code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE_: Optional[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def lowerCAmelCase_ ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase_ = g.get_repo("huggingface/transformers" ) UpperCAmelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase_ = sorted([comment for comment in issue.get_comments()] , key=lambda snake_case_ : i.created_at , reverse=snake_case_ ) UpperCAmelCase_ = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
1
"""simple docstring""" # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCamelCase : Optional[Any] = TypeVar('T') class a ( Generic[T] ): def __init__( self , _lowerCamelCase = True ): lowercase = {} # dictionary of lists lowercase = directed def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) self.adj_list[destination_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_lowerCamelCase ) lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase = [destination_vertex] lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_lowerCamelCase ) lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase = [destination_vertex] lowercase = [] return self def __repr__( self ): return pformat(self.adj_list )
220
0
'''simple docstring''' import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '▁' SCREAMING_SNAKE_CASE__ = {'vocab_file': 'prophetnet.tokenizer'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } SCREAMING_SNAKE_CASE__ = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } SCREAMING_SNAKE_CASE__ = { 'microsoft/xprophetnet-large-wiki100-cased': 5_1_2, } def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = collections.OrderedDict() with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: UpperCamelCase = reader.readlines() for index, token in enumerate(__UpperCamelCase ): UpperCamelCase = token.rstrip("""\n""" ) UpperCamelCase = index return vocab class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab UpperCamelCase = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): UpperCamelCase = F"[unused{i}]" UpperCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab UpperCamelCase = 12 UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_SCREAMING_SNAKE_CASE ) def __getstate__( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ) -> int: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase = self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = """""".join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] UpperCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
183
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'spm_char.model'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } SCREAMING_SNAKE_CASE__ = { 'microsoft/speecht5_asr': 1_0_2_4, 'microsoft/speecht5_tts': 1_0_2_4, 'microsoft/speecht5_vc': 1_0_2_4, } class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.__dict__.copy() UpperCamelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = [1] if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
183
1
'''simple docstring''' import math class __UpperCAmelCase : def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = 0.0 _snake_case = 0.0 for i in range(len(lowerCAmelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i in range(len(lowerCAmelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE__ ( ) -> None: # Training Examples ( m, n ) _snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _snake_case = SelfOrganizingMap() _snake_case = 3 _snake_case = 0.5 for _ in range(__A ): for j in range(len(__A ) ): # training sample _snake_case = training_samples[j] # Compute the winning vector _snake_case = self_organizing_map.get_winner(__A , __A ) # Update the winning vector _snake_case = self_organizing_map.update(__A , __A , __A , __A ) # classify test sample _snake_case = [0, 0, 0, 1] _snake_case = self_organizing_map.get_winner(__A , __A ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
42
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : List[str] = logging.get_logger(__name__) a__ : Optional[int] = {'vocab_file': 'vocab.txt'} a__ : Optional[Any] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a__ : Optional[int] = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def _UpperCamelCase ( __A ) -> str: '''simple docstring''' with open(__A , "r" ) as f: UpperCamelCase__ = f.read().splitlines() return [l.strip() for l in lines] class lowercase_ ( a__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , a , a="<unk>" , a="<cls>" , a="<pad>" , a="<mask>" , a="<eos>" , **a , ): super().__init__(**a ) UpperCamelCase__ = load_vocab_file(a ) UpperCamelCase__ = dict(enumerate(self.all_tokens ) ) UpperCamelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase__ = unk_token UpperCamelCase__ = cls_token UpperCamelCase__ = pad_token UpperCamelCase__ = mask_token UpperCamelCase__ = eos_token UpperCamelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a , **a ): return text.split() def __a ( self , a=False ): return len(self._id_to_token ) def __a ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def __a ( self , a ): return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def __a ( self , a ): return self._id_to_token.get(a , self.unk_token ) def __a ( self , a , a = None ): UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __a ( self , a , a = None , a = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase__ = [1] + ([0] * len(a )) + [1] if token_ids_a is not None: mask += [0] * len(a ) + [1] return mask def __a ( self , a , a ): UpperCamelCase__ = os.path.join(a , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(a , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def __a ( self ): return self.get_vocab_size(with_added_tokens=a ) def __a ( self , a , a = False ): return super()._add_tokens(a , special_tokens=a )
80
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = ProphetNetTokenizer __lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self :List[Any] ): super().setUp() snake_case__ : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] snake_case__ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :List[Any] ,__lowercase :Any ): snake_case__ : Any = '''UNwant\u00E9d,running''' snake_case__ : List[Any] = '''unwanted, running''' return input_text, output_text def __lowerCamelCase ( self :Any ): snake_case__ : Any = self.tokenizer_class(self.vocab_file ) snake_case__ : int = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__lowercase ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Optional[int] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Tuple = BasicTokenizer(do_lower_case=__lowercase ,strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def __lowerCamelCase ( self :Dict ): snake_case__ : int = BasicTokenizer(do_lower_case=__lowercase ,strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def __lowerCamelCase ( self :List[str] ): snake_case__ : List[Any] = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def __lowerCamelCase ( self :int ): snake_case__ : str = BasicTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = BasicTokenizer(do_lower_case=__lowercase ,strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Any = BasicTokenizer(do_lower_case=__lowercase ,strip_accents=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCamelCase ( self :List[str] ): snake_case__ : List[str] = BasicTokenizer(do_lower_case=__lowercase ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] snake_case__ : Dict = {} for i, token in enumerate(__lowercase ): snake_case__ : Optional[int] = i snake_case__ : Optional[int] = WordpieceTokenizer(vocab=__lowercase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) snake_case__ : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] snake_case__ : List[Any] = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] snake_case__ : Tuple = tokenizer(__lowercase ,padding=__lowercase ,return_tensors='''pt''' ) self.assertIsInstance(__lowercase ,__lowercase ) snake_case__ : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase ,__lowercase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def __lowerCamelCase ( self :Tuple ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __lowerCamelCase ( self :List[Any] ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __lowerCamelCase ( self :List[Any] ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def __lowerCamelCase ( self :Tuple ): snake_case__ : List[str] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) snake_case__ : str = tokenizer.encode('''sequence builders''' ,add_special_tokens=__lowercase ) snake_case__ : Union[str, Any] = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=__lowercase ) snake_case__ : int = tokenizer.build_inputs_with_special_tokens(__lowercase ) snake_case__ : List[str] = tokenizer.build_inputs_with_special_tokens(__lowercase ,__lowercase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
44
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): A__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ = 12_8022 A__ = 12_8028 @require_sentencepiece class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = MaMaaaTokenizer __lowerCAmelCase : Tuple = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self :int ): super().setUp() snake_case__ : Tuple = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case__ : Optional[Any] = dict(zip(__lowercase ,range(len(__lowercase ) ) ) ) snake_case__ : List[Any] = Path(self.tmpdirname ) save_json(__lowercase ,save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__lowercase ,save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case__ : str = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :Optional[int] ,**__lowercase :Optional[int] ): return MaMaaaTokenizer.from_pretrained(self.tmpdirname ,**__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Tuple ): return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Tuple = '''</s>''' snake_case__ : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Dict = self.get_tokenizer() snake_case__ : Union[str, Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''</s>''' ) self.assertEqual(vocab_keys[1] ,'''<unk>''' ) self.assertEqual(vocab_keys[-1] ,'''<s>''' ) self.assertEqual(len(__lowercase ) ,tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def __lowerCamelCase ( self :List[Any] ): pass def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[2, 3, 4, 5, 6] ,) snake_case__ : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case__ : Optional[int] = tokenizer.convert_tokens_to_string(__lowercase ) self.assertEqual(__lowercase ,'''This is a test''' ) @slow def __lowerCamelCase ( self :Union[str, Any] ): # fmt: off snake_case__ : Tuple = {'''input_ids''': [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''facebook/m2m100_418M''' ,revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' ,) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = """facebook/m2m100_418M""" __lowerCAmelCase : Union[str, Any] = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __lowerCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __lowerCAmelCase : Dict = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __lowerCamelCase ( cls :Union[str, Any] ): snake_case__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name ,src_lang='''en''' ,tgt_lang='''fr''' ) snake_case__ : Union[str, Any] = 1 return cls def __lowerCamelCase ( self :Tuple ): self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) ,1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) ,1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) ,1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) ,1_2_8_0_6_3 ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = self.tokenizer.get_vocab() self.assertEqual(len(__lowercase ) ,self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] ,3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Optional[int] = '''en''' snake_case__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,__lowercase ) def __lowerCamelCase ( self :List[Any] ): self.assertIn(__lowercase ,self.tokenizer.all_special_ids ) # fmt: off snake_case__ : int = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on snake_case__ : Tuple = self.tokenizer.decode(__lowercase ,skip_special_tokens=__lowercase ) snake_case__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertNotIn(self.tokenizer.eos_token ,__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : List[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(__lowercase ) snake_case__ : Any = MaMaaaTokenizer.from_pretrained(__lowercase ) self.assertDictEqual(new_tok.lang_token_to_id ,__lowercase ) @require_torch def __lowerCamelCase ( self :str ): snake_case__ : Dict = '''en''' snake_case__ : List[Any] = '''fr''' snake_case__ : Union[str, Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=__lowercase ,return_tensors='''pt''' ) snake_case__ : Optional[int] = shift_tokens_right( batch['''labels'''] ,self.tokenizer.pad_token_id ,self.tokenizer.eos_token_id ) for k in batch: snake_case__ : Optional[int] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[Any] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) snake_case__ : Any = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : Union[str, Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case__ : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens ,[self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCamelCase ( self :Tuple ): snake_case__ : str = self.tokenizer._build_translation_inputs('''A test''' ,return_tensors='''pt''' ,src_lang='''en''' ,tgt_lang='''ar''' ) self.assertEqual( nested_simplify(__lowercase ) ,{ # en_XX, A, test, EOS '''input_ids''': [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 1_2_8_0_0_6, } ,)
44
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """philschmid/bart-large-cnn-samsum""" snake_case_ = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) snake_case_ = """summarizer""" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSeqaSeqLM snake_case_ = ["""text"""] snake_case_ = ["""text"""] def __magic_name__ ( self : Any , __lowercase : Union[str, Any] ) -> List[str]: return self.pre_processor(__lowercase , return_tensors='''pt''' , truncation=__lowercase ) def __magic_name__ ( self : Any , __lowercase : Union[str, Any] ) -> Optional[Any]: return self.model.generate(**__lowercase )[0] def __magic_name__ ( self : int , __lowercase : Dict ) -> List[str]: return self.pre_processor.decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase )
152
'''simple docstring''' import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _a( UpperCamelCase__ : int, UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =old_name if "patch_embed" in old_name: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =old_name.split('''.''' ) if layer == "0": SCREAMING_SNAKE_CASE__ : int =old_name.replace('''0''', '''convolution1''' ) elif layer == "1": SCREAMING_SNAKE_CASE__ : Tuple =old_name.replace('''1''', '''batchnorm_before''' ) elif layer == "3": SCREAMING_SNAKE_CASE__ : List[Any] =old_name.replace('''3''', '''convolution2''' ) else: SCREAMING_SNAKE_CASE__ : Dict =old_name.replace('''4''', '''batchnorm_after''' ) if "network" in old_name and re.search(R'''\d\.\d''', UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =R'''\b\d{2}\b''' if bool(re.search(UpperCamelCase__, UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE__ : int =re.search(R'''\d\.\d\d.''', UpperCamelCase__ ).group() else: SCREAMING_SNAKE_CASE__ : Tuple =re.search(R'''\d\.\d.''', UpperCamelCase__ ).group() if int(match[0] ) < 6: SCREAMING_SNAKE_CASE__ : List[str] =old_name.replace(UpperCamelCase__, '''''' ) SCREAMING_SNAKE_CASE__ : Any =trimmed_name.replace('''network''', match[0] + '''.meta4D_layers.blocks.''' + match[2:-1] ) SCREAMING_SNAKE_CASE__ : Any ='''intermediate_stages.''' + trimmed_name else: SCREAMING_SNAKE_CASE__ : Optional[Any] =old_name.replace(UpperCamelCase__, '''''' ) if int(match[2] ) < num_meta4D_last_stage: SCREAMING_SNAKE_CASE__ : str =trimmed_name.replace('''network''', '''meta4D_layers.blocks.''' + match[2] ) else: SCREAMING_SNAKE_CASE__ : int =str(int(match[2] ) - num_meta4D_last_stage ) SCREAMING_SNAKE_CASE__ : Any =trimmed_name.replace('''network''', '''meta3D_layers.blocks.''' + layer_index ) if "norm1" in old_name: SCREAMING_SNAKE_CASE__ : Optional[int] =trimmed_name.replace('''norm1''', '''layernorm1''' ) elif "norm2" in old_name: SCREAMING_SNAKE_CASE__ : List[Any] =trimmed_name.replace('''norm2''', '''layernorm2''' ) elif "fc1" in old_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] =trimmed_name.replace('''fc1''', '''linear_in''' ) elif "fc2" in old_name: SCREAMING_SNAKE_CASE__ : str =trimmed_name.replace('''fc2''', '''linear_out''' ) SCREAMING_SNAKE_CASE__ : Any ='''last_stage.''' + trimmed_name elif "network" in old_name and re.search(R'''.\d.''', UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : int =old_name.replace('''network''', '''intermediate_stages''' ) if "fc" in new_name: SCREAMING_SNAKE_CASE__ : str =new_name.replace('''fc''', '''convolution''' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): SCREAMING_SNAKE_CASE__ : Tuple =new_name.replace('''norm1''', '''batchnorm_before''' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): SCREAMING_SNAKE_CASE__ : List[str] =new_name.replace('''norm2''', '''batchnorm_after''' ) if "proj" in new_name: SCREAMING_SNAKE_CASE__ : Optional[int] =new_name.replace('''proj''', '''projection''' ) if "dist_head" in new_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =new_name.replace('''dist_head''', '''distillation_classifier''' ) elif "head" in new_name: SCREAMING_SNAKE_CASE__ : Tuple =new_name.replace('''head''', '''classifier''' ) elif "patch_embed" in new_name: SCREAMING_SNAKE_CASE__ : Optional[int] ='''efficientformer.''' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": SCREAMING_SNAKE_CASE__ : Any =new_name.replace('''norm''', '''layernorm''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] ='''efficientformer.''' + new_name else: SCREAMING_SNAKE_CASE__ : str ='''efficientformer.encoder.''' + new_name return new_name def _a( UpperCamelCase__ : int, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' for key in checkpoint.copy().keys(): SCREAMING_SNAKE_CASE__ : List[str] =checkpoint.pop(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =val return checkpoint def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict ='''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE__ : List[str] =Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) return image def _a( UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : Path, UpperCamelCase__ : bool ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =torch.load(UpperCamelCase__, map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE__ : Optional[int] =EfficientFormerConfig.from_json_file(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =EfficientFormerForImageClassificationWithTeacher(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str ='''_'''.join(checkpoint_path.split('''/''' )[-1].split('''.''' )[0].split('''_''' )[:-1] ) SCREAMING_SNAKE_CASE__ : Tuple =config.depths[-1] - config.num_metaad_blocks + 1 SCREAMING_SNAKE_CASE__ : Tuple =convert_torch_checkpoint(UpperCamelCase__, UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE__ : Any ={ '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } # prepare image SCREAMING_SNAKE_CASE__ : Any =prepare_img() SCREAMING_SNAKE_CASE__ : List[str] =2_5_6 SCREAMING_SNAKE_CASE__ : Optional[int] =2_2_4 SCREAMING_SNAKE_CASE__ : List[Any] =EfficientFormerImageProcessor( size={'''shortest_edge''': image_size}, crop_size={'''height''': crop_size, '''width''': crop_size}, resample=pillow_resamplings['''bicubic'''], ) SCREAMING_SNAKE_CASE__ : str =processor(images=UpperCamelCase__, return_tensors='''pt''' ).pixel_values # original processing pipeline SCREAMING_SNAKE_CASE__ : List[Any] =Compose( [ Resize(UpperCamelCase__, interpolation=pillow_resamplings['''bicubic'''] ), CenterCrop(UpperCamelCase__ ), ToTensor(), Normalize(UpperCamelCase__, UpperCamelCase__ ), ] ) SCREAMING_SNAKE_CASE__ : List[str] =image_transforms(UpperCamelCase__ ).unsqueeze(0 ) assert torch.allclose(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : int =model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =outputs.logits SCREAMING_SNAKE_CASE__ : Dict =(1, 1_0_0_0) if "l1" in model_name: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.Tensor( [-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9, -0.5_1_2_4, 0.4_1_8_3, -0.6_7_9_3, -1.3_7_7_7, -0.0_8_9_3, -0.7_3_5_8, -2.4_3_2_8] ) assert torch.allclose(logits[0, :1_0], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: SCREAMING_SNAKE_CASE__ : Optional[int] =torch.Tensor( [-1.3_1_5_0, -1.5_4_5_6, -1.2_5_5_6, -0.8_4_9_6, -0.7_1_2_7, -0.7_8_9_7, -0.9_7_2_8, -0.3_0_5_2, 0.3_7_5_1, -0.3_1_2_7] ) assert torch.allclose(logits[0, :1_0], UpperCamelCase__, atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Tensor( [-1.0_2_8_3, -1.4_1_3_1, -0.5_6_4_4, -1.3_1_1_5, -0.5_7_8_5, -1.2_0_4_9, -0.7_5_2_8, 0.1_9_9_2, -0.3_8_2_2, -0.0_8_7_8] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(UpperCamelCase__ ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print('''Pushing model to the hub...''' ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='''Add model''', use_temp_dir=UpperCamelCase__, ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}", commit_message='''Add image processor''', use_temp_dir=UpperCamelCase__, ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) a_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
152
1
'''simple docstring''' import pprint import requests _UpperCAmelCase : str = """https://zenquotes.io/api""" def __magic_name__( ): return requests.get(API_ENDPOINT_URL + '''/today''').json() def __magic_name__( ): return requests.get(API_ENDPOINT_URL + '''/random''').json() if __name__ == "__main__": _UpperCAmelCase : Any = random_quotes() pprint.pprint(response)
361
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data["""data"""]) _UpperCAmelCase : int = np.array(data["""target"""]) _UpperCAmelCase : str = data["""target_names"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = train_test_split(X, y) def __magic_name__( lowerCamelCase, lowerCamelCase): return np.linalg.norm(np.array(lowerCamelCase) - np.array(lowerCamelCase)) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=5): __lowerCAmelCase = zip(lowerCamelCase, lowerCamelCase) # List of distances of all points from the point to be classified __lowerCAmelCase = [] for data_point in data: __lowerCAmelCase = euclidean_distance(data_point[0], lowerCamelCase) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. __lowerCAmelCase = [i[1] for i in sorted(lowerCamelCase)[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowerCAmelCase = Counter(lowerCamelCase).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
9
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A : def __init__(self : List[str] , __UpperCAmelCase : Optional[Any] , ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : Union[str, Any] ) -> Tuple: """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase_ (self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = TFEsmModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = TFEsmModel(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ) # Also check the case where encoder outputs are not passed UpperCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFEsmForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFEsmForTokenClassification(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[str] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Union[str, Any] = False def lowercase_ (self : Dict ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFEsmModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def lowercase_ (self : List[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : str ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ (self : List[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : List[Any] ) -> str: """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = TFEsmModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("Protein models do not support embedding resizing." ) def lowercase_ (self : Dict ) -> str: """simple docstring""" pass def lowercase_ (self : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCAmelCase__ = model.get_bias() assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) for k, v in name.items(): assert isinstance(__UpperCAmelCase , tf.Variable ) else: UpperCAmelCase__ = model.get_output_embeddings() assert x is None UpperCAmelCase__ = model.get_bias() assert name is None @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , __UpperCAmelCase ) # compare the actual values for a slice. UpperCAmelCase__ = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def lowercase_ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCAmelCase__ = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] # compare the actual values for a slice. UpperCAmelCase__ = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
65
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a : int = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def __magic_name__ ( __UpperCAmelCase ) -> int: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main snake_case_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__UpperCAmelCase, id=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' if exitstatus == 5: snake_case_ = 0 # Doctest custom flag to ignore output. a : Union[str, Any] = doctest.register_optionflag('IGNORE_RESULT') a : Optional[int] = doctest.OutputChecker class a ( _lowerCamelCase ): def A_ ( self : List[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Optional[int] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) a : List[Any] = CustomOutputChecker a : Optional[int] = HfDoctestModule a : Tuple = HfDocTestParser
56
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class lowercase( __a ): '''simple docstring''' lowercase__ = "dpr" def __init__( self: Dict, a_: Union[str, Any]=30_522, a_: List[str]=768, a_: Optional[int]=12, a_: int=12, a_: List[str]=3_072, a_: Optional[int]="gelu", a_: Dict=0.1, a_: List[Any]=0.1, a_: str=512, a_: Dict=2, a_: Dict=0.02, a_: Union[str, Any]=1E-12, a_: int=0, a_: str="absolute", a_: int = 0, **a_: Any, ): '''simple docstring''' super().__init__(pad_token_id=a_, **a_ ) _snake_case : Optional[int] = vocab_size _snake_case : Union[str, Any] = hidden_size _snake_case : str = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : Optional[int] = hidden_act _snake_case : List[str] = intermediate_size _snake_case : Dict = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : Union[str, Any] = max_position_embeddings _snake_case : Any = type_vocab_size _snake_case : str = initializer_range _snake_case : int = layer_norm_eps _snake_case : int = projection_dim _snake_case : Dict = position_embedding_type
370
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase__ (snake_case__ : int = 50_00 ): """simple docstring""" _snake_case : List[str] = [(i * (3 * i - 1)) // 2 for i in range(1 , snake_case__ )] for i, pentagonal_i in enumerate(snake_case__ ): for j in range(snake_case__ , len(snake_case__ ) ): _snake_case : Dict = pentagonal_nums[j] _snake_case : Optional[Any] = pentagonal_i + pentagonal_j _snake_case : List[str] = pentagonal_j - pentagonal_i if is_pentagonal(snake_case__ ) and is_pentagonal(snake_case__ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
132
0
'''simple docstring''' import copy import re class A__ : A__ = 'hp' A__ = {} A__ = None @classmethod def A ( cls : Optional[Any] , _a : Optional[Any] , _a : Any ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =prefix _SCREAMING_SNAKE_CASE =defaults cls.build_naming_info() @staticmethod def A ( _a : Optional[Any] , _a : List[Any] ) -> Any: '''simple docstring''' if len(_a ) == 0: return "" _SCREAMING_SNAKE_CASE =None if any(char.isdigit() for char in word ): raise Exception(f"Parameters should not contain numbers: '{word}' contains a number" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_a ) + 1 ): _SCREAMING_SNAKE_CASE =word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE =prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_a : str ): _SCREAMING_SNAKE_CASE ='' while integer != 0: _SCREAMING_SNAKE_CASE =chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s _SCREAMING_SNAKE_CASE =0 while True: _SCREAMING_SNAKE_CASE =word + '#' + int_to_alphabetic(_a ) if sword in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE =sword break _SCREAMING_SNAKE_CASE =short_word _SCREAMING_SNAKE_CASE =word return short_word @staticmethod def A ( _a : Optional[Any] , _a : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =param_name.split('_' ) _SCREAMING_SNAKE_CASE =[TrialShortNamer.shortname_for_word(_a , _a ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _SCREAMING_SNAKE_CASE =['', '_'] for separator in separators: _SCREAMING_SNAKE_CASE =separator.join(_a ) if shortname not in info["reverse_short_param"]: _SCREAMING_SNAKE_CASE =shortname _SCREAMING_SNAKE_CASE =param_name return shortname return param_name @staticmethod def A ( _a : Dict , _a : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TrialShortNamer.shortname_for_key(_a , _a ) _SCREAMING_SNAKE_CASE =short_name _SCREAMING_SNAKE_CASE =param_name @classmethod def A ( cls : Optional[int] ) -> Tuple: '''simple docstring''' if cls.NAMING_INFO is not None: return _SCREAMING_SNAKE_CASE ={ 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } _SCREAMING_SNAKE_CASE =list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_a , _a ) _SCREAMING_SNAKE_CASE =info @classmethod def A ( cls : List[Any] , _a : int ) -> int: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _SCREAMING_SNAKE_CASE =[copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"You should provide a default value for the param name {k} with value {v}" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _SCREAMING_SNAKE_CASE =cls.NAMING_INFO['short_param'][k] if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =1 if v else 0 _SCREAMING_SNAKE_CASE ='' if isinstance(_a , (int, float) ) else '-' _SCREAMING_SNAKE_CASE =f"{key}{sep}{v}" name.append(_a ) return "_".join(_a ) @classmethod def A ( cls : Optional[Any] , _a : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =repr[len(cls.PREFIX ) + 1 :] if repr == "": _SCREAMING_SNAKE_CASE =[] else: _SCREAMING_SNAKE_CASE =repr.split('_' ) _SCREAMING_SNAKE_CASE ={} for value in values: if "-" in value: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =value.split('-' ) else: _SCREAMING_SNAKE_CASE =re.sub('[0-9.]' , '' , _a ) _SCREAMING_SNAKE_CASE =float(re.sub('[^0-9.]' , '' , _a ) ) _SCREAMING_SNAKE_CASE =cls.NAMING_INFO['reverse_short_param'][p_k] _SCREAMING_SNAKE_CASE =p_v for k in cls.DEFAULTS: if k not in parameters: _SCREAMING_SNAKE_CASE =cls.DEFAULTS[k] return parameters
47
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase : Union[str, Any] = TypeVar("KT") lowerCamelCase : Dict = TypeVar("VT") class A__ ( Generic[KT, VT] ): def __init__( self : str , _a : KT | str = "root" , _a : VT | None = None ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =key _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =[] def __repr__( self : Union[str, Any] ) -> str: '''simple docstring''' return f"Node({self.key}: {self.value})" @property def A ( self : int ) -> int: '''simple docstring''' return len(self.forward ) class A__ ( Generic[KT, VT] ): def __init__( self : Optional[Any] , _a : float = 0.5 , _a : int = 16 ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =Node[KT, VT]() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =p _SCREAMING_SNAKE_CASE =max_level def __str__( self : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =list(self ) if len(_a ) == 0: return f"SkipList(level={self.level})" _SCREAMING_SNAKE_CASE =max((len(str(_a ) ) for item in items) , default=4 ) _SCREAMING_SNAKE_CASE =max(_a , 4 ) + 4 _SCREAMING_SNAKE_CASE =self.head _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =node.forward.copy() lines.append(f"[{node.key}]".ljust(_a , '-' ) + '* ' * len(_a ) ) lines.append(' ' * label_size + '| ' * len(_a ) ) while len(node.forward ) != 0: _SCREAMING_SNAKE_CASE =node.forward[0] lines.append( f"[{node.key}]".ljust(_a , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(_a ) ) _SCREAMING_SNAKE_CASE =node.forward lines.append('None'.ljust(_a ) + '* ' * len(_a ) ) return f"SkipList(level={self.level})\n" + "\n".join(_a ) def __iter__( self : Dict ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.head while len(node.forward ) != 0: yield node.forward[0].key _SCREAMING_SNAKE_CASE =node.forward[0] def A ( self : List[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =1 while random() < self.p and level < self.max_level: level += 1 return level def A ( self : Any , _a : Any ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _SCREAMING_SNAKE_CASE =node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_a ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def A ( self : Union[str, Any] , _a : KT ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._locate_node(_a ) if node is not None: for i, update_node in enumerate(_a ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _SCREAMING_SNAKE_CASE =node.forward[i] else: _SCREAMING_SNAKE_CASE =update_node.forward[:i] def A ( self : Optional[Any] , _a : KT , _a : VT ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._locate_node(_a ) if node is not None: _SCREAMING_SNAKE_CASE =value else: _SCREAMING_SNAKE_CASE =self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _a ): update_vector.append(self.head ) _SCREAMING_SNAKE_CASE =level _SCREAMING_SNAKE_CASE =Node(_a , _a ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_a ) else: _SCREAMING_SNAKE_CASE =new_node def A ( self : List[str] , _a : VT ) -> VT | None: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._locate_node(_a ) if node is not None: return node.value return None def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) _SCREAMING_SNAKE_CASE =skip_list.head _SCREAMING_SNAKE_CASE ={} while node.level != 0: _SCREAMING_SNAKE_CASE =node.forward[0] _SCREAMING_SNAKE_CASE =node.value assert len(_UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) _SCREAMING_SNAKE_CASE =skip_list.head _SCREAMING_SNAKE_CASE ={} while node.level != 0: _SCREAMING_SNAKE_CASE =node.forward[0] _SCREAMING_SNAKE_CASE =node.value if len(_UpperCamelCase ) != 4: print() assert len(_UpperCamelCase ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() assert skip_list.find('Some key' ) is None def _lowerCAmelCase ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_UpperCamelCase : Dict ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" def is_sorted(_UpperCamelCase : str ): return all(next_item >= item for item, next_item in zip(_UpperCamelCase , lst[1:] ) ) _SCREAMING_SNAKE_CASE =SkipList() for i in range(10 ): skip_list.insert(_UpperCamelCase , _UpperCamelCase ) assert is_sorted(list(_UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCamelCase ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_UpperCamelCase ) ) def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _lowerCAmelCase ( ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
47
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCAmelCase_ (lowerCAmelCase__: Tuple ): """simple docstring""" monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" , set() ) @pytest.fixture def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" class _a : def __init__(self, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[Any] = metric_id class _a : A = [MetricMock(__lowercase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def __snake_case (self ) -> Tuple: return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" , HfhMock() ) @pytest.mark.parametrize( """func, args""" , [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: Tuple , lowerCAmelCase__: Tuple , lowerCAmelCase__: int , lowerCAmelCase__: Union[str, Any] ): """simple docstring""" if "tmp_path" in args: UpperCAmelCase_: Dict = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(__a , match="""https://huggingface.co/docs/evaluate""" ): func(*__a )
350
a : Tuple = 'Tobias Carryer' from time import time class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=int(time() ) ) -> List[Any]: # noqa: B008 UpperCAmelCase_: List[str] = multiplier UpperCAmelCase_: Tuple = increment UpperCAmelCase_: Tuple = modulo UpperCAmelCase_: List[str] = seed def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a : Optional[int] = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
82
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class __lowerCAmelCase : __lowerCamelCase = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) __lowerCamelCase = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) __lowerCamelCase = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) __lowerCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) __lowerCamelCase = field( default=lowerCamelCase__ , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments,) ) ((_lowerCAmelCase) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: _lowerCAmelCase = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: _lowerCAmelCase = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: _lowerCAmelCase = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: _lowerCAmelCase = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=snake_case , decoder_config=snake_case , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens _lowerCAmelCase = decoder_config.decoder_start_token_id _lowerCAmelCase = decoder_config.pad_token_id if decoder_start_token_id is None: _lowerCAmelCase = decoder_config.bos_token_id if pad_token_id is None: _lowerCAmelCase = decoder_config.eos_token_id # This is necessary to make Flax's generate() work _lowerCAmelCase = decoder_config.eos_token_id _lowerCAmelCase = decoder_start_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) _lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
82
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 0 while number > 0: _lowerCAmelCase = number % 10 sum_of_digits += last_digit _lowerCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def _UpperCAmelCase ( snake_case = 1_00 ): """simple docstring""" _lowerCAmelCase = factorial(snake_case ) _lowerCAmelCase = split_and_add(snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
82
1
class A : def __init__( self ): """simple docstring""" lowerCAmelCase_ = '''''' lowerCAmelCase_ = '''''' lowerCAmelCase_ = [] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowerCAmelCase_ = self.__min_dist_top_down_dp(m - 1, n - 1 ) else: lowerCAmelCase_ = self.__min_dist_top_down_dp(UpperCamelCase__, n - 1 ) lowerCAmelCase_ = self.__min_dist_top_down_dp(m - 1, UpperCamelCase__ ) lowerCAmelCase_ = self.__min_dist_top_down_dp(m - 1, n - 1 ) lowerCAmelCase_ = 1 + min(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) return self.dp[m][n] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = worda lowerCAmelCase_ = worda lowerCAmelCase_ = [[-1 for _ in range(len(UpperCamelCase__ ) )] for _ in range(len(UpperCamelCase__ ) )] return self.__min_dist_top_down_dp(len(UpperCamelCase__ ) - 1, len(UpperCamelCase__ ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = worda lowerCAmelCase_ = worda lowerCAmelCase_ = len(UpperCamelCase__ ) lowerCAmelCase_ = len(UpperCamelCase__ ) lowerCAmelCase_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowerCAmelCase_ = j elif j == 0: # second string is empty lowerCAmelCase_ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowerCAmelCase_ = self.dp[i - 1][j - 1] else: lowerCAmelCase_ = self.dp[i][j - 1] lowerCAmelCase_ = self.dp[i - 1][j] lowerCAmelCase_ = self.dp[i - 1][j - 1] lowerCAmelCase_ = 1 + min(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": _A = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() _A = input('''Enter the first string: ''').strip() _A = input('''Enter the second string: ''').strip() print() print(f"The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}") print(f"The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}") print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
167
from __future__ import annotations def __UpperCamelCase ( _A ): lowerCAmelCase_ = len(_A ) # We need to create solution object to save path. lowerCAmelCase_ = [[0 for _ in range(_A )] for _ in range(_A )] lowerCAmelCase_ = run_maze(_A , 0 , 0 , _A ) if solved: print('''\n'''.join(str(_A ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def __UpperCamelCase ( _A , _A , _A , _A ): lowerCAmelCase_ = len(_A ) # Final check point. if i == j == (size - 1): lowerCAmelCase_ = 1 return True lowerCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase_ = 1 # check for directions if ( run_maze(_A , i + 1 , _A , _A ) or run_maze(_A , _A , j + 1 , _A ) or run_maze(_A , i - 1 , _A , _A ) or run_maze(_A , _A , j - 1 , _A ) ): return True lowerCAmelCase_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
167
1
import argparse import os import re import packaging.version UpperCamelCase_ = '''examples/''' UpperCamelCase_ = { '''examples''': (re.compile(R'''^check_min_version\(\"[^\"]+\"\)\s*$''', re.MULTILINE), '''check_min_version(\"VERSION\")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+\"([^\"]+)\"\s*$''', re.MULTILINE), '''__version__ = \"VERSION\"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*\"[^\"]+\",''', re.MULTILINE), R'''\1version=\"VERSION\",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*\"[^\"]+\"$''', re.MULTILINE), '''release = \"VERSION\"\n'''), } UpperCamelCase_ = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } UpperCamelCase_ = '''README.md''' def lowerCamelCase_ ( _a : Dict , _a : Dict , _a : Optional[int] ): '''simple docstring''' with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_ : Tuple = f.read() UpperCAmelCase_ : List[str] = REPLACE_PATTERNS[pattern] UpperCAmelCase_ : int = replace.replace("""VERSION""" , __SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = re_pattern.sub(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( _a : Tuple ): '''simple docstring''' for folder, directories, fnames in os.walk(__SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , pattern="""examples""" ) def lowerCamelCase_ ( _a : int , _a : Optional[int]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = '🤗 Transformers currently provides the following architectures' UpperCAmelCase_ : Union[str, Any] = '1. Want to contribute a new model?' with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase_ : Optional[Any] = f.readlines() # Find the start of the list. UpperCAmelCase_ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase_ : Tuple = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase_ : Tuple = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase_ : Tuple = f.read() UpperCAmelCase_ : List[str] = REPLACE_PATTERNS['init'][0].search(__SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(__SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( _a : str=False ): '''simple docstring''' UpperCAmelCase_ : int = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can\'t create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase_ : Union[str, Any] = default_version.base_version elif patch: UpperCAmelCase_ : str = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: UpperCAmelCase_ : Optional[Any] = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. UpperCAmelCase_ : Union[str, Any] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: UpperCAmelCase_ : Union[str, Any] = default_version print(F'''Updating version to {version}.''' ) global_version_update(__SCREAMING_SNAKE_CASE , patch=__SCREAMING_SNAKE_CASE ) if not patch: print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = get_version() UpperCAmelCase_ : Any = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' UpperCAmelCase_ : List[Any] = current_version.base_version # Check with the user we got that right. UpperCAmelCase_ : Tuple = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__SCREAMING_SNAKE_CASE ) == 0: UpperCAmelCase_ : Optional[Any] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__SCREAMING_SNAKE_CASE ) print("""Cleaning main README, don\'t forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') UpperCamelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
345
"""simple docstring""" from __future__ import annotations __SCREAMING_SNAKE_CASE =[] def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[row][i] == 1: return False for i in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][column] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(__SCREAMING_SNAKE_CASE , -1 , -1 ) , range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): if board[i][j] == 1: return False return True def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] , __SCREAMING_SNAKE_CASE : int ): if row >= len(__SCREAMING_SNAKE_CASE ): solution.append(__SCREAMING_SNAKE_CASE ) printboard(__SCREAMING_SNAKE_CASE ) print() return True for i in range(len(__SCREAMING_SNAKE_CASE ) ): if is_safe(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : int = 1 solve(__SCREAMING_SNAKE_CASE , row + 1 ) lowercase_ : Dict = 0 return False def lowercase__( __SCREAMING_SNAKE_CASE : list[list[int]] ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): for j in range(len(__SCREAMING_SNAKE_CASE ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) __SCREAMING_SNAKE_CASE =8 __SCREAMING_SNAKE_CASE =[[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
213
