code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""vqvae"""] def __init__( self : List[Any] , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Mel , lowerCamelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , mel=lowerCamelCase_ , vqvae=lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" return 50 if isinstance(self.scheduler , lowerCamelCase_ ) else 1000 @torch.no_grad() def __call__( self : str , lowerCamelCase_ : int = 1 , lowerCamelCase_ : str = None , lowerCamelCase_ : np.ndarray = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : int = 0 , lowerCamelCase_ : int = None , lowerCamelCase_ : torch.Generator = None , lowerCamelCase_ : float = 0 , lowerCamelCase_ : float = 0 , lowerCamelCase_ : torch.Generator = None , lowerCamelCase_ : float = 0 , lowerCamelCase_ : torch.Tensor = None , lowerCamelCase_ : torch.Tensor = None , lowerCamelCase_ : Optional[Any]=True , ): """simple docstring""" UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCamelCase_ ) UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCamelCase_ , device=self.device , ) UpperCamelCase = noise UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.mel.audio_slice_to_image(lowerCamelCase_ ) UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) UpperCamelCase = (input_image / 255) * 2 - 1 UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: UpperCamelCase = self.vqvae.encode(torch.unsqueeze(lowerCamelCase_ , 0 ) ).latent_dist.sample( generator=lowerCamelCase_ )[0] UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: UpperCamelCase = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , self.scheduler.timesteps[start_step - 1] ) UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) UpperCamelCase = int(mask_start_secs * pixels_per_second ) UpperCamelCase = int(mask_end_secs * pixels_per_second ) UpperCamelCase = self.scheduler.add_noise(lowerCamelCase_ , lowerCamelCase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCamelCase_ ): UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["""sample"""] else: UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ )["""sample"""] if isinstance(self.scheduler , lowerCamelCase_ ): UpperCamelCase = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , )["""prev_sample"""] else: UpperCamelCase = self.scheduler.step( model_output=lowerCamelCase_ , timestep=lowerCamelCase_ , sample=lowerCamelCase_ , generator=lowerCamelCase_ , )["""prev_sample"""] if mask is not None: if mask_start > 0: UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images UpperCamelCase = self.vqvae.decode(lowerCamelCase_ )["""sample"""] UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() UpperCamelCase = (images * 255).round().astype("""uint8""" ) UpperCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCamelCase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) UpperCamelCase = [self.mel.image_to_audio(lowerCamelCase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCamelCase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCamelCase_ ) ) @torch.no_grad() def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : List[Image.Image] , lowerCamelCase_ : int = 50 ): """simple docstring""" assert isinstance(self.scheduler , lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ ) UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) UpperCamelCase = (sample / 255) * 2 - 1 UpperCamelCase = torch.Tensor(lowerCamelCase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps UpperCamelCase = self.scheduler.alphas_cumprod[t] UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) UpperCamelCase = 1 - alpha_prod_t UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ )["""sample"""] UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase_ ( lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : float ): """simple docstring""" UpperCamelCase = acos(torch.dot(torch.flatten(lowerCamelCase_ ) , torch.flatten(lowerCamelCase_ ) ) / torch.norm(lowerCamelCase_ ) / torch.norm(lowerCamelCase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCamelCase_ ) + sin(alpha * theta ) * xa / sin(lowerCamelCase_ )
343
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _SCREAMING_SNAKE_CASE = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ("""transformer.decoder.ref_point_head.layers.0.weight""", """decoder.ref_point_head.layers.0.weight"""), ("""transformer.decoder.ref_point_head.layers.0.bias""", """decoder.ref_point_head.layers.0.bias"""), ("""transformer.decoder.ref_point_head.layers.1.weight""", """decoder.ref_point_head.layers.1.weight"""), ("""transformer.decoder.ref_point_head.layers.1.bias""", """decoder.ref_point_head.layers.1.bias"""), ("""transformer.decoder.query_scale.layers.0.weight""", """decoder.query_scale.layers.0.weight"""), ("""transformer.decoder.query_scale.layers.0.bias""", """decoder.query_scale.layers.0.bias"""), ("""transformer.decoder.query_scale.layers.1.weight""", """decoder.query_scale.layers.1.weight"""), ("""transformer.decoder.query_scale.layers.1.bias""", """decoder.query_scale.layers.1.bias"""), ("""transformer.decoder.layers.0.ca_qpos_proj.weight""", """decoder.layers.0.ca_qpos_proj.weight"""), ("""transformer.decoder.layers.0.ca_qpos_proj.bias""", """decoder.layers.0.ca_qpos_proj.bias"""), ] ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def lowercase( UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = """""" if is_panoptic: UpperCamelCase = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Any: '''simple docstring''' UpperCamelCase = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase = """resnet101""" if "dc5" in model_name: UpperCamelCase = True UpperCamelCase = """panoptic""" in model_name if is_panoptic: UpperCamelCase = 250 else: UpperCamelCase = 91 UpperCamelCase = """huggingface/label-files""" UpperCamelCase = """coco-detection-id2label.json""" UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase = """coco_panoptic""" if is_panoptic else """coco_detection""" UpperCamelCase = ConditionalDetrImageProcessor(format=UpperCamelCase_ ) # prepare image UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub UpperCamelCase = torch.hub.load("""DeppMeng/ConditionalDETR""" , UpperCamelCase_ , pretrained=UpperCamelCase_ ).eval() UpperCamelCase = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase = """conditional_detr.""" + src rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ , is_panoptic=UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): UpperCamelCase = state_dict.pop(UpperCamelCase_ ) UpperCamelCase = val # finally, create HuggingFace model and load state dict UpperCamelCase = ConditionalDetrForSegmentation(UpperCamelCase_ ) if is_panoptic else ConditionalDetrForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() model.push_to_hub(repo_id=UpperCamelCase_ , organization="""DepuMeng""" , commit_message="""Add model""" ) # verify our conversion UpperCamelCase = conditional_detr(UpperCamelCase_ ) UpperCamelCase = model(UpperCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""conditional_detr_resnet50""", type=str, help="""Name of the CONDITIONAL_DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
343
1
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowerCamelCase : int = '''__DUMMY_TRANSFORMERS_USER__''' _lowerCamelCase : Any = '''Dummy User''' _lowerCamelCase : List[Any] = '''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''' _lowerCamelCase : List[Any] = '''https://hub-ci.huggingface.co''' _lowerCamelCase : Tuple = CI_HUB_ENDPOINT + '''/datasets/{repo_id}/resolve/{revision}/{path}''' _lowerCamelCase : List[str] = CI_HUB_ENDPOINT + '''/{repo_id}/resolve/{revision}/{filename}''' _lowerCamelCase : Tuple = Path('''~/.huggingface/hub_ci_token''').expanduser() @pytest.fixture def a_ ( __lowercase : List[Any] ) -> str: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , __lowercase ) @pytest.fixture def a_ ( __lowercase : List[str] ) -> Tuple: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , __lowercase ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , __lowercase ) @pytest.fixture def a_ ( __lowercase : Optional[Any] ) -> Tuple: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , __lowercase ) @pytest.fixture def a_ ( __lowercase : List[str] , __lowercase : Dict ) -> Optional[Any]: HfFolder.save_token(__lowercase ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def a_ ( ) -> Optional[int]: return HfApi(endpoint=__lowercase ) @pytest.fixture(scope='session' ) def a_ ( __lowercase : HfApi ) -> List[Any]: _snake_case = HfFolder.get_token() HfFolder.save_token(__lowercase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__lowercase ) @pytest.fixture def a_ ( __lowercase : Any ) -> List[Any]: def _cleanup_repo(__lowercase : str ): hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def a_ ( __lowercase : str ) -> List[str]: @contextmanager def _temporary_repo(__lowercase : int ): try: yield repo_id finally: cleanup_repo(__lowercase ) return _temporary_repo @pytest.fixture(scope='session' ) def a_ ( __lowercase : HfApi , __lowercase : str , __lowercase : Tuple ) -> Optional[int]: _snake_case = f'''repo_txt_data-{int(time.time() * 10E3 )}''' _snake_case = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase ) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase ) , path_in_repo='data/text_data.txt' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a_ ( __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Optional[Any] ) -> Dict: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def a_ ( __lowercase : HfApi , __lowercase : Dict , __lowercase : Any ) -> Tuple: _snake_case = f'''repo_zipped_txt_data-{int(time.time() * 10E3 )}''' _snake_case = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase ) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase ) , path_in_repo='data.zip' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a_ ( __lowercase : int , __lowercase : Tuple , __lowercase : List[Any] ) -> Dict: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def a_ ( __lowercase : HfApi , __lowercase : List[str] , __lowercase : int ) -> Optional[Any]: _snake_case = f'''repo_zipped_img_data-{int(time.time() * 10E3 )}''' _snake_case = f'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase ) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase ) , path_in_repo='data.zip' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def a_ ( __lowercase : Dict , __lowercase : str , __lowercase : Optional[int] ) -> str: return hf_private_dataset_repo_zipped_img_data_
