer/bart-tiny-random''' A__ : Any ='''patrickvonplaten/t5-tiny-random''' @require_torch class UpperCAmelCase ( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ) -> int: return AutoConfig.from_pretrained(_snake_case ) def lowercase__ ( self : Optional[int] ) -> List[str]: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) def lowercase__ ( self : Tuple ) -> Tuple: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=_snake_case ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowercase__ ( self : List[Any] ) -> Any: _lowerCAmelCase = create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowercase__ ( self : Any ) -> List[Any]: with self.assertRaises(_snake_case ): create_student_by_copying_alternating_layers(_snake_case , tempfile.mkdtemp() , e=_snake_case , d=_snake_case )
70
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: lowercase__ : str = [[float('''inf''' ) for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): lowercase__ : List[str] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCamelCase ): # looping through rows of graph array for i in range(__lowerCamelCase ): # looping through columns of graph array for j in range(__lowerCamelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowercase__ : str = dist[i][k] + dist[k][j] _print_dist(__lowerCamelCase , __lowerCamelCase ) return dist, v if __name__ == "__main__": lowerCAmelCase_ = int(input('Enter number of vertices: ')) lowerCAmelCase_ = int(input('Enter number of edges: ')) lowerCAmelCase_ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) lowerCAmelCase_ = int(input('Enter source:')) lowerCAmelCase_ = int(input('Enter destination:')) lowerCAmelCase_ = float(input('Enter weight:')) lowerCAmelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
16
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : float , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : str , UpperCamelCase : bool = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowerCAmelCase__ : Optional[int] = nn.Embedding(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ : List[str] = nn.Embedding(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ : str = False lowerCAmelCase__ : Any = nn.Dropout(p=__lowerCAmelCase ) lowerCAmelCase__ : Any = TaConfig( vocab_size=__lowerCAmelCase , d_model=__lowerCAmelCase , num_heads=__lowerCAmelCase , d_kv=__lowerCAmelCase , d_ff=__lowerCAmelCase , dropout_rate=__lowerCAmelCase , feed_forward_proj=__lowerCAmelCase , is_decoder=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , ) lowerCAmelCase__ : Tuple = nn.ModuleList() for lyr_num in range(__lowerCAmelCase ): lowerCAmelCase__ : int = TaBlock(__lowerCAmelCase ) self.encoders.append(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = TaLayerNorm(__lowerCAmelCase ) lowerCAmelCase__ : Tuple = nn.Dropout(p=__lowerCAmelCase ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.token_embedder(__lowerCAmelCase ) lowerCAmelCase__ : Optional[int] = encoder_input_tokens.shape[1] lowerCAmelCase__ : Dict = torch.arange(__lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = self.dropout_pre(__lowerCAmelCase ) # inverted the attention mask lowerCAmelCase__ : Tuple = encoder_input_tokens.size() lowerCAmelCase__ : Union[str, Any] = self.get_extended_attention_mask(__lowerCAmelCase , __lowerCAmelCase ) for lyr in self.encoders: lowerCAmelCase__ : Union[str, Any] = lyr(__lowerCAmelCase , __lowerCAmelCase )[0] lowerCAmelCase__ : Tuple = self.layer_norm(__lowerCAmelCase ) return self.dropout_post(__lowerCAmelCase ), encoder_inputs_mask
358
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowerCamelCase : def __init__( self : str , UpperCamelCase : int , UpperCamelCase : str=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Dict=7 , UpperCamelCase : List[Any]=9 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=32 , UpperCamelCase : str=5 , UpperCamelCase : int=4 , UpperCamelCase : Optional[Any]=37 , UpperCamelCase : Tuple=8 , UpperCamelCase : Any=0.1 , UpperCamelCase : Union[str, Any]=0.002 , UpperCamelCase : List[Any]=1 , UpperCamelCase : Any=0 , UpperCamelCase : Optional[Any]=0 , UpperCamelCase : Dict=None , UpperCamelCase : str=None , ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = parent lowerCAmelCase__ : Union[str, Any] = batch_size lowerCAmelCase__ : List[str] = encoder_seq_length lowerCAmelCase__ : Any = decoder_seq_length # For common tests lowerCAmelCase__ : Union[str, Any] = self.decoder_seq_length lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : Optional[Any] = use_attention_mask lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : int = d_ff lowerCAmelCase__ : int = relative_attention_num_buckets lowerCAmelCase__ : Union[str, Any] = dropout_rate lowerCAmelCase__ : str = initializer_factor lowerCAmelCase__ : Tuple = eos_token_id lowerCAmelCase__ : List[str] = pad_token_id lowerCAmelCase__ : str = decoder_start_token_id lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = decoder_layers def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : int=None , UpperCamelCase : List[Any]=None , ) -> List[Any]: """simple docstring""" if attention_mask is None: lowerCAmelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase__ : List[str] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase ) if decoder_head_mask is None: lowerCAmelCase__ : Optional[int] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) if cross_attn_head_mask is None: lowerCAmelCase__ : Optional[int] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase__ : int = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ : Optional[Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase__ : Tuple = self.get_config() lowerCAmelCase__ : Dict = config.num_attention_heads lowerCAmelCase__ : Dict = self.prepare_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, input_dict def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Any , ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = UMTaModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() lowerCAmelCase__ : Optional[int] = model( input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase , attention_mask=UpperCamelCase , decoder_attention_mask=UpperCamelCase , ) lowerCAmelCase__ : Optional[int] = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ) lowerCAmelCase__ : List[Any] = result.last_hidden_state lowerCAmelCase__ : Any = result.past_key_values lowerCAmelCase__ : str = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : int , UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Optional[int] , ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = UMTaModel(config=UpperCamelCase ).get_decoder().to(UpperCamelCase ).eval() # first forward pass lowerCAmelCase__ : Optional[int] = model(UpperCamelCase , use_cache=UpperCamelCase ) lowerCAmelCase__ : Any = model(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCAmelCase__ : List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : List[str] = model(UpperCamelCase )["""last_hidden_state"""] lowerCAmelCase__ : Any = model(UpperCamelCase , past_key_values=UpperCamelCase )["""last_hidden_state"""] # select random slice lowerCAmelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase__ : Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) ) def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int , ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = UMTaModel(config=UpperCamelCase ).to(UpperCamelCase ).half().eval() lowerCAmelCase__ : Dict = model(**UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(UpperCamelCase ).any().item() ) @require_torch class _lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): _lowerCamelCase :List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowerCamelCase :List[str] = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowerCamelCase :Optional[Any] = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowerCamelCase :Dict = True _lowerCamelCase :Optional[Any] = False _lowerCamelCase :List[str] = False _lowerCamelCase :Dict = True _lowerCamelCase :str = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowerCamelCase :Optional[int] = [0.8, 0.9] def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[str] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = config_and_inputs[0] lowerCAmelCase__ : int = UMTaForConditionalGeneration(UpperCamelCase ).eval() model.to(UpperCamelCase ) lowerCAmelCase__ : List[Any] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase ), } for attn_name, (name, mask) in zip(UpperCamelCase , head_masking.items() ): lowerCAmelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCAmelCase__ : Tuple = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase , return_dict_in_generate=UpperCamelCase , **UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCAmelCase__ : str = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=UpperCamelCase ).to(UpperCamelCase ) lowerCAmelCase__ : Dict = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=UpperCamelCase , legacy=UpperCamelCase ) lowerCAmelCase__ : int = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] lowerCAmelCase__ : Union[str, Any] = tokenizer(UpperCamelCase , return_tensors="""pt""" , padding=UpperCamelCase ).input_ids # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = model.generate(input_ids.to(UpperCamelCase ) ) lowerCAmelCase__ : int = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] lowerCAmelCase__ : Any = tokenizer.batch_decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase )
212
0
"""simple docstring""" UpperCamelCase_ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
243