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase_ , 'num_attention_heads' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : List[Any]=1_6 , lowerCAmelCase_ : str=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Any=[4, 6, 8] , lowerCAmelCase_ : Optional[int]=[2, 3, 4] , lowerCAmelCase_ : List[str]=[1_6, 1_6, 1_6] , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Union[str, Any]=[2, 2, 2] , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=2 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = kernel_size __lowerCAmelCase = stride __lowerCAmelCase = padding __lowerCAmelCase = hidden_sizes __lowerCAmelCase = num_attention_heads __lowerCAmelCase = depths __lowerCAmelCase = key_dim __lowerCAmelCase = drop_path_rate __lowerCAmelCase = patch_size __lowerCAmelCase = attention_ratio __lowerCAmelCase = mlp_ratio __lowerCAmelCase = initializer_range __lowerCAmelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range def lowercase ( self : List[str] ) -> str: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : List[str] ) -> int: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str ) -> Optional[int]: __lowerCAmelCase = LevitModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ ) __lowerCAmelCase = (self.image_size, self.image_size) __lowerCAmelCase , __lowerCAmelCase = image_size[0], image_size[1] for _ in range(4 ): __lowerCAmelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowerCAmelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase ( self : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Optional[int]: __lowerCAmelCase = self.num_labels __lowerCAmelCase = LevitForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() __lowerCAmelCase = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Any ) -> List[str]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a_ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = LevitModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=3_7 ) def lowercase ( self : List[str] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : str ) -> Optional[Any]: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> List[Any]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def lowercase ( self : Dict ) -> str: pass @unittest.skip(reason='Levit does not output attentions' ) def lowercase ( self : List[str] ) -> Optional[int]: pass def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCAmelCase_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> Dict: def check_hidden_states_output(lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowerCAmelCase = (self.model_tester.image_size, self.model_tester.image_size) __lowerCAmelCase , __lowerCAmelCase = image_size[0], image_size[1] for _ in range(4 ): __lowerCAmelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowerCAmelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Any ) -> Optional[Any]: pass def lowercase ( self : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any=False ) -> int: __lowerCAmelCase = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase ( self : Any ) -> List[Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def lowercase ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase_ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ).loss loss.backward() def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) __lowerCAmelCase = model(**lowerCAmelCase_ ).loss loss.backward() def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase_ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): __lowerCAmelCase = problem_type['title'] __lowerCAmelCase = problem_type['num_labels'] __lowerCAmelCase = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __lowerCAmelCase = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase_ ) as warning_list: __lowerCAmelCase = model(**lowerCAmelCase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase ( self : str ) -> Optional[int]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = LevitModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Dict ) -> Tuple: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCAmelCase_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) __lowerCAmelCase = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) )
362
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 8_8 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "geglu" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = True , ) -> Dict: super().__init__() __lowerCAmelCase = num_attention_heads __lowerCAmelCase = attention_head_dim __lowerCAmelCase = num_attention_heads * attention_head_dim __lowerCAmelCase = in_channels __lowerCAmelCase = torch.nn.GroupNorm(num_groups=lowerCAmelCase_ , num_channels=lowerCAmelCase_ , eps=1e-6 , affine=lowerCAmelCase_ ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) # 3. Define transformers blocks __lowerCAmelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dropout=lowerCAmelCase_ , cross_attention_dim=lowerCAmelCase_ , activation_fn=lowerCAmelCase_ , attention_bias=lowerCAmelCase_ , double_self_attention=lowerCAmelCase_ , norm_elementwise_affine=lowerCAmelCase_ , ) for d in range(lowerCAmelCase_ ) ] ) __lowerCAmelCase = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : bool = True , ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = hidden_states.shape __lowerCAmelCase = batch_frames // num_frames __lowerCAmelCase = hidden_states __lowerCAmelCase = hidden_states[None, :].reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __lowerCAmelCase = self.norm(lowerCAmelCase_ ) __lowerCAmelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = self.proj_in(lowerCAmelCase_ ) # 2. Blocks for block in self.transformer_blocks: __lowerCAmelCase = block( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , timestep=lowerCAmelCase_ , cross_attention_kwargs=lowerCAmelCase_ , class_labels=lowerCAmelCase_ , ) # 3. Output __lowerCAmelCase = self.proj_out(lowerCAmelCase_ ) __lowerCAmelCase = ( hidden_states[None, None, :] .reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __lowerCAmelCase = hidden_states.reshape(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=lowerCAmelCase_ )
207
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class A_ ( A_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.26.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('>=', '0.0.12') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class A_ ( A_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
117
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Tuple = TransfoXLTokenizer UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = False def _a ( self ) -> Union[str, Any]: super().setUp() __UpperCamelCase =[ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _a ( self , **A_ ) -> Optional[int]: __UpperCamelCase =True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ ) -> Tuple: __UpperCamelCase ='<unk> UNwanted , running' __UpperCamelCase ='<unk> unwanted, running' return input_text, output_text def _a ( self ) -> str: __UpperCamelCase =TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A_ ) __UpperCamelCase =tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(A_ , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [0, 4, 8, 7] ) def _a ( self ) -> Any: __UpperCamelCase =TransfoXLTokenizer(lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =TransfoXLTokenizer(lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> int: __UpperCamelCase =TransfoXLTokenizer(lower_case=A_ ) __UpperCamelCase ='Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' __UpperCamelCase =[ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(A_ ) , A_ ) self.assertEqual(tokenizer.convert_tokens_to_string(A_ ) , A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =len(A_ ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A_ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
62
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = f'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() SCREAMING_SNAKE_CASE__ = [sys.executable] + distributed_args execute_subprocess_async(lowercase_ , env=os.environ.copy() )
356
import datasets from .evaluate import evaluate _SCREAMING_SNAKE_CASE : Union[str, Any] = '''\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } ''' _SCREAMING_SNAKE_CASE : Dict = ''' This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. ''' _SCREAMING_SNAKE_CASE : str = ''' Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': the text of the answer references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the SQuAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}] >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}] >>> squad_metric = datasets.load_metric("squad") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self : List[Any] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE__ = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE__ = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase ) return score
218
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Optional[Any]: def wrapper(*_lowerCamelCase : Any ,**_lowerCamelCase : List[str] ): _lowerCAmelCase : Any = timeit.default_timer() _lowerCAmelCase : str = func(*_lowerCamelCase ,**_lowerCamelCase ) _lowerCAmelCase : Tuple = timeit.default_timer() - starttime return delta _lowerCAmelCase : Union[str, Any] = func.__name__ return wrapper def SCREAMING_SNAKE_CASE ( _lowerCamelCase : dict ,_lowerCamelCase : Optional[Any]=100 ,_lowerCamelCase : Union[str, Any]=None ) -> Union[str, Any]: _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : str = seq_shapes or {} for i in range(_lowerCamelCase ): _lowerCAmelCase : List[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_lowerCamelCase ,_ArrayXD ): _lowerCAmelCase : Union[str, Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_lowerCamelCase ,datasets.Value ): if v.dtype == "string": _lowerCAmelCase : Union[str, Any] = """The small grey turtle was surprisingly fast when challenged.""" else: _lowerCAmelCase : Union[str, Any] = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(_lowerCamelCase ,datasets.Sequence ): while isinstance(_lowerCamelCase ,datasets.Sequence ): _lowerCAmelCase : List[Any] = v.feature _lowerCAmelCase : Optional[Any] = seq_shapes[k] _lowerCAmelCase : Union[str, Any] = np.random.rand(*_lowerCamelCase ).astype(v.dtype ) _lowerCAmelCase : Union[str, Any] = data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Any ,_lowerCamelCase : str=100 ,_lowerCamelCase : List[str]=None ) -> List[str]: _lowerCAmelCase : Dict = generate_examples(_lowerCamelCase ,num_examples=_lowerCamelCase ,seq_shapes=_lowerCamelCase ) with ArrowWriter(features=_lowerCamelCase ,path=_lowerCamelCase ) as writer: for key, record in dummy_data: _lowerCAmelCase : List[Any] = features.encode_example(_lowerCamelCase ) writer.write(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Dict = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) _lowerCAmelCase : Optional[Any] = datasets.Dataset.from_file(filename=_lowerCamelCase ,info=datasets.DatasetInfo(features=_lowerCamelCase ) ) return dataset
44
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> List[Any]: # noqa: E741 _lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) _lowerCAmelCase : str = 0 _lowerCAmelCase : Any = [0] * n _lowerCAmelCase : str = [False] * n _lowerCAmelCase : str = [False] * n def dfs(_lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ): if parent == root: out_edge_count += 1 _lowerCAmelCase : Any = True _lowerCAmelCase : int = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowerCAmelCase : Union[str, Any] = dfs(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Optional[int] = min(low[at] ,low[to] ) # AP found via bridge if at < low[to]: _lowerCAmelCase : int = True # AP found via cycle if at == low[to]: _lowerCAmelCase : Tuple = True else: _lowerCAmelCase : Union[str, Any] = min(low[at] ,_lowerCamelCase ) return out_edge_count for i in range(_lowerCamelCase ): if not visited[i]: _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = dfs(_lowerCamelCase ,_lowerCamelCase ,-1 ,_lowerCamelCase ) _lowerCAmelCase : List[str] = out_edge_count > 1 for x in range(len(_lowerCamelCase ) ): if is_art[x] is True: print(_lowerCamelCase ) # Adjacency list of graph _a : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
44
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCAmelCase ( a_ , a_=1 ) -> List[str]: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def UpperCAmelCase ( a_ , a_=0 ) -> Optional[Any]: """simple docstring""" A_ : str = [] for old_item in old_list: A_ : Any = old_item.replace("""in_layers.0""" , """norm1""" ) A_ : Union[str, Any] = new_item.replace("""in_layers.2""" , """conv1""" ) A_ : List[str] = new_item.replace("""out_layers.0""" , """norm2""" ) A_ : Union[str, Any] = new_item.replace("""out_layers.3""" , """conv2""" ) A_ : Union[str, Any] = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) A_ : Any = new_item.replace("""skip_connection""" , """conv_shortcut""" ) A_ : List[Any] = shave_segments(a_ , n_shave_prefix_segments=a_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase ( a_ , a_=0 ) -> Any: """simple docstring""" A_ : Union[str, Any] = [] for old_item in old_list: A_ : Optional[Any] = old_item A_ : List[str] = new_item.replace("""norm.weight""" , """group_norm.weight""" ) A_ : str = new_item.replace("""norm.bias""" , """group_norm.bias""" ) A_ : List[str] = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) A_ : Optional[int] = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) A_ : List[str] = shave_segments(a_ , n_shave_prefix_segments=a_ ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def UpperCAmelCase ( a_ , a_ , a_ , a_=None , a_=None , a_=None ) -> Any: """simple docstring""" assert isinstance(a_ , a_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): A_ : Union[str, Any] = old_checkpoint[path] A_ : Tuple = old_tensor.shape[0] // 3 A_ : Optional[Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) A_ : List[Any] = old_tensor.shape[0] // config["""num_head_channels"""] // 3 A_ : List[str] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) A_ , A_ , A_ : Tuple = old_tensor.split(channels // num_heads , dim=1 ) A_ : str = query.reshape(a_ ) A_ : int = key.reshape(a_ ) A_ : Tuple = value.reshape(a_ ) for path in paths: A_ : Any = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here A_ : int = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) A_ : Dict = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) A_ : List[str] = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: A_ : str = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: A_ : Union[str, Any] = old_checkpoint[path["""old"""]][:, :, 0] else: A_ : List[Any] = old_checkpoint[path["""old"""]] def UpperCAmelCase ( a_ , a_ ) -> Union[str, Any]: """simple docstring""" A_ : Optional[Any] = {} A_ : Optional[Any] = checkpoint["""time_embed.0.weight"""] A_ : Union[str, Any] = checkpoint["""time_embed.0.bias"""] A_ : List[str] = checkpoint["""time_embed.2.weight"""] A_ : Optional[int] = checkpoint["""time_embed.2.bias"""] A_ : Union[str, Any] = checkpoint["""input_blocks.0.0.weight"""] A_ : List[str] = checkpoint["""input_blocks.0.0.bias"""] A_ : int = checkpoint["""out.0.weight"""] A_ : int = checkpoint["""out.0.bias"""] A_ : Tuple = checkpoint["""out.2.weight"""] A_ : Dict = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only A_ : List[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) A_ : Optional[int] = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the middle blocks only A_ : Optional[Any] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) A_ : Optional[Any] = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(a_ ) } # Retrieves the keys for the output blocks only A_ : Optional[int] = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) A_ : Any = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(a_ ) } for i in range(1 , a_ ): A_ : Union[str, Any] = (i - 1) // (config["""num_res_blocks"""] + 1) A_ : Optional[int] = (i - 1) % (config["""num_res_blocks"""] + 1) A_ : Any = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] A_ : int = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: A_ : List[Any] = checkpoint[ F"input_blocks.{i}.0.op.weight" ] A_ : List[Any] = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue A_ : str = renew_resnet_paths(a_ ) A_ : Any = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} A_ : str = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path, resnet_op] , config=a_ ) if len(a_ ): A_ : Optional[int] = renew_attention_paths(a_ ) A_ : List[Any] = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Any = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path] , attention_paths_to_split=a_ , config=a_ , ) A_ : Optional[int] = middle_blocks[0] A_ : Union[str, Any] = middle_blocks[1] A_ : Optional[Any] = middle_blocks[2] A_ : List[Any] = renew_resnet_paths(a_ ) assign_to_checkpoint(a_ , a_ , a_ , config=a_ ) A_ : int = renew_resnet_paths(a_ ) assign_to_checkpoint(a_ , a_ , a_ , config=a_ ) A_ : Optional[int] = renew_attention_paths(a_ ) A_ : Tuple = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( a_ , a_ , a_ , attention_paths_to_split=a_ , config=a_ ) for i in range(a_ ): A_ : Optional[Any] = i // (config["""num_res_blocks"""] + 1) A_ : Tuple = i % (config["""num_res_blocks"""] + 1) A_ : List[str] = [shave_segments(a_ , 2 ) for name in output_blocks[i]] A_ : Union[str, Any] = {} for layer in output_block_layers: A_ , A_ : Optional[int] = layer.split(""".""" )[0], shave_segments(a_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(a_ ) else: A_ : Dict = [layer_name] if len(a_ ) > 1: A_ : Optional[Any] = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] A_ : Optional[int] = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] A_ : Union[str, Any] = renew_resnet_paths(a_ ) A_ : int = renew_resnet_paths(a_ ) A_ : Optional[Any] = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(a_ , a_ , a_ , additional_replacements=[meta_path] , config=a_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): A_ : List[Any] = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) A_ : str = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] A_ : List[str] = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(a_ ) == 2: A_ : Optional[Any] = [] if len(a_ ): A_ : Optional[Any] = renew_attention_paths(a_ ) A_ : str = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } A_ : Dict = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( a_ , a_ , a_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=a_ , ) else: A_ : Optional[int] = renew_resnet_paths(a_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: A_ : Optional[Any] = """.""".join(["""output_blocks""", str(a_ ), path["""old"""]] ) A_ : Union[str, Any] = """.""".join(["""up_blocks""", str(a_ ), """resnets""", str(a_ ), path["""new"""]] ) A_ : Union[str, Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') UpperCamelCase__ : List[Any] = parser.parse_args() UpperCamelCase__ : List[Any] = torch.load(args.checkpoint_path) with open(args.config_file) as f: UpperCamelCase__ : Dict = json.loads(f.read()) UpperCamelCase__ : List[Any] = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] UpperCamelCase__ : List[str] = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: UpperCamelCase__ : Dict = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCamelCase__ : str = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) UpperCamelCase__ : Any = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
164
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase ) -> Optional[Any]: A_ : Any = data A_ : Node | None = None class _lowerCAmelCase : """simple docstring""" def __init__( self ) -> List[str]: A_ : Tuple = None A_ : str = None def __iter__( self ) -> Iterator[Any]: A_ : Dict = self.head while self.head: yield node.data A_ : Optional[Any] = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join(str(_lowerCamelCase ) for item in iter(self ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(len(self ) , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> None: self.insert_nth(0 , _lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> None: if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) A_ : Optional[int] = Node(_lowerCamelCase ) if self.head is None: A_ : str = new_node # first node points itself A_ : Union[str, Any] = new_node elif index == 0: # insert at head A_ : List[Any] = self.head A_ : List[Any] = new_node else: A_ : List[str] = self.head for _ in range(index - 1 ): A_ : Optional[int] = temp.next A_ : Tuple = temp.next A_ : str = new_node if index == len(self ) - 1: # insert at tail A_ : Optional[int] = new_node def UpperCAmelCase_ ( self ) -> List[Any]: return self.delete_nth(0 ) def UpperCAmelCase_ ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase_ ( self , _lowerCamelCase = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) A_ : int = self.head if self.head == self.tail: # just one node A_ : int = None elif index == 0: # delete head node A_ : Union[str, Any] = self.tail.next.next A_ : Tuple = self.head.next else: A_ : Optional[int] = self.head for _ in range(index - 1 ): A_ : Tuple = temp.next A_ : Any = temp.next A_ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail A_ : List[str] = temp return delete_node.data def UpperCAmelCase_ ( self ) -> bool: return len(self ) == 0 def UpperCAmelCase ( ) -> None: """simple docstring""" A_ : Any = CircularLinkedList() assert len(a_ ) == 0 assert circular_linked_list.is_empty() is True assert str(a_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(a_ ) == i circular_linked_list.insert_nth(a_ , i + 1 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(a_ ) == "->".join(str(a_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
164
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : int ) -> Any: lowerCamelCase__ : Optional[int] = inspect.getfile(accelerate.test_utils ) lowerCamelCase__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCamelCase__ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowerCamelCase__ : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def A_ ( self : Optional[int] ) -> Any: print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase__ : Optional[Any] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def A_ ( self : Optional[int] ) -> Tuple: print(F"""Found {torch.cuda.device_count()} devices.""" ) lowerCamelCase__ : Union[str, Any] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def A_ ( self : Tuple ) -> Dict: lowerCamelCase__ : Optional[Any] = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def A_ ( self : str ) -> int: print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) lowerCamelCase__ : Dict = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": _UpperCAmelCase : Dict = Accelerator() _UpperCAmelCase : Any = (accelerator.state.process_index + 2, 10) _UpperCAmelCase : List[Any] = torch.randint(0, 10, shape).to(accelerator.device) _UpperCAmelCase : Tuple = '' _UpperCAmelCase : Union[str, Any] = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _UpperCAmelCase : Union[str, Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _UpperCAmelCase : Optional[int] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
50
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : List[str] ={ 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __lowerCAmelCase : Optional[int] ={ 'gpt-neox-20b': 2_0_4_8, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self :int , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :str="<|endoftext|>" , lowerCAmelCase__ :Dict="<|endoftext|>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :List[str] , ) -> Any: super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCAmelCase__ ) != add_prefix_space: __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , pre_tok_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : str = add_prefix_space __SCREAMING_SNAKE_CASE : Any = pre_tok_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :"Conversation" ) -> List[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: __SCREAMING_SNAKE_CASE : List[str] = input_ids[-self.model_max_length :] return input_ids
9
0
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class a_ ( A_ ): UpperCamelCase__ : str ="audio-spectrogram-transformer" def __init__( self :List[str] , _lowercase :int=768 , _lowercase :Optional[Any]=12 , _lowercase :int=12 , _lowercase :List[str]=3072 , _lowercase :str="gelu" , _lowercase :List[str]=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Dict=0.02 , _lowercase :Any=1E-1_2 , _lowercase :Optional[int]=16 , _lowercase :int=True , _lowercase :Dict=10 , _lowercase :List[Any]=10 , _lowercase :Dict=1024 , _lowercase :Tuple=128 , **_lowercase :List[Any] , ) -> Any: super().__init__(**snake_case__) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = patch_size UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = frequency_stride UpperCAmelCase_ = time_stride UpperCAmelCase_ = max_length UpperCAmelCase_ = num_mel_bins
360
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
0
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> Dict: _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[str] = set({"""(""", """[""", """{"""} ) _UpperCAmelCase : Optional[Any] = set({""")""", """]""", """}"""} ) _UpperCAmelCase : str = {"""{""": """}""", """[""": """]""", """(""": """)"""} for i in range(len(__lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(__lowerCAmelCase ) == 0 or (len(__lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(__lowerCAmelCase ) == 0 def UpperCamelCase ( ) -> int: _UpperCAmelCase : Union[str, Any] = input("""Enter sequence of brackets: """ ) if is_balanced(__lowerCAmelCase ): print(__lowerCAmelCase, """is balanced""" ) else: print(__lowerCAmelCase, """is not balanced""" ) if __name__ == "__main__": main()
246
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[int] = StableDiffusionInstructPixaPixPipeline _SCREAMING_SNAKE_CASE :int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} _SCREAMING_SNAKE_CASE :Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _SCREAMING_SNAKE_CASE :int = IMAGE_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE :List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) SCREAMING_SNAKE_CASE__ : str = CLIPTextModel(_a ) SCREAMING_SNAKE_CASE__ : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _a ( self , _a , _a=0 ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) SCREAMING_SNAKE_CASE__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : Dict = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ) if str(_a ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : List[Any] = torch.manual_seed(_a ) else: SCREAMING_SNAKE_CASE__ : str = torch.Generator(device=_a ).manual_seed(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_inputs(_a ) SCREAMING_SNAKE_CASE__ : str = sd_pipe(**_a ).images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline(**_a ) SCREAMING_SNAKE_CASE__ : List[Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_inputs(_a ) SCREAMING_SNAKE_CASE__ : int = """french fries""" SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe(**_a , negative_prompt=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**_a ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : int = self.get_dummy_inputs(_a ) SCREAMING_SNAKE_CASE__ : List[str] = [inputs["""prompt"""]] * 2 SCREAMING_SNAKE_CASE__ : List[str] = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.from_numpy(_a ).unsqueeze(0 ).to(_a ) SCREAMING_SNAKE_CASE__ : Any = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ : Any = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ : List[str] = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE__ : int = sd_pipe(**_a ).images SCREAMING_SNAKE_CASE__ : List[Any] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : int = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline(**_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_inputs(_a ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe(**_a ).images SCREAMING_SNAKE_CASE__ : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = [round(_a , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(_a ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Tuple = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _a ( self ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = VaeImageProcessor(do_resize=_a , do_normalize=_a ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) SCREAMING_SNAKE_CASE__ : str = pipe(**self.get_dummy_inputs_by_type(_a , input_image_type="""pt""" ) )[0] SCREAMING_SNAKE_CASE__ : Tuple = components["""vae"""] SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_inputs_by_type(_a , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE__ : Any = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE__ : Any = pipe(**_a )[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(_a , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , _a=0 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.manual_seed(_a ) SCREAMING_SNAKE_CASE__ : str = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) SCREAMING_SNAKE_CASE__ : Dict = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_inputs() SCREAMING_SNAKE_CASE__ : Tuple = pipe(**_a ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) SCREAMING_SNAKE_CASE__ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : List[Any] = self.get_inputs() SCREAMING_SNAKE_CASE__ : str = pipe(**_a ).images SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a ) SCREAMING_SNAKE_CASE__ : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**_a ).images SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : Any = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 def callback_fn(_a , _a , _a ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : str = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE__ : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : List[Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : str = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_inputs() pipe(**_a , callback=_a , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _a ( self ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=_a , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : str = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ : List[str] = self.get_inputs() SCREAMING_SNAKE_CASE__ : Any = pipe(**_a ) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["""image"""].resize((504, 504) ) SCREAMING_SNAKE_CASE__ : str = """timbrooks/instruct-pix2pix""" SCREAMING_SNAKE_CASE__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE__ : Any = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
132
0
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if isinstance(UpperCamelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase : def _lowercase ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] ) -> str: pass def _lowercase ( self : Tuple ) -> Tuple: pass def _lowercase ( self : Optional[Any] ) -> Any: pass def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float ) -> str: _a : str = np.abs((a - b) ).max() self.assertLessEqual(UpperCAmelCase__ , UpperCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def _lowercase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : Tuple ) -> Tuple: _a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[Any] = FlaxVisionTextDualEncoderModel(UpperCAmelCase__ ) _a : int = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : Any ) -> List[Any]: _a , _a : List[Any] = self.get_vision_text_model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : int = {"""vision_model""": vision_model, """text_model""": text_model} _a : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase__ ) _a : Union[str, Any] = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowercase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=None , **UpperCAmelCase__ : str ) -> int: _a , _a : Dict = self.get_vision_text_model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = {"""vision_model""": vision_model, """text_model""": text_model} _a : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase__ ) _a : List[str] = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _a : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ ) _a : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ ) _a : str = model(input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) _a : Union[str, Any] = after_output[0] _a : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase__ , 1E-3 ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : List[str] ) -> str: _a , _a : Optional[Any] = self.get_vision_text_model(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[Any] = {"""vision_model""": vision_model, """text_model""": text_model} _a : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCAmelCase__ ) _a : List[str] = model( input_ids=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , output_attentions=UpperCAmelCase__ ) _a : List[str] = output.vision_model_output.attentions self.assertEqual(len(UpperCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Any = to_atuple(vision_model.config.image_size ) _a : Union[str, Any] = to_atuple(vision_model.config.patch_size ) _a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a : str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(UpperCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowercase ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple ) -> Tuple: pt_model.to(UpperCAmelCase__ ) pt_model.eval() # prepare inputs _a : List[str] = inputs_dict _a : List[str] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _a : Optional[Any] = pt_model(**UpperCAmelCase__ ).to_tuple() _a : List[Any] = fx_model(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase__ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase__ ) _a : int = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ , from_pt=UpperCAmelCase__ ) _a : str = fx_model_loaded(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(UpperCAmelCase__ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase__ ) _a : Optional[Any] = VisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ , from_flax=UpperCAmelCase__ ) pt_model_loaded.to(UpperCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _a : int = pt_model_loaded(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(UpperCAmelCase__ , pt_output_loaded.numpy() , 4E-2 ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str ) -> Tuple: _a : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = VisionTextDualEncoderModel(UpperCAmelCase__ ) _a : Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCAmelCase__ ) _a : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase__ ) _a : Optional[Any] = fx_state self.check_pt_flax_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] ) -> Dict: _a : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Union[str, Any] = VisionTextDualEncoderModel(UpperCAmelCase__ ) _a : Dict = FlaxVisionTextDualEncoderModel(UpperCAmelCase__ ) _a : List[str] = load_flax_weights_in_pytorch_model(UpperCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowercase ( self : Any ) -> List[str]: _a : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCAmelCase__ ) def _lowercase ( self : Any ) -> str: _a : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Any = self.prepare_config_and_inputs() self.check_save_load(**UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> List[str]: _a : Any = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCAmelCase__ ) @is_pt_flax_cross_test def _lowercase ( self : Optional[int] ) -> int: _a : int = self.prepare_config_and_inputs() _a : List[Any] = config_inputs_dict.pop("""vision_config""" ) _a : Dict = config_inputs_dict.pop("""text_config""" ) _a : Optional[Any] = config_inputs_dict self.check_equivalence_pt_to_flax(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.check_equivalence_flax_to_pt(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _lowercase ( self : Any ) -> Dict: _a , _a : List[Any] = self.get_pretrained_model_and_inputs() _a : Optional[int] = model_a(**UpperCAmelCase__ ) _a : Dict = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCAmelCase__ ) _a : int = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCAmelCase__ ) _a : List[str] = model_a(**UpperCAmelCase__ ) _a : str = after_outputs[0] _a : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCAmelCase__ , 1E-5 ) @require_flax class UpperCamelCase ( snake_case_ , unittest.TestCase ): def _lowercase ( self : List[str] ) -> Any: _a : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase__ , text_from_pt=UpperCAmelCase__ , ) _a : str = 13 _a : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a : Any = random_attention_mask([batch_size, 4] ) _a : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> Any: _a : Union[str, Any] = FlaxViTModel(UpperCAmelCase__ ) _a : List[str] = FlaxBertModel(UpperCAmelCase__ ) return vision_model, text_model def _lowercase ( self : int ) -> Tuple: _a : int = FlaxViTModelTester(self ) _a : Optional[int] = FlaxBertModelTester(self ) _a : Tuple = vit_model_tester.prepare_config_and_inputs() _a : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() _a , _a : Union[str, Any] = vision_config_and_inputs _a , _a , _a , _a : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase ( snake_case_ , unittest.TestCase ): def _lowercase ( self : Optional[int] ) -> Tuple: _a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=UpperCAmelCase__ , text_from_pt=UpperCAmelCase__ , ) _a : Tuple = 13 _a : Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _a : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _a : Tuple = random_attention_mask([batch_size, 4] ) _a : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _lowercase ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> Optional[Any]: _a : Union[str, Any] = FlaxCLIPVisionModel(UpperCAmelCase__ ) _a : str = FlaxBertModel(UpperCAmelCase__ ) return vision_model, text_model def _lowercase ( self : int ) -> Dict: _a : str = FlaxCLIPVisionModelTester(self ) _a : str = FlaxBertModelTester(self ) _a : str = clip_model_tester.prepare_config_and_inputs() _a : str = bert_model_tester.prepare_config_and_inputs() _a , _a : Dict = vision_config_and_inputs _a , _a , _a , _a : List[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase ( self : int ) -> Tuple: _a : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) _a : List[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _a : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _a : List[Any] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""np""" ) _a : List[Any] = model(**UpperCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a : Tuple = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image , UpperCAmelCase__ , atol=1E-3 ) )
324
"""simple docstring""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Dict = len(UpperCamelCase__ ), len(grid[0] ) if ( min(UpperCamelCase__ , UpperCamelCase__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _a : Any = 0 count += depth_first_search(UpperCamelCase__ , row + 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , row - 1 , UpperCamelCase__ , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col + 1 , UpperCamelCase__ ) count += depth_first_search(UpperCamelCase__ , UpperCamelCase__ , col - 1 , UpperCamelCase__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : List[str] ): __lowercase = parent def _lowercase ( self : Optional[Any] ): return {} def _A ( ) -> int: '''simple docstring''' __lowercase = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" __lowercase = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None def _lowercase ( self : List[str] ): __lowercase = MarkupLMFeatureExtractionTester(self ) @property def _lowercase ( self : Optional[int] ): return self.feature_extract_tester.prepare_feat_extract_dict() def _lowercase ( self : List[Any] ): # Initialize feature_extractor __lowercase = self.feature_extraction_class() # Test not batched input __lowercase = get_html_strings()[0] __lowercase = feature_extractor(UpperCAmelCase__ ) # fmt: off __lowercase = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] __lowercase = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes, UpperCAmelCase__ ) self.assertEqual(encoding.xpaths, UpperCAmelCase__ ) # Test batched __lowercase = get_html_strings() __lowercase = feature_extractor(UpperCAmelCase__ ) # fmt: off __lowercase = expected_nodes + [["My First Heading", "My first paragraph."]] __lowercase = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ), 2 ) self.assertEqual(len(encoding.xpaths ), 2 ) self.assertEqual(encoding.nodes, UpperCAmelCase__ ) self.assertEqual(encoding.xpaths, UpperCAmelCase__ )
17
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : def __init__( self : Any , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : int=10 , lowercase : str=3 , lowercase : List[Any]=2 , lowercase : Dict=2 , lowercase : List[str]=2 , lowercase : int=True , lowercase : List[Any]=True , lowercase : Union[str, Any]=32 , lowercase : Optional[int]=5 , lowercase : List[Any]=4 , lowercase : List[str]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[Any]=0.1 , lowercase : Any=0.1 , lowercase : Optional[Any]=10 , lowercase : Union[str, Any]=0.02 , lowercase : Optional[int]=0.9 , lowercase : List[str]=None , ): """simple docstring""" lowercase_ :Optional[int] = parent lowercase_ :str = batch_size lowercase_ :Optional[int] = image_size lowercase_ :Tuple = num_channels lowercase_ :Optional[Any] = patch_size lowercase_ :List[str] = tubelet_size lowercase_ :List[Any] = num_frames lowercase_ :Dict = is_training lowercase_ :Optional[int] = use_labels lowercase_ :Optional[int] = hidden_size lowercase_ :List[str] = num_hidden_layers lowercase_ :List[str] = num_attention_heads lowercase_ :int = intermediate_size lowercase_ :Any = hidden_act lowercase_ :Tuple = hidden_dropout_prob lowercase_ :str = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :int = initializer_range lowercase_ :Dict = mask_ratio lowercase_ :Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Union[str, Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase_ :Optional[Any] = int(mask_ratio * self.seq_length ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Union[str, Any] = None if self.use_labels: lowercase_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def lowercase__ ( self : Optional[int] , lowercase : Dict , lowercase : Dict , lowercase : Optional[int] ): """simple docstring""" lowercase_ :int = VideoMAEModel(config=lowercase ) model.to(lowercase ) model.eval() lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : List[str] , lowercase : int ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForPreTraining(lowercase ) model.to(lowercase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Optional[int] = torch.ones((self.num_masks,) ) lowercase_ :List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase_ :Dict = mask.expand(self.batch_size , -1 ).bool() lowercase_ :str = model(lowercase , lowercase ) # model only returns predictions for masked patches lowercase_ :Any = mask.sum().item() lowercase_ :Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Dict = config_and_inputs lowercase_ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :List[Any] = VideoMAEModelTester(self ) lowercase_ :Dict = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : List[Any] , lowercase : List[str] , lowercase : List[str] , lowercase : List[str]=False ): """simple docstring""" lowercase_ :Tuple = copy.deepcopy(lowercase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ :Tuple = torch.ones((self.model_tester.num_masks,) ) lowercase_ :Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase_ :Optional[int] = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase_ :Dict = bool_masked_pos.to(lowercase ) if return_labels: if model_class in [ *get_values(lowercase ), ]: lowercase_ :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def lowercase__ ( self : Dict ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Dict = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ :List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ , lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(lowercase ) lowercase_ :Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :List[str] = [*signature.parameters.keys()] lowercase_ :str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) @slow def lowercase__ ( self : Dict ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = VideoMAEModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" if not self.has_attentions: pass else: lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :Union[str, Any] = True for model_class in self.all_model_classes: lowercase_ :Dict = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :Optional[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase_ :Union[str, Any] = True lowercase_ :List[Any] = False lowercase_ :Optional[int] = True lowercase_ :Union[str, Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :str = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ :Union[str, Any] = True lowercase_ :Optional[Any] = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Union[str, Any] = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ :List[str] = len(lowercase ) # Check attention is always last and order is fine lowercase_ :Optional[Any] = True lowercase_ :Dict = True lowercase_ :Dict = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :List[Any] = model(**self._prepare_for_class(lowercase , lowercase ) ) self.assertEqual(out_len + 1 , len(lowercase ) ) lowercase_ :int = outputs.attentions self.assertEqual(len(lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase__ ( self : int ): """simple docstring""" def check_hidden_states_output(lowercase : Union[str, Any] , lowercase : Dict , lowercase : Any ): lowercase_ :Any = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowercase_ :Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) lowercase_ :Optional[int] = outputs.hidden_states lowercase_ :Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase ) , lowercase ) lowercase_ :List[str] = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ :List[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[int] = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :List[Any] = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase_ ( ): lowercase_ :Dict = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename="eating_spaghetti.npy" ,repo_type="dataset" ) lowercase_ :Optional[Any] = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Any ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Union[str, Any] = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( lowercase ) lowercase_ :List[str] = self.default_image_processor lowercase_ :List[str] = prepare_video() lowercase_ :int = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowercase_ :Dict = model(**lowercase ) # verify the logits lowercase_ :Dict = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :int = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @slow def lowercase__ ( self : str ): """simple docstring""" lowercase_ :List[Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(lowercase ) lowercase_ :Dict = self.default_image_processor lowercase_ :Union[str, Any] = prepare_video() lowercase_ :List[str] = image_processor(lowercase , return_tensors="pt" ).to(lowercase ) # add boolean mask, indicating which patches to mask lowercase_ :int = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowercase_ :List[str] = torch.load(lowercase ) # forward pass with torch.no_grad(): lowercase_ :List[Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = torch.Size([1, 1_408, 1_536] ) lowercase_ :List[Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase ) self.assertEqual(outputs.logits.shape , lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase_ :Any = torch.tensor([0.51_42] , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase_ :Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=lowercase ).to( lowercase ) with torch.no_grad(): lowercase_ :Tuple = model(**lowercase ) lowercase_ :Optional[Any] = torch.tensor(torch.tensor([0.64_69] ) , device=lowercase ) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4 ) )
223