369
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = "canine" def __init__( self : int , lowercase : Optional[int]=768 , lowercase : Tuple=12 , lowercase : Union[str, Any]=12 , lowercase : Optional[int]=3_072 , lowercase : Tuple="gelu" , lowercase : Optional[Any]=0.1 , lowercase : Tuple=0.1 , lowercase : int=16_384 , lowercase : Optional[int]=16 , lowercase : Optional[int]=0.02 , lowercase : Optional[Any]=1E-12 , lowercase : Optional[Any]=0 , lowercase : Dict=0xE000 , lowercase : Optional[Any]=0xE001 , lowercase : Union[str, Any]=4 , lowercase : str=4 , lowercase : Optional[int]=8 , lowercase : List[str]=16_384 , lowercase : Union[str, Any]=128 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Character config: _snake_case = downsampling_rate _snake_case = upsampling_kernel_size _snake_case = num_hash_functions _snake_case = num_hash_buckets _snake_case = local_transformer_stride
130
0
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = DownBlockaD # noqa F405 lowerCAmelCase__ = "down" def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ResnetDownsampleBlockaD # noqa F405 lowerCAmelCase__ = "down" def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AttnDownBlockaD # noqa F405 lowerCAmelCase__ = "down" def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = CrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = "down" def UpperCAmelCase__ ( self : Dict ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = SimpleCrossAttnDownBlockaD # noqa F405 lowerCAmelCase__ = "down" @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = SkipDownBlockaD # noqa F405 lowerCAmelCase__ = "down" @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_skip_sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AttnSkipDownBlockaD # noqa F405 lowerCAmelCase__ = "down" @property def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_skip_sample=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = DownEncoderBlockaD # noqa F405 lowerCAmelCase__ = "down" @property def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = { """in_channels""": 32, """out_channels""": 32, } __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AttnDownEncoderBlockaD # noqa F405 lowerCAmelCase__ = "down" @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = { """in_channels""": 32, """out_channels""": 32, } __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = UNetMidBlockaD # noqa F405 lowerCAmelCase__ = "mid" def UpperCAmelCase__ ( self : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = { """in_channels""": 32, """temb_channels""": 128, } __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = UNetMidBlockaDCrossAttn # noqa F405 lowerCAmelCase__ = "mid" def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = UNetMidBlockaDSimpleCrossAttn # noqa F405 lowerCAmelCase__ = "mid" @property def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = UpBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ResnetUpsampleBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : Optional[int] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = CrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : Any ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = SimpleCrossAttnUpBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE , include_encoder_hidden_states=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 32 return init_dict, inputs_dict def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AttnUpBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = SkipUpBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AttnSkipUpBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = UpDecoderBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = {"""in_channels""": 32, """out_channels""": 32} __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = AttnUpDecoderBlockaD # noqa F405 lowerCAmelCase__ = "up" @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = {"""in_channels""": 32, """out_channels""": 32} __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(__SCREAMING_SNAKE_CASE )
267
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase__ ( a , a ): """simple docstring""" lowerCAmelCase__ = "maskformer-swin" lowerCAmelCase__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple=224 , __SCREAMING_SNAKE_CASE : str=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=96 , __SCREAMING_SNAKE_CASE : Optional[Any]=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE : Any=[3, 6, 12, 24] , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : Dict=4.0 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : List[Any]="gelu" , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-5 , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) ) __SCREAMING_SNAKE_CASE = ["""stem"""] + [f'stage{idx}' for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
267
1
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _lowercase : Tuple = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[str]=False , ): """simple docstring""" output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any = False ): """simple docstring""" lowercase_ : List[Any] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase_ : Union[str, Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase_ : str = """cpu""" lowercase_ : str = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase , torch_dtype=_lowerCAmelCase ).to(_lowerCAmelCase ) lowercase_ : Union[str, Any] = Path(_lowerCAmelCase ) # TEXT ENCODER lowercase_ : Dict = pipeline.text_encoder.config.max_position_embeddings lowercase_ : Tuple = pipeline.text_encoder.config.hidden_size lowercase_ : Union[str, Any] = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_lowerCAmelCase , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=_lowerCAmelCase , ) del pipeline.text_encoder # UNET lowercase_ : str = pipeline.unet.config.in_channels lowercase_ : Optional[int] = pipeline.unet.config.sample_size lowercase_ : Tuple = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(2 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(2 , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=_lowerCAmelCase , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , ) lowercase_ : str = str(unet_path.absolute().as_posix() ) lowercase_ : Any = os.path.dirname(_lowerCAmelCase ) lowercase_ : List[Any] = onnx.load(_lowerCAmelCase ) # clean up existing tensor files shutil.rmtree(_lowerCAmelCase ) os.mkdir(_lowerCAmelCase ) # collate external tensor files into one onnx.save_model( _lowerCAmelCase , _lowerCAmelCase , save_as_external_data=_lowerCAmelCase , all_tensors_to_one_file=_lowerCAmelCase , location='''weights.pb''' , convert_attribute=_lowerCAmelCase , ) del pipeline.unet # VAE ENCODER lowercase_ : Any = pipeline.vae lowercase_ : Union[str, Any] = vae_encoder.config.in_channels lowercase_ : Tuple = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase_ : Optional[int] = lambda __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : vae_encoder.encode(_lowerCAmelCase , _lowerCAmelCase )[0].sample() onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=_lowerCAmelCase , ) # VAE DECODER lowercase_ : Optional[Any] = pipeline.vae lowercase_ : Dict = vae_decoder.config.latent_channels lowercase_ : str = vae_decoder.config.out_channels # forward only through the decoder part lowercase_ : Union[str, Any] = vae_encoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=_lowerCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase_ : Optional[Any] = pipeline.safety_checker lowercase_ : List[Any] = safety_checker.config.vision_config.num_channels lowercase_ : Tuple = safety_checker.config.vision_config.image_size lowercase_ : Dict = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), torch.randn(1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=_lowerCAmelCase , ) del pipeline.safety_checker lowercase_ : Dict = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowercase_ : Any = pipeline.feature_extractor else: lowercase_ : Any = None lowercase_ : Dict = None lowercase_ : Tuple = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_lowerCAmelCase ) print('''ONNX pipeline saved to''' , _lowerCAmelCase ) del pipeline del onnx_pipeline lowercase_ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowercase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
371
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : Optional[int] = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" lowercase_ : int = {} lowercase_ : Any = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase_ : Tuple = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase_ : Tuple = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase_ : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase_ : List[Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase_ : str = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = flax_dict[key] lowercase_ : Any = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase_ : str = torch.from_numpy(converted_dict[key].T ) else: lowercase_ : str = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def snake_case_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[Any]=False ): """simple docstring""" lowercase_ : List[str] = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: lowercase_ : List[str] = PixaStructVisionConfig() lowercase_ : Optional[Any] = PixaStructTextConfig() else: lowercase_ : Optional[int] = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase_ : Dict = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) lowercase_ : str = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) lowercase_ : int = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase_ : str = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase_ : List[Any] = PixaStructImageProcessor() lowercase_ : int = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: lowercase_ : Tuple = 4096 lowercase_ : Optional[int] = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") _lowercase : Tuple = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
264