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class snake_case : def __init__( self , __UpperCAmelCase = "cpu" , __UpperCAmelCase = "openai/clip-vit-large-patch14") ->None: a_ = device a_ = CLIPTokenizerFast.from_pretrained(__UpperCAmelCase) a_ = [0.48_145_466, 0.4_578_275, 0.40_821_073] a_ = [0.26_862_954, 0.26_130_258, 0.27_577_711] a_ = torchvision.transforms.Normalize(self.image_mean , self.image_std) a_ = torchvision.transforms.Resize(2_24) a_ = torchvision.transforms.CenterCrop(2_24) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]: a_ = self.resize(__UpperCAmelCase) a_ = self.center_crop(__UpperCAmelCase) a_ = self.normalize(__UpperCAmelCase) return images def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase) ->Union[str, Any]: a_ = self.tokenizer(text=__UpperCAmelCase , **__UpperCAmelCase) a_ = self.preprocess_img(__UpperCAmelCase) a_ = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase=10 , __UpperCAmelCase=0.01 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="image" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) ->None: super().__init__() a_ = None a_ = device if device else get_device() if vqgan: a_ = vqgan else: a_ = load_vqgan(self.device , conf_path=__UpperCAmelCase , ckpt_path=__UpperCAmelCase) self.vqgan.eval() if clip: a_ = clip else: a_ = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") self.clip.to(self.device) a_ = ProcessorGradientFlow(device=self.device) a_ = iterations a_ = lr a_ = log a_ = make_grid a_ = return_val a_ = quantize a_ = self.vqgan.decoder.z_shape def UpperCAmelCase__ ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=5 , __UpperCAmelCase=True) ->Any: a_ = [] if output_path is None: a_ = "./animation.gif" if input_path is None: a_ = self.save_path a_ = sorted(glob(input_path + "/*")) if not len(__UpperCAmelCase): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)") if len(__UpperCAmelCase) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)") a_ = total_duration / len(__UpperCAmelCase) a_ = [frame_duration] * len(__UpperCAmelCase) if extend_frames: a_ = 1.5 a_ = 3 for file_name in paths: if file_name.endswith(".png"): images.append(imageio.imread(__UpperCAmelCase)) imageio.mimsave(__UpperCAmelCase , __UpperCAmelCase , duration=__UpperCAmelCase) print(F'''gif saved to {output_path}''') def UpperCAmelCase__ ( self , __UpperCAmelCase=None , __UpperCAmelCase=None) ->List[Any]: if not (path or img): raise ValueError("Input either path or tensor") if img is not None: raise NotImplementedError a_ = preprocess(Image.open(__UpperCAmelCase) , target_image_size=2_56).to(self.device) a_ = preprocess_vqgan(__UpperCAmelCase) a_ , *a_ = self.vqgan.encode(__UpperCAmelCase) return z def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tuple: a_ = self.latent.detach().requires_grad_() a_ = base_latent + transform_vector if self.quantize: a_ , *a_ = self.vqgan.quantize(__UpperCAmelCase) else: a_ = trans_latent return self.vqgan.decode(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->str: a_ = self.clip_preprocessor(text=__UpperCAmelCase , images=__UpperCAmelCase , return_tensors="pt" , padding=__UpperCAmelCase) a_ = self.clip(**__UpperCAmelCase) a_ = clip_outputs.logits_per_image if weights is not None: a_ = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = self._get_clip_similarity(pos_prompts["prompts"] , __UpperCAmelCase , weights=(1 / pos_prompts["weights"])) if neg_prompts: a_ = self._get_clip_similarity(neg_prompts["prompts"] , __UpperCAmelCase , weights=neg_prompts["weights"]) else: a_ = torch.tensor([1] , device=self.device) a_ = -torch.log(__UpperCAmelCase) + torch.log(__UpperCAmelCase) return loss def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = torch.randn_like(self.latent , requires_grad=__UpperCAmelCase , device=self.device) a_ = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() a_ = self._add_vector(__UpperCAmelCase) a_ = loop_post_process(__UpperCAmelCase) a_ = self._get_CLIP_loss(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) print("CLIP loss" , __UpperCAmelCase) if self.log: wandb.log({"CLIP Loss": clip_loss}) clip_loss.backward(retain_graph=__UpperCAmelCase) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: wandb.init(reinit=__UpperCAmelCase , project="face-editor") wandb.config.update({"Positive Prompts": positive_prompts}) wandb.config.update({"Negative Prompts": negative_prompts}) wandb.config.update({"lr": self.lr, "iterations": self.iterations}) if image_path: a_ = Image.open(__UpperCAmelCase) a_ = image.resize((2_56, 2_56)) wandb.log("Original Image" , wandb.Image(__UpperCAmelCase)) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[str]: if not prompts: return [] a_ = [] a_ = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [prompt.strip() for prompt in prompts.split("|")] for prompt in prompts: if isinstance(__UpperCAmelCase , (tuple, list)): a_ = prompt[0] a_ = float(prompt[1]) elif ":" in prompt: a_ , a_ = prompt.split(":") a_ = float(__UpperCAmelCase) else: a_ = prompt a_ = 1.0 processed_prompts.append(__UpperCAmelCase) weights.append(__UpperCAmelCase) return { "prompts": processed_prompts, "weights": torch.tensor(__UpperCAmelCase , device=self.device), } def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->List[Any]: if image_path: a_ = self._get_latent(__UpperCAmelCase) else: a_ = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) assert pos_prompts, "You must provide at least one positive prompt." a_ = self.process_prompts(__UpperCAmelCase) a_ = self.process_prompts(__UpperCAmelCase) if save_final and save_path is None: a_ = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"])) if not os.path.exists(__UpperCAmelCase): os.makedirs(__UpperCAmelCase) else: a_ = save_path + "_" + get_timestamp() os.makedirs(__UpperCAmelCase) a_ = save_path a_ = self.vqgan.decode(self.latent)[0] if show_intermediate: print("Original Image") show_pil(custom_to_pil(__UpperCAmelCase)) a_ = loop_post_process(__UpperCAmelCase) for iter, transformed_img in enumerate(self._optimize_CLIP(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)): if show_intermediate: show_pil(__UpperCAmelCase) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''')) if self.log: wandb.log({"Image": wandb.Image(__UpperCAmelCase)}) if show_final: show_pil(__UpperCAmelCase) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png'''))
243
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__ ( lowerCamelCase_ ): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" super().__init__() self.register_modules(transformer=__SCREAMING_SNAKE_CASE , vae=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) # create a imagenet -> id dictionary for easier use lowercase_ : Union[str, Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): lowercase_ : int = int(__SCREAMING_SNAKE_CASE ) lowercase_ : str = dict(sorted(self.labels.items() ) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = list(__SCREAMING_SNAKE_CASE ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 4.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 50 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) lowercase_ : int = self.transformer.config.sample_size lowercase_ : Dict = self.transformer.config.in_channels lowercase_ : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=self.transformer.dtype , ) lowercase_ : Any = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents lowercase_ : Any = torch.tensor(__SCREAMING_SNAKE_CASE , device=self.device ).reshape(-1 ) lowercase_ : List[Any] = torch.tensor([10_00] * batch_size , device=self.device ) lowercase_ : str = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: lowercase_ : Optional[Any] = latent_model_input[: len(__SCREAMING_SNAKE_CASE ) // 2] lowercase_ : List[str] = torch.cat([half, half] , dim=0 ) lowercase_ : Tuple = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : int = t if not torch.is_tensor(__SCREAMING_SNAKE_CASE ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) lowercase_ : int = latent_model_input.device.type == '''mps''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = torch.floataa if is_mps else torch.floataa else: lowercase_ : Optional[Any] = torch.intaa if is_mps else torch.intaa lowercase_ : List[str] = torch.tensor([timesteps] , dtype=__SCREAMING_SNAKE_CASE , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: lowercase_ : Union[str, Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase_ : Optional[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output lowercase_ : Optional[Any] = self.transformer( __SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , class_labels=__SCREAMING_SNAKE_CASE ).sample # perform guidance if guidance_scale > 1: lowercase_ , lowercase_ : Tuple = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] lowercase_ , lowercase_ : Dict = torch.split(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) // 2 , dim=0 ) lowercase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) lowercase_ : List[Any] = torch.cat([half_eps, half_eps] , dim=0 ) lowercase_ : List[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: lowercase_ , lowercase_ : List[Any] = torch.split(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dim=1 ) else: lowercase_ : Tuple = noise_pred # compute previous image: x_t -> x_t-1 lowercase_ : List[str] = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample if guidance_scale > 1: lowercase_ , lowercase_ : str = latent_model_input.chunk(2 , dim=0 ) else: lowercase_ : Union[str, Any] = latent_model_input lowercase_ : Dict = 1 / self.vae.config.scaling_factor * latents lowercase_ : Tuple = self.vae.decode(__SCREAMING_SNAKE_CASE ).sample lowercase_ : Optional[int] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase_ : List[str] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Any = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