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['DeiTFeatureExtractor'] _a = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import numpy # List of input, output pairs _a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _a = [2, 4, 1, 5] _a = len(train_data) _a = 0.009 def _A ( UpperCamelCase_ : str, UpperCamelCase_ : List[Any]="train") -> Optional[Any]: '''simple docstring''' return calculate_hypothesis_value(UpperCamelCase_, UpperCamelCase_) - output( UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : List[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = 0 for i in range(len(UpperCamelCase_) - 1): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[int]) -> Dict: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> int: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0]) elif data_set == "test": return _hypothesis_value(test_data[example_no][0]) return None def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Tuple=m) -> int: '''simple docstring''' __lowercase = 0 for i in range(UpperCamelCase_): if index == -1: summation_value += _error(UpperCamelCase_) else: summation_value += _error(UpperCamelCase_) * train_data[i][0][index] return summation_value def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = summation_of_cost_derivative(UpperCamelCase_, UpperCamelCase_) / m return cost_derivative_value def _A ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000_002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0, len(UpperCamelCase_)): __lowercase = get_cost_derivative(i - 1) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_, UpperCamelCase_, atol=UpperCamelCase_, rtol=UpperCamelCase_, ): break __lowercase = temp_parameter_vector print(("Number of iterations:", j)) def _A ( ) -> int: '''simple docstring''' for i in range(len(UpperCamelCase_)): print(("Actual output value:", output(UpperCamelCase_, "test"))) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_, "test"))) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
144
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class _lowerCamelCase ( lowerCamelCase__ ): UpperCAmelCase_ = "audio-spectrogram-transformer" def __init__(self , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1e-1_2 , __a=16 , __a=True , __a=10 , __a=10 , __a=10_24 , __a=1_28 , **__a , ) -> Optional[Any]: super().__init__(**__snake_case ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = patch_size UpperCamelCase = qkv_bias UpperCamelCase = frequency_stride UpperCamelCase = time_stride UpperCamelCase = max_length UpperCamelCase = num_mel_bins
153
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( _A , _A , _A ): if isinstance(_A , torch.Tensor ): return image elif isinstance(_A , PIL.Image.Image ): a : Any = [image] if isinstance(image[0] , PIL.Image.Image ): a : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] a : int = np.concatenate(_A , axis=0 ) a : int = np.array(_A ).astype(np.floataa ) / 255.0 a : str = image.transpose(0 , 3 , 1 , 2 ) a : str = 2.0 * image - 1.0 a : Optional[int] = torch.from_numpy(_A ) elif isinstance(image[0] , torch.Tensor ): a : Optional[Any] = torch.cat(_A , dim=0 ) return image def lowerCamelCase__ ( _A , _A , _A , _A=0.9995 ): if not isinstance(_A , np.ndarray ): a : Dict = True a : Optional[Any] = va.device a : Optional[int] = va.cpu().numpy() a : Union[str, Any] = va.cpu().numpy() a : Any = np.sum(va * va / (np.linalg.norm(_A ) * np.linalg.norm(_A )) ) if np.abs(_A ) > DOT_THRESHOLD: a : Any = (1 - t) * va + t * va else: a : Any = np.arccos(_A ) a : Tuple = np.sin(_A ) a : Optional[Any] = theta_a * t a : List[Any] = np.sin(_A ) a : Dict = np.sin(theta_a - theta_t ) / sin_theta_a a : int = sin_theta_t / sin_theta_a a : Any = sa * va + sa * va if inputs_are_torch: a : Dict = torch.from_numpy(_A ).to(_A ) return va def lowerCamelCase__ ( _A , _A ): a : Optional[int] = F.normalize(_A , dim=-1 ) a : str = F.normalize(_A , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( _A , _A ): for param in model.parameters(): a : int = value class a__( lowerCamelCase__ ): def __init__( self : str , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : List[str]=None , __snake_case : List[str]=None , __snake_case : List[Any]=None , ): super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) a : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size['shortest_edge'] ) a : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def lowercase_ ( self : int , __snake_case : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowercase_ ( self : Union[str, Any] ): self.enable_attention_slicing(__snake_case ) def lowercase_ ( self : Optional[Any] ): set_requires_grad(self.vae , __snake_case ) def lowercase_ ( self : Tuple ): set_requires_grad(self.vae , __snake_case ) def lowercase_ ( self : int ): set_requires_grad(self.unet , __snake_case ) def lowercase_ ( self : Union[str, Any] ): set_requires_grad(self.unet , __snake_case ) def lowercase_ ( self : int , __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] ): # get the original timestep using init_timestep a : Optional[Any] = min(int(num_inference_steps * strength ) , __snake_case ) a : Union[str, Any] = max(num_inference_steps - init_timestep , 0 ) a : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase_ ( self : Dict , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any]=None ): if not isinstance(__snake_case , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(__snake_case )}""" ) a : Optional[Any] = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): a : Optional[int] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] a : Optional[Any] = torch.cat(__snake_case , dim=0 ) else: a : Union[str, Any] = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : List[str] = 0.18215 * init_latents a : str = init_latents.repeat_interleave(__snake_case , dim=0 ) a : Dict = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents a : Dict = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) a : int = init_latents return latents def lowercase_ ( self : List[str] , __snake_case : Dict ): a : List[Any] = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): a : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) a : Union[str, Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def lowercase_ ( self : Tuple , __snake_case : Any , __snake_case : Optional[Any] ): a : List[Any] = self.feature_extractor.preprocess(__snake_case ) a : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() a : int = self.clip_model.get_image_features(__snake_case ) a : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) a : Tuple = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase_ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[Any] , ): a : Optional[Any] = latents.detach().requires_grad_() a : List[Any] = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual a : Any = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): a : int = self.scheduler.alphas_cumprod[timestep] a : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 a : Tuple = torch.sqrt(__snake_case ) a : str = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): a : List[Any] = self.scheduler.sigmas[index] a : Optional[int] = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : Union[str, Any] = 1 / 0.18215 * sample a : str = self.vae.decode(__snake_case ).sample a : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) a : Tuple = transforms.Resize(self.feature_extractor_size )(__snake_case ) a : List[str] = self.normalize(__snake_case ).to(latents.dtype ) a : List[str] = self.clip_model.get_image_features(__snake_case ) a : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) a : int = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale a : List[str] = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): a : List[Any] = latents.detach() + grads * (sigma**2) a : Optional[int] = noise_pred_original else: a : List[Any] = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Optional[int] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 5_12 , __snake_case : Optional[int] = 5_12 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 1_00 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ): if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(__snake_case )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: a : Dict = [generator] + [None] * (batch_size - 1) a : Any = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] a : List[str] = [x[0] for x in coca_is_none if x[1]] a : List[str] = ', '.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a : int = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) a : Union[str, Any] = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style a : Optional[Any] = self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) a : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] a : Dict = self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) a : Dict = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] a : Any = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt a : Optional[Any] = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps a : int = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) a : Any = {} if accepts_offset: a : Optional[Any] = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) a , a : Tuple = self.get_timesteps(__snake_case , __snake_case , self.device ) a : Optional[int] = timesteps[:1].repeat(__snake_case ) # Preprocess image a : Optional[Any] = preprocess(__snake_case , __snake_case , __snake_case ) a : List[Any] = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) a : str = preprocess(__snake_case , __snake_case , __snake_case ) a : Union[str, Any] = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) a : Union[str, Any] = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: a : Dict = self.get_clip_image_embeddings(__snake_case , __snake_case ) a : int = self.get_clip_image_embeddings(__snake_case , __snake_case ) a : List[str] = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. a : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: a : Any = content_text_input.input_ids.shape[-1] a : List[Any] = self.tokenizer([''] , padding='max_length' , max_length=__snake_case , return_tensors='pt' ) a : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt a : Dict = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. a : List[str] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) a : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps a : int = torch.randn(__snake_case , generator=__snake_case , device='cpu' , dtype=__snake_case ).to( self.device ) else: a : Optional[int] = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) a : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a : Optional[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a : Union[str, Any] = {} if accepts_eta: a : List[str] = eta # check if the scheduler accepts generator a : List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: a : Any = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance a : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a : Dict = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual a : List[Any] = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: a , a : List[str] = noise_pred.chunk(2 ) a : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: a : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) a , a : Union[str, Any] = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 a : Any = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor a : Tuple = 1 / 0.18215 * latents a : Optional[int] = self.vae.decode(__snake_case ).sample a : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) a : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : str = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
297
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a : str = f'''https://www.google.com/search?q={query}&num=100''' a : Dict = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a : Any = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a : Optional[int] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
72
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class a ( _lowerCamelCase ): snake_case_ = 42 snake_case_ = None def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase=0.9_9_9, __UpperCAmelCase="cosine", ) -> Dict: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) snake_case_ = [] for i in range(__UpperCAmelCase ): snake_case_ = i / num_diffusion_timesteps snake_case_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ), __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase, dtype=torch.floataa ) class a ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self : List[str] , lowercase_ : int = 1000 , lowercase_ : str = "fixed_small_log" , lowercase_ : bool = True , lowercase_ : Optional[float] = 1.0 , lowercase_ : str = "epsilon" , lowercase_ : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) snake_case_ = betas_for_alpha_bar(lowercase_ ) snake_case_ = 1.0 - self.betas snake_case_ = torch.cumprod(self.alphas , dim=0 ) snake_case_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution snake_case_ = 1.0 # setable values snake_case_ = None snake_case_ = torch.from_numpy(np.arange(0 , lowercase_ )[::-1].copy() ) snake_case_ = variance_type def A_ ( self : Optional[Any] , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None ): return sample def A_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None ): snake_case_ = num_inference_steps snake_case_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) snake_case_ = (np.arange(0 , lowercase_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) snake_case_ = torch.from_numpy(lowercase_ ).to(lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int]=None , lowercase_ : Tuple=None , lowercase_ : Tuple=None ): if prev_timestep is None: snake_case_ = t - 1 snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ = self.betas[t] else: snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample snake_case_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: snake_case_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": snake_case_ = torch.log(torch.clamp(lowercase_ , min=1e-20 ) ) snake_case_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler snake_case_ = variance.log() snake_case_ = beta.log() snake_case_ = (predicted_variance + 1) / 2 snake_case_ = frac * max_log + (1 - frac) * min_log return variance def A_ ( self : List[Any] , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : Optional[int] = None , lowercase_ : int=None , lowercase_ : bool = True , ): snake_case_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": snake_case_ ,snake_case_ = torch.split(lowercase_ , sample.shape[1] , dim=1 ) else: snake_case_ = None # 1. compute alphas, betas if prev_timestep is None: snake_case_ = t - 1 snake_case_ = self.alphas_cumprod[t] snake_case_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one snake_case_ = 1 - alpha_prod_t snake_case_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: snake_case_ = self.betas[t] snake_case_ = self.alphas[t] else: snake_case_ = 1 - alpha_prod_t / alpha_prod_t_prev snake_case_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": snake_case_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": snake_case_ = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: snake_case_ = torch.clamp( lowercase_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t snake_case_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf snake_case_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise snake_case_ = 0 if t > 0: snake_case_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase_ , device=model_output.device ) snake_case_ = self._get_variance( lowercase_ , predicted_variance=lowercase_ , prev_timestep=lowercase_ , ) if self.variance_type == "fixed_small_log": snake_case_ = variance elif self.variance_type == "learned_range": snake_case_ = (0.5 * variance).exp() else: raise ValueError( F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" ''' for the UnCLIPScheduler.''' ) snake_case_ = variance * variance_noise snake_case_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase_ , pred_original_sample=lowercase_ ) def A_ ( self : Any , lowercase_ : torch.FloatTensor , lowercase_ : torch.FloatTensor , lowercase_ : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples snake_case_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) snake_case_ = timesteps.to(original_samples.device ) snake_case_ = alphas_cumprod[timesteps] ** 0.5 snake_case_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ = sqrt_alpha_prod.unsqueeze(-1 ) snake_case_ = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): snake_case_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) snake_case_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
72
1
from __future__ import annotations from collections.abc import Iterator class snake_case_ : def __init__( self : str , lowercase_ : Union[str, Any] ) -> None: lowercase__ : str = value lowercase__ : Dict = None lowercase__ : Optional[Any] = None class snake_case_ : def __init__( self : Tuple , lowercase_ : Union[str, Any] ) -> None: lowercase__ : Optional[int] = tree def __UpperCamelCase ( self : int , lowercase_ : Union[str, Any] ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
87
import math import sys def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if number != int(SCREAMING_SNAKE_CASE ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 __UpperCAmelCase = [-1] * (number + 1) __UpperCAmelCase = 0 for i in range(1 , number + 1 ): __UpperCAmelCase = sys.maxsize __UpperCAmelCase = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __UpperCAmelCase = 1 + answers[i - (j**2)] __UpperCAmelCase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
333
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCamelCase : Tuple = 25_0004 __UpperCamelCase : Union[str, Any] = 25_0020 @require_sentencepiece @require_tokenizers class a ( a__ , unittest.TestCase ): snake_case__ = MBartaaTokenizer snake_case__ = MBartaaTokenizerFast snake_case__ = True snake_case__ = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = MBartaaTokenizer(_snake_case , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = '<s>' lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_snake_case ) , 10_54 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MBartaaTokenizer(_snake_case , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=_snake_case ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {'input_ids': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(_snake_case ) lowerCAmelCase = tokenizer_p.save_pretrained(_snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCAmelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_snake_case , _snake_case ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(_snake_case ) lowerCAmelCase = tokenizer_p.from_pretrained(_snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_snake_case , _snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_snake_case ) # Save tokenizer rust, legacy_format=True lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(_snake_case , legacy_format=_snake_case ) lowerCAmelCase = tokenizer_p.save_pretrained(_snake_case ) # Checks it save with the same files self.assertSequenceEqual(_snake_case , _snake_case ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(_snake_case ) lowerCAmelCase = tokenizer_p.from_pretrained(_snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_snake_case , _snake_case ) ) shutil.rmtree(_snake_case ) # Save tokenizer rust, legacy_format=False lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = tokenizer_r.save_pretrained(_snake_case , legacy_format=_snake_case ) lowerCAmelCase = tokenizer_p.save_pretrained(_snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase = tokenizer_r.from_pretrained(_snake_case ) lowerCAmelCase = tokenizer_p.from_pretrained(_snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_snake_case , _snake_case ) ) shutil.rmtree(_snake_case ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): snake_case__ = '''facebook/mbart-large-50-one-to-many-mmt''' snake_case__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] snake_case__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] snake_case__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCAmelCase = 1 return cls def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_00_38 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids ) lowerCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] lowerCAmelCase = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertNotIn(self.tokenizer.eos_token , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , _snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.tokenizer(_snake_case , max_length=_snake_case , truncation=_snake_case ).input_ids[0] self.assertEqual(ids[0] , _snake_case ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_snake_case ) , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_00_53, 25_00_01] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_snake_case ) lowerCAmelCase = MBartaaTokenizer.from_pretrained(_snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _snake_case ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='pt' ) lowerCAmelCase = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCAmelCase = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer(self.src_text , padding=_snake_case , truncation=_snake_case , max_length=3 , return_tensors='pt' ) lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=10 , return_tensors='pt' ) lowerCAmelCase = targets['input_ids'] lowerCAmelCase = shift_tokens_right(_snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(_snake_case ) , { # en_XX, A, test, EOS 'input_ids': [[25_00_04, 62, 30_34, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_00_01, } , )
309
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCamelCase = sys.version_info >= (3, 10) def lowercase_ ( lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class _A : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : str _SCREAMING_SNAKE_CASE : bool @dataclass class _A : _SCREAMING_SNAKE_CASE : int = 42 _SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class _A : _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[bool] = None class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Dict = "titi" _SCREAMING_SNAKE_CASE : Optional[Any] = "toto" class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = "titi" _SCREAMING_SNAKE_CASE : List[str] = "toto" _SCREAMING_SNAKE_CASE : List[str] = 42 @dataclass class _A : _SCREAMING_SNAKE_CASE : BasicEnum = "toto" def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : int = BasicEnum(self.foo ) @dataclass class _A : _SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = MixedTypeEnum(self.foo ) @dataclass class _A : _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[float] = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "help message"} ) _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) _SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class _A : _SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) _SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) _SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) _SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _A : _SCREAMING_SNAKE_CASE : List[int] = field() _SCREAMING_SNAKE_CASE : str = field() _SCREAMING_SNAKE_CASE : BasicEnum = field() def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Dict = BasicEnum(self.required_enum ) @dataclass class _A : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : "BasicEnum" = field() _SCREAMING_SNAKE_CASE : "Optional[bool]" = None _SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) _SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class _A : _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool | None = None @dataclass class _A : _SCREAMING_SNAKE_CASE : int | None = None _SCREAMING_SNAKE_CASE : float | None = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "help message"} ) _SCREAMING_SNAKE_CASE : str | None = None _SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) _SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class _A ( unittest.TestCase ): def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __UpperCAmelCase : Dict = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""} __UpperCAmelCase : Any = {k: v for k, v in vars(__UpperCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __UpperCAmelCase ) and yy.get("""choices""" , __UpperCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__UpperCAmelCase ) , yy["""type"""](__UpperCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--bar""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--baz""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--flag""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((__UpperCAmelCase) , ) : Optional[Any] = parser.parse_args_into_dataclasses(__UpperCAmelCase , look_for_args_file=__UpperCAmelCase ) self.assertFalse(example.flag ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=__UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) expected.add_argument("""--baz""" , type=__UpperCAmelCase , default=__UpperCAmelCase , const=__UpperCAmelCase , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__UpperCAmelCase , dest="""baz""" ) expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: __UpperCAmelCase : Optional[Any] = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Tuple = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __UpperCAmelCase : Any = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __UpperCAmelCase : Optional[Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) __UpperCAmelCase : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , baz=__UpperCAmelCase , opt=__UpperCAmelCase ) ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __UpperCAmelCase : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __UpperCAmelCase : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) __UpperCAmelCase : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __A ( self ) -> Dict: '''simple docstring''' @dataclass class _A : _SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" __UpperCAmelCase : Dict = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __UpperCAmelCase : Dict = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __UpperCAmelCase : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[Any] = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__UpperCAmelCase ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual( __UpperCAmelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __UpperCAmelCase : int = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument("""--bar""" , default=__UpperCAmelCase , type=__UpperCAmelCase , help="""help message""" ) expected.add_argument("""--baz""" , default=__UpperCAmelCase , type=__UpperCAmelCase ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__UpperCAmelCase ) __UpperCAmelCase : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__UpperCAmelCase ) for dataclass_type in dataclass_types: __UpperCAmelCase : str = HfArgumentParser(__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = parser.parse_args([] ) self.assertEqual(__UpperCAmelCase , Namespace(foo=__UpperCAmelCase , bar=__UpperCAmelCase , baz=__UpperCAmelCase , ces=[] , des=[] ) ) __UpperCAmelCase : Union[str, Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__UpperCAmelCase , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Dict = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : List[str] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument("""--required_str""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__UpperCAmelCase , required=__UpperCAmelCase ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__UpperCAmelCase , ) expected.add_argument("""--opt""" , type=__UpperCAmelCase , default=__UpperCAmelCase ) expected.add_argument("""--baz""" , default="""toto""" , type=__UpperCAmelCase , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__UpperCAmelCase ) self.argparsersEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Any = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } __UpperCAmelCase : Tuple = parser.parse_dict(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__UpperCAmelCase , parser.parse_dict , __UpperCAmelCase , allow_extra_keys=__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[Any] = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : str = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Union[str, Any] = os.path.join(__UpperCAmelCase , """temp_json""" ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __UpperCAmelCase : int = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : str = HfArgumentParser(__UpperCAmelCase ) __UpperCAmelCase : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Optional[Any] = os.path.join(__UpperCAmelCase , """temp_yaml""" ) os.mkdir(__UpperCAmelCase ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : List[str] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __UpperCAmelCase : Optional[int] = BasicExample(**__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : int = HfArgumentParser(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
254
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any="attention" ): """simple docstring""" __UpperCAmelCase : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) __UpperCAmelCase : Tuple = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase : Tuple = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) __UpperCAmelCase : List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) __UpperCAmelCase : Dict = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]=False ): """simple docstring""" if split_mlp_wi: __UpperCAmelCase : List[str] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] __UpperCAmelCase : Dict = (wi_a, wi_a) else: __UpperCAmelCase : Union[str, Any] = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] __UpperCAmelCase : Tuple = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase_ ( lowerCAmelCase__ : dict , *, lowerCAmelCase__ : int , lowerCAmelCase__ : bool , lowerCAmelCase__ : bool = False ): """simple docstring""" __UpperCAmelCase : Tuple = traverse_util.flatten_dict(variables["""target"""] ) __UpperCAmelCase : Union[str, Any] = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase : Any = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) __UpperCAmelCase : Any = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase : int = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : Union[str, Any] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) __UpperCAmelCase : Any = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : Optional[int] = o.T __UpperCAmelCase : str = q.T __UpperCAmelCase : Any = v.T # Block i, layer 1 (MLP). __UpperCAmelCase : List[str] = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : int = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : List[Any] = wi[0].T __UpperCAmelCase : Any = wi[1].T else: __UpperCAmelCase : Tuple = wi.T __UpperCAmelCase : Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" ).T __UpperCAmelCase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __UpperCAmelCase : Any = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """encoder""" ).T __UpperCAmelCase : Dict = tax_relpos_bias_lookup( lowerCAmelCase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase : str = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) __UpperCAmelCase : int = layer_norm __UpperCAmelCase : Optional[Any] = k.T __UpperCAmelCase : Dict = o.T __UpperCAmelCase : int = q.T __UpperCAmelCase : List[str] = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase : Any = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) __UpperCAmelCase : Union[str, Any] = layer_norm __UpperCAmelCase : List[Any] = k.T __UpperCAmelCase : int = o.T __UpperCAmelCase : Optional[int] = q.T __UpperCAmelCase : Optional[int] = v.T # Block i, layer 2 (MLP). __UpperCAmelCase : Tuple = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) __UpperCAmelCase , __UpperCAmelCase : Any = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) __UpperCAmelCase : Optional[int] = layer_norm if split_mlp_wi: __UpperCAmelCase : Optional[Any] = wi[0].T __UpperCAmelCase : Optional[int] = wi[1].T else: __UpperCAmelCase : str = wi.T __UpperCAmelCase : int = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase : Union[str, Any] = tax_relpos_bias_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" ).T __UpperCAmelCase : Dict = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase : List[str] = old["""decoder/logits_dense/kernel"""].T return new def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : bool ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase : List[str] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __UpperCAmelCase : Union[str, Any] = state_dict["""shared.weight"""] return state_dict def lowercase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any ): """simple docstring""" __UpperCAmelCase : Tuple = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) __UpperCAmelCase : Any = convert_tax_to_pytorch( lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ , scalable_attention=lowerCAmelCase__ ) __UpperCAmelCase : str = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def lowercase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , ): """simple docstring""" __UpperCAmelCase : Optional[int] = MTaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase : List[Any] = UMTaEncoderModel(lowerCAmelCase__ ) else: __UpperCAmelCase : Dict = UMTaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _UpperCamelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
254
1
'''simple docstring''' _UpperCAmelCase : Optional[int] = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
367
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__(self , __lowercase , __lowercase = True , __lowercase = None , __lowercase = 32 , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = True , __lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowercase = True , __lowercase=7 , __lowercase=30 , __lowercase=4_00 , __lowercase=3 , ): __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 2_88} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def _snake_case (self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _snake_case (self , __lowercase , __lowercase=False ): if not batched: __lowerCAmelCase = self.size['''shortest_edge'''] __lowerCAmelCase = image_inputs[0] if isinstance(__lowercase , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(__lowercase , __lowercase ) if h < w: __lowerCAmelCase , __lowerCAmelCase = size, scale * w else: __lowerCAmelCase , __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((13_33 / 8_00) * size ) if max(__lowercase , __lowercase ) > max_size: __lowerCAmelCase = max_size / max(__lowercase , __lowercase ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase , __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase , __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[0] )[0] __lowerCAmelCase = max(__lowercase , key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = BridgeTowerImageProcessor if is_vision_available() else None def _snake_case (self ): __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def _snake_case (self ): return self.image_processor_tester.prepare_image_processor_dict() def _snake_case (self ): __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , '''image_mean''' ) ) self.assertTrue(hasattr(__lowercase , '''image_std''' ) ) self.assertTrue(hasattr(__lowercase , '''do_normalize''' ) ) self.assertTrue(hasattr(__lowercase , '''do_resize''' ) ) self.assertTrue(hasattr(__lowercase , '''size''' ) ) self.assertTrue(hasattr(__lowercase , '''size_divisor''' ) ) def _snake_case (self ): pass def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _snake_case (self ): # Initialize image processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(__lowercase , return_tensors='''pt''' ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processor_tester.get_expected_values(__lowercase , batched=__lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
9
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase__ ) , """Tatoeba directory does not exist.""" ) class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> int: lowerCamelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase__ ) @slow def _lowercase ( self ) -> List[Any]: self.resolver.convert_models(["heb-eng"] ) @slow def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Dict = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCamelCase__ ) assert mmeta["long_pair"] == "heb-eng"
48
def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase : str = (boundary[1] - boundary[0]) / steps lowerCamelCase : List[str] = boundary[0] lowerCamelCase : Union[str, Any] = boundary[1] lowerCamelCase : int = make_points(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : List[str] = 0.0 y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) for i in x_i: # print(i) y += h * f(_SCREAMING_SNAKE_CASE ) y += (h / 2.0) * f(_SCREAMING_SNAKE_CASE ) return y def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: lowerCamelCase : int = a + h while x < (b - h): yield x lowerCamelCase : List[str] = x + h def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: # enter your function here lowerCamelCase : str = (x - 0) * (x - 0) return y def A ( ) -> int: lowerCamelCase : int = 0.0 # Lower bound of integration lowerCamelCase : int = 1.0 # Upper bound of integration lowerCamelCase : Dict = 10.0 # define number of steps or resolution lowerCamelCase : int = [a, b] # define boundary of integration lowerCamelCase : str = method_a(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
48
1
from __future__ import annotations _A = [] def lowercase_ ( A__ , A__ , A__ ) -> bool: """simple docstring""" for i in range(len(A__ ) ): if board[row][i] == 1: return False for i in range(len(A__ ) ): if board[i][column] == 1: return False for i, j in zip(range(A__ , -1 , -1 ) , range(A__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(A__ , -1 , -1 ) , range(A__ , len(A__ ) ) ): if board[i][j] == 1: return False return True def lowercase_ ( A__ , A__ ) -> bool: """simple docstring""" if row >= len(A__ ): solution.append(A__ ) printboard(A__ ) print() return True for i in range(len(A__ ) ): if is_safe(A__ , A__ , A__ ): snake_case = 1 solve(A__ , row + 1 ) snake_case = 0 return False def lowercase_ ( A__ ) -> None: """simple docstring""" for i in range(len(A__ ) ): for j in range(len(A__ ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) _A = 8 _A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
137
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class lowerCamelCase ( A_ ): UpperCAmelCase__ : List[Any] = "segformer" def __init__(self : List[Any] , _A : int=3 , _A : List[Any]=4 , _A : Any=[2, 2, 2, 2] , _A : Dict=[8, 4, 2, 1] , _A : List[Any]=[3_2, 6_4, 1_6_0, 2_5_6] , _A : Tuple=[7, 3, 3, 3] , _A : Optional[int]=[4, 2, 2, 2] , _A : Dict=[1, 2, 5, 8] , _A : int=[4, 4, 4, 4] , _A : Dict="gelu" , _A : Tuple=0.0 , _A : Optional[Any]=0.0 , _A : List[Any]=0.1 , _A : Union[str, Any]=0.02 , _A : Dict=0.1 , _A : List[Any]=1E-6 , _A : List[str]=2_5_6 , _A : Optional[Any]=2_5_5 , **_A : str , ) -> Tuple: super().__init__(**_A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , _A , ) snake_case = num_channels snake_case = num_encoder_blocks snake_case = depths snake_case = sr_ratios snake_case = hidden_sizes snake_case = patch_sizes snake_case = strides snake_case = mlp_ratios snake_case = num_attention_heads snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = classifier_dropout_prob snake_case = initializer_range snake_case = drop_path_rate snake_case = layer_norm_eps snake_case = decoder_hidden_size snake_case = kwargs.get("reshape_last_stage" , _A ) snake_case = semantic_loss_ignore_index class lowerCamelCase ( A_ ): UpperCAmelCase__ : Optional[Any] = version.parse("1.11" ) @property def UpperCAmelCase(self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase(self : Tuple ) -> float: return 1E-4 @property def UpperCAmelCase(self : List[str] ) -> int: return 1_2
137
1
'''simple docstring''' import functools def _A ( snake_case , snake_case ) -> int: _lowercase : Optional[int] = len(snake_case ) _lowercase : Tuple = len(snake_case ) @functools.cache def min_distance(snake_case , snake_case ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowercase : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , snake_case ) , 1 + min_distance(snake_case , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
250
'''simple docstring''' import argparse import os import re _snake_case = 'src/transformers' # Pattern that looks at the indentation in a line. _snake_case = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _snake_case = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _snake_case = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _snake_case = re.compile(r'\[([^\]]+)\]') def _A ( snake_case ) -> str: _lowercase : Union[str, Any] = _re_indent.search(snake_case ) return "" if search is None else search.groups()[0] def _A ( snake_case , snake_case="" , snake_case=None , snake_case=None ) -> Optional[int]: _lowercase : List[str] = 0 _lowercase : str = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case ): index += 1 _lowercase : Optional[int] = ["\n".join(lines[:index] )] else: _lowercase : Dict = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowercase : Any = [lines[index]] index += 1 while index < len(snake_case ) and (end_prompt is None or not lines[index].startswith(snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case ) ) if index < len(snake_case ) - 1: _lowercase : int = [lines[index + 1]] index += 1 else: _lowercase : Optional[int] = [] else: blocks.append("\n".join(snake_case ) ) _lowercase : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case ) > 0: blocks.append("\n".join(snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case ): blocks.append("\n".join(lines[index:] ) ) return blocks def _A ( snake_case ) -> Optional[int]: def _inner(snake_case ): return key(snake_case ).lower().replace("_" , "" ) return _inner def _A ( snake_case , snake_case=None ) -> List[str]: # If no key is provided, we use a noop. def noop(snake_case ): return x if key is None: _lowercase : Optional[int] = noop # Constants are all uppercase, they go first. _lowercase : Dict = [obj for obj in objects if key(snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowercase : int = [obj for obj in objects if key(snake_case )[0].isupper() and not key(snake_case ).isupper()] # Functions begin with a lowercase, they go last. _lowercase : Dict = [obj for obj in objects if not key(snake_case )[0].isupper()] _lowercase : Union[str, Any] = ignore_underscore(snake_case ) return sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) + sorted(snake_case , key=snake_case ) def _A ( snake_case ) -> List[Any]: # This inner function sort imports between [ ]. def _replace(snake_case ): _lowercase : Optional[Any] = match.groups()[0] if "," not in imports: return F'''[{imports}]''' _lowercase : str = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) + "]" _lowercase : Tuple = import_statement.split("\n" ) if len(snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowercase : Union[str, Any] = 2 if lines[1].strip() == "[" else 1 _lowercase : Optional[int] = [(i, _re_strip_line.search(snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowercase : Any = sort_objects(snake_case , key=lambda snake_case : x[1] ) _lowercase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowercase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: _lowercase : Optional[Any] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowercase : Optional[int] = keys[:-1] _lowercase : Optional[Any] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case )] ) return "\n".join(snake_case ) else: # Finally we have to deal with imports fitting on one line _lowercase : Optional[Any] = _re_bracket_content.sub(_replace , snake_case ) return import_statement def _A ( snake_case , snake_case=True ) -> Dict: with open(snake_case , encoding="utf-8" ) as f: _lowercase : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowercase : Optional[Any] = split_code_in_indented_blocks( snake_case , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowercase : Dict = main_blocks[block_idx] _lowercase : Union[str, Any] = block.split("\n" ) # Get to the start of the imports. _lowercase : int = 0 while line_idx < len(snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowercase : Optional[Any] = len(snake_case ) else: line_idx += 1 if line_idx >= len(snake_case ): continue # Ignore beginning and last line: they don't contain anything. _lowercase : Any = "\n".join(block_lines[line_idx:-1] ) _lowercase : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowercase : Optional[int] = split_code_in_indented_blocks(snake_case , indent_level=snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend _lowercase : Union[str, Any] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowercase : str = [(pattern.search(snake_case ).groups()[0] if pattern.search(snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowercase : List[str] = [(i, key) for i, key in enumerate(snake_case ) if key is not None] _lowercase : Tuple = [x[0] for x in sorted(snake_case , key=lambda snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowercase : Any = 0 _lowercase : str = [] for i in range(len(snake_case ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowercase : Tuple = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case ) count += 1 # And we put our main block back together with its first and last line. _lowercase : int = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write("\n".join(snake_case ) ) def _A ( snake_case=True ) -> str: _lowercase : List[Any] = [] for root, _, files in os.walk(snake_case ): if "__init__.py" in files: _lowercase : Tuple = sort_imports(os.path.join(snake_case , "__init__.py" ) , check_only=snake_case ) if result: _lowercase : Any = [os.path.join(snake_case , "__init__.py" )] if len(snake_case ) > 0: raise ValueError(F'''Would overwrite {len(snake_case )} files, run `make style`.''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _snake_case = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
250
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __SCREAMING_SNAKE_CASE ={ "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCamelCase ( lowercase_ ): lowercase = 'albert' def __init__( self ,__UpperCamelCase=3_0000 ,__UpperCamelCase=128 ,__UpperCamelCase=4096 ,__UpperCamelCase=12 ,__UpperCamelCase=1 ,__UpperCamelCase=64 ,__UpperCamelCase=1_6384 ,__UpperCamelCase=1 ,__UpperCamelCase="gelu_new" ,__UpperCamelCase=0 ,__UpperCamelCase=0 ,__UpperCamelCase=512 ,__UpperCamelCase=2 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-12 ,__UpperCamelCase=0.1 ,__UpperCamelCase="absolute" ,__UpperCamelCase=0 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,**__UpperCamelCase ,) -> Any: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : List[str] = vocab_size lowercase_ : List[Any] = embedding_size lowercase_ : Dict = hidden_size lowercase_ : int = num_hidden_layers lowercase_ : List[str] = num_hidden_groups lowercase_ : Optional[int] = num_attention_heads lowercase_ : int = inner_group_num lowercase_ : Union[str, Any] = hidden_act lowercase_ : int = intermediate_size lowercase_ : int = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : List[Any] = initializer_range lowercase_ : Optional[int] = layer_norm_eps lowercase_ : Tuple = classifier_dropout_prob lowercase_ : Optional[int] = position_embedding_type class UpperCamelCase ( lowercase_ ): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowercase_ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