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=_snake_case , ) assert hasattr(self , """env""" ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = F'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings _lowerCAmelCase = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_snake_case , instance_count=_snake_case , instance_type=self.instance_type , debugger_hook_config=_snake_case , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_snake_case , py_version="""py36""" , ) def snake_case ( self , _snake_case ): """simple docstring""" TrainingJobAnalytics(_snake_case ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.create_estimator(_snake_case ) # run training estimator.fit() # result dataframe _lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) _lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _snake_case )
82
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } UpperCAmelCase : str = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : int="<mask>" , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
115
0
lowercase_ = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' A__ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase_ = [None] * 10000000 lowercase_ = True lowercase_ = False def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore A__ = chain(next_number(SCREAMING_SNAKE_CASE__ ) ) A__ = number_chain while number < 10000000: A__ = number_chain number *= 10 return number_chain def _snake_case( SCREAMING_SNAKE_CASE__ : int = 10000000 ) -> int: '''simple docstring''' for i in range(1 , SCREAMING_SNAKE_CASE__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
364
from __future__ import annotations from scipy.special import comb # type: ignore class A : """simple docstring""" def __init__( self : Any,lowercase_ : list[tuple[float, float]] )-> Optional[int]: '''simple docstring''' A__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. A__ = len(lowercase_ ) - 1 def snake_case__ ( self : List[Any],lowercase_ : float )-> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree,lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase_ ),5 ) == 1 return output_values def snake_case__ ( self : str,lowercase_ : float )-> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." A__ = self.basis_function(lowercase_ ) A__ = 0.0 A__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def snake_case__ ( self : str,lowercase_ : float = 0.01 )-> str: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore A__ = [] # x coordinates of points to plot A__ = [] # y coordinates of points to plot A__ = 0.0 while t <= 1: A__ = self.bezier_curve_function(lowercase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size A__ = [i[0] for i in self.list_of_points] A__ = [i[1] for i in self.list_of_points] plt.plot( lowercase_,lowercase_,color='blue',label='Curve of Degree ' + str(self.degree ),) plt.scatter(lowercase_,lowercase_,color='red',label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
282
0
from __future__ import annotations def _a ( a :int , a :int ) -> list[list[int]]: a = [] create_all_state(1 , _UpperCamelCase , _UpperCamelCase , [] , _UpperCamelCase ) return result def _a ( a :int , a :int , a :int , a :list[int] , a :list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(_UpperCamelCase , total_number - level + 2 ): current_list.append(_UpperCamelCase ) create_all_state(i + 1 , _UpperCamelCase , level - 1 , _UpperCamelCase , _UpperCamelCase ) current_list.pop() def _a ( a :list[list[int]] ) -> None: for i in total_list: print(*_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase__ = 4 UpperCAmelCase__ = 2 UpperCAmelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[int]=False ) -> Optional[Any]: """simple docstring""" snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: snake_case = '' else: snake_case = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) snake_case = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[ : config.hidden_size, : ] snake_case = in_proj_bias[: config.hidden_size] snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case = in_proj_weight[ -config.hidden_size :, : ] snake_case = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Any: """simple docstring""" snake_case = dct.pop(_UpperCamelCase ) snake_case = val def lowerCAmelCase__ ( ) -> Dict: """simple docstring""" snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" snake_case = DeiTConfig() # all deit models have fine-tuned heads snake_case = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = 'imagenet-1k-id2label.json' snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = int(deit_name[-6:-4] ) snake_case = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case = 1_9_2 snake_case = 7_6_8 snake_case = 1_2 snake_case = 3 elif deit_name[9:].startswith('small' ): snake_case = 3_8_4 snake_case = 1_5_3_6 snake_case = 1_2 snake_case = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case = 1_0_2_4 snake_case = 4_0_9_6 snake_case = 2_4 snake_case = 1_6 # load original model from timm snake_case = timm.create_model(_UpperCamelCase , pretrained=_UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case = timm_model.state_dict() snake_case = create_rename_keys(_UpperCamelCase , _UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model snake_case = DeiTForImageClassificationWithTeacher(_UpperCamelCase ).eval() model.load_state_dict(_UpperCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case = DeiTImageProcessor(size=_UpperCamelCase , crop_size=config.image_size ) snake_case = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case = encoding['pixel_values'] snake_case = model(_UpperCamelCase ) snake_case = timm_model(_UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCamelCase , outputs.logits , atol=1e-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
150
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = ["model.decoder.embed_positions.weights"] def A ( _lowerCamelCase ): '''simple docstring''' if "emb" in name: _lowerCAmelCase : List[Any] = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: _lowerCAmelCase : Optional[Any] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: _lowerCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: _lowerCAmelCase : Dict = name.replace("linear1" , "fc1" ) if "linear2" in name: _lowerCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: _lowerCAmelCase : Optional[Any] = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: _lowerCAmelCase : Union[str, Any] = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: _lowerCAmelCase : Tuple = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: _lowerCAmelCase : Any = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: _lowerCAmelCase : Dict = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _lowerCAmelCase : Union[str, Any] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[str] = list(state_dict.keys() ) _lowerCAmelCase : str = {} for key in keys: _lowerCAmelCase : Optional[int] = state_dict.pop(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = rename_keys(_lowerCamelCase ) if "in_proj_weight" in key: # split fused qkv proj _lowerCAmelCase : int = val[:hidden_size, :] _lowerCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] _lowerCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _lowerCAmelCase : Optional[int] = val else: _lowerCAmelCase : Union[str, Any] = val return state_dict, enc_dec_proj_state_dict def A ( _lowerCamelCase ): '''simple docstring''' if checkpoint == "small": # default config values _lowerCAmelCase : Optional[int] = 1_024 _lowerCAmelCase : List[str] = 24 _lowerCAmelCase : int = 16 elif checkpoint == "medium": _lowerCAmelCase : str = 1_536 _lowerCAmelCase : str = 48 _lowerCAmelCase : Union[str, Any] = 24 elif checkpoint == "large": _lowerCAmelCase : Dict = 2_048 _lowerCAmelCase : Any = 48 _lowerCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) _lowerCAmelCase : int = MusicgenDecoderConfig( hidden_size=_lowerCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCamelCase , num_attention_heads=_lowerCamelCase , ) return config @torch.no_grad() def A ( _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="cpu" ): '''simple docstring''' _lowerCAmelCase : Any = MusicGen.get_pretrained(_lowerCamelCase , device=_lowerCamelCase ) _lowerCAmelCase : int = decoder_config_from_checkpoint(_lowerCamelCase ) _lowerCAmelCase : List[Any] = fairseq_model.lm.state_dict() _lowerCAmelCase , _lowerCAmelCase : Any = rename_state_dict( _lowerCamelCase , hidden_size=decoder_config.hidden_size ) _lowerCAmelCase : Optional[Any] = TaEncoderModel.from_pretrained("t5-base" ) _lowerCAmelCase : Tuple = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _lowerCAmelCase : Union[str, Any] = MusicgenForCausalLM(_lowerCamelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = decoder.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(_lowerCamelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model _lowerCAmelCase : Any = MusicgenForConditionalGeneration(text_encoder=_lowerCamelCase , audio_encoder=_lowerCamelCase , decoder=_lowerCamelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCamelCase ) # check we can do a forward pass _lowerCAmelCase : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _lowerCAmelCase : List[str] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _lowerCAmelCase : Dict = model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _lowerCAmelCase : int = AutoTokenizer.from_pretrained("t5-base" ) _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) _lowerCAmelCase : Tuple = MusicgenProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) # set the appropriate bos/pad token ids _lowerCAmelCase : Optional[Any] = 2_048 _lowerCAmelCase : Any = 2_048 # set other default generation config params _lowerCAmelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) _lowerCAmelCase : Dict = True _lowerCAmelCase : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(_lowerCamelCase ) processor.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) _snake_case = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
300