264
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (volume) ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
264
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Optional[int]=18 , UpperCAmelCase__ : Dict=30 , UpperCAmelCase__ : int=400 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str=True , ) -> Dict: _a : Union[str, Any] = size if size is not None else {"""shortest_edge""": 20} _a : Optional[int] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _a : Optional[int] = parent _a : str = batch_size _a : Optional[int] = num_channels _a : str = image_size _a : List[Any] = min_resolution _a : Any = max_resolution _a : List[str] = do_resize _a : str = size _a : Optional[Any] = do_center_crop _a : str = crop_size _a : List[Any] = do_flip_channel_order def _lowercase ( self : List[Any] ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self : Any ) -> Union[str, Any]: _a : Union[str, Any] = MobileViTImageProcessingTester(self ) @property def _lowercase ( self : Dict ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self : str ) -> Tuple: _a : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """center_crop""" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , """do_flip_channel_order""" ) ) def _lowercase ( self : str ) -> str: _a : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _a : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _lowercase ( self : Optional[int] ) -> List[Any]: pass def _lowercase ( self : Optional[Any] ) -> Tuple: # Initialize image_processing _a : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input _a : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : str = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : int ) -> Tuple: # Initialize image_processing _a : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input _a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : Any = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _lowercase ( self : List[str] ) -> Dict: # Initialize image_processing _a : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input _a : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _a : str = image_processing(UpperCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
294
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class UpperCamelCase ( snake_case_ ): def __init__( self : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Any="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : int="<sep>" , UpperCAmelCase__ : Tuple="<pad>" , UpperCAmelCase__ : Any="<cls>" , UpperCAmelCase__ : Optional[Any]="<mask>" , UpperCAmelCase__ : int=["<eop>", "<eod>"] , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : List[str] , ) -> None: _a : Optional[int] = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token _a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) _a : Optional[Any] = 3 _a : Tuple = do_lower_case _a : Tuple = remove_space _a : Tuple = keep_accents _a : Tuple = vocab_file _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) _a : int = jieba _a : Tuple = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self : Optional[Any] ) -> Any: return len(self.sp_model ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) -> List[str]: _a : Tuple = self.__dict__.copy() _a : Tuple = None return state def __setstate__( self : Any , UpperCAmelCase__ : Dict ) -> Dict: _a : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _a : Tuple = {} _a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: if self.remove_space: _a : Optional[int] = """ """.join(inputs.strip().split() ) else: _a : List[Any] = inputs _a : int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _a : Optional[Any] = unicodedata.normalize("""NFKD""" , UpperCAmelCase__ ) _a : Dict = """""".join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: _a : Union[str, Any] = outputs.lower() return outputs def _lowercase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: _a : str = self.preprocess_text(UpperCAmelCase__ ) _a : Dict = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) _a : Union[str, Any] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _a : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _a : Dict = cur_pieces[1:] else: _a : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : int ) -> int: return self.sp_model.PieceToId(UpperCAmelCase__ ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> Any: return self.sp_model.IdToPiece(UpperCAmelCase__ ) def _lowercase ( self : Any , UpperCAmelCase__ : Any ) -> Dict: _a : Dict = """""".join(UpperCAmelCase__ ).replace(UpperCAmelCase__ , """ """ ).strip() return out_string def _lowercase ( self : Any , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Optional[Any] = [self.sep_token_id] _a : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self : Tuple , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1, 1] return ([0] * len(UpperCAmelCase__ )) + [1, 1] def _lowercase ( self : str , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: _a : Any = [self.sep_token_id] _a : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Union[str, Any] = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , """wb""" ) as fi: _a : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def _lowercase ( self : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[str] ) -> List[str]: _a : Tuple = super()._decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) _a : Optional[Any] = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
294
1
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging __snake_case = logging.get_logger(__name__) def a ( __a , __a , __a ) -> None: '''simple docstring''' UpperCamelCase__ :Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__a ) == len(__a ), f'''{len(__a )} != {len(__a )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) __snake_case = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } __snake_case = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a ( __a , __a ) -> Optional[Any]: '''simple docstring''' try: UpperCamelCase__ :int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(__a ) ) def a ( __a , __a ) -> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(__a ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a ( __a , __a = "student" , __a = None , __a = None , __a=False , __a=None , __a=None , **__a , ) -> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' UpperCamelCase__ :Optional[int] = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.''' assert (e is not None) or (d is not None), _msg if isinstance(__a , __a ): AutoTokenizer.from_pretrained(__a ).save_pretrained(__a ) # purely for convenience UpperCamelCase__ :int = AutoModelForSeqaSeqLM.from_pretrained(__a ).eval() else: assert isinstance(__a , __a ), f'''teacher must be a model or string got type {type(__a )}''' UpperCamelCase__ :Union[str, Any] = teacher.config.to_diff_dict() try: UpperCamelCase__ , UpperCamelCase__ :List[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: UpperCamelCase__ :Optional[Any] = teacher_e if d is None: UpperCamelCase__ :List[str] = teacher_d init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} ) except AttributeError: # T5 if hasattr(teacher.config , '''num_encoder_layers''' ): UpperCamelCase__ , UpperCamelCase__ :int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: UpperCamelCase__ , UpperCamelCase__ :Dict = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: UpperCamelCase__ :Optional[int] = teacher_e if d is None: UpperCamelCase__ :Any = teacher_d if hasattr(teacher.config , '''num_encoder_layers''' ): init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} ) else: init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__a ) # Copy weights UpperCamelCase__ :List[Any] = teacher.config_class(**__a ) UpperCamelCase__ :List[Any] = AutoModelForSeqaSeqLM.from_config(__a ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. UpperCamelCase__ :Dict = student.load_state_dict(teacher.state_dict() , strict=__a ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save UpperCamelCase__ , UpperCamelCase__ :Dict = list(range(__a ) ), list(range(__a ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(__a ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: UpperCamelCase__ :List[int] = pick_layers_to_copy(__a , __a ) if d_layers_to_copy is None: UpperCamelCase__ :List[int] = pick_layers_to_copy(__a , __a ) try: if hasattr( __a , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __a ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __a ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __a ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __a ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __a ) copy_layers(teacher.decoder.block , student.decoder.block , __a ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) UpperCamelCase__ :Tuple = { '''teacher_type''': teacher.config.model_type, '''copied_encoder_layers''': e_layers_to_copy, '''copied_decoder_layers''': d_layers_to_copy, } student.save_pretrained(__a ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
219
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) UpperCamelCase__ :Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(__a ) # Let's go UpperCamelCase__ :Optional[int] = parser.parse_args() if not hasattr(__a , '''func''' ): parser.print_help() exit(1 ) # Run UpperCamelCase__ :Optional[int] = args.func(__a ) service.run() if __name__ == "__main__": main()
219
1