321
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): def get_masked_lm_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : str = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[Any] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_array(__SCREAMING_SNAKE_CASE : str ): lowercase_ : Tuple = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : Tuple = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : List[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) def get_encoder_attention_layer_array(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase_ : Optional[Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = array.reshape(__SCREAMING_SNAKE_CASE ) if "kernel" in name: lowercase_ : List[str] = array.transpose() return torch.from_numpy(__SCREAMING_SNAKE_CASE ) print(F'''Loading model based on config from {config_path}...''' ) lowercase_ : Any = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = BertForMaskedLM(__SCREAMING_SNAKE_CASE ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowercase_ : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase_ : BertSelfAttention = layer.attention.self lowercase_ : str = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/kernel' , self_attn.query.weight.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_query_dense/bias' , self_attn.query.bias.data.shape ) lowercase_ : Tuple = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/kernel' , self_attn.key.weight.data.shape ) lowercase_ : int = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_key_dense/bias' , self_attn.key.bias.data.shape ) lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/kernel' , self_attn.value.weight.data.shape ) lowercase_ : List[Any] = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output lowercase_ : BertSelfOutput = layer.attention.output lowercase_ : Dict = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/kernel' , self_output.dense.weight.data.shape ) lowercase_ : Any = get_encoder_attention_layer_array( __SCREAMING_SNAKE_CASE , '_output_dense/bias' , self_output.dense.bias.data.shape ) lowercase_ : Tuple = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/gamma' ) lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_attention_layer_norm/beta' ) # Intermediate lowercase_ : BertIntermediate = layer.intermediate lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/kernel' ) lowercase_ : Optional[int] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_intermediate_dense/bias' ) # Output lowercase_ : BertOutput = layer.output lowercase_ : Any = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/kernel' ) lowercase_ : Optional[Any] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_dense/bias' ) lowercase_ : List[str] = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/gamma' ) lowercase_ : int = get_encoder_layer_array(__SCREAMING_SNAKE_CASE , '_output_layer_norm/beta' ) # Embeddings lowercase_ : Optional[Any] = get_encoder_array('_position_embedding_layer/embeddings' ) lowercase_ : int = get_encoder_array('_type_embedding_layer/embeddings' ) lowercase_ : Any = get_encoder_array('_embedding_norm_layer/gamma' ) lowercase_ : Optional[Any] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head lowercase_ : int = model.cls.predictions.transform lowercase_ : str = get_masked_lm_array('dense/kernel' ) lowercase_ : Optional[Any] = get_masked_lm_array('dense/bias' ) lowercase_ : Optional[Any] = get_masked_lm_array('layer_norm/gamma' ) lowercase_ : Optional[int] = get_masked_lm_array('layer_norm/beta' ) lowercase_ : List[str] = get_masked_lm_array('embedding_table' ) # Pooling lowercase_ : Optional[Any] = BertPooler(config=__SCREAMING_SNAKE_CASE ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/kernel' ) lowercase_ : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__SCREAMING_SNAKE_CASE ) # Integration test - should load without any errors ;) lowercase_ : Tuple = BertForMaskedLM.from_pretrained(__SCREAMING_SNAKE_CASE ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
321
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCamelCase_ = random.Random() def _UpperCAmelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : int=1.0 , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : List[str]=None ) -> Any: if rng is None: _lowerCAmelCase : List[Any] = global_rng _lowerCAmelCase : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ (unittest.TestCase ): def __init__( self , snake_case_ , snake_case_=7 , snake_case_=4_0_0 , snake_case_=2_0_0_0 , snake_case_=1 , snake_case_=0.0 , snake_case_=1_6_0_0_0 , snake_case_=True , snake_case_=True , ): _lowerCAmelCase : List[str] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[int] = min_seq_length _lowerCAmelCase : Optional[Any] = max_seq_length _lowerCAmelCase : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Optional[Any] = feature_size _lowerCAmelCase : Optional[int] = padding_value _lowerCAmelCase : List[Any] = sampling_rate _lowerCAmelCase : Tuple = return_attention_mask _lowerCAmelCase : Dict = do_normalize def __UpperCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _lowerCAmelCase : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCAmelCase : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : Any = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs class a_ (_a , unittest.TestCase ): __lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor def __UpperCamelCase ( self ): _lowerCAmelCase : str = WavaVecaFeatureExtractionTester(self ) def __UpperCamelCase ( self , snake_case_ ): self.assertTrue(np.all(np.mean(snake_case_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case_ , axis=0 ) - 1 ) < 1E-3 ) ) def __UpperCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Dict = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase : Dict = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values _lowerCAmelCase : Optional[Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test batched _lowerCAmelCase : List[Any] = feat_extract(snake_case_ , return_tensors="""np""" ).input_values _lowerCAmelCase : List[str] = feat_extract(snake_case_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowerCAmelCase : Any = np.asarray(snake_case_ ) _lowerCAmelCase : List[Any] = feat_extract(snake_case_ , return_tensors="""np""" ).input_values _lowerCAmelCase : Tuple = feat_extract(snake_case_ , return_tensors="""np""" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case_ , snake_case_ ): self.assertTrue(np.allclose(snake_case_ , snake_case_ , atol=1E-3 ) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Tuple = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : Any = [None, 1_6_0_0, None] for max_length, padding in zip(snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = feat_extract(snake_case_ , padding=snake_case_ , max_length=snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : str = range(8_0_0 , 1_4_0_0 , 2_0_0 ) _lowerCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] _lowerCAmelCase : str = ["""longest""", """max_length""", """do_not_pad"""] _lowerCAmelCase : str = [None, 1_6_0_0, None] for max_length, padding in zip(snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = feat_extract(snake_case_ , max_length=snake_case_ , padding=snake_case_ ) _lowerCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Optional[int] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : List[Any] = feat_extract( snake_case_ , truncation=snake_case_ , max_length=1_0_0_0 , padding="""max_length""" , return_tensors="""np""" ) _lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Union[str, Any] = feat_extract( snake_case_ , truncation=snake_case_ , max_length=1_0_0_0 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) _lowerCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowerCAmelCase : Dict = feat_extract( snake_case_ , truncation=snake_case_ , max_length=2_0_0_0 , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) @require_torch def __UpperCamelCase ( self ): import torch _lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : List[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) _lowerCAmelCase : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCAmelCase : Any = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __UpperCamelCase ( self ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: _lowerCAmelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(snake_case_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
309
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowerCAmelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowerCAmelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowerCAmelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = len([g for position, g in enumerate(__lowerCAmelCase ) if g == main_target[position]] ) return (item, float(__lowerCAmelCase )) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = random.randint(0 , len(__lowerCAmelCase ) - 1 ) lowerCAmelCase__ : Optional[Any] = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = list(__lowerCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase__ : List[str] = random.choice(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ : Dict = [] # Generate more children proportionally to the fitness score. lowerCAmelCase__ : List[str] = int(parent_a[1] * 100 ) + 1 lowerCAmelCase__ : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(__lowerCAmelCase ): lowerCAmelCase__ : List[str] = population_score[random.randint(0 , __lowerCAmelCase )][0] lowerCAmelCase__ : Union[str, Any] = crossover(parent_a[0] , __lowerCAmelCase ) # Append new string to the population list. pop.append(mutate(__lowerCAmelCase , __lowerCAmelCase ) ) pop.append(mutate(__lowerCAmelCase , __lowerCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase = True ): """simple docstring""" if N_POPULATION < N_SELECTED: lowerCAmelCase__ : List[str] = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__lowerCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase__ : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase__ : List[str] = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__lowerCAmelCase ) # Generate random starting population. lowerCAmelCase__ : Tuple = [] for _ in range(__lowerCAmelCase ): population.append("""""".join([random.choice(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase__ : Union[str, Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowerCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase__ : str = [evaluate(__lowerCAmelCase , __lowerCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase__ : str = sorted(__lowerCAmelCase , key=lambda UpperCamelCase : x[1] , reverse=__lowerCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase__ : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__lowerCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase__ : Dict = [ (item, score / len(__lowerCAmelCase )) for item, score in population_score ] # This is selection for i in range(__lowerCAmelCase ): population.extend(select(population_score[int(__lowerCAmelCase )] , __lowerCAmelCase , __lowerCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowerCAmelCase ) > N_POPULATION: break if __name__ == "__main__": _lowerCAmelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) _lowerCAmelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
350
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if any(not isinstance(UpperCamelCase , UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
184
0
from __future__ import annotations def A_ ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None ): if start is None: SCREAMING_SNAKE_CASE_: Tuple = 0 if end is None: SCREAMING_SNAKE_CASE_: Tuple = len(_UpperCAmelCase ) - 1 if start >= end: return SCREAMING_SNAKE_CASE_: List[Any] = (start + end) // 2 slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) if sequence[end] < sequence[mid]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = sequence[mid], sequence[end] slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
13
from __future__ import annotations __a = [] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" for i in range(len(_UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(_UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_UpperCamelCase, -1, -1 ), range(_UpperCamelCase, len(_UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" if row >= len(_UpperCamelCase ): solution.append(_UpperCamelCase ) printboard(_UpperCamelCase ) print() return True for i in range(len(_UpperCamelCase ) ): if is_safe(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ): lowercase : int = 1 solve(_UpperCamelCase, row + 1 ) lowercase : Tuple = 0 return False def __lowercase ( _UpperCamelCase ) ->None: """simple docstring""" for i in range(len(_UpperCamelCase ) ): for j in range(len(_UpperCamelCase ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) __a = 8 __a = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
337
0
from __future__ import annotations def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> tuple[float, list[float]]: '''simple docstring''' UpperCAmelCase : int =list(range(len(__lowerCAmelCase ) ) ) UpperCAmelCase : List[str] =[v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) UpperCAmelCase : float =0 UpperCAmelCase : list[float] =[0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: UpperCAmelCase : Tuple =1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase : Union[str, Any] =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
362
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict = StableUnCLIPPipeline __lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : int = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowerCamelCase : Optional[Any] = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =32 UpperCAmelCase : Union[str, Any] =embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase : Optional[Any] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : int =CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=snake_case__ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Dict =PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=snake_case__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Tuple =DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=snake_case__ , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) UpperCAmelCase : Any =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) UpperCAmelCase : List[str] =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] =UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case__ , layers_per_block=1 , upcast_attention=snake_case__ , use_linear_projection=snake_case__ , ) torch.manual_seed(0 ) UpperCAmelCase : List[Any] =DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=snake_case__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase : Dict =AutoencoderKL() UpperCAmelCase : Tuple ={ # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> List[Any]: '''simple docstring''' if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Union[str, Any] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : Any =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : str ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple =torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) UpperCAmelCase : Optional[int] =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase : int =pipe('''anime turle''' , generator=snake_case__ , output_type='''np''' ) UpperCAmelCase : str =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase : List[str] =StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase : Any =pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) UpperCAmelCase : Tuple =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
78
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __lowerCAmelCase = logging.getLogger(__name__) def UpperCAmelCase_ (__a : Optional[int]=2 , __a : Optional[int]=3 , __a : int=1_6 , __a : int = 1_0 , __a : int = 2 ): """simple docstring""" def get_dataset(__a : Any ): _a : Any = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__a , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) _a : Dict = get_dataset(__a ) _a : Optional[Any] = get_dataset(__a ) _a : int = DataLoader(__a , shuffle=__a , batch_size=__a , num_workers=4 ) _a : List[str] = DataLoader(__a , shuffle=__a , batch_size=__a , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCAmelCase_ (__a : List[str] , __a : int , __a : str , __a : Union[str, Any] , __a : Any , __a : Optional[Any]=None ): """simple docstring""" _a : Dict = [] for epoch in range(__a ): # Train quickly model.train() for batch in dataloader: _a, _a : int = batch _a : Any = model(__a ) _a : List[Any] = torch.nn.functional.mse_loss(__a , __a ) accelerator.backward(__a ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' super().__init__() _a : Union[str, Any] = nn.Parameter(torch.randn(1 ) ) _a : Optional[Any] = nn.Parameter(torch.randn(1 ) ) def __lowercase ( self : Optional[Any] ,_a : Tuple ): '''simple docstring''' return x * self.a + self.b class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _a : Optional[int] = DummyModel() _a : Tuple = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _a, _a : List[Any] = dummy_dataloaders() _a : int = ProjectConfiguration(total_limit=1 ,project_dir=_a ,automatic_checkpoint_naming=_a ) # Train baseline _a : int = Accelerator(project_config=_a ) _a, _a, _a, _a : str = accelerator.prepare( _a ,_a ,_a ,_a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _a : List[Any] = DummyModel() _a : Any = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _a, _a : str = dummy_dataloaders() # Train baseline _a : Union[str, Any] = Accelerator() _a, _a, _a, _a : Union[str, Any] = accelerator.prepare( _a ,_a ,_a ,_a ) # Save initial _a : int = os.path.join(_a ,'initial' ) accelerator.save_state(_a ) ((_a), (_a)) : List[Any] = model.a.item(), model.b.item() _a : Optional[Any] = optimizer.state_dict() _a : List[Any] = train(3 ,_a ,_a ,_a ,_a ) ((_a), (_a)) : Any = model.a.item(), model.b.item() _a : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) _a : Dict = DummyModel() _a : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _a, _a : Tuple = dummy_dataloaders() _a : Tuple = Accelerator() _a, _a, _a, _a : Optional[int] = accelerator.prepare( _a ,_a ,_a ,_a ) accelerator.load_state(_a ) ((_a), (_a)) : Union[str, Any] = model.a.item(), model.b.item() _a : Any = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) _a : List[Any] = train(2 ,_a ,_a ,_a ,_a ) # Save everything _a : Tuple = os.path.join(_a ,'checkpoint' ) accelerator.save_state(_a ) # Load everything back in and make sure all states work accelerator.load_state(_a ) test_rands += train(1 ,_a ,_a ,_a ,_a ) ((_a), (_a)) : Dict = model.a.item(), model.b.item() _a : Union[str, Any] = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) def __lowercase ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _a : Tuple = DummyModel() _a : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _a, _a : Optional[Any] = dummy_dataloaders() _a : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline _a : List[Any] = Accelerator(project_dir=_a ,project_config=_a ) _a, _a, _a, _a : Optional[Any] = accelerator.prepare( _a ,_a ,_a ,_a ) # Save initial accelerator.save_state() ((_a), (_a)) : List[str] = model.a.item(), model.b.item() _a : Optional[int] = optimizer.state_dict() _a : Optional[Any] = train(3 ,_a ,_a ,_a ,_a ) ((_a), (_a)) : Optional[Any] = model.a.item(), model.b.item() _a : Dict = optimizer.state_dict() # Train partially set_seed(42 ) _a : Tuple = DummyModel() _a : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _a, _a : Union[str, Any] = dummy_dataloaders() _a : Optional[Any] = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_a ) _a : Any = Accelerator(project_dir=_a ,project_config=_a ) _a, _a, _a, _a : Optional[int] = accelerator.prepare( _a ,_a ,_a ,_a ) accelerator.load_state(os.path.join(_a ,'checkpoints' ,'checkpoint_0' ) ) ((_a), (_a)) : Optional[int] = model.a.item(), model.b.item() _a : Optional[int] = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) _a : List[str] = train(2 ,_a ,_a ,_a ,_a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a ,'checkpoints' ,'checkpoint_1' ) ) test_rands += train(1 ,_a ,_a ,_a ,_a ) ((_a), (_a)) : int = model.a.item(), model.b.item() _a : int = optimizer.state_dict() self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) self.assertEqual(_a ,_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Dict = torch.tensor([1, 2, 3] ) _a : Union[str, Any] = torch.tensor([2, 3, 4] ) _a : Optional[Any] = DummyModel() _a : int = torch.optim.Adam(net.parameters() ) _a : Dict = Accelerator() with self.assertRaises(_a ) as ve: accelerator.register_for_checkpointing(_a ,_a ,_a ,_a ) _a : str = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __lowercase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _a : int = DummyModel() _a : Optional[int] = torch.optim.Adam(params=model.parameters() ,lr=1E-3 ) _a : Any = torch.optim.lr_scheduler.StepLR(_a ,step_size=1 ,gamma=0.99 ) _a, _a : Dict = dummy_dataloaders() _a : int = ProjectConfiguration(automatic_checkpoint_naming=_a ) # Train baseline _a : Tuple = Accelerator(project_dir=_a ,project_config=_a ) _a, _a, _a, _a, _a : str = accelerator.prepare( _a ,_a ,_a ,_a ,_a ) # Save initial accelerator.save_state() _a : Optional[int] = scheduler.state_dict() train(3 ,_a ,_a ,_a ,_a ,_a ) self.assertNotEqual(_a ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_a ,'checkpoints' ,'checkpoint_0' ) ) self.assertEqual(_a ,scheduler.state_dict() ) def __lowercase ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _a : Any = DummyModel() _a : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=_a ,total_limit=2 ) # Train baseline _a : Dict = Accelerator(project_dir=_a ,project_config=_a ) _a : List[str] = accelerator.prepare(_a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_a ,'checkpoints' ,'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(_a ,'checkpoints' ,'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(_a ,'checkpoints' ,'checkpoint_10' ) ) ) @require_cuda def __lowercase ( self : Dict ): '''simple docstring''' _a : Union[str, Any] = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(_a ,env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase = """/tmp/accelerate/state_checkpointing""" __lowerCAmelCase = DummyModel() __lowerCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1e-3) __lowerCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __lowerCAmelCase , __lowerCAmelCase = dummy_dataloaders() __lowerCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __lowerCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __lowerCAmelCase = group["""params"""][0].device break assert param_device.type == accelerator.device.type __lowerCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __lowerCAmelCase = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __lowerCAmelCase = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
271
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home __lowerCAmelCase = HUGGINGFACE_HUB_CACHE __lowerCAmelCase = """config.json""" __lowerCAmelCase = """diffusion_pytorch_model.bin""" __lowerCAmelCase = """diffusion_flax_model.msgpack""" __lowerCAmelCase = """model.onnx""" __lowerCAmelCase = """diffusion_pytorch_model.safetensors""" __lowerCAmelCase = """weights.pb""" __lowerCAmelCase = """https://huggingface.co""" __lowerCAmelCase = default_cache_path __lowerCAmelCase = """diffusers_modules""" __lowerCAmelCase = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) __lowerCAmelCase = ["""fp16""", """non-ema"""] __lowerCAmelCase = """.self_attn"""
271
1
"""simple docstring""" from __future__ import annotations import math def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase : Optional[int] = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def lowerCamelCase_( _lowerCamelCase ) -> list[int]: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) _lowerCamelCase : Optional[int] = [] for num in range(len(_lowerCamelCase ) ): _lowerCamelCase : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: _lowerCamelCase : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(_lowerCamelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_lowerCamelCase ) == n: return list_nums return [] def lowerCamelCase_( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
340
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = len(_lowerCamelCase ) _lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCamelCase : list = [] for char_count in range(_lowerCamelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_lowerCamelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
340
1
"""simple docstring""" from __future__ import annotations import math _a = '2020.9.26' _a = 'xcodz-dot, cclaus, dhruvmanila' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if not all(isinstance(__lowerCamelCase, (float, int) ) for val in locals().values() ): UpperCAmelCase_ : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = ((x * distance) / (z + distance)) * scale UpperCAmelCase_ : List[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): raise TypeError("Axis must be a str" ) UpperCAmelCase_ : str = locals() del input_variables["axis"] if not all(isinstance(__lowerCamelCase, (float, int) ) for val in input_variables.values() ): UpperCAmelCase_ : int = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(__lowerCamelCase ) UpperCAmelCase_ : List[str] = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCAmelCase_ : Union[str, Any] = x * math.cos(__lowerCamelCase ) - y * math.sin(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = y * math.cos(__lowerCamelCase ) + x * math.sin(__lowerCamelCase ) UpperCAmelCase_ : Union[str, Any] = z elif axis == "x": UpperCAmelCase_ : Tuple = y * math.cos(__lowerCamelCase ) - z * math.sin(__lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = z * math.cos(__lowerCamelCase ) + y * math.sin(__lowerCamelCase ) UpperCAmelCase_ : Tuple = x elif axis == "y": UpperCAmelCase_ : Optional[Any] = x * math.cos(__lowerCamelCase ) - z * math.sin(__lowerCamelCase ) UpperCAmelCase_ : str = z * math.cos(__lowerCamelCase ) + x * math.sin(__lowerCamelCase ) UpperCAmelCase_ : List[str] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
61
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __a ( ): UpperCAmelCase_ : List[Any] = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } UpperCAmelCase_ : Optional[int] = Dataset.from_dict(__lowerCamelCase ) return dataset class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_dataset() UpperCAmelCase_ : Any = make_duplicate_clusters(lowercase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = get_dataset() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = deduplicate_dataset(lowercase_ ) self.assertEqual(len(lowercase_ ) , 2 ) print(lowercase_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , lowercase_ )
61
1
'''simple docstring''' import re import string import numpy as np import datasets A__ : Dict =''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' A__ : Tuple =''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' A__ : int =''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowercase__ ( self : Any ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowercase__ ( self : str , __snake_case : Tuple , __snake_case : int , __snake_case : Dict=None , __snake_case : List[Any]=False , __snake_case : Any=False , __snake_case : Optional[Any]=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase = np.array([re.sub(__snake_case , """""" , __snake_case ) for x in predictions] ) _lowerCAmelCase = np.array([re.sub(__snake_case , """""" , __snake_case ) for x in references] ) else: _lowerCAmelCase = np.asarray(__snake_case ) _lowerCAmelCase = np.asarray(__snake_case ) if ignore_case: _lowerCAmelCase = np.char.lower(__snake_case ) _lowerCAmelCase = np.char.lower(__snake_case ) if ignore_punctuation: _lowerCAmelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) _lowerCAmelCase = np.char.translate(__snake_case , table=__snake_case ) _lowerCAmelCase = np.char.translate(__snake_case , table=__snake_case ) if ignore_numbers: _lowerCAmelCase = string.digits.maketrans("""""" , """""" , string.digits ) _lowerCAmelCase = np.char.translate(__snake_case , table=__snake_case ) _lowerCAmelCase = np.char.translate(__snake_case , table=__snake_case ) _lowerCAmelCase = predictions == references return {"exact_match": np.mean(__snake_case ) * 1_00}
220
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def get_masked_lm_array(lowerCAmelCase ): _lowerCAmelCase = f"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_array(lowerCAmelCase ): _lowerCAmelCase = f"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_layer_array(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) def get_encoder_attention_layer_array(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = f"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" _lowerCAmelCase = tf.train.load_variable(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = array.reshape(lowerCAmelCase ) if "kernel" in name: _lowerCAmelCase = array.transpose() return torch.from_numpy(lowerCAmelCase ) print(f"Loading model based on config from {config_path}..." ) _lowerCAmelCase = BertConfig.from_json_file(lowerCAmelCase ) _lowerCAmelCase = BertForMaskedLM(lowerCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): _lowerCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention _lowerCAmelCase = layer.attention.self _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output _lowerCAmelCase = layer.attention.output _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) _lowerCAmelCase = get_encoder_attention_layer_array( lowerCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate _lowerCAmelCase = layer.intermediate _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_intermediate_dense/bias""" ) # Output _lowerCAmelCase = layer.output _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/kernel""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_dense/bias""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/gamma""" ) _lowerCAmelCase = get_encoder_layer_array(lowerCAmelCase , """_output_layer_norm/beta""" ) # Embeddings _lowerCAmelCase = get_encoder_array("""_position_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_type_embedding_layer/embeddings""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/gamma""" ) _lowerCAmelCase = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head _lowerCAmelCase = model.cls.predictions.transform _lowerCAmelCase = get_masked_lm_array("""dense/kernel""" ) _lowerCAmelCase = get_masked_lm_array("""dense/bias""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/gamma""" ) _lowerCAmelCase = get_masked_lm_array("""layer_norm/beta""" ) _lowerCAmelCase = get_masked_lm_array("""embedding_table""" ) # Pooling _lowerCAmelCase = BertPooler(config=lowerCAmelCase ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/kernel""" ) _lowerCAmelCase = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(lowerCAmelCase ) # Integration test - should load without any errors ;) _lowerCAmelCase = BertForMaskedLM.from_pretrained(lowerCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) A__ : Dict =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
220
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { '''alibaba-damo/mgp-str-base''': '''https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json''', } class a__ ( A__ ): A = 'mgp-str' def __init__( self : Optional[int],_A : str=[32, 128],_A : int=4,_A : Union[str, Any]=3,_A : List[str]=27,_A : str=38,_A : Optional[Any]=5_0257,_A : List[str]=3_0522,_A : Optional[int]=768,_A : str=12,_A : Tuple=12,_A : Optional[int]=4.0,_A : Dict=True,_A : Any=False,_A : Dict=1E-5,_A : int=0.0,_A : List[Any]=0.0,_A : Optional[Any]=0.0,_A : List[Any]=False,_A : str=0.02,**_A : str,): """simple docstring""" super().__init__(**_A ) SCREAMING_SNAKE_CASE_ : List[Any] = image_size SCREAMING_SNAKE_CASE_ : int = patch_size SCREAMING_SNAKE_CASE_ : List[str] = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_token_length SCREAMING_SNAKE_CASE_ : List[str] = num_character_labels SCREAMING_SNAKE_CASE_ : Dict = num_bpe_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_wordpiece_labels SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Union[str, Any] = distilled SCREAMING_SNAKE_CASE_ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = drop_rate SCREAMING_SNAKE_CASE_ : str = qkv_bias SCREAMING_SNAKE_CASE_ : Dict = attn_drop_rate SCREAMING_SNAKE_CASE_ : Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_aa_attentions SCREAMING_SNAKE_CASE_ : Any = initializer_range
18
from importlib import import_module from .logging import get_logger __lowerCAmelCase : str =get_logger(__name__) class _lowercase : '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=None ) -> int: __SCREAMING_SNAKE_CASE : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [] def __init__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = obj __SCREAMING_SNAKE_CASE : str = target __SCREAMING_SNAKE_CASE : Dict = new __SCREAMING_SNAKE_CASE : Union[str, Any] = target.split('''.''' )[0] __SCREAMING_SNAKE_CASE : List[str] = {} __SCREAMING_SNAKE_CASE : Tuple = attrs or [] def __enter__( self :int ) -> Dict: *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: __SCREAMING_SNAKE_CASE : Any = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __SCREAMING_SNAKE_CASE : int = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : List[str] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(import_module('''.'''.join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: __SCREAMING_SNAKE_CASE : Any = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __SCREAMING_SNAKE_CASE : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self :str , *lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def __magic_name__( self :List[Any] ) -> List[Any]: self.__enter__() self._active_patches.append(self ) def __magic_name__( self :Optional[int] ) -> int: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
9
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( _SCREAMING_SNAKE_CASE , unittest.TestCase): """simple docstring""" UpperCamelCase__ = RobertaTokenizer UpperCamelCase__ = RobertaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {"""cls_token""": """<s>"""} def lowercase__ ( self : List[str] )->List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : Union[str, Any] , **__UpperCamelCase : Tuple )->List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : str , **__UpperCamelCase : List[str] )->Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : Any )->Optional[Any]: _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = '''lower newer''' return input_text, output_text def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''lower newer''' _UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->List[str]: _UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=__UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=__UpperCamelCase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def lowercase__ ( self : Optional[Any] )->str: _UpperCAmelCase = self.tokenizer_class.from_pretrained('''roberta-base''' ) _UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : int )->Dict: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = '''Encode this sequence.''' _UpperCAmelCase = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) # Testing spaces after special tokens _UpperCAmelCase = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase )} ) # mask token has a left space _UpperCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) _UpperCAmelCase = '''Encode <mask> sequence''' _UpperCAmelCase = '''Encode <mask>sequence''' _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = encoded.index(__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokenizer.encode(__UpperCamelCase ) _UpperCAmelCase = encoded.index(__UpperCamelCase ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->str: pass def lowercase__ ( self : int )->Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = '''A, <mask> AllenNLP sentence.''' _UpperCAmelCase = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) _UpperCAmelCase = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) _UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) _UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( __UpperCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowercase__ ( self : Dict )->Dict: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , __UpperCamelCase ) self.assertEqual(post_processor_state['''add_prefix_space'''] , __UpperCamelCase ) self.assertEqual(post_processor_state['''trim_offsets'''] , __UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` _UpperCAmelCase = F'{text_of_1_token} {text_of_1_token}' _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ) + 1, 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) _UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) _UpperCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , )
366
"""simple docstring""" import math def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 0 , _SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' _UpperCAmelCase = end or len(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i _UpperCAmelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCAmelCase = array[temp_index - 1] temp_index -= 1 _UpperCAmelCase = temp_index_value return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): # Max Heap '''simple docstring''' _UpperCAmelCase = index _UpperCAmelCase = 2 * index + 1 # Left Node _UpperCAmelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCAmelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCAmelCase = right_index if largest != index: _UpperCAmelCase , _UpperCAmelCase = array[largest], array[index] heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' _UpperCAmelCase = len(_SCREAMING_SNAKE_CASE ) for i in range(n // 2 , -1 , -1 ): heapify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(n - 1 , 0 , -1 ): _UpperCAmelCase , _UpperCAmelCase = array[0], array[i] heapify(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE ) return array def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = low _UpperCAmelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCAmelCase , _UpperCAmelCase = array[j], array[i] i += 1 def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) == 0: return array _UpperCAmelCase = 2 * math.ceil(math.loga(len(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase = 16 return intro_sort(_SCREAMING_SNAKE_CASE , 0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(_SCREAMING_SNAKE_CASE ) max_depth -= 1 _UpperCAmelCase = median_of_a(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , start + ((end - start) // 2) + 1 , end - 1 ) _UpperCAmelCase = partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) intro_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = p return insertion_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() __A : List[str] = input("Enter numbers separated by a comma : ").strip() __A : Optional[Any] = [float(item) for item in user_input.split(",")] print(sort(unsorted))
326
0
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : int ) -> int: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=True ) -> Any: SCREAMING_SNAKE_CASE__ = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=__UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_downsample: SCREAMING_SNAKE_CASE__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=True ) -> List[Any]: SCREAMING_SNAKE_CASE__ = () for resnet in self.resnets: SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE__ = self.downsamplers_a(__UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any=True ) -> Union[str, Any]: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = True lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE__ = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets if self.add_upsample: SCREAMING_SNAKE_CASE__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=True ) -> Dict: for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE__ = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) if self.add_upsample: SCREAMING_SNAKE_CASE__ = self.upsamplers_a(__UpperCAmelCase ) return hidden_states class lowerCamelCase (nn.Module ): lowerCamelCase__ : int lowerCamelCase__ : float = 0.0 lowerCamelCase__ : int = 1 lowerCamelCase__ : int = 1 lowerCamelCase__ : bool = False lowerCamelCase__ : bool = False lowerCamelCase__ : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: # there is always at least one resnet SCREAMING_SNAKE_CASE__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE__ = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnets SCREAMING_SNAKE_CASE__ = attentions def __call__( self : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=True ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.resnets[0](__UpperCAmelCase , __UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE__ = attn(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = resnet(__UpperCAmelCase , __UpperCAmelCase , deterministic=__UpperCAmelCase ) return hidden_states
165
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be trained.'} ) lowerCamelCase__ : Optional[str] = field( default='./' ,metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path of training dataset.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for training.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size for evaluation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.1 ,metadata={'help': 'Value of weight decay.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0 ,metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCamelCase__ : Optional[float] = field(default=2E-4 ,metadata={'help': 'Learning rate fo training.'} ) lowerCamelCase__ : Optional[str] = field(default='cosine' ,metadata={'help': 'Learning rate.'} ) lowerCamelCase__ : Optional[int] = field( default=7_5_0 ,metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCamelCase__ : Optional[int] = field( default=1_6 ,metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCamelCase__ : Optional[int] = field(default=5_0_0_0_0 ,metadata={'help': 'Maximum number of training steps.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Sequence lengths used for training.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Training seed.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_2_4 ,metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} ,) lowerCamelCase__ : Optional[str] = field( default=A__ ,metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-valid' ,metadata={'help': 'Name or path of validation dataset.'} ) lowerCamelCase__ : Optional[int] = field(default=2 ,metadata={'help': 'Batch size used for evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0_2_4 ,metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCamelCase__ : Optional[float] = field(default=0.2 ,metadata={'help': 'Sampling temperature used for generation.'} ) lowerCamelCase__ : Optional[int] = field(default=2_5_6 ,metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCamelCase__ : Optional[int] = field(default=0 ,metadata={'help': 'Top-k parameter used for generation.'} ) lowerCamelCase__ : Optional[float] = field(default=0.9_5 ,metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCamelCase__ : Optional[int] = field(default=1_0 ,metadata={'help': 'Number of generations to run in parallel.'} ) lowerCamelCase__ : Optional[int] = field( default=2_0_0 ,metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCamelCase__ : Optional[int] = field(default=1 ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='eval_results.json' ,metadata={'help': 'Random seed used for evaluation.'} ) lowerCamelCase__ : Optional[str] = field( default='0' ,metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCamelCase__ : Optional[int] = field( default=-1 ,metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } ,) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[int] = field( default=A__ ,metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } ,) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot' ,metadata={'help': 'Folder or name of dataset to process.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot-clean' ,metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCamelCase__ : Optional[int] = field( default=1_0_0_0_0_0 ,metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0_0 ,metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1_0_0 ,metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.2_5 ,metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=1.5 ,metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCamelCase__ : Optional[float] = field( default=0.7 ,metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ,) lowerCamelCase__ : Optional[bool] = field( default=A__ ,metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCamelCase__ : Optional[float] = field( default=0.8_5 ,metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2' ,metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCamelCase__ : Optional[str] = field( default='transformersbook/codeparrot-train' ,metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='content' ,metadata={'help': 'Column containing text data to process.'} ) lowerCamelCase__ : Optional[int] = field(default=2_0_0_0_0_0 ,metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCamelCase__ : Optional[int] = field( default=3_2_7_6_8 ,metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of new tokenizer.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Name or path to the tokenizer.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot-clean-train' ,metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCamelCase__ : Optional[str] = field( default='tokenized-codeparrot-train' ,metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCamelCase__ : Optional[int] = field(default=A__ ,metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class lowerCamelCase : lowerCamelCase__ : Optional[str] = field( default='gpt2-large' ,metadata={'help': 'Configuration to use for model initialization.'} ) lowerCamelCase__ : Optional[str] = field( default='codeparrot/codeparrot' ,metadata={'help': 'Tokenizer attached to model.'} ) lowerCamelCase__ : Optional[str] = field(default='codeparrot' ,metadata={'help': 'Name of the created model.'} ) lowerCamelCase__ : Optional[bool] = field(default=A__ ,metadata={'help': 'Push saved tokenizer to the hub.'} )
165