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") _lowerCAmelCase : Tuple = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(_lowerCamelCase ): os.makedirs(_lowerCamelCase ) _lowerCAmelCase : Any = model.state_dict() def to_tf_var_name(_lowerCamelCase ): for patt, repl in iter(_lowerCamelCase ): _lowerCAmelCase : str = name.replace(_lowerCamelCase , _lowerCamelCase ) return F"bert/{name}" def create_tf_var(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[Any] = tf.dtypes.as_dtype(tensor.dtype ) _lowerCAmelCase : Optional[int] = tf.get_variable(dtype=_lowerCamelCase , shape=tensor.shape , name=_lowerCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowerCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCAmelCase : Optional[Any] = to_tf_var_name(_lowerCamelCase ) _lowerCAmelCase : Any = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCAmelCase : Tuple = torch_tensor.T _lowerCAmelCase : str = create_tf_var(tensor=_lowerCamelCase , name=_lowerCamelCase , session=_lowerCamelCase ) tf.keras.backend.set_value(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : Optional[int] = session.run(_lowerCamelCase ) print(F"Successfully created {tf_name}: {np.allclose(_lowerCamelCase , _lowerCamelCase )}" ) _lowerCAmelCase : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(_lowerCamelCase , os.path.join(_lowerCamelCase , model_name.replace("-" , "_" ) + ".ckpt" ) ) def A ( _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--model_name" , type=_lowerCamelCase , required=_lowerCamelCase , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=_lowerCamelCase , default=_lowerCamelCase , required=_lowerCamelCase , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=_lowerCamelCase , required=_lowerCamelCase , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=_lowerCamelCase , required=_lowerCamelCase , help="Directory in which to save tensorflow model" ) _lowerCAmelCase : Optional[Any] = parser.parse_args(_lowerCamelCase ) _lowerCAmelCase : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowerCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
300
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __A( a ): snake_case_ = ['''image_processor''', '''tokenizer'''] snake_case_ = '''AutoImageProcessor''' snake_case_ = '''AutoTokenizer''' def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> str: '''simple docstring''' __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) __a = self.image_processor __a = False def __call__( self , *_snake_case , **_snake_case ) -> Optional[int]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) __a = kwargs.pop('''images''' , _snake_case ) __a = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: __a = args[0] __a = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: __a = self.image_processor(_snake_case , *_snake_case , **_snake_case ) if text is not None: __a = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif images is None: return encodings else: __a = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , *_snake_case , **_snake_case ) -> int: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) __a = True __a = self.tokenizer yield __a = self.image_processor __a = False def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False , _snake_case=None ) -> int: '''simple docstring''' if added_vocab is None: __a = self.tokenizer.get_added_vocab() __a = {} while tokens: __a = re.search(r'''<s_(.*?)>''' , _snake_case , re.IGNORECASE ) if start_token is None: break __a = start_token.group(1 ) __a = re.search(rF"""</s_{key}>""" , _snake_case , re.IGNORECASE ) __a = start_token.group() if end_token is None: __a = tokens.replace(_snake_case , '''''' ) else: __a = end_token.group() __a = re.escape(_snake_case ) __a = re.escape(_snake_case ) __a = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _snake_case , re.IGNORECASE ) if content is not None: __a = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __a = self.tokenajson(_snake_case , is_inner_value=_snake_case , added_vocab=_snake_case ) if value: if len(_snake_case ) == 1: __a = value[0] __a = value else: # leaf nodes __a = [] for leaf in content.split(r'''<sep/>''' ): __a = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __a = leaf[1:-2] # for categorical special tokens output[key].append(_snake_case ) if len(output[key] ) == 1: __a = output[key][0] __a = tokens[tokens.find(_snake_case ) + len(_snake_case ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_snake_case , added_vocab=_snake_case ) if len(_snake_case ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _snake_case , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _snake_case , ) return self.image_processor
6
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Any , *lowercase_ :str , **lowercase_ :List[Any] ) -> Union[str, Any]: super().__init__(*lowercase_ , **lowercase_ ) self.check_model_type(lowercase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any=None , lowercase_ :Optional[int]=None , lowercase_ :Tuple=None , **lowercase_ :Tuple ) -> Dict: UpperCAmelCase , UpperCAmelCase = {}, {} if padding is not None: UpperCAmelCase = padding if truncation is not None: UpperCAmelCase = truncation if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self :List[Any] , lowercase_ :Union["Image.Image", str] , lowercase_ :str = None , **lowercase_ :Union[str, Any] ) -> Union[str, Any]: if isinstance(lowercase_ , (Image.Image, str) ) and isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = {'image': image, 'question': question} else: UpperCAmelCase = image UpperCAmelCase = super().__call__(lowercase_ , **lowercase_ ) return results def UpperCAmelCase__ ( self :List[str] , lowercase_ :List[Any] , lowercase_ :int=False , lowercase_ :Optional[int]=False ) -> Union[str, Any]: UpperCAmelCase = load_image(inputs['image'] ) UpperCAmelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=lowercase_ , truncation=lowercase_ ) UpperCAmelCase = self.image_processor(images=lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> Any: UpperCAmelCase = self.model(**lowercase_ ) return model_outputs def UpperCAmelCase__ ( self :Dict , lowercase_ :Tuple , lowercase_ :List[Any]=5 ) -> Union[str, Any]: if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase = probs.topk(lowercase_ ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
78
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCamelCase: Tuple = get_tests_dir('fixtures') _UpperCamelCase: Optional[int] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _UpperCamelCase: str = get_tests_dir('fixtures/dummy-config.json') class a__ ( unittest.TestCase ): def lowercase ( self : str ) -> List[Any]: lowercase : Tuple = 0 def lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowercase : Tuple = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : str ) -> Dict: lowercase : List[str] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Any ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ).to_dict() config_dict.pop('feature_extractor_type' ) lowercase : str = WavaVecaFeatureExtractor(**lowerCAmelCase ) # save in new folder model_config.save_pretrained(lowerCAmelCase ) config.save_pretrained(lowerCAmelCase ) lowercase : int = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) # make sure private variable is not incorrectly saved lowercase : Any = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : Dict ) -> Dict: lowercase : Any = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) def lowercase ( self : List[Any] ) -> Optional[int]: with self.assertRaisesRegex( lowerCAmelCase, 'bert-base is not a local folder and is not a valid model identifier' ): lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained('bert-base' ) def lowercase ( self : Dict ) -> str: with self.assertRaisesRegex( lowerCAmelCase, R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase, revision='aaaaaa' ) def lowercase ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( lowerCAmelCase, 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.', ): lowercase : Tuple = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def lowercase ( self : Tuple ) -> Dict: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowerCAmelCase ): lowercase : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase ): lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=lowerCAmelCase ) lowercase : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase ) lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase, trust_remote_code=lowerCAmelCase ) self.assertEqual(reloaded_feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) def lowercase ( self : List[str] ) -> int: try: AutoConfig.register('custom', lowerCAmelCase ) AutoFeatureExtractor.register(lowerCAmelCase, lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase ): AutoFeatureExtractor.register(lowerCAmelCase, lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase : Union[str, Any] = CustomFeatureExtractor.from_pretrained(lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCAmelCase ) lowercase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase, lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowercase ( self : List[str] ) -> int: class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = True try: AutoConfig.register('custom', lowerCAmelCase ) AutoFeatureExtractor.register(lowerCAmelCase, lowerCAmelCase ) # If remote code is not set, the default is to use local lowercase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowercase : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowercase : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor', trust_remote_code=lowerCAmelCase ) self.assertEqual(feature_extractor.__class__.__name__, 'NewFeatureExtractor' ) self.assertTrue(not hasattr(lowerCAmelCase, 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
53
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a__ ( SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = PhobertTokenizer _lowerCamelCase = False def lowercase ( self : Optional[Any] ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Optional[Any] = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] lowercase : Any = dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowercase : int = ['#version: 0.2', 'l à</w>'] lowercase : Tuple = {'unk_token': '<unk>'} lowercase : int = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowercase : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase ) ) def lowercase ( self : List[str], **lowerCAmelCase : Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase ) def lowercase ( self : Union[str, Any], lowerCAmelCase : Dict ) -> Optional[int]: lowercase : List[Any] = 'Tôi là VinAI Research' lowercase : Any = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def lowercase ( self : int ) -> Tuple: lowercase : List[Any] = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase : List[str] = 'Tôi là VinAI Research' lowercase : Dict = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() lowercase : int = tokenizer.tokenize(lowerCAmelCase ) print(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, lowerCAmelCase ) lowercase : str = tokens + [tokenizer.unk_token] lowercase : Tuple = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ), lowerCAmelCase )