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( A_ ): def __init__( self : str ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=13 ,_UpperCAmelCase : Optional[Any]=7 ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : str=True ,_UpperCAmelCase : List[str]=99 ,_UpperCAmelCase : str=32 ,_UpperCAmelCase : List[Any]=5 ,_UpperCAmelCase : List[Any]=4 ,_UpperCAmelCase : Dict=37 ,_UpperCAmelCase : Union[str, Any]="gelu" ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : Any=0.1 ,_UpperCAmelCase : Optional[int]=512 ,_UpperCAmelCase : Union[str, Any]=16 ,_UpperCAmelCase : Any=2 ,_UpperCAmelCase : Dict=0.02 ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : Union[str, Any]=True ,_UpperCAmelCase : List[Any]="None" ,_UpperCAmelCase : Any=3 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : List[Any]=None ,): _a : Any = parent _a : Optional[Any] = batch_size _a : List[Any] = seq_length _a : str = is_training _a : List[str] = use_input_mask _a : Union[str, Any] = use_token_type_ids _a : List[Any] = use_labels _a : str = vocab_size _a : int = hidden_size _a : List[str] = num_hidden_layers _a : int = num_attention_heads _a : Optional[int] = intermediate_size _a : List[str] = hidden_act _a : List[Any] = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : List[Any] = max_position_embeddings _a : Optional[Any] = type_vocab_size _a : Any = type_sequence_label_size _a : List[str] = initializer_range _a : List[str] = num_labels _a : Tuple = num_choices _a : Optional[int] = relative_attention _a : List[Any] = position_biased_input _a : List[str] = pos_att_type _a : str = scope def __lowercase ( self : Optional[int] ): _a : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Any = None if self.use_input_mask: _a : str = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _a : List[str] = None if self.use_token_type_ids: _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : Dict = None _a : int = None _a : int = None if self.use_labels: _a : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) _a : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Dict ): return DebertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def __lowercase ( self : Union[str, Any] ): _a : Optional[int] = self.get_config() _a : str = 300 return config def __lowercase ( self : int ,_UpperCAmelCase : int ): self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def __lowercase ( self : List[str] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Tuple ): _a : Optional[Any] = DebertaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _a : Dict = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,token_type_ids=_lowerCamelCase )[0] _a : Optional[int] = model(_lowerCamelCase ,token_type_ids=_lowerCamelCase )[0] _a : str = model(_lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def __lowercase ( self : str ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : int ): _a : Union[str, Any] = DebertaForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _a : str = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,token_type_ids=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Tuple ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ): _a : int = self.num_labels _a : Optional[Any] = DebertaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _a : List[Any] = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,token_type_ids=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(_lowerCamelCase ) def __lowercase ( self : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ): _a : List[str] = self.num_labels _a : Tuple = DebertaForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _a : Union[str, Any] = model(_lowerCamelCase ,attention_mask=_lowerCamelCase ,token_type_ids=_lowerCamelCase ,labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Tuple ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : str ): _a : Union[str, Any] = DebertaForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _a : Optional[Any] = model( _lowerCamelCase ,attention_mask=_lowerCamelCase ,token_type_ids=_lowerCamelCase ,start_positions=_lowerCamelCase ,end_positions=_lowerCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Tuple ): _a : Union[str, Any] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( A_ , A_ , unittest.TestCase ): lowerCAmelCase : List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase : Any = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = False lowerCAmelCase : str = False lowerCAmelCase : List[str] = False lowerCAmelCase : List[str] = False def __lowercase ( self : Tuple ): _a : Union[str, Any] = DebertaModelTester(self ) _a : Tuple = ConfigTester(self ,config_class=_lowerCamelCase ,hidden_size=37 ) def __lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def __lowercase ( self : Union[str, Any] ): _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCamelCase ) def __lowercase ( self : Tuple ): _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCamelCase ) def __lowercase ( self : Dict ): _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCamelCase ) def __lowercase ( self : Optional[Any] ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCamelCase ) def __lowercase ( self : str ): _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCamelCase ) @slow def __lowercase ( self : Union[str, Any] ): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Any = DebertaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __lowercase ( self : List[Any] ): pass @slow def __lowercase ( self : int ): _a : Any = DebertaModel.from_pretrained('microsoft/deberta-base' ) _a : Optional[int] = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _a : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : str = model(_lowerCamelCase ,attention_mask=_lowerCamelCase )[0] # compare the actual values for a slice. _a : Optional[Any] = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,_lowerCamelCase ,atol=1E-4 ) ,F"""{output[:, 1:4, 1:4]}""" )
368
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __lowerCAmelCase = '''tiny-wmt19-en-ru''' # Build # borrowed from a test __lowerCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __lowerCAmelCase = dict(zip(vocab, range(len(vocab)))) __lowerCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = Path(tmpdirname) __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] __lowerCAmelCase = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) __lowerCAmelCase = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __lowerCAmelCase = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __lowerCAmelCase = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test __lowerCAmelCase = tokenizer(['''Making tiny model'''], return_tensors='''pt''') __lowerCAmelCase = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
107
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _UpperCamelCase = True except ImportError: _UpperCamelCase = False _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( lowerCAmelCase__ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _A ( __SCREAMING_SNAKE_CASE ): @staticmethod def __A ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=__UpperCAmelCase , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=__UpperCAmelCase , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , *__UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[Any] = testing __UpperCAmelCase : Dict = testing_file __UpperCAmelCase : Any = path def __A ( self ) -> Any: '''simple docstring''' warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __UpperCAmelCase : Optional[Any] = [directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(__UpperCAmelCase ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) __UpperCAmelCase : Optional[Any] = ( Path(__UpperCAmelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __UpperCAmelCase : Tuple = path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(__UpperCAmelCase ) ) else: with open(self._testing_file , """r""" ) as configuration_file: __UpperCAmelCase : Any = json.load(__UpperCAmelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__UpperCAmelCase , extra_context=__UpperCAmelCase , ) __UpperCAmelCase : int = [directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: __UpperCAmelCase : Union[str, Any] = json.load(__UpperCAmelCase ) __UpperCAmelCase : str = configuration["""lowercase_modelname"""] __UpperCAmelCase : Any = configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(f'{directory}/configuration.json' ) __UpperCAmelCase : List[Any] = """PyTorch""" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase : Tuple = """TensorFlow""" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase : List[Any] = """Flax""" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase : int = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=__UpperCAmelCase ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , """w""" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(__UpperCAmelCase ): with open(__UpperCAmelCase , """r""" ) as f: __UpperCAmelCase : List[Any] = f.readlines() with open(__UpperCAmelCase , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__UpperCAmelCase ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Create temp file __UpperCAmelCase , __UpperCAmelCase : Dict = mkstemp() __UpperCAmelCase : Any = False with fdopen(__UpperCAmelCase , """w""" ) as new_file: with open(__UpperCAmelCase ) as old_file: for line in old_file: new_file.write(__UpperCAmelCase ) if line_to_copy_below in line: __UpperCAmelCase : str = True for line_to_copy in lines_to_copy: new_file.write(__UpperCAmelCase ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(__UpperCAmelCase , __UpperCAmelCase ) # Remove original file remove(__UpperCAmelCase ) # Move new file move(__UpperCAmelCase , __UpperCAmelCase ) def skip_units(__UpperCAmelCase ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__UpperCAmelCase ): with open(__UpperCAmelCase ) as datafile: __UpperCAmelCase : Any = [] __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: __UpperCAmelCase : Union[str, Any] = line.split("""\"""" )[1] __UpperCAmelCase : str = skip_units(__UpperCAmelCase ) elif "# Below: " in line and "##" not in line: __UpperCAmelCase : List[str] = line.split("""\"""" )[1] __UpperCAmelCase : int = skip_units(__UpperCAmelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : int = [] elif "# Replace with" in line and "##" not in line: __UpperCAmelCase : str = [] elif "##" not in line: lines_to_copy.append(__UpperCAmelCase ) remove(__UpperCAmelCase ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(__UpperCAmelCase )
254
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 _UpperCamelCase = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] _SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizer _SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=100 , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __UpperCAmelCase : List[Any] = [f'<extra_id_{i}>' for i in range(__UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __UpperCAmelCase : Any = len(set(filter(lambda __UpperCAmelCase : bool("""extra_id_""" in str(__UpperCAmelCase ) ) , __UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , extra_ids=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCAmelCase : Optional[int] = vocab_file __UpperCAmelCase : Any = False if not self.vocab_file else True __UpperCAmelCase : Optional[int] = extra_ids @staticmethod def __A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __UpperCAmelCase : int = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , __UpperCAmelCase , ) return max_model_length def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : Any = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __UpperCAmelCase : Optional[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __A ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self ) -> Any: '''simple docstring''' return list( set(filter(lambda __UpperCAmelCase : bool(re.search(r"""<extra_id_\d+>""" , __UpperCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(__UpperCAmelCase ) for token in self.get_sentinel_tokens()]
254
1
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : List[Any]=18 , lowerCAmelCase_ : Union[str, Any]=30 , lowerCAmelCase_ : Union[str, Any]=4_00 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' A__ : Any =size if size is not None else {"""height""": 18, """width""": 18} A__ : List[Any] =parent A__ : Any =batch_size A__ : str =num_channels A__ : Dict =image_size A__ : int =min_resolution A__ : int =max_resolution A__ : Optional[Any] =do_resize A__ : str =size A__ : Optional[Any] =do_normalize A__ : Optional[int] =image_mean A__ : List[str] =image_std def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = DPTImageProcessor if is_vision_available() else None def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =DPTImageProcessingTester(self ) @property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Dict =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' A__ : str =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) A__ : Optional[int] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' # Initialize image_processing A__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Union[str, Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input A__ : int =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A__ : Dict =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' # Initialize image_processing A__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input A__ : Optional[int] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A__ : Optional[Any] =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' # Initialize image_processing A__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Optional[int] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input A__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A__ : Dict =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
136
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : list[int] ) -> bool: """simple docstring""" return len(set(__snake_case ) ) == len(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
136
1
class _snake_case : def __init__( self ): __magic_name__ : dict[str, TrieNode] = {} # Mapping from char to TrieNode __magic_name__ : Any = False def SCREAMING_SNAKE_CASE ( self , _a ): for word in words: self.insert(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[str] = self for char in word: if char not in curr.nodes: __magic_name__ : str = TrieNode() __magic_name__ : Optional[Any] = curr.nodes[char] __magic_name__ : List[str] = True def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = self for char in word: if char not in curr.nodes: return False __magic_name__ : Optional[int] = curr.nodes[char] return curr.is_leaf def SCREAMING_SNAKE_CASE ( self , _a ): def _delete(_a , _a , _a ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False __magic_name__ : Dict = False return len(curr.nodes ) == 0 __magic_name__ : Optional[int] = word[index] __magic_name__ : Tuple = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __magic_name__ : Union[str, Any] = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCAmelCase_ ( _snake_case : TrieNode , _snake_case : str ) -> None: '''simple docstring''' if node.is_leaf: print(_snake_case , end=" " ) for key, value in node.nodes.items(): print_words(_snake_case , word + key ) def lowerCAmelCase_ ( ) -> bool: '''simple docstring''' __magic_name__ : Union[str, Any] = "banana bananas bandana band apple all beast".split() __magic_name__ : Dict = TrieNode() root.insert_many(_snake_case ) # print_words(root, "") assert all(root.find(_snake_case ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCAmelCase_ ( _snake_case : str , _snake_case : bool ) -> None: '''simple docstring''' print(str(_snake_case ) , "works!" if passes else "doesn't work :(" ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' assert test_trie() def lowerCAmelCase_ ( ) -> None: '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
281
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __magic_name__ : List[Any] = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Dict = seq_length __magic_name__ : Union[str, Any] = is_training __magic_name__ : Optional[Any] = use_attention_mask __magic_name__ : Optional[Any] = use_token_type_ids __magic_name__ : int = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Any = intermediate_size __magic_name__ : List[Any] = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : List[str] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : List[Any] = num_choices def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : str = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = config_and_inputs __magic_name__ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : Tuple = True __magic_name__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : List[str] = model(_a )[0] __magic_name__ : str = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. __magic_name__ : List[str] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Tuple = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : Tuple = model(_a )[0] # compare the actual values for a slice. __magic_name__ : Dict = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
281
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( __lowercase , unittest.TestCase ): lowercase__: int = KandinskyImgaImgPipeline lowercase__: Any = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] lowercase__: int = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] lowercase__: List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase__: Any = False @property def lowercase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return 32 @property def lowercase__ ( self : str ) -> str: """simple docstring""" return 32 @property def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" __snake_case : str = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __snake_case : Tuple = MultilingualCLIP(__magic_name__ ) __snake_case : Optional[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __snake_case : Tuple = UNetaDConditionModel(**__magic_name__ ) return model @property def lowercase__ ( self : str ) -> Dict: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __snake_case : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Tuple ) -> str: """simple docstring""" __snake_case : Tuple = self.dummy_text_encoder __snake_case : Dict = self.dummy_tokenizer __snake_case : Dict = self.dummy_unet __snake_case : int = self.dummy_movq __snake_case : List[Any] = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __snake_case : Dict = DDIMScheduler(**__magic_name__ ) __snake_case : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : str , __magic_name__ : str , __magic_name__ : Union[str, Any]=0 ) -> str: """simple docstring""" __snake_case : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__magic_name__ ) # create init_image __snake_case : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) __snake_case : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case : Optional[int] = Image.fromarray(np.uinta(__magic_name__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__magic_name__ ).startswith("""mps""" ): __snake_case : str = torch.manual_seed(__magic_name__ ) else: __snake_case : str = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) __snake_case : Optional[Any] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : int ) -> str: """simple docstring""" __snake_case : Dict = """cpu""" __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : List[str] = self.pipeline_class(**__magic_name__ ) __snake_case : Optional[Any] = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = pipe(**self.get_dummy_inputs(__magic_name__ ) ) __snake_case : List[str] = output.images __snake_case : Any = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] __snake_case : Optional[int] = image[0, -3:, -3:, -1] __snake_case : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : int = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) __snake_case : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __snake_case : List[Any] = """A red cartoon frog, 4k""" __snake_case : str = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) __snake_case : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) __snake_case : Any = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) __snake_case : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __snake_case , __snake_case : Optional[Any] = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __snake_case : List[str] = pipeline( __magic_name__ , image=__magic_name__ , image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , generator=__magic_name__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="""np""" , ) __snake_case : Dict = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
13
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: """simple docstring""" for attribute in key.split(""".""" ): __snake_case : Optional[int] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case : Optional[Any] = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case : Union[str, Any] = value elif weight_type == "weight_g": __snake_case : str = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : str = value else: __snake_case : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: """simple docstring""" __snake_case : Tuple = [] __snake_case : List[Any] = fairseq_model.state_dict() __snake_case : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __snake_case : Any = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __snake_case : Optional[int] = True else: for key, mapped_key in MAPPING.items(): __snake_case : Optional[Any] = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __snake_case : Dict = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_lowerCamelCase )[0].split(""".""" )[-2] __snake_case : Optional[int] = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: __snake_case : Dict = """weight_g""" elif "weight_v" in name: __snake_case : List[str] = """weight_v""" elif "weight" in name: __snake_case : str = """weight""" elif "bias" in name: __snake_case : int = """bias""" else: __snake_case : int = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Dict = full_name.split("""conv_layers.""" )[-1] __snake_case : Optional[int] = name.split(""".""" ) __snake_case : Dict = int(items[0] ) __snake_case : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case : Union[str, Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __snake_case : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case : List[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : List[str] = SEWConfig() if is_finetuned: __snake_case : List[Any] = model.wav_encoder.wav_model.cfg else: __snake_case : Optional[Any] = model.cfg __snake_case : Tuple = fs_config.conv_bias __snake_case : List[Any] = eval(fs_config.conv_feature_layers ) __snake_case : List[Any] = [x[0] for x in conv_layers] __snake_case : Dict = [x[1] for x in conv_layers] __snake_case : Tuple = [x[2] for x in conv_layers] __snake_case : List[str] = """gelu""" __snake_case : Dict = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __snake_case : Optional[int] = 0.0 __snake_case : Optional[Any] = fs_config.activation_fn.name __snake_case : Dict = fs_config.encoder_embed_dim __snake_case : Dict = 0.02 __snake_case : Any = fs_config.encoder_ffn_embed_dim __snake_case : Tuple = 1E-5 __snake_case : Dict = fs_config.encoder_layerdrop __snake_case : Any = fs_config.encoder_attention_heads __snake_case : int = fs_config.conv_pos_groups __snake_case : Tuple = fs_config.conv_pos __snake_case : Optional[int] = len(_lowerCamelCase ) __snake_case : int = fs_config.encoder_layers __snake_case : Optional[int] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __snake_case : Union[str, Any] = model.cfg __snake_case : Tuple = fs_config.final_dropout __snake_case : Tuple = fs_config.layerdrop __snake_case : Any = fs_config.activation_dropout __snake_case : int = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __snake_case : Tuple = fs_config.attention_dropout __snake_case : List[Any] = fs_config.dropout_input __snake_case : Optional[Any] = fs_config.dropout __snake_case : str = fs_config.mask_channel_length __snake_case : Any = fs_config.mask_channel_prob __snake_case : int = fs_config.mask_length __snake_case : str = fs_config.mask_prob __snake_case : str = """Wav2Vec2FeatureExtractor""" __snake_case : Dict = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) -> int: """simple docstring""" if is_finetuned: __snake_case , __snake_case , __snake_case : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __snake_case : Optional[Any] = SEWConfig.from_pretrained(_lowerCamelCase ) else: __snake_case : int = convert_config(model[0] , _lowerCamelCase ) __snake_case : Dict = model[0].eval() __snake_case : Optional[Any] = True if config.feat_extract_norm == """layer""" else False __snake_case : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) if is_finetuned: if dict_path: __snake_case : str = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Union[str, Any] = target_dict.pad_index __snake_case : Optional[Any] = target_dict.bos_index __snake_case : Tuple = target_dict.pad_index __snake_case : List[str] = target_dict.bos_index __snake_case : Optional[Any] = target_dict.eos_index __snake_case : List[str] = len(target_dict.symbols ) __snake_case : Optional[Any] = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) __snake_case : Optional[int] = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case : List[str] = SEWForCTC(_lowerCamelCase ) else: __snake_case : List[str] = SEWModel(_lowerCamelCase ) feature_extractor.save_pretrained(_lowerCamelCase ) recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __UpperCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
13
1
'''simple docstring''' import math def UpperCamelCase_ ( _UpperCAmelCase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_ ( _UpperCAmelCase : float = 0.1 ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_UpperCAmelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
31
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
199
0
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
359
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase , int(b / 2 ) ) * actual_power(UpperCAmelCase , int(b / 2 ) ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->float: """simple docstring""" if b < 0: return 1 / actual_power(UpperCAmelCase , UpperCAmelCase ) return actual_power(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
337
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _a : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ,_lowerCamelCase : str ,_lowerCamelCase : List[str] ) -> int: _lowerCAmelCase : List[str] = os.path.abspath(_lowerCamelCase ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model _lowerCAmelCase : int = tf.train.list_variables(_lowerCamelCase ) _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Optional[int] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _lowerCAmelCase : Dict = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' _lowerCAmelCase : Dict = name[1:] # figure out how many levels deep the name is _lowerCAmelCase : Optional[Any] = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(_lowerCamelCase ) # read data _lowerCAmelCase : List[Any] = tf.train.load_variable(_lowerCamelCase ,_lowerCamelCase ) names.append("""/""".join(_lowerCamelCase ) ) arrays.append(_lowerCamelCase ) logger.info(f"Read a total of {len(_lowerCamelCase ):,} layers" ) # Sanity check if len(set(_lowerCamelCase ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(_lowerCamelCase ) )})" ) _lowerCAmelCase : Union[str, Any] = list(set(_lowerCamelCase ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = full_name.split("""/""" ) _lowerCAmelCase : str = model _lowerCAmelCase : Optional[int] = [] for i, m_name in enumerate(_lowerCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): _lowerCAmelCase : Dict = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) _lowerCAmelCase : int = getattr(_lowerCamelCase ,"""embeddings""" ) _lowerCAmelCase : List[Any] = getattr(_lowerCamelCase ,"""LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) _lowerCAmelCase : int = getattr(_lowerCamelCase ,"""encoder""" ) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase ,"""layer""" ) _lowerCAmelCase : List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) _lowerCAmelCase : int = getattr(_lowerCamelCase ,"""pooler""" ) _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase ,"""dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) _lowerCAmelCase : Tuple = getattr(_lowerCamelCase ,"""embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase ,"""word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) _lowerCAmelCase : List[Any] = getattr(_lowerCamelCase ,"""position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) _lowerCAmelCase : str = getattr(_lowerCamelCase ,"""token_type_embeddings""" ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) _lowerCAmelCase : Dict = getattr(_lowerCamelCase ,"""weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) _lowerCAmelCase : Tuple = getattr(_lowerCamelCase ,"""attention""" ) _lowerCAmelCase : str = getattr(_lowerCamelCase ,"""self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) _lowerCAmelCase : List[str] = getattr(_lowerCamelCase ,"""attention""" ) _lowerCAmelCase : Tuple = getattr(_lowerCamelCase ,"""output""" ) _lowerCAmelCase : Dict = getattr(_lowerCamelCase ,"""LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) _lowerCAmelCase : int = getattr(_lowerCamelCase ,"""attention""" ) _lowerCAmelCase : int = getattr(_lowerCamelCase ,"""output""" ) _lowerCAmelCase : List[Any] = getattr(_lowerCamelCase ,"""dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) _lowerCAmelCase : List[str] = getattr(_lowerCamelCase ,"""output""" ) _lowerCAmelCase : Any = getattr(_lowerCamelCase ,"""dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) _lowerCAmelCase : Tuple = getattr(_lowerCamelCase ,"""output""" ) _lowerCAmelCase : List[str] = getattr(_lowerCamelCase ,"""LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) _lowerCAmelCase : str = getattr(_lowerCamelCase ,"""key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase ,"""query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase ,"""value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) _lowerCAmelCase : str = getattr(_lowerCamelCase ,"""intermediate""" ) _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase ,"""dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) _lowerCAmelCase : Any = getattr(_lowerCamelCase ,"""output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) _lowerCAmelCase : List[str] = getattr(_lowerCamelCase ,"""bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) _lowerCAmelCase : str = getattr(_lowerCamelCase ,"""weight""" ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary _lowerCAmelCase : Any = """.""".join(_lowerCamelCase ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" ,_lowerCamelCase ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" ,_lowerCamelCase ): _lowerCAmelCase : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: _lowerCAmelCase : Optional[int] = array.transpose() if pointer.shape == array.shape: _lowerCAmelCase : Optional[int] = torch.from_numpy(_lowerCamelCase ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ,_lowerCamelCase : Any ) -> Tuple: # Instantiate model logger.info(f"Loading model based on config from {config_path}..." ) _lowerCAmelCase : List[Any] = BertConfig.from_json_file(_lowerCamelCase ) _lowerCAmelCase : Tuple = BertModel(_lowerCamelCase ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() ,_lowerCamelCase ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) _a : List[str] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
44
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def __lowercase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) _a : int = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : str = self.dummy_uncond_unet _a : int = PNDMScheduler() _a : str = PNDMPipeline(unet=_a ,scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) _a : Optional[int] = torch.manual_seed(0 ) _a : Optional[Any] = pndm(generator=_a ,num_inference_steps=20 ,output_type='numpy' ).images _a : List[str] = torch.manual_seed(0 ) _a : Any = pndm(generator=_a ,num_inference_steps=20 ,output_type='numpy' ,return_dict=_a )[0] _a : List[Any] = image[0, -3:, -3:, -1] _a : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : Tuple ): '''simple docstring''' _a : List[str] = 'google/ddpm-cifar10-32' _a : str = UNetaDModel.from_pretrained(_a ) _a : Union[str, Any] = PNDMScheduler() _a : Tuple = PNDMPipeline(unet=_a ,scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) _a : str = torch.manual_seed(0 ) _a : Optional[Any] = pndm(generator=_a ,output_type='numpy' ).images _a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : Tuple = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
271
0
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( snake_case__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = ConsistencyModelPipeline SCREAMING_SNAKE_CASE_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[int] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def lowercase_ ( self : Dict)-> Tuple: '''simple docstring''' __lowerCAmelCase: Any = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def lowercase_ ( self : str)-> str: '''simple docstring''' __lowerCAmelCase: Optional[int] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def lowercase_ ( self : List[str] , UpperCamelCase__ : int=False)-> Dict: '''simple docstring''' if class_cond: __lowerCAmelCase: str = self.dummy_cond_unet else: __lowerCAmelCase: List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase: Dict = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase: List[str] = { "unet": unet, "scheduler": scheduler, } return components def lowercase_ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]=0)-> str: '''simple docstring''' if str(UpperCAmelCase_).startswith("mps"): __lowerCAmelCase: Dict = torch.manual_seed(UpperCAmelCase_) else: __lowerCAmelCase: Any = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) __lowerCAmelCase: Optional[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [2_2, 0], "generator": generator, "output_type": "np", } return inputs def lowercase_ ( self : Union[str, Any])-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.get_dummy_components() __lowerCAmelCase: Tuple = ConsistencyModelPipeline(**UpperCAmelCase_) __lowerCAmelCase: Tuple = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) __lowerCAmelCase: Dict = pipe(**UpperCAmelCase_).images assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase: List[str] = image[0, -3:, -3:, -1] __lowerCAmelCase: List[Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def lowercase_ ( self : Optional[int])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.get_dummy_components(class_cond=UpperCAmelCase_) __lowerCAmelCase: Dict = ConsistencyModelPipeline(**UpperCAmelCase_) __lowerCAmelCase: int = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: int = self.get_dummy_inputs(UpperCAmelCase_) __lowerCAmelCase: Union[str, Any] = 0 __lowerCAmelCase: Optional[int] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase: int = image[0, -3:, -3:, -1] __lowerCAmelCase: List[str] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def lowercase_ ( self : Union[str, Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.get_dummy_components() __lowerCAmelCase: List[Any] = ConsistencyModelPipeline(**UpperCAmelCase_) __lowerCAmelCase: Optional[int] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) __lowerCAmelCase: Dict = 1 __lowerCAmelCase: str = None __lowerCAmelCase: Any = pipe(**UpperCAmelCase_).images assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase: Any = image[0, -3:, -3:, -1] __lowerCAmelCase: int = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def lowercase_ ( self : Any)-> Dict: '''simple docstring''' __lowerCAmelCase: Dict = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Dict = self.get_dummy_components(class_cond=UpperCAmelCase_) __lowerCAmelCase: List[str] = ConsistencyModelPipeline(**UpperCAmelCase_) __lowerCAmelCase: Any = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) __lowerCAmelCase: Tuple = 1 __lowerCAmelCase: List[str] = None __lowerCAmelCase: Dict = 0 __lowerCAmelCase: Optional[int] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 3_2, 3_2, 3) __lowerCAmelCase: Any = image[0, -3:, -3:, -1] __lowerCAmelCase: List[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : int)-> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Tuple , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : int=False , UpperCamelCase__ : List[Any]="cpu" , UpperCamelCase__ : List[Any]=torch.floataa , UpperCamelCase__ : int=(1, 3, 6_4, 6_4))-> Any: '''simple docstring''' __lowerCAmelCase: Any = torch.manual_seed(UpperCAmelCase_) __lowerCAmelCase: Tuple = { "num_inference_steps": None, "timesteps": [2_2, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __lowerCAmelCase: Optional[Any] = self.get_fixed_latents(seed=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ , shape=UpperCAmelCase_) __lowerCAmelCase: Optional[int] = latents return inputs def lowercase_ ( self : str , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : List[Any]="cpu" , UpperCamelCase__ : Tuple=torch.floataa , UpperCamelCase__ : Dict=(1, 3, 6_4, 6_4))-> int: '''simple docstring''' if type(UpperCAmelCase_) == str: __lowerCAmelCase: Optional[int] = torch.device(UpperCAmelCase_) __lowerCAmelCase: Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) __lowerCAmelCase: int = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_) return latents def lowercase_ ( self : Dict)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Optional[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __lowerCAmelCase: Dict = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase: Tuple = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Dict = self.get_inputs() __lowerCAmelCase: Optional[int] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: List[str] = image[0, -3:, -3:, -1] __lowerCAmelCase: Optional[int] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def lowercase_ ( self : Optional[int])-> List[Any]: '''simple docstring''' __lowerCAmelCase: Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __lowerCAmelCase: Tuple = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase: Optional[Any] = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Any = self.get_inputs() __lowerCAmelCase: List[Any] = 1 __lowerCAmelCase: Tuple = None __lowerCAmelCase: Union[str, Any] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: Dict = image[0, -3:, -3:, -1] __lowerCAmelCase: Optional[int] = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 @require_torch_a def lowercase_ ( self : Union[str, Any])-> int: '''simple docstring''' __lowerCAmelCase: Tuple = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __lowerCAmelCase: List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase: Tuple = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Any = self.get_inputs(get_fixed_latents=UpperCAmelCase_ , device=UpperCAmelCase_) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase_ , enable_math=UpperCAmelCase_ , enable_mem_efficient=UpperCAmelCase_): __lowerCAmelCase: List[str] = pipe(**UpperCAmelCase_).images assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: List[str] = image[0, -3:, -3:, -1] __lowerCAmelCase: Optional[int] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 @require_torch_a def lowercase_ ( self : Optional[int])-> Tuple: '''simple docstring''' __lowerCAmelCase: Any = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2") __lowerCAmelCase: int = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) __lowerCAmelCase: List[Any] = ConsistencyModelPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) pipe.to(torch_device=UpperCAmelCase_ , torch_dtype=torch.floataa) pipe.set_progress_bar_config(disable=UpperCAmelCase_) __lowerCAmelCase: Union[str, Any] = self.get_inputs(get_fixed_latents=UpperCAmelCase_ , device=UpperCAmelCase_) __lowerCAmelCase: Tuple = 1 __lowerCAmelCase: List[str] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=UpperCAmelCase_ , enable_math=UpperCAmelCase_ , enable_mem_efficient=UpperCAmelCase_): __lowerCAmelCase: Tuple = pipe(**UpperCAmelCase_).images assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: Tuple = image[0, -3:, -3:, -1] __lowerCAmelCase: Tuple = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
365
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = """data2vec-vision""" def __init__( self : Optional[int] , UpperCamelCase__ : str=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : str=1_2 , UpperCamelCase__ : Optional[Any]=3_0_7_2 , UpperCamelCase__ : Union[str, Any]="gelu" , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : str=1e-12 , UpperCamelCase__ : Dict=2_2_4 , UpperCamelCase__ : List[Any]=1_6 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=[3, 5, 7, 1_1] , UpperCamelCase__ : List[str]=[1, 2, 3, 6] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Any=0.4 , UpperCamelCase__ : Union[str, Any]=2_5_6 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[int]=2_5_5 , **UpperCamelCase__ : Dict , )-> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase__) __lowerCAmelCase: List[str] = hidden_size __lowerCAmelCase: Union[str, Any] = num_hidden_layers __lowerCAmelCase: Dict = num_attention_heads __lowerCAmelCase: Optional[int] = intermediate_size __lowerCAmelCase: int = hidden_act __lowerCAmelCase: Union[str, Any] = hidden_dropout_prob __lowerCAmelCase: Any = attention_probs_dropout_prob __lowerCAmelCase: Dict = initializer_range __lowerCAmelCase: Any = layer_norm_eps __lowerCAmelCase: Union[str, Any] = image_size __lowerCAmelCase: Tuple = patch_size __lowerCAmelCase: List[str] = num_channels __lowerCAmelCase: Optional[Any] = use_mask_token __lowerCAmelCase: str = use_absolute_position_embeddings __lowerCAmelCase: Optional[int] = use_relative_position_bias __lowerCAmelCase: str = use_shared_relative_position_bias __lowerCAmelCase: Union[str, Any] = layer_scale_init_value __lowerCAmelCase: Any = drop_path_rate __lowerCAmelCase: Dict = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCAmelCase: int = out_indices __lowerCAmelCase: Any = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCAmelCase: List[Any] = use_auxiliary_head __lowerCAmelCase: int = auxiliary_loss_weight __lowerCAmelCase: Dict = auxiliary_channels __lowerCAmelCase: Any = auxiliary_num_convs __lowerCAmelCase: Any = auxiliary_concat_input __lowerCAmelCase: Any = semantic_loss_ignore_index class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = version.parse("""1.11""" ) @property def lowercase_ ( self : Optional[Any])-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def lowercase_ ( self : Any)-> float: '''simple docstring''' return 1e-4
108
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE : Dict = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE : Optional[Any] = text_generator('''This is a test''' , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) SCREAMING_SNAKE_CASE : int = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _lowerCamelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) SCREAMING_SNAKE_CASE : Tuple = text_generator('''This is a test''' , do_sample=_lowerCamelCase , num_return_sequences=2 , return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''generated_token_ids''': ANY(_lowerCamelCase )}, {'''generated_token_ids''': ANY(_lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE : Tuple = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE : str = '''<pad>''' SCREAMING_SNAKE_CASE : List[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCamelCase , ) self.assertEqual( _lowerCamelCase , [ [ {'''generated_token_ids''': ANY(_lowerCamelCase )}, {'''generated_token_ids''': ANY(_lowerCamelCase )}, ], [ {'''generated_token_ids''': ANY(_lowerCamelCase )}, {'''generated_token_ids''': ANY(_lowerCamelCase )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE : Tuple = text_generator('''This is a test''' , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) SCREAMING_SNAKE_CASE : Tuple = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : str = TextGenerationPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) return text_generator, ["This is a test", "Another test"] def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : int = '''Hello I believe in''' SCREAMING_SNAKE_CASE : str = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Optional[int] = text_generator(_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) SCREAMING_SNAKE_CASE : Optional[int] = text_generator(_lowerCamelCase , stop_sequence=''' fe''' ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = text_generator.model SCREAMING_SNAKE_CASE : Tuple = text_generator.tokenizer SCREAMING_SNAKE_CASE : Tuple = text_generator('''This is a test''' ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE : List[Any] = text_generator('''This is a test''' , return_full_text=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE : Tuple = pipeline(task='''text-generation''' , model=_lowerCamelCase , tokenizer=_lowerCamelCase , return_full_text=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = text_generator('''This is a test''' ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_generator('''This is a test''' , return_full_text=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE : List[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] , ) with self.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : int = text_generator('''test''' , return_full_text=_lowerCamelCase , return_text=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = text_generator('''test''' , return_full_text=_lowerCamelCase , return_tensors=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = text_generator('''test''' , return_text=_lowerCamelCase , return_tensors=_lowerCamelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE : Optional[int] = text_generator('''''' ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): SCREAMING_SNAKE_CASE : Optional[Any] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE : str = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) SCREAMING_SNAKE_CASE : str = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowerCamelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ) ->Optional[Any]: import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE : Dict = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE : Any = pipe('''This is a test''' ) self.assertEqual( _lowerCamelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE : Any = pipe('''This is a test''' ) self.assertEqual( _lowerCamelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE : str = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = pipe('''This is a test''' ) self.assertEqual( _lowerCamelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __lowerCAmelCase ( self ) ->Union[str, Any]: import torch SCREAMING_SNAKE_CASE : List[str] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __lowerCAmelCase ( self ) ->Tuple: import torch SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_lowerCamelCase , top_p=0.5 ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = '''Hello world''' SCREAMING_SNAKE_CASE : Dict = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger('''transformers.generation.utils''' ) SCREAMING_SNAKE_CASE : Optional[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowerCamelCase ) as cl: SCREAMING_SNAKE_CASE : str = text_generator(_lowerCamelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowerCamelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowerCamelCase ) as cl: SCREAMING_SNAKE_CASE : str = text_generator(_lowerCamelCase , max_new_tokens=1 ) self.assertNotIn(_lowerCamelCase , cl.out ) with CaptureLogger(_lowerCamelCase ) as cl: SCREAMING_SNAKE_CASE : Optional[Any] = text_generator(_lowerCamelCase , max_length=10 ) self.assertNotIn(_lowerCamelCase , cl.out )
313
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'ibert' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase="absolute" , _lowerCamelCase=False , _lowerCamelCase="none" , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Dict = force_dequant class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
313
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
1
'''simple docstring''' import operator as op def _A ( A__ ): """simple docstring""" __lowercase = [] __lowercase = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation __lowercase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) else: __lowercase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) __lowercase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": lowerCAmelCase__ = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
104
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=56 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=2 , UpperCAmelCase=7 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , UpperCAmelCase="block_sparse" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=2 , UpperCAmelCase=3 , ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : Tuple = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : int = use_attention_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : List[str] = vocab_size __snake_case : int = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : List[Any] = type_vocab_size __snake_case : int = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : List[Any] = num_choices __snake_case : Union[str, Any] = rescale_embeddings __snake_case : List[Any] = attention_type __snake_case : str = use_bias __snake_case : Dict = block_size __snake_case : Optional[Any] = num_random_blocks def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_attention_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Union[str, Any] = None if self.use_token_type_ids: __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Optional[int] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Dict = config_and_inputs __snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _lowerCamelCase ( a , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase_ : Dict =False UpperCAmelCase_ : str =False def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Dict = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_hidden_states_output() @slow def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained("google/bigbird-roberta-base" ) self.assertIsNotNone(UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCAmelCase ( self ) -> int: '''simple docstring''' __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __snake_case : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ): return model(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __snake_case : int = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __snake_case : List[Any] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=1E-5 , UpperCAmelCase="outputs" , UpperCAmelCase=None ) -> int: '''simple docstring''' if name.startswith("outputs.attentions" ): return else: super().check_pt_flax_outputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
326
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __SCREAMING_SNAKE_CASE = 3 def UpperCAmelCase ( _lowerCamelCase ): print("Generating primitive root of p" ) while True: A : str = random.randrange(3 , _lowerCamelCase ) if pow(_lowerCamelCase , 2 , _lowerCamelCase ) == 1: continue if pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) == 1: continue return g def UpperCAmelCase ( _lowerCamelCase ): print("Generating prime p..." ) A : int = rabin_miller.generate_large_prime(_lowerCamelCase ) # select large prime number. A : List[str] = primitive_root(_lowerCamelCase ) # one primitive root on modulo p. A : int = random.randrange(3 , _lowerCamelCase ) # private_key -> have to be greater than 2 for safety. A : Tuple = cryptomath.find_mod_inverse(pow(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) A : int = (key_size, e_a, e_a, p) A : str = (key_size, d) return public_key, private_key def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() A , A : Any = generate_key(_lowerCamelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , "w" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , "w" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def UpperCAmelCase ( ): print("Making key files..." ) make_key_files("elgamal" , 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
256
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase ): A : List[Any] = R"\w+[.]\d+" A : Optional[Any] = re.findall(_lowerCamelCase , _lowerCamelCase ) for pat in pats: A : int = key.replace(_lowerCamelCase , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): A : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A : List[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A : int = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[int] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : List[Any] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": A : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : List[str] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : Optional[Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=42 ): # Step 1: Convert pytorch tensor to numpy A : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A : Dict = flax_model.init_weights(PRNGKey(_lowerCamelCase ) ) A : Dict = flatten_dict(_lowerCamelCase ) A : Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : Tuple = rename_key(_lowerCamelCase ) A : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters A , A : str = rename_key_and_reshape_tensor(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A : Union[str, Any] = jnp.asarray(_lowerCamelCase ) return unflatten_dict(_lowerCamelCase )
256
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): lowerCAmelCase__ : Optional[Any] = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): lowerCAmelCase__ : int = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase__ : Dict = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase__ : Optional[Any] = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(UpperCamelCase )-1}""" ) if "norm" in key: lowerCAmelCase__ : str = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase__ : Any = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] lowerCAmelCase__ : Tuple = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(UpperCamelCase )-1}""" ) if "layer_norm1" in key: lowerCAmelCase__ : Optional[Any] = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase__ : str = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase__ : List[str] = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase__ : List[str] = key.replace(f"""block{idx}""" , f"""block.{int(UpperCamelCase )-1}""" ) if "attn.q" in key: lowerCAmelCase__ : Optional[Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase__ : Union[str, Any] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase__ : Optional[Any] = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase__ : Dict = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase__ : Any = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase__ : Dict = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase__ : Any = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase__ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase__ : Any = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase__ : Optional[Any] = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(UpperCamelCase )-1}""" ) if "bot_conv" in key: lowerCAmelCase__ : Optional[int] = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: lowerCAmelCase__ : Optional[int] = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: lowerCAmelCase__ : Any = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: lowerCAmelCase__ : List[str] = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: lowerCAmelCase__ : List[str] = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: lowerCAmelCase__ : List[Any] = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: lowerCAmelCase__ : str = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): lowerCAmelCase__ : Union[str, Any] = key.replace("""module.last_layer_depth""" , """head.head""" ) lowerCAmelCase__ : List[Any] = value return new_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase__ : Optional[int] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowerCAmelCase__ : List[Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowerCAmelCase__ : List[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase__ : Optional[Any] = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase__ : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase__ : Union[str, Any] = kv_bias[config.hidden_sizes[i] :] def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase__ : str = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return image @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ : Tuple = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase__ : str = GLPNImageProcessor() # prepare image lowerCAmelCase__ : Dict = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict lowerCAmelCase__ : List[Any] = torch.load(UpperCamelCase , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase__ : Any = rename_keys(UpperCamelCase ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase , UpperCamelCase ) # create HuggingFace model and load state dict lowerCAmelCase__ : List[Any] = GLPNForDepthEstimation(UpperCamelCase ) model.load_state_dict(UpperCamelCase ) model.eval() # forward pass lowerCAmelCase__ : int = model(UpperCamelCase ) lowerCAmelCase__ : List[Any] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase__ : str = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: lowerCAmelCase__ : Optional[int] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) lowerCAmelCase__ : Optional[int] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=UpperCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase , UpperCamelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase , ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) _lowerCAmelCase = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
37
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = {} with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
346
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _lowerCAmelCase ( lowerCamelCase_ ): """simple docstring""" snake_case_ = """blip_2_vision_model""" def __init__( self : List[str] , __snake_case : int=14_08 , __snake_case : Any=61_44 , __snake_case : Optional[Any]=39 , __snake_case : Optional[int]=16 , __snake_case : Any=2_24 , __snake_case : Optional[int]=14 , __snake_case : Optional[Any]="gelu" , __snake_case : List[str]=0.0_00_01 , __snake_case : List[Any]=0.0 , __snake_case : str=1e-10 , __snake_case : Dict=True , **__snake_case : str , )-> List[str]: super().__init__(**lowerCAmelCase__ ) snake_case = hidden_size snake_case = intermediate_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = patch_size snake_case = image_size snake_case = initializer_range snake_case = attention_dropout snake_case = layer_norm_eps snake_case = hidden_act snake_case = qkv_bias @classmethod def lowerCAmelCase ( cls : Tuple , __snake_case : Tuple , **__snake_case : Union[str, Any] )-> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__ ) snake_case , snake_case = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": snake_case = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _lowerCAmelCase ( lowerCamelCase_ ): """simple docstring""" snake_case_ = """blip_2_qformer""" def __init__( self : Optional[Any] , __snake_case : List[Any]=3_05_22 , __snake_case : Tuple=7_68 , __snake_case : Union[str, Any]=12 , __snake_case : Tuple=12 , __snake_case : Dict=30_72 , __snake_case : Tuple="gelu" , __snake_case : List[str]=0.1 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=5_12 , __snake_case : Optional[int]=0.02 , __snake_case : Dict=1e-12 , __snake_case : Optional[Any]=0 , __snake_case : Any="absolute" , __snake_case : Any=2 , __snake_case : List[str]=14_08 , **__snake_case : Tuple , )-> Optional[int]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = cross_attention_frequency snake_case = encoder_hidden_size @classmethod def lowerCAmelCase ( cls : Union[str, Any] , __snake_case : Any , **__snake_case : Dict )-> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase__ ) snake_case , snake_case = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": snake_case = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _lowerCAmelCase ( lowerCamelCase_ ): """simple docstring""" snake_case_ = """blip-2""" snake_case_ = True def __init__( self : Any , __snake_case : Optional[int]=None , __snake_case : Any=None , __snake_case : Optional[Any]=None , __snake_case : List[Any]=32 , **__snake_case : Optional[int] )-> List[Any]: super().__init__(**lowerCAmelCase__ ) if vision_config is None: snake_case = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: snake_case = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: snake_case = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) snake_case = BlipaVisionConfig(**lowerCAmelCase__ ) snake_case = BlipaQFormerConfig(**lowerCAmelCase__ ) snake_case = text_config["""model_type"""] if """model_type""" in text_config else """opt""" snake_case = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) snake_case = self.text_config.tie_word_embeddings snake_case = self.text_config.is_encoder_decoder snake_case = num_query_tokens snake_case = self.vision_config.hidden_size snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES snake_case = 1.0 snake_case = 0.02 @classmethod def lowerCAmelCase ( cls : List[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Tuple , **__snake_case : Optional[Any] , )-> int: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def lowerCAmelCase ( self : str )-> Any: snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.vision_config.to_dict() snake_case = self.qformer_config.to_dict() snake_case = self.text_config.to_dict() snake_case = self.__class__.model_type return output
365
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : str ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: snake_case = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case = value elif weight_type == "weight_g": snake_case = value elif weight_type == "weight_v": snake_case = value elif weight_type == "bias": snake_case = value else: snake_case = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> int: snake_case = [] snake_case = fairseq_model.state_dict() snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): snake_case = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case = True else: for key, mapped_key in MAPPING.items(): snake_case = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case = True if "*" in mapped_key: snake_case = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] snake_case = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: snake_case = """weight_g""" elif "weight_v" in name: snake_case = """weight_v""" elif "weight" in name: snake_case = """weight""" elif "bias" in name: snake_case = """bias""" else: snake_case = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = full_name.split("""conv_layers.""" )[-1] snake_case = name.split(""".""" ) snake_case = int(items[0] ) snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any ) -> List[str]: snake_case = SEWConfig() if is_finetuned: snake_case = model.wav_encoder.wav_model.cfg else: snake_case = model.cfg snake_case = fs_config.conv_bias snake_case = eval(fs_config.conv_feature_layers ) snake_case = [x[0] for x in conv_layers] snake_case = [x[1] for x in conv_layers] snake_case = [x[2] for x in conv_layers] snake_case = """gelu""" snake_case = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" snake_case = 0.0 snake_case = fs_config.activation_fn.name snake_case = fs_config.encoder_embed_dim snake_case = 0.02 snake_case = fs_config.encoder_ffn_embed_dim snake_case = 1e-5 snake_case = fs_config.encoder_layerdrop snake_case = fs_config.encoder_attention_heads snake_case = fs_config.conv_pos_groups snake_case = fs_config.conv_pos snake_case = len(__lowerCAmelCase ) snake_case = fs_config.encoder_layers snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: snake_case = model.cfg snake_case = fs_config.final_dropout snake_case = fs_config.layerdrop snake_case = fs_config.activation_dropout snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 snake_case = fs_config.attention_dropout snake_case = fs_config.dropout_input snake_case = fs_config.dropout snake_case = fs_config.mask_channel_length snake_case = fs_config.mask_channel_prob snake_case = fs_config.mask_length snake_case = fs_config.mask_prob snake_case = """Wav2Vec2FeatureExtractor""" snake_case = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : str=True ) -> Any: if is_finetuned: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: snake_case , snake_case , snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: snake_case = SEWConfig.from_pretrained(__lowerCAmelCase ) else: snake_case = convert_config(model[0] , __lowerCAmelCase ) snake_case = model[0].eval() snake_case = True if config.feat_extract_norm == """layer""" else False snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: snake_case = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.pad_index snake_case = target_dict.bos_index snake_case = target_dict.eos_index snake_case = len(target_dict.symbols ) snake_case = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) snake_case = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) snake_case = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) snake_case = SEWForCTC(__lowerCAmelCase ) else: snake_case = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
3
0
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): lowercase_ = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> str: '''simple docstring''' return F'''{i * " "}*''' if i else "\n##" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = "." ) -> None: '''simple docstring''' lowercase_ = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): lowercase_ , lowercase_ = os.path.split(__lowerCAmelCase ) if filepath != old_path: lowercase_ = print_path(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
136
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): lowercase__ = "gpt_neox" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=5_0_4_3_2 , lowerCAmelCase_ : List[Any]=6_1_4_4 , lowerCAmelCase_ : str=4_4 , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : Optional[int]=2_4_5_7_6 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Any=0.25 , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=0.0 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : List[Any]=1E-5 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : str , ): """simple docstring""" super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_) lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = rotary_pct lowercase_ = rotary_emb_base lowercase_ = attention_dropout lowercase_ = hidden_dropout lowercase_ = classifier_dropout lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = use_cache lowercase_ = tie_word_embeddings lowercase_ = use_parallel_residual lowercase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""") def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_) or len(self.rope_scaling) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''') lowercase_ = self.rope_scaling.get("""type""" , lowerCAmelCase_) lowercase_ = self.rope_scaling.get("""factor""" , lowerCAmelCase_) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''') if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''')
136
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Tuple = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : int = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Dict = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = "gptj" UpperCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A=5_04_00 , A=20_48 , A=40_96 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.02 , A=True , A=5_02_56 , A=5_02_56 , A=False , **A , ) -> int: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = n_positions lowerCamelCase = n_embd lowerCamelCase = n_layer lowerCamelCase = n_head lowerCamelCase = n_inner lowerCamelCase = rotary_dim lowerCamelCase = activation_function lowerCamelCase = resid_pdrop lowerCamelCase = embd_pdrop lowerCamelCase = attn_pdrop lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_range lowerCamelCase = use_cache lowerCamelCase = bos_token_id lowerCamelCase = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]: '''simple docstring''' super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? lowerCamelCase = 0 @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) lowerCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_head def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' lowerCamelCase = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() lowerCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase , lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase = seqlen + 2 lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] lowerCamelCase = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase = ordered_inputs["""attention_mask"""].dtype lowerCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def __A ( self ) -> int: '''simple docstring''' return 13
66
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Dict = KandinskyImgaImgPipeline _UpperCAmelCase : Dict = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _UpperCAmelCase : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _UpperCAmelCase : Dict = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Tuple = False @property def _SCREAMING_SNAKE_CASE ( self : Dict): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return 32 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self : Any): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : str): return 100 @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Tuple): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) SCREAMING_SNAKE_CASE_: Optional[int] = MultilingualCLIP(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = text_encoder.eval() return text_encoder @property def _SCREAMING_SNAKE_CASE ( self : str): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE_: Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : int): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self : Any): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Any = VQModel(**self.dummy_movq_kwargs) return model def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: List[Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: Optional[int] = self.dummy_unet SCREAMING_SNAKE_CASE_: Any = self.dummy_movq SCREAMING_SNAKE_CASE_: str = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } SCREAMING_SNAKE_CASE_: str = DDIMScheduler(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=0): SCREAMING_SNAKE_CASE_: Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1)).to(lowerCAmelCase__) # create init_image SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__)).to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_: Any = Image.fromarray(np.uinta(lowerCAmelCase__)).convert("RGB").resize((256, 256)) if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: List[str] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: List[Any] = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Optional[int] = "cpu" SCREAMING_SNAKE_CASE_: Any = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[Any] = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = output.images SCREAMING_SNAKE_CASE_: Any = pipe( **self.get_dummy_inputs(lowerCAmelCase__) , return_dict=lowerCAmelCase__ , )[0] SCREAMING_SNAKE_CASE_: int = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: str = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy") SCREAMING_SNAKE_CASE_: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") SCREAMING_SNAKE_CASE_: str = "A red cartoon frog, 4k" SCREAMING_SNAKE_CASE_: int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_: int = pipeline.to(lowerCAmelCase__) pipeline.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Generator(device="cpu").manual_seed(0) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE_: Any = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) SCREAMING_SNAKE_CASE_: str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
import math import sys def A_ ( _UpperCAmelCase ): if number != int(_UpperCAmelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 SCREAMING_SNAKE_CASE_: List[str] = [-1] * (number + 1) SCREAMING_SNAKE_CASE_: str = 0 for i in range(1 , number + 1 ): SCREAMING_SNAKE_CASE_: str = sys.maxsize SCREAMING_SNAKE_CASE_: List[Any] = int(math.sqrt(_UpperCAmelCase ) ) for j in range(1 , root + 1 ): SCREAMING_SNAKE_CASE_: List[str] = 1 + answers[i - (j**2)] SCREAMING_SNAKE_CASE_: Optional[Any] = min(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
13
1
def _a ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = [1] SCREAMING_SNAKE_CASE__ : Tuple = 0, 0, 0 SCREAMING_SNAKE_CASE__ : int = ugly_nums[ia] * 2 SCREAMING_SNAKE_CASE__ : Tuple = ugly_nums[ia] * 3 SCREAMING_SNAKE_CASE__ : Optional[int] = ugly_nums[ia] * 5 for _ in range(1 , __snake_case ): SCREAMING_SNAKE_CASE__ : List[str] = min(__snake_case , __snake_case , __snake_case ) ugly_nums.append(__snake_case ) if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : List[str] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : List[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 SCREAMING_SNAKE_CASE__ : Optional[int] = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(2_0_0) = }")
364
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCamelCase : Tuple = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCamelCase : Optional[Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[str]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: SCREAMING_SNAKE_CASE__ : int = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ : Dict = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE__ : Optional[int] = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = labels_dense.shape[0] SCREAMING_SNAKE_CASE__ : List[str] = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes SCREAMING_SNAKE_CASE__ : Dict = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE__ : Tuple = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def _a ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Optional[int]=10 ) -> Optional[int]: '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: SCREAMING_SNAKE_CASE__ : List[str] = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE__ : Tuple = _readaa(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = bytestream.read(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class lowerCamelCase : """simple docstring""" @deprecated( _UpperCAmelCase, "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models.", ) def __init__( self : int, _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : List[str]=False, _UpperCAmelCase : Tuple=False, _UpperCAmelCase : Union[str, Any]=dtypes.floataa, _UpperCAmelCase : Optional[Any]=True, _UpperCAmelCase : Optional[int]=None, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = random_seed.get_seed(_UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) SCREAMING_SNAKE_CASE__ : Tuple = dtypes.as_dtype(_UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: SCREAMING_SNAKE_CASE__ : str = 1_0_0_0_0 SCREAMING_SNAKE_CASE__ : str = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' SCREAMING_SNAKE_CASE__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE__ : List[Any] = images.reshape( images.shape[0], images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE__ : Any = images.astype(numpy.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = numpy.multiply(_UpperCAmelCase, 1.0 / 255.0 ) SCREAMING_SNAKE_CASE__ : List[str] = images SCREAMING_SNAKE_CASE__ : str = labels SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 @property def A_ ( self : List[Any] ) -> int: """simple docstring""" return self._images @property def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" return self._labels @property def A_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self._num_examples @property def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" return self._epochs_completed def A_ ( self : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : List[Any]=False, _UpperCAmelCase : str=True ) -> Any: """simple docstring""" if fake_data: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1] * 7_8_4 SCREAMING_SNAKE_CASE__ : Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_UpperCAmelCase )], [fake_label for _ in range(_UpperCAmelCase )], ) SCREAMING_SNAKE_CASE__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE__ : List[str] = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self.images[perma] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE__ : Dict = self._num_examples - start SCREAMING_SNAKE_CASE__ : List[str] = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE__ : Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE__ : Optional[Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = self.images[perm] SCREAMING_SNAKE_CASE__ : Optional[int] = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : List[str] = batch_size - rest_num_examples SCREAMING_SNAKE_CASE__ : Dict = self._index_in_epoch SCREAMING_SNAKE_CASE__ : Optional[Any] = self._images[start:end] SCREAMING_SNAKE_CASE__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part), axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part), axis=0 ), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE__ : Tuple = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: SCREAMING_SNAKE_CASE__ : Any = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def _a ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[Any]=dtypes.floataa , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Dict=50_00 , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=DEFAULT_SOURCE_URL , ) -> Any: '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = fake() SCREAMING_SNAKE_CASE__ : List[str] = fake() SCREAMING_SNAKE_CASE__ : Any = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check SCREAMING_SNAKE_CASE__ : str = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE__ : Dict = "train-images-idx3-ubyte.gz" SCREAMING_SNAKE_CASE__ : Optional[Any] = "train-labels-idx1-ubyte.gz" SCREAMING_SNAKE_CASE__ : Optional[Any] = "t10k-images-idx3-ubyte.gz" SCREAMING_SNAKE_CASE__ : str = "t10k-labels-idx1-ubyte.gz" SCREAMING_SNAKE_CASE__ : List[Any] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : Dict = _extract_images(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[str] = _extract_images(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : Any = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = train_images[:validation_size] SCREAMING_SNAKE_CASE__ : str = train_labels[:validation_size] SCREAMING_SNAKE_CASE__ : Any = train_images[validation_size:] SCREAMING_SNAKE_CASE__ : List[Any] = train_labels[validation_size:] SCREAMING_SNAKE_CASE__ : Any = {"dtype": dtype, "reshape": reshape, "seed": seed} SCREAMING_SNAKE_CASE__ : Tuple = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
191
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
348
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case = TypeVar('''T''') __snake_case = Union[List[T], Tuple[T, ...]] __snake_case = Union[T, List[T], Dict[str, T]] __snake_case = Union[str, bytes, os.PathLike]
348
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ) -> Dict: snake_case_ = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=UpperCAmelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=UpperCAmelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=UpperCAmelCase ) return parser.parse_args() def UpperCAmelCase ( ) -> Tuple: snake_case_ = parse_args() # Import training_script as a module. snake_case_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case_ = script_fpath.stem snake_case_ = importlib.import_module(UpperCAmelCase ) # Patch sys.argv snake_case_ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
def A_ ( _lowerCAmelCase ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) UpperCamelCase : List[str] = "" while len(_lowerCAmelCase ) % 3 != 0: UpperCamelCase : int = "0" + bin_string UpperCamelCase : Optional[int] = [ bin_string[index : index + 3] for index in range(len(_lowerCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase : Any = 0 for index, val in enumerate(_lowerCAmelCase ): oct_val += int(2 ** (2 - index) * int(_lowerCAmelCase ) ) oct_string += str(_lowerCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
52
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if height >= 1: move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_disk(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) move_tower(height - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' print("moving disk from" , SCREAMING_SNAKE_CASE , "to" , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = int(input("Height of hanoi: " ).strip() ) move_tower(SCREAMING_SNAKE_CASE , "A" , "B" , "C" ) if __name__ == "__main__": main()
108
0
import torch def _a ( ): """simple docstring""" if torch.cuda.is_available(): lowercase__ = torch.cuda.device_count() else: lowercase__ = 0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
93
import logging from transformers import PretrainedConfig lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''bertabs''' def __init__( self: List[str] , UpperCamelCase_: Dict=30_522 , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Optional[int]=6 , UpperCamelCase_: int=512 , UpperCamelCase_: Optional[int]=8 , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: Tuple=0.2 , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Tuple=768 , UpperCamelCase_: List[Any]=8 , UpperCamelCase_: Union[str, Any]=2_048 , UpperCamelCase_: str=0.2 , **UpperCamelCase_: Any , ) -> List[str]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = max_pos lowercase__ = enc_layers lowercase__ = enc_hidden_size lowercase__ = enc_heads lowercase__ = enc_ff_size lowercase__ = enc_dropout lowercase__ = dec_layers lowercase__ = dec_hidden_size lowercase__ = dec_heads lowercase__ = dec_ff_size lowercase__ = dec_dropout
93
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = "vit_msn" def __init__( self : Dict , _UpperCamelCase : Optional[int]=7_6_8 , _UpperCamelCase : Optional[Any]=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : str=3_0_7_2 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : Dict=0.0 , _UpperCamelCase : List[str]=0.02 , _UpperCamelCase : List[Any]=1e-06 , _UpperCamelCase : Any=2_2_4 , _UpperCamelCase : Optional[Any]=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : str=True , **_UpperCamelCase : Any , ) ->int: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
8
1
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class _lowerCAmelCase ( lowerCamelCase__ ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "efficientformer" def __init__( self : List[str], UpperCAmelCase__ : List[int] = [3, 2, 6, 4], UpperCAmelCase__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8], UpperCAmelCase__ : List[bool] = [True, True, True, True], UpperCAmelCase__ : int = 4_4_8, UpperCAmelCase__ : int = 3_2, UpperCAmelCase__ : int = 4, UpperCAmelCase__ : int = 7, UpperCAmelCase__ : int = 5, UpperCAmelCase__ : int = 8, UpperCAmelCase__ : int = 4, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : int = 1_6, UpperCAmelCase__ : int = 3, UpperCAmelCase__ : int = 3, UpperCAmelCase__ : int = 3, UpperCAmelCase__ : int = 2, UpperCAmelCase__ : int = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : int = 1, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 1E-5, UpperCAmelCase__ : str = "gelu", UpperCAmelCase__ : float = 0.02, UpperCAmelCase__ : float = 1E-12, UpperCAmelCase__ : int = 2_2_4, UpperCAmelCase__ : float = 1E-05, **UpperCAmelCase__ : List[Any], ): super().__init__(**__snake_case ) __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = hidden_sizes __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = patch_size __lowercase = num_channels __lowercase = depths __lowercase = mlp_expansion_ratio __lowercase = downsamples __lowercase = dim __lowercase = key_dim __lowercase = attention_ratio __lowercase = resolution __lowercase = pool_size __lowercase = downsample_patch_size __lowercase = downsample_stride __lowercase = downsample_pad __lowercase = drop_path_rate __lowercase = num_metaad_blocks __lowercase = distillation __lowercase = use_layer_scale __lowercase = layer_scale_init_value __lowercase = image_size __lowercase = batch_norm_eps
358
"""simple docstring""" _a = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
144
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a_ ( _lowerCAmelCase ): def lowercase__ ( self : str ): """simple docstring""" lowercase_ :List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__a , "width_multiplier" ) ) class a_ : def __init__( self : Optional[int] , lowercase : int , lowercase : List[Any]=13 , lowercase : int=64 , lowercase : Union[str, Any]=2 , lowercase : Tuple=3 , lowercase : Optional[int]="swish" , lowercase : List[str]=3 , lowercase : Optional[Any]=32 , lowercase : int=0.1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=True , lowercase : int=True , lowercase : int=10 , lowercase : int=None , lowercase : List[str]=0.25 , lowercase : Optional[int]=0.0 , lowercase : int=0.0 , ): """simple docstring""" lowercase_ :Optional[int] = parent lowercase_ :List[Any] = batch_size lowercase_ :Any = image_size lowercase_ :int = patch_size lowercase_ :int = num_channels lowercase_ :Tuple = make_divisible(512 * width_multiplier , divisor=8 ) lowercase_ :int = hidden_act lowercase_ :Any = conv_kernel_size lowercase_ :int = output_stride lowercase_ :str = classifier_dropout_prob lowercase_ :Union[str, Any] = use_labels lowercase_ :Dict = is_training lowercase_ :Union[str, Any] = num_labels lowercase_ :int = initializer_range lowercase_ :List[str] = scope lowercase_ :Union[str, Any] = width_multiplier lowercase_ :List[str] = ffn_dropout lowercase_ :Any = attn_dropout def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Tuple = None lowercase_ :Optional[Any] = None if self.use_labels: lowercase_ :Dict = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ :Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ :Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Optional[Any] ): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : str , lowercase : Optional[int] , lowercase : str , lowercase : Tuple , lowercase : List[Any] ): """simple docstring""" lowercase_ :Union[str, Any] = MobileViTVaModel(config=__a ) model.to(__a ) model.eval() lowercase_ :Any = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : str , lowercase : Any , lowercase : Optional[int] , lowercase : List[str] , lowercase : Tuple ): """simple docstring""" lowercase_ :int = self.num_labels lowercase_ :Tuple = MobileViTVaForImageClassification(__a ) model.to(__a ) model.eval() lowercase_ :int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[Any] , lowercase : Optional[Any] , lowercase : Dict , lowercase : Dict , lowercase : List[str] ): """simple docstring""" lowercase_ :Any = self.num_labels lowercase_ :List[Any] = MobileViTVaForSemanticSegmentation(__a ) model.to(__a ) model.eval() lowercase_ :List[str] = model(__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ :Tuple = model(__a , labels=__a ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Dict = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ :int = config_and_inputs lowercase_ :Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __A = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :List[Any] = MobileViTVaModelTester(self ) lowercase_ :Tuple = MobileViTVaConfigTester(self , config_class=__a , has_text_modality=__a ) def lowercase__ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : Any ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : List[Any] ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : Any ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Any = model_class(__a ) lowercase_ :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Optional[Any] = [*signature.parameters.keys()] lowercase_ :str = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def lowercase__ ( self : int ): """simple docstring""" lowercase_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowercase__ ( self : int ): """simple docstring""" def check_hidden_states_output(lowercase : Tuple , lowercase : Optional[int] , lowercase : str ): lowercase_ :List[Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowercase_ :Any = model(**self._prepare_for_class(__a , __a ) ) lowercase_ :Union[str, Any] = outputs.hidden_states lowercase_ :List[str] = 5 self.assertEqual(len(__a ) , __a ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase_ :Tuple = 2 for i in range(len(__a ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase_ , lowercase_ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Tuple = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ :Optional[int] = True check_hidden_states_output(__a , __a , __a ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__a ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Tuple = MobileViTVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCAmelCase_ ( ): lowercase_ :Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[Any] = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( __a ) lowercase_ :int = self.default_image_processor lowercase_ :List[Any] = prepare_img() lowercase_ :List[Any] = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowercase_ :Dict = model(**__a ) # verify the logits lowercase_ :Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __a ) lowercase_ :Dict = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Any = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowercase_ :Optional[Any] = model.to(__a ) lowercase_ :int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowercase_ :str = prepare_img() lowercase_ :Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowercase_ :Tuple = model(**__a ) lowercase_ :Dict = outputs.logits # verify the logits lowercase_ :Optional[int] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __a ) lowercase_ :Dict = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=__a , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __a , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :int = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowercase_ :int = model.to(__a ) lowercase_ :Union[str, Any] = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowercase_ :List[Any] = prepare_img() lowercase_ :Dict = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowercase_ :Optional[Any] = model(**__a ) lowercase_ :Optional[Any] = outputs.logits.detach().cpu() lowercase_ :Dict = image_processor.post_process_semantic_segmentation(outputs=__a , target_sizes=[(50, 60)] ) lowercase_ :List[str] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __a ) lowercase_ :int = image_processor.post_process_semantic_segmentation(outputs=__a ) lowercase_ :int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __a )
223
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> int | float: """simple docstring""" if len(__snake_case ) == 0: raise ValueError('''find_max() arg is an empty sequence''' ) if ( left >= len(__snake_case ) or left < -len(__snake_case ) or right >= len(__snake_case ) or right < -len(__snake_case ) ): raise IndexError('''list index out of range''' ) if left == right: return nums[left] _UpperCamelCase = (left + right) >> 1 # the middle _UpperCamelCase = find_max(__snake_case, __snake_case, __snake_case ) # find max in range[left, mid] _UpperCamelCase = find_max(__snake_case, mid + 1, __snake_case ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
194
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) __lowerCamelCase : ClassVar[Features] = Features({"text": Value("string" )} ) __lowerCamelCase : ClassVar[Features] = Features({} ) __lowerCamelCase : str = "text" @property def _lowerCAmelCase ( self ): return {self.text_column: "text"}
115
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Tuple = 2 A : List[Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
115
1
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE : snake_case__ : Dict = None @experimental def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return _map_with_joblib(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase :Optional[Any] = num_proc if num_proc <= len(__magic_name__ ) else len(__magic_name__ ) UpperCamelCase :int = [] # We organize the splits ourselve (contiguous splits) for index in range(__magic_name__ ): UpperCamelCase :str = len(__magic_name__ ) // num_proc UpperCamelCase :List[Any] = len(__magic_name__ ) % num_proc UpperCamelCase :Union[str, Any] = div * index + min(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__magic_name__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f"""Error dividing inputs iterable among processes. """ f"""Total number of objects {len(__magic_name__ )}, """ f"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( f"""Spawning {num_proc} processes for {len(__magic_name__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) UpperCamelCase , UpperCamelCase :List[str] = None, None if not disable_tqdm: UpperCamelCase , UpperCamelCase :Dict = (RLock(),), tqdm.set_lock with Pool(__magic_name__ , initargs=__magic_name__ , initializer=__magic_name__ ) as pool: UpperCamelCase :Dict = pool.map(__magic_name__ , __magic_name__ ) logger.info(f"""Finished {num_proc} processes""" ) UpperCamelCase :Optional[Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(f"""Unpacked {len(__magic_name__ )} objects""" ) return mapped def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__magic_name__ ): return joblib.Parallel()( joblib.delayed(__magic_name__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> List[Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: UpperCamelCase :Union[str, Any] = None
38