53
1
'''simple docstring''' from PIL import Image def __magic_name__( lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase = image.size __lowerCAmelCase = 0 __lowerCAmelCase = image.load() for i in range(lowerCamelCase): for j in range(lowerCamelCase): __lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCamelCase): for i in range(lowerCamelCase): __lowerCAmelCase = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCAmelCase : Dict = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
174
'''simple docstring''' def __magic_name__( lowerCamelCase): __lowerCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __lowerCAmelCase = set() return any( node not in visited and depth_first_search(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) for node in graph) def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): visited.add(lowerCamelCase) rec_stk.add(lowerCamelCase) for node in graph[vertex]: if node not in visited: if depth_first_search(lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowerCamelCase) return False if __name__ == "__main__": from doctest import testmod testmod()
174
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __A : List[Any] = logging.getLogger(__name__) class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = "sequence-classification" def __init__(self : Tuple , __SCREAMING_SNAKE_CASE : str): if type(__SCREAMING_SNAKE_CASE) == dict: A = Namespace(**__SCREAMING_SNAKE_CASE) A = glue_output_modes[hparams.task] A = glue_tasks_num_labels[hparams.task] super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.mode) def SCREAMING_SNAKE_CASE__ (self : Any , **__SCREAMING_SNAKE_CASE : Optional[int]): return self.model(**__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any): A = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None A = self(**__SCREAMING_SNAKE_CASE) A = outputs[0] A = self.trainer.lr_schedulers[0]["scheduler"] A = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def SCREAMING_SNAKE_CASE__ (self : str): A = self.hparams A = processors[args.task]() A = processor.get_labels() for mode in ["train", "dev"]: A = self._feature_file(__SCREAMING_SNAKE_CASE) if os.path.exists(__SCREAMING_SNAKE_CASE) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , __SCREAMING_SNAKE_CASE) else: logger.info("Creating features from dataset file at %s" , args.data_dir) A = ( processor.get_dev_examples(args.data_dir) if mode == "dev" else processor.get_train_examples(args.data_dir) ) A = convert_examples_to_features( __SCREAMING_SNAKE_CASE , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , __SCREAMING_SNAKE_CASE) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : bool = False): A = "dev" if mode == "test" else mode A = self._feature_file(__SCREAMING_SNAKE_CASE) logger.info("Loading features from cached file %s" , __SCREAMING_SNAKE_CASE) A = torch.load(__SCREAMING_SNAKE_CASE) A = torch.tensor([f.input_ids for f in features] , dtype=torch.long) A = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) A = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": A = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": A = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) , batch_size=__SCREAMING_SNAKE_CASE , shuffle=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str]): A = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None A = self(**__SCREAMING_SNAKE_CASE) A , A = outputs[:2] A = logits.detach().cpu().numpy() A = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : Dict): A = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item() A = np.concatenate([x["pred"] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": A = np.argmax(__SCREAMING_SNAKE_CASE , axis=1) elif self.hparams.glue_output_mode == "regression": A = np.squeeze(__SCREAMING_SNAKE_CASE) A = np.concatenate([x["target"] for x in outputs] , axis=0) A = [[] for _ in range(out_label_ids.shape[0])] A = [[] for _ in range(out_label_ids.shape[0])] A = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)} A = dict(results.items()) A = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE__ (self : Dict , __SCREAMING_SNAKE_CASE : list): A , A , A = self._eval_end(__SCREAMING_SNAKE_CASE) A = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple): A , A , A = self._eval_end(__SCREAMING_SNAKE_CASE) A = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE__ (__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int): BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) parser.add_argument( "--max_seq_length" , default=1_2_8 , type=__SCREAMING_SNAKE_CASE , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=__SCREAMING_SNAKE_CASE , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets") return parser def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" A = argparse.ArgumentParser() add_generic_args(lowercase__ , os.getcwd() ) A = GLUETransformer.add_model_specific_args(lowercase__ , os.getcwd() ) A = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A = os.path.join( "./results" , F"""{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}""" , ) os.makedirs(args.output_dir ) A = GLUETransformer(lowercase__ ) A = generic_train(lowercase__ , lowercase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=lowercase__ ) ) A = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowercase__ ) if __name__ == "__main__": main()
353
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __A : Union[str, Any] = get_logger(__name__) class __UpperCamelCase ( enum.Enum ): SCREAMING_SNAKE_CASE = "all_checks" SCREAMING_SNAKE_CASE = "basic_checks" SCREAMING_SNAKE_CASE = "no_checks" class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None ): """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase__ ) - set(lowercase__ ) ) ) A = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] A = " for " + verification_name if verification_name is not None else "" if len(lowercase__ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass class __UpperCamelCase ( _A ): pass def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) A = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase__ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase__ ) ) logger.info("All the splits matched successfully." ) def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ = True ): """simple docstring""" if record_checksum: A = shaaaa() with open(lowercase__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(lowercase__ ) A = m.hexdigest() else: A = None return {"num_bytes": os.path.getsize(lowercase__ ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
57
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin snake_case : List[str] = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class _snake_case ( unittest.TestCase , _snake_case ): def SCREAMING_SNAKE_CASE__ ( self ): a :int = load_tool('''text-question-answering''' ) self.tool.setup() a :List[str] = load_tool('''text-question-answering''' , remote=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.tool(_lowerCamelCase , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_lowerCamelCase , '''launched the BigScience Research Workshop''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.remote_tool(_lowerCamelCase , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(_lowerCamelCase , '''launched the BigScience Research Workshop''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.tool(text=_lowerCamelCase , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_lowerCamelCase , '''launched the BigScience Research Workshop''' ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.remote_tool(text=_lowerCamelCase , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(_lowerCamelCase , '''launched the BigScience Research Workshop''' )
94
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : dict , UpperCAmelCase_ : str ): """simple docstring""" a , a :Optional[Any] = set(UpperCAmelCase_ ), [start] while stack: a :Optional[int] = stack.pop() explored.add(UpperCAmelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCAmelCase_ ) return explored snake_case : Optional[int] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
94
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
371
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : int _UpperCAmelCase : int class __lowercase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: list[list[Edge]] = [[] for _ in range(lowerCAmelCase__)] SCREAMING_SNAKE_CASE_: Dict = size def __getitem__( self : Dict , lowerCAmelCase__ : int): return iter(self._graph[vertex]) @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self._size def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1.") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size).") self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = deque([start_vertex]) SCREAMING_SNAKE_CASE_: list[int | None] = [None] * self.size SCREAMING_SNAKE_CASE_: List[Any] = 0 while queue: SCREAMING_SNAKE_CASE_: int = queue.popleft() SCREAMING_SNAKE_CASE_: str = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE_: Optional[int] = current_distance + edge.weight SCREAMING_SNAKE_CASE_: str = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase__ , lowerCAmelCase__) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE_: Any = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex.") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
127
0
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : List[Any] = x __UpperCamelCase : Optional[int] = y for step in range(snake_case__ ): # noqa: B007 __UpperCamelCase : str = a * a - b * b + x __UpperCamelCase : Union[str, Any] = 2 * a * b + y __UpperCamelCase : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCAmelCase ( snake_case__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __lowerCAmelCase ( snake_case__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case__ , 1 , 1 ) ) def __lowerCAmelCase ( snake_case__ = 800 , snake_case__ = 600 , snake_case__ = -0.6 , snake_case__ = 0 , snake_case__ = 3.2 , snake_case__ = 50 , snake_case__ = True , ): __UpperCamelCase : Tuple = Image.new("RGB" , (image_width, image_height) ) __UpperCamelCase : Tuple = img.load() # loop through the image-coordinates for image_x in range(snake_case__ ): for image_y in range(snake_case__ ): # determine the figure-coordinates based on the image-coordinates __UpperCamelCase : Dict = figure_width / image_width * image_height __UpperCamelCase : List[str] = figure_center_x + (image_x / image_width - 0.5) * figure_width __UpperCamelCase : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __UpperCamelCase : str = get_distance(snake_case__ , snake_case__ , snake_case__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __UpperCamelCase : List[Any] = get_color_coded_rgb(snake_case__ ) else: __UpperCamelCase : Dict = get_black_and_white_rgb(snake_case__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowerCAmelCase = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
298
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = '''RegNetConfig''' # Base docstring _lowerCAmelCase = '''facebook/regnet-y-040''' _lowerCAmelCase = [1, 1088, 7, 7] # Image classification docstring _lowerCAmelCase = '''facebook/regnet-y-040''' _lowerCAmelCase = '''tabby, tabby cat''' _lowerCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = 3 , _UpperCAmelCase = 1 , _UpperCAmelCase = 1 , _UpperCAmelCase = "relu" , **_UpperCAmelCase , ) -> Optional[int]: super().__init__(**_UpperCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase : Tuple = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=_UpperCAmelCase , strides=_UpperCAmelCase , padding="VALID" , groups=_UpperCAmelCase , use_bias=_UpperCAmelCase , name="convolution" , ) __UpperCamelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) __UpperCamelCase : List[str] = ACTaFN[activation] if activation is not None else tf.identity def a_ (self , _UpperCAmelCase ) -> Dict: __UpperCamelCase : str = self.convolution(self.padding(_UpperCAmelCase ) ) __UpperCamelCase : Dict = self.normalization(_UpperCAmelCase ) __UpperCamelCase : Dict = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> Optional[Any]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Any = config.num_channels __UpperCamelCase : str = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def a_ (self , _UpperCAmelCase ) -> Tuple: __UpperCamelCase : Dict = shape_list(_UpperCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase : Any = tf.transpose(_UpperCAmelCase , perm=(0, 2, 3, 1) ) __UpperCamelCase : List[Any] = self.embedder(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Any = tf.keras.layers.ConvaD( filters=_UpperCAmelCase , kernel_size=1 , strides=_UpperCAmelCase , use_bias=_UpperCAmelCase , name="convolution" ) __UpperCamelCase : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = False ) -> tf.Tensor: return self.normalization(self.convolution(_UpperCAmelCase ) , training=_UpperCAmelCase ) class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name="pooler" ) __UpperCamelCase : Optional[Any] = [ tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=_UpperCAmelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def a_ (self , _UpperCAmelCase ) -> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase : List[str] = self.pooler(_UpperCAmelCase ) for layer_module in self.attention: __UpperCamelCase : str = layer_module(_UpperCAmelCase ) __UpperCamelCase : List[Any] = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> int: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[Any] = in_channels != out_channels or stride != 1 __UpperCamelCase : List[str] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : List[Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase : Optional[Any] = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name="layer.2" ), ] __UpperCamelCase : Dict = ACTaFN[config.hidden_act] def a_ (self , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : List[Any] = hidden_state for layer_module in self.layers: __UpperCamelCase : Dict = layer_module(_UpperCAmelCase ) __UpperCamelCase : List[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __UpperCamelCase : Tuple = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1 , **_UpperCAmelCase ) -> Any: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : str = in_channels != out_channels or stride != 1 __UpperCamelCase : Optional[int] = max(1 , out_channels // config.groups_width ) __UpperCamelCase : Union[str, Any] = ( TFRegNetShortCut(_UpperCAmelCase , stride=_UpperCAmelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCamelCase : Union[str, Any] = [ TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(_UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase , name="layer.3" ), ] __UpperCamelCase : Union[str, Any] = ACTaFN[config.hidden_act] def a_ (self , _UpperCAmelCase ) -> int: __UpperCamelCase : str = hidden_state for layer_module in self.layers: __UpperCamelCase : Any = layer_module(_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual __UpperCamelCase : Union[str, Any] = self.activation(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , **_UpperCAmelCase ) -> int: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCamelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , name="layers.0" ), *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , name=f"layers.{i+1}" ) for i in range(depth - 1 )], ] def a_ (self , _UpperCAmelCase ) -> Any: for layer_module in self.layers: __UpperCamelCase : Dict = layer_module(_UpperCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): '''simple docstring''' def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> str: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCamelCase : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase , name=f"stages.{i+1}" ) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True ) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase : Any = hidden_states + (hidden_state,) __UpperCamelCase : Any = stage_module(_UpperCAmelCase ) if output_hidden_states: __UpperCamelCase : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) @keras_serializable class A ( tf.keras.layers.Layer ): '''simple docstring''' A = RegNetConfig def __init__(self , _UpperCAmelCase , **_UpperCAmelCase ) -> List[Any]: super().__init__(**_UpperCAmelCase ) __UpperCamelCase : Optional[int] = config __UpperCamelCase : List[Any] = TFRegNetEmbeddings(_UpperCAmelCase , name="embedder" ) __UpperCamelCase : Union[str, Any] = TFRegNetEncoder(_UpperCAmelCase , name="encoder" ) __UpperCamelCase : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCAmelCase , name="pooler" ) @unpack_inputs def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Union[str, Any] = self.embedder(_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : str = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : List[str] = encoder_outputs[0] __UpperCamelCase : Tuple = self.pooler(_UpperCAmelCase ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase : List[str] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) __UpperCamelCase : List[Any] = tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase : List[str] = tuple([tf.transpose(_UpperCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A = RegNetConfig A = "regnet" A = "pixel_values" @property def a_ (self ) -> List[Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _lowerCAmelCase = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCAmelCase = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> Tuple: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = TFRegNetMainLayer(_UpperCAmelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Tuple = self.regnet( pixel_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) -> int: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = config.num_labels __UpperCamelCase : Any = TFRegNetMainLayer(_UpperCAmelCase , name="regnet" ) # classification head __UpperCamelCase : List[str] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ (self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase : str = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase : Dict = self.regnet( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase , training=_UpperCAmelCase ) __UpperCamelCase : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase : List[str] = self.classifier[0](_UpperCAmelCase ) __UpperCamelCase : Optional[int] = self.classifier[1](_UpperCAmelCase ) __UpperCamelCase : str = None if labels is None else self.hf_compute_loss(labels=_UpperCAmelCase , logits=_UpperCAmelCase ) if not return_dict: __UpperCamelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
298
1