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(SCREAMING_SNAKE_CASE ): A : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[str] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> int: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(SCREAMING_SNAKE_CASE ): A : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @slow def __lowerCAmelCase ( self ) -> Any: """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: A : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) A : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE ) A : Optional[Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE ): return model(**SCREAMING_SNAKE_CASE ) eval(**SCREAMING_SNAKE_CASE ).block_until_ready() @slow def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: A : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) A : int = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE ): return model(**SCREAMING_SNAKE_CASE ) eval(**SCREAMING_SNAKE_CASE ).block_until_ready() def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , '''bert-base is not a local folder and is not a valid model identifier''' ): A : List[Any] = FlaxAutoModel.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A : Optional[int] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE , revision='''aaaaaa''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): A : List[str] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex(SCREAMING_SNAKE_CASE , '''Use `from_pt=True` to load this model''' ): A : Any = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
3
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: Dict = KandinskyVaaControlnetImgaImgPipeline _lowercase: Dict = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase: Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] _lowercase: int = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowercase: Optional[Any] = False @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: return 32 @property def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: return 32 @property def lowercase__ ( self : int ) -> List[Any]: return self.time_input_dim @property def lowercase__ ( self : int ) -> Optional[int]: return self.time_input_dim * 4 @property def lowercase__ ( self : int ) -> Optional[int]: return 1_00 @property def lowercase__ ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) _lowerCAmelCase = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowerCAmelCase = UNetaDConditionModel(**__snake_case ) return model @property def lowercase__ ( self : List[Any] ) -> List[str]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase__ ( self : Any ) -> int: torch.manual_seed(0 ) _lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self : Optional[int] ) -> Any: _lowerCAmelCase = self.dummy_unet _lowerCAmelCase = self.dummy_movq _lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowerCAmelCase = DDIMScheduler(**__snake_case ) _lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowercase__ ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Dict=0 ) -> List[str]: _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create hint _lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowercase__ ( self : Optional[Any] ) -> int: _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) _lowerCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(__snake_case ) ) _lowerCAmelCase = output.images _lowerCAmelCase = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> str: _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _lowerCAmelCase = init_image.resize((5_12, 5_12) ) _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) _lowerCAmelCase = torch.from_numpy(np.array(__snake_case ) ).float() / 2_55.0 _lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowerCAmelCase = """A robot, 4k photo""" _lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) _lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) _lowerCAmelCase = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase = pipe_prior( __snake_case , image=__snake_case , strength=0.85 , generator=__snake_case , negative_prompt="""""" , ).to_tuple() _lowerCAmelCase = pipeline( image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
220
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase = 4_00_00_00 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase , _lowerCAmelCase = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = b, a + b return sum(lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
220
1
"""simple docstring""" from __future__ import annotations import numpy as np def A_ ( _lowercase ): '''simple docstring''' return np.maximum(0, _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
66
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __a = pd.read_csv("sample_data.csv", header=None) __a = df.shape[:1][0] # If you're using some other dataset input the target column __a = df.iloc[:, 1:2] __a = actual_data.values.reshape(len_data, 1) __a = MinMaxScaler().fit_transform(actual_data) __a = 10 __a = 5 __a = 20 __a = len_data - periods * look_back __a = actual_data[:division] __a = actual_data[division - look_back :] __a , __a = [], [] __a , __a = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __a = np.array(train_x) __a = np.array(test_x) __a = np.array([list(i.ravel()) for i in train_y]) __a = np.array([list(i.ravel()) for i in test_y]) __a = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") __a = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __a = model.predict(x_test)
66
1
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _A ( A__ , A__ ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _A ( A__ , A__ ): """simple docstring""" __lowercase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __lowercase = features.copy() __lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = tmp_path / '''cache''' __lowercase = JsonDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _A ( A__ , A__ , A__ ): """simple docstring""" if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = jsonl_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = [jsonl_path] __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( A__ , A__ , A__=("train",) ): """simple docstring""" assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: __lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader({'''train''': jsonl_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _A ( A__ , A__ , A__ ): """simple docstring""" if split: __lowercase = {split: jsonl_path} else: __lowercase = '''train''' __lowercase = {'''train''': jsonl_path, '''test''': jsonl_path} __lowercase = tmp_path / '''cache''' __lowercase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowercase = JsonDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_json_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _A ( A__ ): """simple docstring""" return json.load(lowerCAmelCase__ ) def _A ( A__ ): """simple docstring""" return [json.loads(lowerCAmelCase__ ) for line in buffer] class lowercase_ : """simple docstring""" @pytest.mark.parametrize('''lines, load_json_function''' ,[(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ).write() buffer.seek(0 ) __lowercase = load_json_function(A__ ) assert isinstance(A__ ,A__ ) assert isinstance(exported_content[0] ,A__ ) assert len(A__ ) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' ,[ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] ,) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ,lowercase__ : Optional[int] ,lowercase__ : int ,lowercase__ : Dict ,lowercase__ : Union[str, Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ,orient=A__ ).write() buffer.seek(0 ) __lowercase = load_json(A__ ) assert isinstance(A__ ,A__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A__ ,'''keys''' ) and not hasattr(exported_content[0] ,'''keys''' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(A__ ) == 1_0 @pytest.mark.parametrize('''lines, load_json_function''' ,[(True, load_json_lines), (False, load_json)] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ,num_proc=2 ).write() buffer.seek(0 ) __lowercase = load_json_function(A__ ) assert isinstance(A__ ,A__ ) assert isinstance(exported_content[0] ,A__ ) assert len(A__ ) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' ,[ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] ,) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : str ,lowercase__ : Any ,lowercase__ : List[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,lines=A__ ,orient=A__ ,num_proc=2 ).write() buffer.seek(0 ) __lowercase = load_json(A__ ) assert isinstance(A__ ,A__ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(A__ ,'''keys''' ) and not hasattr(exported_content[0] ,'''keys''' ) if len_at: assert len(exported_content[len_at] ) == 1_0 else: assert len(A__ ) == 1_0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : int ): with pytest.raises(A__ ): with io.BytesIO() as buffer: JsonDatasetWriter(A__ ,A__ ,num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' ,[('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Dict ): __lowercase = tmp_path_factory.mktemp('''data''' ) / F"test.json.{extension}" __lowercase = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(A__ ,A__ ,compression=A__ ).write() with fsspec.open(A__ ,'''rb''' ,compression='''infer''' ) as f: __lowercase = f.read() with fsspec.open(A__ ,'''rb''' ,compression='''infer''' ) as f: __lowercase = f.read() assert exported_content == original_content
358
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig SCREAMING_SNAKE_CASE : Optional[Any] = 'roberta' def __init__( self : List[Any] ,lowercase__ : Optional[Any] ): super().__init__(lowercase__ ) __lowercase = RobertaEmbeddings(lowercase__ ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RobertaConfig SCREAMING_SNAKE_CASE : Any = 'roberta' def __init__( self : Union[str, Any] ,lowercase__ : int ): super().__init__(lowercase__ ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeRobertaModel(lowercase__ ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size ,self.config.num_labels ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : int=None ,lowercase__ : Dict=None ,lowercase__ : List[Any]=None ,lowercase__ : str=None ,lowercase__ : List[Any]=-1 ,lowercase__ : Tuple=False ,): __lowercase = self.num_layers try: __lowercase = self.roberta( lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,) __lowercase = outputs[1] __lowercase = self.dropout(lowercase__ ) __lowercase = self.classifier(lowercase__ ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(lowercase__ ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
52
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: '''simple docstring''' try: A__ = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(f"""{solution() = }""")
68
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : torch.FloatTensor SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None class _SCREAMING_SNAKE_CASE( A , A ): SCREAMING_SNAKE_CASE_ : Any = 2 @register_to_config def __init__( self ,SCREAMING_SNAKE_CASE__ = 0.0_2 ,SCREAMING_SNAKE_CASE__ = 1_00 ,SCREAMING_SNAKE_CASE__ = 1.0_0_7 ,SCREAMING_SNAKE_CASE__ = 80 ,SCREAMING_SNAKE_CASE__ = 0.0_5 ,SCREAMING_SNAKE_CASE__ = 50 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sigma_max # setable values __SCREAMING_SNAKE_CASE :int = None __SCREAMING_SNAKE_CASE :np.IntTensor = None __SCREAMING_SNAKE_CASE :torch.FloatTensor = None # sigma(t_i) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = num_inference_steps __SCREAMING_SNAKE_CASE :int = np.arange(0 ,self.num_inference_steps )[::-1].copy() __SCREAMING_SNAKE_CASE :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(SCREAMING_SNAKE_CASE__ ,dtype=torch.floataa ,device=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE :List[str] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE :Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE :Optional[int] = self.config.s_noise * randn_tensor(sample.shape ,generator=SCREAMING_SNAKE_CASE__ ).to(sample.device ) __SCREAMING_SNAKE_CASE :List[str] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE :str = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE :Tuple = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE :List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE :List[Any] = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE :Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE__ ,derivative=SCREAMING_SNAKE_CASE__ ,pred_original_sample=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError()
191
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __A ='''\ ''' __A =''' Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity ''' __A =''' Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 78.22 >>> print(round(results["perplexities"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric("perplexity") >>> input_texts = datasets.load_dataset("wikitext", ... "wikitext-2-raw-v1", ... split="test")["text"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results["mean_perplexity"], 2)) 60.35 >>> print(round(results["perplexities"][0], 2)) 81.12 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _SCREAMING_SNAKE_CASE ( datasets.Metric ): def SCREAMING_SNAKE_CASE_( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase = 16 , lowercase = True , lowercase=None ) -> str: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCamelCase_ = "cuda" else: lowerCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" lowerCamelCase_ = AutoModelForCausalLM.from_pretrained(lowercase ) lowerCamelCase_ = model.to(lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCamelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowercase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCamelCase_ = model.config.max_length - 1 else: lowerCamelCase_ = model.config.max_length lowerCamelCase_ = tokenizer( lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors="pt" , return_attention_mask=lowercase , ).to(lowercase ) lowerCamelCase_ = encodings["input_ids"] lowerCamelCase_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCamelCase_ = [] lowerCamelCase_ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(lowercase ) , lowercase ) ): lowerCamelCase_ = min(start_index + batch_size , len(lowercase ) ) lowerCamelCase_ = encoded_texts[start_index:end_index] lowerCamelCase_ = attn_masks[start_index:end_index] if add_start_token: lowerCamelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowercase ) lowerCamelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCamelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowercase ), attn_mask] , dim=1 ) lowerCamelCase_ = encoded_batch with torch.no_grad(): lowerCamelCase_ = model(lowercase , attention_mask=lowercase ).logits lowerCamelCase_ = out_logits[..., :-1, :].contiguous() lowerCamelCase_ = labels[..., 1:].contiguous() lowerCamelCase_ = attn_mask[..., 1:].contiguous() lowerCamelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowercase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowercase )}
47
import math def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): return math.pow(lowerCamelCase__ , 2 ) - a def lowerCamelCase_ ( lowerCamelCase__ ): return 2 * x def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(lowerCamelCase__ , 2 ) return start def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 9_9_9_9 , lowerCamelCase__ = 0.00_00_00_00_00_00_01 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(lowerCamelCase__ ) for _ in range(lowerCamelCase__ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(lowerCamelCase__ , lowerCamelCase__ ) / fx_derivative(lowerCamelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
47
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = int(_a) if n_element < 1: SCREAMING_SNAKE_CASE : Optional[int] = ValueError("a should be a positive number") raise my_error SCREAMING_SNAKE_CASE : Union[str, Any] = [1] SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = (0, 0, 0) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5)) index += 1 return hamming_list if __name__ == "__main__": a_ = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') a_ = hamming(int(n)) print('-----------------------------------------------------') print(F'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
76
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL a_ = logging.get_logger(__name__) def lowerCamelCase__ ( _a): if isinstance(_a , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(_a , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(_a): return [[videos]] raise ValueError(f"Could not make batched video from {videos}") class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__( self : Optional[Any] , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Tuple , ) -> None: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Tuple = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : List[str] = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE : str = get_size_dict(a , param_name="crop_size" ) SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE : int = crop_size SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : Tuple = offset SCREAMING_SNAKE_CASE : str = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self : Optional[Any] , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BILINEAR , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_size_dict(a , default_to_square=a ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(a , size["shortest_edge"] , default_to_square=a ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE : Dict = (size["height"], size["width"]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(a , size=a , resample=a , data_format=a , **a ) def __UpperCamelCase ( self : List[str] , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : str , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE : str = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __UpperCamelCase ( self : List[Any] , a : np.ndarray , a : Union[int, float] , a : bool = True , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE : Union[str, Any] = image - (scale / 2) return rescale(a , scale=a , data_format=a , **a ) def __UpperCamelCase ( self : int , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def __UpperCamelCase ( self : Tuple , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = to_numpy_array(a ) if do_resize: SCREAMING_SNAKE_CASE : Optional[Any] = self.resize(image=a , size=a , resample=a ) if do_center_crop: SCREAMING_SNAKE_CASE : Union[str, Any] = self.center_crop(a , size=a ) if do_rescale: SCREAMING_SNAKE_CASE : Any = self.rescale(image=a , scale=a , offset=a ) if do_normalize: SCREAMING_SNAKE_CASE : Tuple = self.normalize(image=a , mean=a , std=a ) SCREAMING_SNAKE_CASE : Optional[int] = to_channel_dimension_format(a , a ) return image def __UpperCamelCase ( self : Dict , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE : str = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : int = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : int = size if size is not None else self.size SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(a , default_to_square=a ) SCREAMING_SNAKE_CASE : Tuple = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(a , param_name="crop_size" ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) SCREAMING_SNAKE_CASE : Optional[int] = make_batched(a ) SCREAMING_SNAKE_CASE : List[Any] = [ [ self._preprocess_image( image=a , do_resize=a , size=a , resample=a , do_center_crop=a , crop_size=a , do_rescale=a , rescale_factor=a , offset=a , do_normalize=a , image_mean=a , image_std=a , data_format=a , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE : Optional[int] = {"pixel_values": videos} return BatchFeature(data=a , tensor_type=a )
76
1
'''simple docstring''' from collections import defaultdict def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int ) -> int: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def SCREAMING_SNAKE_CASE__( ) -> List[Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __lowercase ,__lowercase: List[str] = 10, 9 __lowercase: Optional[Any] = defaultdict(list) __lowercase: dict[int, bool] = {} __lowercase: list[int] = [] __lowercase: Dict = 0 __lowercase: Tuple = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
31
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowercase: str = logging.get_logger(__name__) __lowercase: Tuple = TypeVar("DatasetType", Dataset, IterableDataset) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[List[float]] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) else: return _interleave_iterable_datasets( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , stopping_strategy=_UpperCamelCase ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[DatasetType] , _UpperCamelCase : Optional[DatasetInfo] = None , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : int = 0 , ) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCamelCase ): if not isinstance(_UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' "is an empty dataset dictionary." ) raise ValueError( F'Dataset at position {i} has at least one split: {list(_UpperCamelCase )}\n' F'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_UpperCamelCase ) )}\']' ) raise ValueError( F'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCamelCase ).__name__}.' ) if i == 0: UpperCamelCase__ , UpperCamelCase__ = ( (Dataset, IterableDataset) if isinstance(_UpperCamelCase , _UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError( F'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase ) else: return _concatenate_iterable_datasets(_UpperCamelCase , info=_UpperCamelCase , split=_UpperCamelCase , axis=_UpperCamelCase )
31
1
"""simple docstring""" def lowercase ( a__ : int = 1000000 ) -> int: _UpperCamelCase = 1 _UpperCamelCase = 1 _UpperCamelCase = {1: 1} for inputa in range(2 , a__ ): _UpperCamelCase = 0 _UpperCamelCase = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _UpperCamelCase = (3 * number) + 1 counter += 1 if inputa not in counters: _UpperCamelCase = counter if counter > pre_counter: _UpperCamelCase = inputa _UpperCamelCase = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
256
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''input_values''', '''padding_mask'''] def __init__( self : Optional[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : int = 2_4000 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = None , __UpperCamelCase : float = None , **__UpperCamelCase : Optional[Any] , ) -> Optional[int]: super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap @property def _UpperCamelCase ( self : Optional[int] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Union[str, Any] , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if padding and truncation: raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' ) elif padding is None: # by default let's pad the inputs _UpperCamelCase = True _UpperCamelCase = bool( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCamelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _UpperCamelCase = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _UpperCamelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _UpperCamelCase = [np.asarray(__UpperCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__UpperCamelCase ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) _UpperCamelCase = None _UpperCamelCase = BatchFeature({'''input_values''': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _UpperCamelCase = min(array.shape[0] for array in raw_audio ) _UpperCamelCase = int(np.floor(max_length / self.chunk_stride ) ) _UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _UpperCamelCase = max(array.shape[0] for array in raw_audio ) _UpperCamelCase = int(np.ceil(max_length / self.chunk_stride ) ) _UpperCamelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _UpperCamelCase = '''max_length''' else: _UpperCamelCase = input_values # normal padding on batch if padded_inputs is None: _UpperCamelCase = self.pad( __UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , padding=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) if padding: _UpperCamelCase = padded_inputs.pop('''attention_mask''' ) _UpperCamelCase = [] for example in padded_inputs.pop('''input_values''' ): if self.feature_size == 1: _UpperCamelCase = example[..., None] input_values.append(example.T ) _UpperCamelCase = input_values if return_tensors is not None: _UpperCamelCase = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
256
1
'''simple docstring''' from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('To use the rich extension, install rich with `pip install rich`')
106
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int = 1_00_00_00 ) -> int: '''simple docstring''' UpperCAmelCase_ = limit + 1 UpperCAmelCase_ = [0] * limit for first_term in range(1 , snake_case_ ): for n in range(snake_case_ , snake_case_ , snake_case_ ): UpperCAmelCase_ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"{solution() = }")
106
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A ( _lowerCamelCase="" ): '''simple docstring''' _lowerCAmelCase : Tuple = tempfile.mkdtemp() return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : List[str] = AgentAudio(__a) _lowerCAmelCase : int = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a, agent_type.to_raw(), atol=1E-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(__a)) # Ensure that the file contains the same value as the original tensor _lowerCAmelCase , _lowerCAmelCase : List[str] = sf.read(__a) self.assertTrue(torch.allclose(__a, torch.tensor(__a), atol=1E-4)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = torch.rand(12, dtype=torch.floataa) - 0.5 _lowerCAmelCase : Optional[int] = get_new_path(suffix=".wav") sf.write(__a, __a, 1_6000) _lowerCAmelCase : Any = AgentAudio(__a) self.assertTrue(torch.allclose(__a, agent_type.to_raw(), atol=1E-4)) self.assertEqual(agent_type.to_string(), __a) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = torch.randint(0, 256, (64, 64, 3)) _lowerCAmelCase : str = AgentImage(__a) _lowerCAmelCase : Optional[Any] = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(__a, agent_type._tensor, atol=1E-4)) self.assertIsInstance(agent_type.to_raw(), Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _lowerCAmelCase : Tuple = Image.open(__a) _lowerCAmelCase : Optional[Any] = AgentImage(__a) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png" _lowerCAmelCase : Optional[Any] = Image.open(__a) _lowerCAmelCase : Any = AgentImage(__a) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(__a)) class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = "Hey!" _lowerCAmelCase : Any = AgentText(__a) self.assertEqual(__a, agent_type.to_string()) self.assertEqual(__a, agent_type.to_raw()) self.assertEqual(__a, __a)
36
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Optional[int] = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
0
import math def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase :Optional[int] = None lowerCAmelCase :Any = logging.get_logger(__name__) lowerCAmelCase :Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase :Any = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase :int = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } lowerCAmelCase :List[str] = '''▁''' class _lowerCamelCase ( lowercase__ ): '''simple docstring''' A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[Any] = ["""input_ids""", """attention_mask"""] A_ : List[Any] = BarthezTokenizer def __init__( self : Any , _A : str=None , _A : Dict=None , _A : Any="<s>" , _A : Tuple="</s>" , _A : Any="</s>" , _A : Union[str, Any]="<s>" , _A : Any="<unk>" , _A : int="<pad>" , _A : Optional[Any]="<mask>" , **_A : Tuple , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token super().__init__( _A , tokenizer_file=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , **_A , ) __magic_name__ : int = vocab_file __magic_name__ : Any = False if not self.vocab_file else True def __lowerCAmelCase ( self : Dict , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: __magic_name__ : Optional[Any] = [self.sep_token_id] __magic_name__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : Dict , _A : str , _A : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
331
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : List[Any] = filter(lambda lowerCAmelCase : p.requires_grad , model.parameters() ) __magic_name__ : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase :Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : int ): """simple docstring""" if metric == "rouge2": __magic_name__ : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": __magic_name__ : Optional[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": __magic_name__ : Dict = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": __magic_name__ : int = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __magic_name__ : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase , filename=lowerCAmelCase , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCamelCase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase , verbose=lowerCAmelCase , ) class _lowerCamelCase ( pl.Callback ): '''simple docstring''' def __lowerCAmelCase ( self : List[str] , _A : Optional[Any] , _A : List[str] ) -> int: __magic_name__ : Optional[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_A ) @rank_zero_only def __lowerCAmelCase ( self : Any , _A : pl.Trainer , _A : pl.LightningModule , _A : str , _A : Dict=True ) -> None: logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) __magic_name__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __magic_name__ : Optional[Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __magic_name__ : List[Any] = od / 'test_results.txt' __magic_name__ : Dict = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __magic_name__ : Dict = od / F'{type_path}_results/{trainer.global_step:05d}.txt' __magic_name__ : Optional[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_A ) generations_file.parent.mkdir(exist_ok=_A ) with open(_A , 'a+' ) as writer: for key in sorted(_A ): if key in ["log", "progress_bar", "preds"]: continue __magic_name__ : Optional[Any] = metrics[key] if isinstance(_A , torch.Tensor ): __magic_name__ : Tuple = val.item() __magic_name__ : int = F'{key}: {val:.6f}\n' writer.write(_A ) if not save_generations: return if "preds" in metrics: __magic_name__ : str = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_A ) @rank_zero_only def __lowerCAmelCase ( self : List[str] , _A : Union[str, Any] , _A : Tuple ) -> Tuple: try: __magic_name__ : str = pl_module.model.model.num_parameters() except AttributeError: __magic_name__ : List[str] = pl_module.model.num_parameters() __magic_name__ : List[Any] = count_trainable_parameters(_A ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCAmelCase ( self : Union[str, Any] , _A : pl.Trainer , _A : pl.LightningModule ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_A , _A , 'test' ) @rank_zero_only def __lowerCAmelCase ( self : Tuple , _A : pl.Trainer , _A : Any ) -> List[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
331
1
from __future__ import annotations UpperCamelCase__ = [True] * 1_0_0_0_0_0_1 UpperCamelCase__ = 2 while i * i <= 1_0_0_0_0_0_0: if seive[i]: for j in range(i * i, 1_0_0_0_0_0_1, i): UpperCamelCase__ = False i += 1 def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return seive[n] def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return any(digit in "02468" for digit in str(__A ) ) def lowerCAmelCase_ ( __A = 1_000_000 ) -> list[int]: '''simple docstring''' UpperCAmelCase__ = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(__A ) and not contains_an_even_digit(__A ): UpperCAmelCase__ = str(__A ) UpperCAmelCase__ = [int(str_num[j:] + str_num[:j] ) for j in range(len(__A ) )] if all(is_prime(__A ) for i in list_nums ): result.append(__A ) return result def lowerCAmelCase_ ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(f'''{len(find_circular_primes()) = }''')
143
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } UpperCamelCase__ = { 'facebook/bart-base': 1_0_2_4, 'facebook/bart-large': 1_0_2_4, 'facebook/bart-large-mnli': 1_0_2_4, 'facebook/bart-large-cnn': 1_0_2_4, 'facebook/bart-large-xsum': 1_0_2_4, 'yjernite/bart_eli5': 1_0_2_4, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ['input_ids', 'attention_mask'] __UpperCAmelCase : str = BartTokenizer def __init__(self : Tuple , __UpperCAmelCase : int=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str="replace" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : List[Any]="</s>" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : List[str]="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : List[Any]="<mask>" , __UpperCAmelCase : Any=False , __UpperCAmelCase : str=True , **__UpperCAmelCase : Tuple , ) -> Any: """simple docstring""" super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: UpperCAmelCase__ = getattr(__UpperCAmelCase , pre_tok_state.pop("type" ) ) UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = pre_tok_class(**__UpperCAmelCase ) UpperCAmelCase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase__ = "post_processor" UpperCAmelCase__ = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: UpperCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase__ = tuple(state["cls"] ) UpperCAmelCase__ = False if state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = True if state.get("trim_offsets" , __UpperCAmelCase ) != trim_offsets: UpperCAmelCase__ = trim_offsets UpperCAmelCase__ = True if changes_to_apply: UpperCAmelCase__ = getattr(__UpperCAmelCase , state.pop("type" ) ) UpperCAmelCase__ = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property def lowercase_ (self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value UpperCAmelCase__ = value def lowercase_ (self : List[str] , *__UpperCAmelCase : str , **__UpperCAmelCase : List[str] ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = kwargs.get("is_split_into_words" , __UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : List[Any] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Optional[Any] ) -> BatchEncoding: """simple docstring""" UpperCAmelCase__ = kwargs.get("is_split_into_words" , __UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict=None ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
143
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , **A_ : Any ) -> int: """simple docstring""" requires_backends(self , ['bs4'] ) super().__init__(**A_ ) def a__ ( self : List[str] , A_ : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCamelCase_ = parent.find_all(child.name , recursive=A_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(A_ ) else next(i for i, s in enumerate(A_ , 1 ) if s is child ) ) lowerCamelCase_ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def a__ ( self : Tuple , A_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = BeautifulSoup(A_ , 'html.parser' ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for element in html_code.descendants: if type(A_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCamelCase_ = html.unescape(A_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(A_ ) lowerCamelCase_ , lowerCamelCase_ = self.xpath_soup(A_ ) stringaxtag_seq.append(A_ ) stringaxsubs_seq.append(A_ ) if len(A_ ) != len(A_ ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(A_ ) != len(A_ ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def a__ ( self : int , A_ : Tuple , A_ : Dict ) -> str: """simple docstring""" lowerCamelCase_ = '' for tagname, subs in zip(A_ , A_ ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self : str , A_ : Any ) -> BatchFeature: """simple docstring""" lowerCamelCase_ = False # Check that strings has a valid type if isinstance(A_ , A_ ): lowerCamelCase_ = True elif isinstance(A_ , (list, tuple) ): if len(A_ ) == 0 or isinstance(html_strings[0] , A_ ): lowerCamelCase_ = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' f"""but is of type {type(A_ )}.""" ) lowerCamelCase_ = bool(isinstance(A_ , (list, tuple) ) and (isinstance(html_strings[0] , A_ )) ) if not is_batched: lowerCamelCase_ = [html_strings] # Get nodes + xpaths lowerCamelCase_ = [] lowerCamelCase_ = [] for html_string in html_strings: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self.get_three_from_single(A_ ) nodes.append(A_ ) lowerCamelCase_ = [] for node, tag_list, sub_list in zip(A_ , A_ , A_ ): lowerCamelCase_ = self.construct_xpath(A_ , A_ ) xpath_strings.append(A_ ) xpaths.append(A_ ) # return as Dict lowerCamelCase_ = {'nodes': nodes, 'xpaths': xpaths} lowerCamelCase_ = BatchFeature(data=A_ , tensor_type=A_ ) return encoded_inputs
204
lowerCamelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = [False] * len(lowercase ) lowerCamelCase_ = [s] lowerCamelCase_ = True while queue: lowerCamelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) lowerCamelCase_ = True lowerCamelCase_ = u return visited[t] def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Tuple , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = [-1] * (len(lowercase )) lowerCamelCase_ = 0 lowerCamelCase_ = [] lowerCamelCase_ = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = float('Inf' ) lowerCamelCase_ = sink while s != source: # Find the minimum value in select path lowerCamelCase_ = min(lowercase , graph[parent[s]][s] ) lowerCamelCase_ = parent[s] max_flow += path_flow lowerCamelCase_ = sink while v != source: lowerCamelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase_ = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
204
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __a :List[Any] = random.Random() def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=1.0 ,__UpperCamelCase : str=None ,__UpperCamelCase : Union[str, Any]=None ): """simple docstring""" if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : str=7 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : Tuple=2000 , UpperCAmelCase : Optional[Any]=24 , UpperCAmelCase : Union[str, Any]=24 , UpperCAmelCase : str=0.0 , UpperCAmelCase : str=16000 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , ): A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = feature_size A_ = num_mel_bins A_ = padding_value A_ = sampling_rate A_ = return_attention_mask A_ = do_normalize def __A ( self : List[str] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self : str , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=False ): def _flatten(UpperCAmelCase : int ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self : Dict ): A_ = SpeechaTextFeatureExtractionTester(self ) def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ): self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size A_ = feature_extractor(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features A_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) # Test batched A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ = np.asarray(UpperCAmelCase ) A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) def __A ( self : Dict ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 16, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): A_ = feature_extractor( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self : Any ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 16, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): A_ = feature_extractor( UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self : Any ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="max_length" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self : Union[str, Any] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="longest" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="longest" , max_length=16 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self : Optional[int] ): import torch A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = np.random.rand(100 , 32 ).astype(np.floataa ) A_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self : Optional[Any] , UpperCAmelCase : int ): from datasets import load_dataset A_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A_ = ds.sort("id" ).select(range(UpperCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self : str ): # fmt: off A_ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on A_ = self._load_datasamples(1 ) A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = feature_extractor(UpperCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase , atol=1E-4 ) )
369
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
def A_ ( _lowerCAmelCase = 50 ) -> int: UpperCamelCase : List[Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
52
0
'''simple docstring''' def a_ ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a_ ( __snake_case : Dict ) -> str: """simple docstring""" if len(__snake_case ) <= 1: return arr, 0 lowerCamelCase_ =len(__snake_case ) // 2 lowerCamelCase_ =arr[0:mid] lowerCamelCase_ =arr[mid:] lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case ) lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case ) lowerCamelCase_, lowerCamelCase_ =_count_cross_inversions(__snake_case , __snake_case ) lowerCamelCase_ =inversion_p + inversions_q + cross_inversions return c, num_inversions def a_ ( __snake_case : List[Any] , __snake_case : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =lowerCamelCase_ =lowerCamelCase_ =0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a_ ( ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCamelCase_ =count_inversions_bf(__snake_case ) lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCamelCase_ =count_inversions_bf(__snake_case ) lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) # an empty list should also have zero inversions lowerCamelCase_ =[] lowerCamelCase_ =count_inversions_bf(__snake_case ) lowerCamelCase_, lowerCamelCase_ =count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , __snake_case ) if __name__ == "__main__": main()
6
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a_ ( __snake_case : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def a_ ( __snake_case : List[Any] ) -> int: """simple docstring""" lowerCamelCase_, lowerCamelCase_ =emb.weight.shape lowerCamelCase_ =nn.Linear(__snake_case , __snake_case , bias=__snake_case ) lowerCamelCase_ =emb.weight.data return lin_layer def a_ ( __snake_case : Union[str, Any] , __snake_case : Tuple=None ) -> Dict: """simple docstring""" lowerCamelCase_ ={} for old_key in state_dict.keys(): lowerCamelCase_ =old_key if "moe_layer.experts." in key: if expert_idx is not None: lowerCamelCase_ =key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: lowerCamelCase_ =key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowerCamelCase_ =key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowerCamelCase_ =key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowerCamelCase_ =key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowerCamelCase_ =key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowerCamelCase_ =key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowerCamelCase_ =state_dict[old_key] return new_dict def a_ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str = WEIGHTS_NAME ) -> Dict: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =0 os.makedirs(__snake_case , exist_ok=__snake_case ) for expert in range(__snake_case ): lowerCamelCase_ =switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__snake_case ): lowerCamelCase_ =torch.load(__snake_case )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =os.path.join( __snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) torch.save(__snake_case , __snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__snake_case )[0]].dtype ) # Add the last block lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{len(__snake_case )+1:05d}-of-???.bin''' ) ) lowerCamelCase_ =torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__snake_case ) lowerCamelCase_ =rename_fairseq_keys(__snake_case , __snake_case ) lowerCamelCase_ =shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__snake_case ) == 1: lowerCamelCase_ =os.path.join(__snake_case , __snake_case ) torch.save(__snake_case , __snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__snake_case , __snake_case ) # Otherwise, let's build the index lowerCamelCase_ ={} for idx, shard in enumerate(__snake_case ): lowerCamelCase_ =weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__snake_case ):05d}.bin''' ) lowerCamelCase_ =os.path.join(__snake_case , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__snake_case , os.path.join(__snake_case , __snake_case ) ) for key in shard: lowerCamelCase_ =shard_file # Add the metadata lowerCamelCase_ ={'''total_size''': total_size} lowerCamelCase_ ={'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__snake_case , __snake_case ) , '''w''' , encoding='''utf-8''' ) as f: lowerCamelCase_ =json.dumps(__snake_case , indent=2 , sort_keys=__snake_case ) + '''\n''' f.write(__snake_case ) return metadata, index if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) a_ : Tuple = parser.parse_args() a_ , a_ : int = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : Tuple = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
6
1
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def lowercase_ ( _snake_case ,_snake_case ): if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
25
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = (KDPMaDiscreteScheduler,) _lowerCAmelCase = 1_0 def __UpperCAmelCase ( self , **__magic_name__ ) -> int: _a = { 'num_train_timesteps': 11_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**__magic_name__ ) return config def __UpperCAmelCase ( self ) -> Union[str, Any]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__magic_name__ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=__magic_name__ , beta_end=__magic_name__ ) def __UpperCAmelCase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__magic_name__ ) def __UpperCAmelCase ( self ) -> List[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type='v_prediction' ) _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1e-3 def __UpperCAmelCase ( self ) -> Tuple: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 def __UpperCAmelCase ( self ) -> List[Any]: if torch_device == "mps": return _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(self.num_inference_steps , device=__magic_name__ ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(__magic_name__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a = scheduler.scale_model_input(__magic_name__ , __magic_name__ ) _a = model(__magic_name__ , __magic_name__ ) _a = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ) _a = output.prev_sample _a = torch.sum(torch.abs(__magic_name__ ) ) _a = torch.mean(torch.abs(__magic_name__ ) ) if str(__magic_name__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1e-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1e-3
168
0
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Tuple=10_00 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if b != 1: _snake_case = True for _ in range(__lowerCamelCase ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase__ = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
40