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a__ ( __lowercase , __lowercase ) -> Dict: _A = old_name if "patch_embed" in old_name: _A , _A , _A = old_name.split("." ) if layer == "0": _A = old_name.replace("0" , "convolution1" ) elif layer == "1": _A = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _A = old_name.replace("3" , "convolution2" ) else: _A = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , __lowercase ): _A = R"\b\d{2}\b" if bool(re.search(__lowercase , __lowercase ) ): _A = re.search(R"\d\.\d\d." , __lowercase ).group() else: _A = re.search(R"\d\.\d." , __lowercase ).group() if int(match[0] ) < 6: _A = old_name.replace(__lowercase , "" ) _A = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _A = "intermediate_stages." + trimmed_name else: _A = old_name.replace(__lowercase , "" ) if int(match[2] ) < num_meta4D_last_stage: _A = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _A = str(int(match[2] ) - num_meta4D_last_stage ) _A = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _A = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _A = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _A = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _A = trimmed_name.replace("fc2" , "linear_out" ) _A = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , __lowercase ): _A = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _A = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _A = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _A = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _A = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _A = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _A = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _A = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _A = new_name.replace("norm" , "layernorm" ) _A = "efficientformer." + new_name else: _A = "efficientformer.encoder." + new_name return new_name def a__ ( __lowercase , __lowercase ) -> List[str]: for key in checkpoint.copy().keys(): _A = checkpoint.pop(__lowercase ) _A = val return checkpoint def a__ ( ) -> Dict: _A = "http://images.cocodataset.org/val2017/000000039769.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return image def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: _A = torch.load(__lowercase , map_location="cpu" )["model"] _A = EfficientFormerConfig.from_json_file(__lowercase ) _A = EfficientFormerForImageClassificationWithTeacher(__lowercase ) _A = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _A = config.depths[-1] - config.num_metaad_blocks + 1 _A = convert_torch_checkpoint(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() _A = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _A = prepare_img() _A = 256 _A = 224 _A = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _A = processor(images=__lowercase , return_tensors="pt" ).pixel_values # original processing pipeline _A = Compose( [ Resize(__lowercase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowercase ), ToTensor(), Normalize(__lowercase , __lowercase ), ] ) _A = image_transforms(__lowercase ).unsqueeze(0 ) assert torch.allclose(__lowercase , __lowercase ) _A = model(__lowercase ) _A = outputs.logits _A = (1, 1000) if "l1" in model_name: _A = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , __lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _A = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , __lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _A = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=__lowercase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=__lowercase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) a_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
163
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig a_ = logging.get_logger(__name__) # General docstring a_ = "PoolFormerConfig" # Base docstring a_ = "sail/poolformer_s12" a_ = [1, 5_12, 7, 7] # Image classification docstring a_ = "sail/poolformer_s12" a_ = "tabby, tabby cat" a_ = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a__ ( __lowercase , __lowercase = 0.0 , __lowercase = False ) -> Dict: if drop_prob == 0.0 or not training: return input _A = 1 - drop_prob _A = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _A = keep_prob + torch.rand(__lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _A = input.div(__lowercase ) * random_tensor return output class snake_case ( nn.Module): def __init__( self : Any , a__ : Optional[float] = None ) -> None: '''simple docstring''' super().__init__() _A = drop_prob def a_ ( self : Optional[Any] , a__ : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(a__ , self.drop_prob , self.training ) def a_ ( self : List[str] ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class snake_case ( nn.Module): def __init__( self : Union[str, Any] , a__ : List[Any] , a__ : Any , a__ : List[Any] , a__ : Optional[int] , a__ : Dict , a__ : str=None ) -> Optional[Any]: '''simple docstring''' super().__init__() _A = patch_size if isinstance(a__ , collections.abc.Iterable ) else (patch_size, patch_size) _A = stride if isinstance(a__ , collections.abc.Iterable ) else (stride, stride) _A = padding if isinstance(a__ , collections.abc.Iterable ) else (padding, padding) _A = nn.Convad(a__ , a__ , kernel_size=a__ , stride=a__ , padding=a__ ) _A = norm_layer(a__ ) if norm_layer else nn.Identity() def a_ ( self : Dict , a__ : Any ) -> List[str]: '''simple docstring''' _A = self.projection(a__ ) _A = self.norm(a__ ) return embeddings class snake_case ( nn.GroupNorm): def __init__( self : Dict , a__ : Optional[int] , **a__ : Dict ) -> Optional[Any]: '''simple docstring''' super().__init__(1 , a__ , **a__ ) class snake_case ( nn.Module): def __init__( self : int , a__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__() _A = nn.AvgPoolad(a__ , stride=1 , padding=pool_size // 2 , count_include_pad=a__ ) def a_ ( self : List[str] , a__ : int ) -> str: '''simple docstring''' return self.pool(a__ ) - hidden_states class snake_case ( nn.Module): def __init__( self : Tuple , a__ : Optional[int] , a__ : Optional[Any] , a__ : List[str] , a__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__() _A = nn.Convad(a__ , a__ , 1 ) _A = nn.Convad(a__ , a__ , 1 ) _A = PoolFormerDropPath(a__ ) if isinstance(config.hidden_act , a__ ): _A = ACTaFN[config.hidden_act] else: _A = config.hidden_act def a_ ( self : List[Any] , a__ : int ) -> Dict: '''simple docstring''' _A = self.conva(a__ ) _A = self.act_fn(a__ ) _A = self.drop(a__ ) _A = self.conva(a__ ) _A = self.drop(a__ ) return hidden_states class snake_case ( nn.Module): def __init__( self : Union[str, Any] , a__ : str , a__ : List[str] , a__ : List[Any] , a__ : List[str] , a__ : Optional[Any] , a__ : Tuple ) -> Dict: '''simple docstring''' super().__init__() _A = PoolFormerPooling(a__ ) _A = PoolFormerOutput(a__ , a__ , a__ , a__ ) _A = PoolFormerGroupNorm(a__ ) _A = PoolFormerGroupNorm(a__ ) # Useful for training neural nets _A = PoolFormerDropPath(a__ ) if drop_path > 0.0 else nn.Identity() _A = config.use_layer_scale if config.use_layer_scale: _A = nn.Parameter( config.layer_scale_init_value * torch.ones((a__) ) , requires_grad=a__ ) _A = nn.Parameter( config.layer_scale_init_value * torch.ones((a__) ) , requires_grad=a__ ) def a_ ( self : Union[str, Any] , a__ : Optional[int] ) -> Tuple: '''simple docstring''' if self.use_layer_scale: _A = self.pooling(self.before_norm(a__ ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _A = hidden_states + self.drop_path(a__ ) _A = () _A = self.output(self.after_norm(a__ ) ) _A = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _A = hidden_states + self.drop_path(a__ ) _A = (output,) + outputs return outputs else: _A = self.drop_path(self.pooling(self.before_norm(a__ ) ) ) # First residual connection _A = pooling_output + hidden_states _A = () # Second residual connection inside the PoolFormerOutput block _A = self.drop_path(self.output(self.after_norm(a__ ) ) ) _A = hidden_states + layer_output _A = (output,) + outputs return outputs class snake_case ( nn.Module): def __init__( self : str , a__ : int ) -> Any: '''simple docstring''' super().__init__() _A = config # stochastic depth decay rule _A = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _A = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _A = nn.ModuleList(a__ ) # Transformer blocks _A = [] _A = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _A = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( a__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(a__ ) ) _A = nn.ModuleList(a__ ) def a_ ( self : Tuple , a__ : Union[str, Any] , a__ : Tuple=False , a__ : List[str]=True ) -> List[Any]: '''simple docstring''' _A = () if output_hidden_states else None _A = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _A , _A = layers # Get patch embeddings from hidden_states _A = embedding_layer(a__ ) # Send the embeddings through the blocks for _, blk in enumerate(a__ ): _A = blk(a__ ) _A = layer_outputs[0] if output_hidden_states: _A = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=a__ , hidden_states=a__ ) class snake_case ( _UpperCamelCase): __UpperCamelCase = PoolFormerConfig __UpperCamelCase = 'poolformer' __UpperCamelCase = 'pixel_values' __UpperCamelCase = True def a_ ( self : Tuple , a__ : Dict ) -> Any: '''simple docstring''' if isinstance(a__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a_ ( self : int , a__ : Dict , a__ : int=False ) -> str: '''simple docstring''' if isinstance(a__ , a__ ): _A = value a_ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" a_ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , _UpperCamelCase , ) class snake_case ( _UpperCamelCase): def __init__( self : int , a__ : Dict ) -> str: '''simple docstring''' super().__init__(a__ ) _A = config _A = PoolFormerEncoder(a__ ) # Initialize weights and apply final processing self.post_init() def a_ ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ ( self : Tuple , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' _A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _A = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) _A = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ , ) _A = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=a__ , hidden_states=encoder_outputs.hidden_states , ) class snake_case ( nn.Module): def __init__( self : List[str] , a__ : Dict ) -> Optional[Any]: '''simple docstring''' super().__init__() _A = nn.Linear(config.hidden_size , config.hidden_size ) def a_ ( self : int , a__ : Tuple ) -> str: '''simple docstring''' _A = self.dense(a__ ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , _UpperCamelCase , ) class snake_case ( _UpperCamelCase): def __init__( self : Tuple , a__ : str ) -> Optional[int]: '''simple docstring''' super().__init__(a__ ) _A = config.num_labels _A = PoolFormerModel(a__ ) # Final norm _A = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _A = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ ( self : int , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[torch.LongTensor] = None , a__ : Optional[bool] = None , a__ : Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' _A = return_dict if return_dict is not None else self.config.use_return_dict _A = self.poolformer( a__ , output_hidden_states=a__ , return_dict=a__ , ) _A = outputs[0] _A = self.classifier(self.norm(a__ ).mean([-2, -1] ) ) _A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _A = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _A = "single_label_classification" else: _A = "multi_label_classification" if self.config.problem_type == "regression": _A = MSELoss() if self.num_labels == 1: _A = loss_fct(logits.squeeze() , labels.squeeze() ) else: _A = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": _A = CrossEntropyLoss() _A = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _A = BCEWithLogitsLoss() _A = loss_fct(a__ , a__ ) if not return_dict: _A = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states )