"""simple docstring""" from __future__ import annotations from random import random class lowerCAmelCase__ : def __init__( self : str , _lowerCamelCase : int | None = None ): _snake_case = value _snake_case = random() _snake_case = None _snake_case = None def __repr__( self : int ): from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : Optional[int] ): _snake_case = str(self.value ) + ''' ''' _snake_case = str(self.left or '''''' ) _snake_case = str(self.right or '''''' ) return value + left + right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: _snake_case , _snake_case = split(root.left , __lowerCamelCase ) return left, root else: _snake_case , _snake_case = split(root.right , __lowerCamelCase ) return root, right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: _snake_case = merge(left.right , __lowerCamelCase ) return left else: _snake_case = merge(__lowerCamelCase , right.left ) return right def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case = Node(__lowerCamelCase ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(merge(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: _snake_case , _snake_case = split(__lowerCamelCase , value - 1 ) _snake_case , _snake_case = split(__lowerCamelCase , __lowerCamelCase ) return merge(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def _UpperCAmelCase ( __lowerCamelCase : Node | None , __lowerCamelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": _snake_case = insert(__lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": _snake_case = erase(__lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def _UpperCAmelCase ( ) -> None: _snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) _snake_case = input() while args != "q": _snake_case = interact_treap(__lowerCamelCase , __lowerCamelCase ) print(__lowerCamelCase ) _snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
40
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Any , *A : List[str] , **A : Dict ): warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , A , ) super().__init__(*A , **A )
31
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A : Dict , A : Dict=7 , A : Optional[int]=3 , A : Optional[int]=18 , A : Dict=30 , A : List[Any]=400 , A : Union[str, Any]=True , A : Tuple=None , A : List[Any]=True , A : int=None , A : Optional[int]=True , ): _UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 20} _UpperCAmelCase : Optional[Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : int = min_resolution _UpperCAmelCase : Optional[int] = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Optional[Any] = size _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Optional[int] = crop_size _UpperCAmelCase : Optional[Any] = do_flip_channel_order def _A ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Tuple = MobileViTImageProcessor if is_vision_available() else None def _A ( self : List[Any] ): _UpperCAmelCase : Any = MobileViTImageProcessingTester(self ) @property def _A ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Tuple ): _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "size" ) ) self.assertTrue(hasattr(A , "do_center_crop" ) ) self.assertTrue(hasattr(A , "center_crop" ) ) self.assertTrue(hasattr(A , "do_flip_channel_order" ) ) def _A ( self : Any ): _UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) _UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def _A ( self : Any ): pass def _A ( self : Dict ): # Initialize image_processing _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[Any] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Union[str, Any] ): # Initialize image_processing _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Optional[int] = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _A ( self : Any ): # Initialize image_processing _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Any = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
31
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : """simple docstring""" def __init__( self: str , UpperCamelCase: Any , UpperCamelCase: Optional[int]=13 , UpperCamelCase: List[Any]=32 , UpperCamelCase: Tuple=2 , UpperCamelCase: str=3 , UpperCamelCase: Dict=16 , UpperCamelCase: Optional[Any]=[32, 64, 1_28] , UpperCamelCase: Dict=[1, 2, 1] , UpperCamelCase: str=[2, 2, 4] , UpperCamelCase: Optional[Any]=2 , UpperCamelCase: Dict=2.0 , UpperCamelCase: Any=True , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: int=0.0 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: Tuple="gelu" , UpperCamelCase: Tuple=False , UpperCamelCase: List[str]=True , UpperCamelCase: int=0.02 , UpperCamelCase: Optional[Any]=1e-5 , UpperCamelCase: Tuple=True , UpperCamelCase: str=None , UpperCamelCase: Dict=True , UpperCamelCase: Optional[Any]=10 , UpperCamelCase: Optional[int]=8 , UpperCamelCase: Union[str, Any]=["stage1", "stage2"] , UpperCamelCase: Tuple=[1, 2] , ): """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = hidden_sizes A__ = depths A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = patch_norm A__ = layer_norm_eps A__ = initializer_range A__ = is_training A__ = scope A__ = use_labels A__ = type_sequence_label_size A__ = encoder_stride A__ = out_features A__ = out_indices def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self: List[Any] ): """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: str , UpperCamelCase: Optional[int] , UpperCamelCase: Optional[int] ): """simple docstring""" A__ = FocalNetModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) A__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) A__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: Dict ): """simple docstring""" A__ = FocalNetBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None A__ = None A__ = FocalNetBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: str , UpperCamelCase: Any , UpperCamelCase: str ): """simple docstring""" A__ = FocalNetForMaskedImageModeling(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = FocalNetForMaskedImageModeling(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase ( self: Dict , UpperCamelCase: str , UpperCamelCase: Any , UpperCamelCase: int ): """simple docstring""" A__ = self.type_sequence_label_size A__ = FocalNetForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = FocalNetForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCamelCase, _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) UpperCAmelCase = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase ( self: Optional[int] ): """simple docstring""" A__ = FocalNetModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase , embed_dim=37 , has_text_modality=UpperCamelCase ) def UpperCamelCase ( self: Dict ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self: Dict ): """simple docstring""" return def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase ) def UpperCamelCase ( self: int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def UpperCamelCase ( self: Dict ): """simple docstring""" pass def UpperCamelCase ( self: Dict ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A__ = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A__ = model_class(UpperCamelCase ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Optional[int] , UpperCamelCase: List[str] , UpperCamelCase: Dict , UpperCamelCase: int ): """simple docstring""" A__ = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) A__ = outputs.hidden_states A__ = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) # FocalNet has a different seq_length A__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) A__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) A__ , A__ , A__ , A__ = reshaped_hidden_states[0].shape A__ = ( reshaped_hidden_states[0].view(UpperCamelCase , UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: A__ = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) A__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) A__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: A__ = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True self.check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase , (padded_height, padded_width) ) @slow def UpperCamelCase ( self: str ): """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = FocalNetModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(UpperCamelCase ) for model_class in self.all_model_classes: A__ = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(UpperCamelCase ) A__ = self.default_image_processor A__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) A__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class a ( _lowerCamelCase, unittest.TestCase ): """simple docstring""" UpperCAmelCase = (FocalNetBackbone,) if is_torch_available() else () UpperCAmelCase = FocalNetConfig UpperCAmelCase = False def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = FocalNetModelTester(self )
69
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , UpperCamelCase: str = "▁" , UpperCamelCase: bool = True , UpperCamelCase: Union[str, AddedToken] = "<unk>" , UpperCamelCase: Union[str, AddedToken] = "</s>" , UpperCamelCase: Union[str, AddedToken] = "<pad>" , ): """simple docstring""" A__ = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } A__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): A__ = token_dict["""token"""] A__ = Tokenizer(Unigram() ) A__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) A__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCamelCase , add_prefix_space=UpperCamelCase ), pre_tokenizers.Digits(individual_digits=UpperCamelCase ), pre_tokenizers.Punctuation(), ] ) A__ = decoders.Metaspace(replacement=UpperCamelCase , add_prefix_space=UpperCamelCase ) A__ = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) A__ = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Union[str, List[str]] , UpperCamelCase: int = 80_00 , UpperCamelCase: bool = True , ): """simple docstring""" A__ = trainers.UnigramTrainer( vocab_size=UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=UpperCamelCase , ) if isinstance(UpperCamelCase , UpperCamelCase ): A__ = [files] self._tokenizer.train(UpperCamelCase , trainer=UpperCamelCase ) self.add_unk_id() def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Union[Iterator[str], Iterator[Iterator[str]]] , UpperCamelCase: int = 80_00 , UpperCamelCase: bool = True , ): """simple docstring""" A__ = trainers.UnigramTrainer( vocab_size=UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=UpperCamelCase , ) self._tokenizer.train_from_iterator(UpperCamelCase , trainer=UpperCamelCase ) self.add_unk_id() def UpperCamelCase ( self: List[str] ): """simple docstring""" A__ = json.loads(self._tokenizer.to_str() ) A__ = self.special_tokens["""unk"""]["""id"""] A__ = Tokenizer.from_str(json.dumps(UpperCamelCase ) )
69
1
import re def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: if len(re.findall('[ATCG]' , SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
212
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A__ ( __magic_name__ ): lowercase = 42 lowercase = 42 def __init__( self : Any , a : UNetaDModel , a : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self : List[str] , a : int = 1 , a : int = 2_000 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , **a : int , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.unet.config.sample_size lowerCAmelCase__ : Union[str, Any] = (batch_size, 3, img_size, img_size) lowerCAmelCase__ : Tuple = self.unet lowerCAmelCase__ : Optional[Any] = randn_tensor(a , generator=a ) * self.scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(self.device ) self.scheduler.set_timesteps(a ) self.scheduler.set_sigmas(a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowerCAmelCase__ : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowerCAmelCase__ : Optional[Any] = self.unet(a , a ).sample lowerCAmelCase__ : Dict = self.scheduler.step_correct(a , a , generator=a ).prev_sample # prediction step lowerCAmelCase__ : Optional[int] = model(a , a ).sample lowerCAmelCase__ : Optional[Any] = self.scheduler.step_pred(a , a , a , generator=a ) lowerCAmelCase__ , lowerCAmelCase__ : str = output.prev_sample, output.prev_sample_mean lowerCAmelCase__ : Any = sample_mean.clamp(0 , 1 ) lowerCAmelCase__ : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ : int = self.numpy_to_pil(a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=a )
212
1
"""simple docstring""" from __future__ import annotations _snake_case = tuple[int, int, int] _snake_case = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _snake_case = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- _snake_case = 'EGZWVONAHDCLFQMSIPJBYUKXTR' _snake_case = 'FOBHMDKEXQNRAULPGSJVTYICZW' _snake_case = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- _snake_case = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- _snake_case = 'RMDJXFUWGISLHVTCQNKYPBEZOA' _snake_case = 'SGLCPQWZHKXAREONTFBVIYJUDM' _snake_case = 'HVSICLTYKQUBXDWAJZOMFGPREN' _snake_case = 'RZWQHFMVDBKICJLNTUXAGYPSOE' _snake_case = 'LFKIJODBEGAMQPXVUHYSTCZRWN' _snake_case = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # Checks if there are 3 unique rotors if (unique_rotsel := len(set(UpperCamelCase__ ) )) < 3: _a : Tuple = F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(UpperCamelCase__ ) # Checks if rotor positions are valid _a , _a , _a : int = rotpos if not 0 < rotorposa <= len(UpperCamelCase__ ): _a : List[str] = F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(UpperCamelCase__ ) if not 0 < rotorposa <= len(UpperCamelCase__ ): _a : Optional[Any] = F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(UpperCamelCase__ ) if not 0 < rotorposa <= len(UpperCamelCase__ ): _a : Optional[Any] = F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(UpperCamelCase__ ) # Validates string and returns dict _a : Union[str, Any] = _plugboard(UpperCamelCase__ ) return rotpos, rotsel, pbdict def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _a : Dict = F"""Plugboard setting isn't type string ({type(UpperCamelCase__ )})""" raise TypeError(UpperCamelCase__ ) elif len(UpperCamelCase__ ) % 2 != 0: _a : Any = F"""Odd number of symbols ({len(UpperCamelCase__ )})""" raise Exception(UpperCamelCase__ ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique _a : int = set() for i in pbstring: if i not in abc: _a : Optional[Any] = F"""'{i}' not in list of symbols""" raise Exception(UpperCamelCase__ ) elif i in tmppbl: _a : List[str] = F"""Duplicate symbol ({i})""" raise Exception(UpperCamelCase__ ) else: tmppbl.add(UpperCamelCase__ ) del tmppbl # Created the dictionary _a : int = {} for j in range(0 , len(UpperCamelCase__ ) - 1 , 2 ): _a : Any = pbstring[j + 1] _a : Optional[Any] = pbstring[j] return pb def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (rotora, rotora, rotora) , UpperCamelCase__ = "" , ): '''simple docstring''' _a : List[Any] = text.upper() _a , _a , _a : Optional[Any] = _validator( UpperCamelCase__ , UpperCamelCase__ , plugb.upper() ) _a , _a , _a : Tuple = rotor_position _a , _a , _a : Optional[int] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _a : Any = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _a : Union[str, Any] = plugboard[symbol] # rotor ra -------------------------- _a : Optional[Any] = abc.index(UpperCamelCase__ ) + rotorposa _a : List[Any] = rotora[index % len(UpperCamelCase__ )] # rotor rb -------------------------- _a : Tuple = abc.index(UpperCamelCase__ ) + rotorposa _a : Union[str, Any] = rotora[index % len(UpperCamelCase__ )] # rotor rc -------------------------- _a : str = abc.index(UpperCamelCase__ ) + rotorposa _a : str = rotora[index % len(UpperCamelCase__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _a : Tuple = reflector[symbol] # 2nd rotors _a : Optional[int] = abc[rotora.index(UpperCamelCase__ ) - rotorposa] _a : Tuple = abc[rotora.index(UpperCamelCase__ ) - rotorposa] _a : str = abc[rotora.index(UpperCamelCase__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: _a : int = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(UpperCamelCase__ ): _a : Tuple = 0 rotorposa += 1 if rotorposa >= len(UpperCamelCase__ ): _a : int = 0 rotorposa += 1 if rotorposa >= len(UpperCamelCase__ ): _a : Union[str, Any] = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) if __name__ == "__main__": _snake_case = 'This is my Python script that emulates the Enigma machine from WWII.' _snake_case = (1, 1, 1) _snake_case = 'pictures' _snake_case = (rotora, rotora, rotora) _snake_case = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
324
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = 1_6 ): '''simple docstring''' _a : str = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _a : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) _a : Optional[int] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a : Tuple = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _a : Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a : int = 1_6 elif accelerator.mixed_precision != "no": _a : int = 8 else: _a : str = None return tokenizer.pad( UpperCamelCase__ , padding="""longest""" , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _a : int = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _a : List[str] = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , UpperCamelCase__ ) == "1": _a : str = 2 # Initialize accelerator _a : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Any = config["""lr"""] _a : Union[str, Any] = int(config["""num_epochs"""] ) _a : str = int(config["""seed"""] ) _a : List[Any] = int(config["""batch_size"""] ) _a : Tuple = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _a : Optional[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _a : str = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) _a , _a : Optional[int] = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : int = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a : List[str] = model.to(accelerator.device ) # Instantiate optimizer _a : List[str] = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _a : List[str] = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a : Optional[Any] = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a : Optional[Any] = model(**UpperCamelCase__ ) _a : str = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _a : Union[str, Any] = 0 for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Dict = model(**UpperCamelCase__ ) _a : Optional[Any] = outputs.logits.argmax(dim=-1 ) _a , _a : int = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(UpperCamelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _a : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase__ ) def lowerCAmelCase__ ( ): '''simple docstring''' _a : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _a : Optional[Any] = parser.parse_args() _a : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
324
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') _A = logging.getLogger(__name__) @dataclass class lowercase_ : A__ : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) A__ : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) A__ : int = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A__ : bool = field( default=_lowerCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) A__ : bool = field( default=_lowerCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) A__ : Optional[int] = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) A__ : Optional[int] = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) A__ : Optional[int] = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) A__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) A__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) A__ : Optional[str] = field(default=_lowerCamelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def lowerCamelCase_ ( self ): """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: UpperCamelCase_ = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCamelCase_ = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowercase_ : A__ : str = field( default=_lowerCamelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) A__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) A__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) A__ : Optional[str] = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) A__ : bool = field( default=_lowerCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) A__ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) A__ : bool = field( default=_lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase__ ( ) -> str: UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCamelCase_ = training_args.get_process_log_level() logger.setLevel(a__ ) datasets.utils.logging.set_verbosity(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCamelCase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCamelCase_ = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCamelCase_ = data_args.train_file.split(""".""" )[-1] UpperCamelCase_ = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCamelCase_ = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(f'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files UpperCamelCase_ = load_dataset("""csv""" , data_files=a__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCamelCase_ = load_dataset("""json""" , data_files=a__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCamelCase_ = raw_datasets['''train'''].features['''label'''].names UpperCamelCase_ = len(a__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer UpperCamelCase_ = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a__ , ) UpperCamelCase_ = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: UpperCamelCase_ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCamelCase_ = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCamelCase_ = {'''Refused''': 0, '''Entailed''': 1} UpperCamelCase_ = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) UpperCamelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a__ : int ): # Tokenize the texts def _convert_table_text_to_pandas(a__ : Any ): UpperCamelCase_ = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] UpperCamelCase_ = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd UpperCamelCase_ = examples['''statement'''] UpperCamelCase_ = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) UpperCamelCase_ = tokenizer(a__ , a__ , padding=a__ , max_length=a__ , truncation=a__ ) UpperCamelCase_ = examples['''label'''] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): UpperCamelCase_ = raw_datasets.map( a__ , batched=a__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) UpperCamelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCamelCase_ = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) UpperCamelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCamelCase_ = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) UpperCamelCase_ = raw_datasets['''test'''] if data_args.max_predict_samples is not None: UpperCamelCase_ = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a__ ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a__ : Optional[Any] ): UpperCamelCase_ = p.predictions[0] if isinstance(p.predictions , a__ ) else p.predictions UpperCamelCase_ = np.argmax(a__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCamelCase_ = default_data_collator elif training_args.fpaa: UpperCamelCase_ = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) else: UpperCamelCase_ = None # Initialize our Trainer UpperCamelCase_ = Trainer( model=a__ , args=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a__ , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: UpperCamelCase_ = None if training_args.resume_from_checkpoint is not None: UpperCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase_ = last_checkpoint UpperCamelCase_ = trainer.train(resume_from_checkpoint=a__ ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ ) ) UpperCamelCase_ = min(a__ , len(a__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , a__ ) trainer.save_metrics("""train""" , a__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase_ = trainer.evaluate(eval_dataset=a__ ) UpperCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a__ ) UpperCamelCase_ = min(a__ , len(a__ ) ) trainer.log_metrics("""eval""" , a__ ) trainer.save_metrics("""eval""" , a__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCamelCase_ = predict_dataset.remove_columns("""label""" ) UpperCamelCase_ = trainer.predict(a__ , metric_key_prefix="""predict""" ).predictions UpperCamelCase_ = np.argmax(a__ , axis=1 ) UpperCamelCase_ = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(a__ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(a__ ): UpperCamelCase_ = label_list[item] writer.write(f'''{index}\t{item}\n''' ) UpperCamelCase_ = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def lowerCamelCase__ ( a__ : str ) -> List[str]: main() if __name__ == "__main__": main()
122
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): _UpperCamelCase : Dict = ['''input_features'''] def __init__( self : int , _A : int=80 , _A : Union[str, Any]=16_000 , _A : Union[str, Any]=160 , _A : Any=30 , _A : str=400 , _A : Union[str, Any]=0.0 , _A : Tuple=False , **_A : List[str] , ) -> int: """simple docstring""" super().__init__( feature_size=_A , sampling_rate=_A , padding_value=_A , return_attention_mask=_A , **_A , ) lowercase : Optional[Any] = n_fft lowercase : Optional[int] = hop_length lowercase : Optional[int] = chunk_length lowercase : Union[str, Any] = chunk_length * sampling_rate lowercase : Optional[Any] = self.n_samples // hop_length lowercase : Optional[Any] = sampling_rate lowercase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_A , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_A , norm='''slaney''' , mel_scale='''slaney''' , ) def __a ( self : Dict , _A : np.array ) -> np.ndarray: """simple docstring""" lowercase : List[str] = spectrogram( _A , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) lowercase : Union[str, Any] = log_spec[:, :-1] lowercase : Optional[Any] = np.maximum(_A , log_spec.max() - 8.0 ) lowercase : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __a ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: lowercase : Optional[Any] = np.array(_A , np.intaa ) lowercase : List[str] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): lowercase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowercase : int = padding_value normed_input_values.append(_A ) else: lowercase : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Union[str, Any] , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = True , _A : Optional[int] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[bool] = None , _A : Optional[str] = "max_length" , _A : Optional[int] = None , _A : Optional[int] = None , _A : Optional[bool] = None , **_A : int , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowercase : Union[str, Any] = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) lowercase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): lowercase : List[Any] = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase : List[str] = [np.asarray([raw_speech] ).T] lowercase : Tuple = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding lowercase : str = self.pad( _A , padding=_A , max_length=max_length if max_length else self.n_samples , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase : Tuple = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) lowercase : str = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format lowercase : List[str] = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) lowercase : str = [self._np_extract_fbank_features(_A ) for waveform in input_features[0]] if isinstance(input_features[0] , _A ): lowercase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] else: lowercase : Optional[int] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase : List[str] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: lowercase : Any = padded_inputs.convert_to_tensors(_A ) return padded_inputs def __a ( self : Optional[Any] ) -> Dict[str, Any]: """simple docstring""" lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = {'vocab_file': 'spiece.model'} UpperCAmelCase : Union[str, Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } UpperCAmelCase : int = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) UpperCAmelCase : Tuple = 0 UpperCAmelCase : Optional[int] = 1 UpperCAmelCase : Optional[Any] = 2 UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : List[Any] = 4 class lowerCAmelCase__ ( a ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = "left" def __init__( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Tuple="<s>" , __SCREAMING_SNAKE_CASE : List[str]="</s>" , __SCREAMING_SNAKE_CASE : List[Any]="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="<sep>" , __SCREAMING_SNAKE_CASE : int="<pad>" , __SCREAMING_SNAKE_CASE : Optional[int]="<cls>" , __SCREAMING_SNAKE_CASE : Optional[Any]="<mask>" , __SCREAMING_SNAKE_CASE : str=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" if self.remove_space: __SCREAMING_SNAKE_CASE = """ """.join(inputs.strip().split() ) else: __SCREAMING_SNAKE_CASE = inputs __SCREAMING_SNAKE_CASE = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __SCREAMING_SNAKE_CASE = unicodedata.normalize("""NFKD""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """""".join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: __SCREAMING_SNAKE_CASE = outputs.lower() return outputs def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __SCREAMING_SNAKE_CASE = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __SCREAMING_SNAKE_CASE = cur_pieces[1:] else: __SCREAMING_SNAKE_CASE = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.pop("""use_source_tokenizer""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = [] sub_texts.append(__SCREAMING_SNAKE_CASE ) else: current_sub_text.append(__SCREAMING_SNAKE_CASE ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__SCREAMING_SNAKE_CASE ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __SCREAMING_SNAKE_CASE = """""".join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __SCREAMING_SNAKE_CASE = self.clean_up_tokenization(__SCREAMING_SNAKE_CASE ) return clean_text else: return text def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
331
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCAmelCase : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase__ = 10000 lowerCAmelCase__ = None lowerCAmelCase__ = None class lowerCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase__ = ParquetConfig def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ): __SCREAMING_SNAKE_CASE = data_files if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) ) break splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={"""files""": files} ) ) return splits def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ): with open(__SCREAMING_SNAKE_CASE , """rb""" ) as f: __SCREAMING_SNAKE_CASE = pq.ParquetFile(__SCREAMING_SNAKE_CASE ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(__SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(__SCREAMING_SNAKE_CASE )}: {e}' ) raise
331
1
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ : Dict = logging.get_logger(__name__) enable_full_determinism() class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[Any] = 4 snake_case__ : List[Any] = 3 snake_case__ : int = (32, 32) snake_case__ : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : str = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Union[str, Any] = { 'block_out_channels': (32, 64), 'down_block_types': ('DownBlock2D', 'AttnDownBlock2D'), 'up_block_types': ('AttnUpBlock2D', 'UpBlock2D'), 'attention_head_dim': 3, 'out_channels': 3, 'in_channels': 3, 'layers_per_block': 2, 'sample_size': 32, } snake_case__ : List[Any] = self.dummy_input return init_dict, inputs_dict class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = 4 snake_case__ : List[Any] = 4 snake_case__ : List[str] = (32, 32) snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor([10] ).to(__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> int: '''simple docstring''' return (4, 32, 32) @property def __a ( self ) -> str: '''simple docstring''' return (4, 32, 32) def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = { 'sample_size': 32, 'in_channels': 4, 'out_channels': 4, 'layers_per_block': 2, 'block_out_channels': (32, 64), 'attention_head_dim': 32, 'down_block_types': ('DownBlock2D', 'DownBlock2D'), 'up_block_types': ('UpBlock2D', 'UpBlock2D'), } snake_case__ : List[Any] = self.dummy_input return init_dict, inputs_dict def __a ( self ) -> str: '''simple docstring''' snake_case__ , snake_case__ : Optional[int] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) snake_case__ : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ , snake_case__ : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model.to(__UpperCamelCase ) snake_case__ : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != 'cuda' , 'This test is supposed to run on GPU' ) def __a ( self ) -> str: '''simple docstring''' snake_case__ , snake_case__ : List[str] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase ) model_accelerate.to(__UpperCamelCase ) model_accelerate.eval() snake_case__ : Tuple = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : Union[str, Any] = noise.to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) snake_case__ : str = model_accelerate(__UpperCamelCase , __UpperCamelCase )['sample'] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case__ , snake_case__ : Union[str, Any] = UNetaDModel.from_pretrained( 'fusing/unet-ldm-dummy-update' , output_loading_info=__UpperCamelCase , low_cpu_mem_usage=__UpperCamelCase ) model_normal_load.to(__UpperCamelCase ) model_normal_load.eval() snake_case__ : List[str] = model_normal_load(__UpperCamelCase , __UpperCamelCase )['sample'] assert torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : List[Any] = UNetaDModel.from_pretrained('fusing/unet-ldm-dummy-update' ) model.eval() model.to(__UpperCamelCase ) snake_case__ : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case__ : List[Any] = noise.to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor([10] * noise.shape[0] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : List[str] = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case__ : int = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-3 ) ) class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = UNetaDModel __lowerCamelCase = """sample""" @property def __a ( self , __UpperCamelCase=(32, 32) ) -> Optional[Any]: '''simple docstring''' snake_case__ : Dict = 4 snake_case__ : Dict = 3 snake_case__ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : List[str] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__UpperCamelCase ) return {"sample": noise, "timestep": time_step} @property def __a ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __a ( self ) -> int: '''simple docstring''' return (3, 32, 32) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = { 'block_out_channels': [32, 64, 64, 64], 'in_channels': 3, 'layers_per_block': 1, 'out_channels': 3, 'time_embedding_type': 'fourier', 'norm_eps': 1E-6, 'mid_block_scale_factor': math.sqrt(2.0 ), 'norm_num_groups': None, 'down_block_types': [ 'SkipDownBlock2D', 'AttnSkipDownBlock2D', 'SkipDownBlock2D', 'SkipDownBlock2D', ], 'up_block_types': [ 'SkipUpBlock2D', 'SkipUpBlock2D', 'AttnSkipUpBlock2D', 'SkipUpBlock2D', ], } snake_case__ : str = self.dummy_input return init_dict, inputs_dict @slow def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ , snake_case__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(__UpperCamelCase ) snake_case__ : Dict = self.dummy_input snake_case__ : Union[str, Any] = floats_tensor((4, 3) + (256, 256) ).to(__UpperCamelCase ) snake_case__ : List[Any] = noise snake_case__ : Any = model(**__UpperCamelCase ) assert image is not None, "Make sure output is not None" @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : str = UNetaDModel.from_pretrained('google/ncsnpp-celebahq-256' ) model.to(__UpperCamelCase ) snake_case__ : Optional[Any] = 4 snake_case__ : str = 3 snake_case__ : List[Any] = (256, 256) snake_case__ : Dict = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : str = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = UNetaDModel.from_pretrained('fusing/ncsnpp-ffhq-ve-dummy-update' ) model.to(__UpperCamelCase ) snake_case__ : Dict = 4 snake_case__ : List[str] = 3 snake_case__ : Union[str, Any] = (32, 32) snake_case__ : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) snake_case__ : int = torch.tensor(batch_size * [1E-4] ).to(__UpperCamelCase ) with torch.no_grad(): snake_case__ : Tuple = model(__UpperCamelCase , __UpperCamelCase ).sample snake_case__ : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case__ : Optional[int] = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1E-2 ) ) def __a ( self ) -> Tuple: '''simple docstring''' pass
143
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( _lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = KandinskyVaaControlnetPipeline __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase = False @property def __a ( self ) -> List[Any]: '''simple docstring''' return 32 @property def __a ( self ) -> int: '''simple docstring''' return 32 @property def __a ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __a ( self ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self ) -> List[Any]: '''simple docstring''' return 100 @property def __a ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } snake_case__ : Tuple = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __a ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) snake_case__ : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : int = self.dummy_unet snake_case__ : Tuple = self.dummy_movq snake_case__ : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__UpperCamelCase , ) snake_case__ : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> int: '''simple docstring''' snake_case__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) snake_case__ : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCamelCase ) # create hint snake_case__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('mps' ): snake_case__ : Any = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : str = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) snake_case__ : int = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = 'cpu' snake_case__ : Any = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Dict = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) snake_case__ : Dict = output.images snake_case__ : Any = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : str = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def __a ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) snake_case__ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) snake_case__ : List[str] = torch.from_numpy(np.array(__UpperCamelCase ) ).float() / 2_5_5.0 snake_case__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) snake_case__ : int = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) snake_case__ : int = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) snake_case__ : List[Any] = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[int] = 'A robot, 4k photo' snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ , snake_case__ : Tuple = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() snake_case__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) snake_case__ : Dict = pipeline( image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , hint=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=100 , output_type='np' , ) snake_case__ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
143
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase_ = re.compile(R'''\s+''') def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowercase_ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' snake_case_ = [len(lowercase_ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowercase_ ), "line_max": max(lowercase_ )} def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' snake_case_ = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def UpperCamelCase( lowercase_ , lowercase_ ) -> int: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def UpperCamelCase( lowercase_ , lowercase_=5 ) -> int: '''simple docstring''' snake_case_ = ["""auto-generated""", """autogenerated""", """automatically generated"""] snake_case_ = example["""content"""].splitlines() for _, line in zip(range(lowercase_ ) , lowercase_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCamelCase( lowercase_ , lowercase_=5 , lowercase_=0.05 ) -> List[str]: '''simple docstring''' snake_case_ = ["""unit tests""", """test file""", """configuration file"""] snake_case_ = example["""content"""].splitlines() snake_case_ = 0 snake_case_ = 0 # first test for _, line in zip(range(lowercase_ ) , lowercase_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test snake_case_ = example["""content"""].count("""\n""" ) snake_case_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCamelCase( lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = ["""def """, """class """, """for """, """while """] snake_case_ = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCamelCase( lowercase_ , lowercase_=4 ) -> int: '''simple docstring''' snake_case_ = example["""content"""].splitlines() snake_case_ = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' snake_case_ = tokenizer(example["""content"""] , truncation=lowercase_ )["""input_ids"""] snake_case_ = len(example["""content"""] ) / len(lowercase_ ) return {"ratio": ratio} def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' snake_case_ = {} results.update(get_hash(lowercase_ ) ) results.update(line_stats(lowercase_ ) ) results.update(alpha_stats(lowercase_ ) ) results.update(char_token_ratio(lowercase_ ) ) results.update(is_autogenerated(lowercase_ ) ) results.update(is_config_or_test(lowercase_ ) ) results.update(has_no_keywords(lowercase_ ) ) results.update(has_few_assignments(lowercase_ ) ) return results def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if not check_uniques(lowercase_ , lowercase_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' with open(lowercase_ , """rb""" ) as f_in: with gzip.open(str(lowercase_ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowercase_ , lowercase_ ) os.unlink(lowercase_ ) # Settings lowerCamelCase_ = HfArgumentParser(PreprocessingArguments) lowerCamelCase_ = parser.parse_args() if args.num_workers is None: lowerCamelCase_ = multiprocessing.cpu_count() lowerCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase_ = time.time() lowerCamelCase_ = load_dataset(args.dataset_name, split='''train''') print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowerCamelCase_ = time.time() lowerCamelCase_ = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowerCamelCase_ = set(ds.unique('''hash''')) lowerCamelCase_ = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowerCamelCase_ = time.time() lowerCamelCase_ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase_ = time.time() lowerCamelCase_ , lowerCamelCase_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowerCamelCase_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) lowerCamelCase_ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) lowerCamelCase_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase_ = str(data_dir / f"""file-{file_number+1:012}.json""") lowerCamelCase_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
34
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCamelCase_ = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' snake_case_ = EfficientNetConfig() snake_case_ = CONFIG_MAP[model_name]["""hidden_dim"""] snake_case_ = CONFIG_MAP[model_name]["""width_coef"""] snake_case_ = CONFIG_MAP[model_name]["""depth_coef"""] snake_case_ = CONFIG_MAP[model_name]["""image_size"""] snake_case_ = CONFIG_MAP[model_name]["""dropout_rate"""] snake_case_ = CONFIG_MAP[model_name]["""dw_padding"""] snake_case_ = """huggingface/label-files""" snake_case_ = """imagenet-1k-id2label.json""" snake_case_ = 1000 snake_case_ = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) snake_case_ = {int(lowercase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase( ) -> Tuple: '''simple docstring''' snake_case_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case_ = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ) return im def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = CONFIG_MAP[model_name]["""image_size"""] snake_case_ = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowercase_ , ) return preprocessor def UpperCamelCase( lowercase_ ) -> str: '''simple docstring''' snake_case_ = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] snake_case_ = sorted(set(lowercase_ ) ) snake_case_ = len(lowercase_ ) snake_case_ = {b: str(lowercase_ ) for b, i in zip(lowercase_ , range(lowercase_ ) )} snake_case_ = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: snake_case_ = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) snake_case_ = {} for item in rename_keys: if item[0] in original_param_names: snake_case_ = """efficientnet.""" + item[1] snake_case_ = """classifier.weight""" snake_case_ = """classifier.bias""" return key_mapping def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue snake_case_ = key_mapping[key] if "_conv" in key and "kernel" in key: snake_case_ = torch.from_numpy(lowercase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: snake_case_ = torch.from_numpy(lowercase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: snake_case_ = torch.from_numpy(np.transpose(lowercase_ ) ) else: snake_case_ = torch.from_numpy(lowercase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase_ ) @torch.no_grad() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' snake_case_ = model_classes[model_name]( include_top=lowercase_ , weights="""imagenet""" , input_tensor=lowercase_ , input_shape=lowercase_ , pooling=lowercase_ , classes=1000 , classifier_activation="""softmax""" , ) snake_case_ = original_model.trainable_variables snake_case_ = original_model.non_trainable_variables snake_case_ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: snake_case_ = param.numpy() snake_case_ = list(tf_params.keys() ) # Load HuggingFace model snake_case_ = get_efficientnet_config(lowercase_ ) snake_case_ = EfficientNetForImageClassification(lowercase_ ).eval() snake_case_ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) snake_case_ = rename_keys(lowercase_ ) replace_params(lowercase_ , lowercase_ , lowercase_ ) # Initialize preprocessor and preprocess input image snake_case_ = convert_image_processor(lowercase_ ) snake_case_ = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): snake_case_ = hf_model(**lowercase_ ) snake_case_ = outputs.logits.detach().numpy() # Original model inference snake_case_ = False snake_case_ = CONFIG_MAP[model_name]["""image_size"""] snake_case_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) snake_case_ = image.img_to_array(lowercase_ ) snake_case_ = np.expand_dims(lowercase_ , axis=0 ) snake_case_ = original_model.predict(lowercase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase_ , lowercase_ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase_ ): os.mkdir(lowercase_ ) # Save converted model and image processor hf_model.save_pretrained(lowercase_ ) preprocessor.save_pretrained(lowercase_ ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) snake_case_ = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase_ ) hf_model.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCamelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
34
1