163
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> None: UpperCamelCase = generate_pascal_triangle(__UpperCamelCase ) for row_idx in range(__UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def lowercase__ ( __UpperCamelCase )-> list[list[int]]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCamelCase = [] for current_row_idx in range(__UpperCamelCase ): UpperCamelCase = populate_current_row(__UpperCamelCase , __UpperCamelCase ) triangle.append(__UpperCamelCase ) return triangle def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> list[int]: UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase ,UpperCamelCase = 1, 1 for current_col_idx in range(1 , __UpperCamelCase ): calculate_current_element( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return current_row def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> None: UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase = above_to_left_elt + above_to_right_elt def lowercase__ ( __UpperCamelCase )-> list[list[int]]: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) UpperCamelCase = [[1]] for row_index in range(1 , __UpperCamelCase ): UpperCamelCase = [0] + result[-1] + [0] UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase = sum(divmod(__UpperCamelCase , 2 ) ) UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase = row_first_half + row_second_half result.append(__UpperCamelCase ) return result def lowercase__ ( )-> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(__UpperCamelCase , __UpperCamelCase ) -> None: UpperCamelCase = F"{func.__name__}({value})" UpperCamelCase = timeit(F"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__UpperCamelCase , __UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
321
'''simple docstring''' import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE__ = 'docs/source/en/_toctree.yml' def lowercase__ ( __UpperCamelCase )-> Optional[Any]: UpperCamelCase = defaultdict(__UpperCamelCase ) UpperCamelCase = [] UpperCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__UpperCamelCase ) UpperCamelCase = new_doc_list UpperCamelCase = [key for key, value in counts.items() if value > 1] UpperCamelCase = [] for duplicate_key in duplicates: UpperCamelCase = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__UpperCamelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) UpperCamelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__UpperCamelCase ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__UpperCamelCase ) # Sort return overview_doc def lowercase__ ( __UpperCamelCase=False )-> List[str]: with open(__UpperCamelCase , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase = api_doc[scheduler_idx]["""sections"""] UpperCamelCase = clean_doc_toc(__UpperCamelCase ) UpperCamelCase = False if new_scheduler_doc != scheduler_doc: UpperCamelCase = True if overwrite: UpperCamelCase = new_scheduler_doc if diff: if overwrite: UpperCamelCase = api_doc with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowercase__ ( __UpperCamelCase=False )-> Tuple: with open(__UpperCamelCase , encoding="""utf-8""" ) as f: UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase = content[api_idx]["""sections"""] # Then to the model doc UpperCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase = False UpperCamelCase = api_doc[pipeline_idx]["""sections"""] UpperCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase = pipeline_doc["""section"""] UpperCamelCase = clean_doc_toc(__UpperCamelCase ) if overwrite: UpperCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(__UpperCamelCase ) # sort overall pipeline doc UpperCamelCase = clean_doc_toc(__UpperCamelCase ) if new_pipeline_docs != pipeline_docs: UpperCamelCase = True if overwrite: UpperCamelCase = new_pipeline_docs if diff: if overwrite: UpperCamelCase = api_doc with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__UpperCamelCase , allow_unicode=__UpperCamelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
321
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class lowerCamelCase_( __lowerCamelCase ): '''simple docstring''' def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ): super().__init__(*__lowercase , **__lowercase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def snake_case__ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): _lowerCamelCase = {} _lowerCamelCase = {} if prompt is not None: _lowerCamelCase = prompt if generate_kwargs is not None: _lowerCamelCase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowerCamelCase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) _lowerCamelCase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , lowerCamelCase__ , **lowerCamelCase__ ): return super().__call__(__lowercase , **__lowercase ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = load_image(__lowercase ) if prompt is not None: if not isinstance(__lowercase , __lowercase ): raise ValueError( F"""Received an invalid text input, got - {type(__lowercase )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) _lowerCamelCase = self.model.config.model_type if model_type == "git": _lowerCamelCase = self.image_processor(images=__lowercase , return_tensors=self.framework ) _lowerCamelCase = self.tokenizer(text=__lowercase , add_special_tokens=__lowercase ).input_ids _lowerCamelCase = [self.tokenizer.cls_token_id] + input_ids _lowerCamelCase = torch.tensor(__lowercase ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": _lowerCamelCase = self.image_processor(images=__lowercase , header_text=__lowercase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowerCamelCase = self.image_processor(images=__lowercase , return_tensors=self.framework ) _lowerCamelCase = self.tokenizer(__lowercase , return_tensors=self.framework ) model_inputs.update(__lowercase ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: _lowerCamelCase = self.image_processor(images=__lowercase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _lowerCamelCase = None return model_inputs def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , __lowercase ) and all(x is None for x in model_inputs['''input_ids'''] ) ): _lowerCamelCase = None if generate_kwargs is None: _lowerCamelCase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowerCamelCase = model_inputs.pop(self.model.main_input_name ) _lowerCamelCase = self.model.generate(__lowercase , **__lowercase , **__lowercase ) return model_outputs def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = [] for output_ids in model_outputs: _lowerCamelCase = { '''generated_text''': self.tokenizer.decode( __lowercase , skip_special_tokens=__lowercase , ) } records.append(__lowercase ) return records
350
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[Any] = ['pixel_values'] def __init__( self , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = PILImageResampling.BILINEAR , lowerCamelCase__ = True , lowerCamelCase__ = 1 / 2_5_5 , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ): super().__init__(**lowerCamelCase__ ) _lowerCamelCase = size if size is not None else {'''shortest_edge''': 3_8_4} _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = do_resize _lowerCamelCase = size # Default value set here for backwards compatibility where the value in config is None _lowerCamelCase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = PILImageResampling.BICUBIC , lowerCamelCase__ = None , **lowerCamelCase__ , ): _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) _lowerCamelCase = size['''shortest_edge'''] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _lowerCamelCase = int(shortest_edge / crop_pct ) _lowerCamelCase = get_resize_output_image_size(lowerCamelCase__ , size=lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__ , size=(shortest_edge, shortest_edge) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__ , size=(shortest_edge, shortest_edge) , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , **lowerCamelCase__ , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = ChannelDimension.FIRST , **lowerCamelCase__ , ): _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = image_mean if image_mean is not None else self.image_mean _lowerCamelCase = image_std if image_std is not None else self.image_std _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) _lowerCamelCase = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , crop_pct=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: _lowerCamelCase = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] _lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
73
0
"""simple docstring""" import math import qiskit def __a ( _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1 ) ->qiskit.result.counts.Counts: if ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) or isinstance(UpperCamelCase__ , UpperCamelCase__ ) or isinstance(UpperCamelCase__ , UpperCamelCase__ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(UpperCamelCase__ ) != input_a) or (math.floor(UpperCamelCase__ ) != input_a) or (math.floor(UpperCamelCase__ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers a__: int = qiskit.QuantumRegister(4 , 'qr' ) a__: Dict = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries a__: Union[str, Any] = [input_a, input_a, carry_in] a__: str = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCamelCase__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCamelCase__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCamelCase__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCamelCase__ ) # measure the last two qbits a__: Tuple = qiskit.Aer.get_backend('aer_simulator' ) a__: List[Any] = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
290
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any=1024 ) -> Dict: """simple docstring""" __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase = list(zip(UpperCamelCase__ , UpperCamelCase__ ) ) __lowerCamelCase , __lowerCamelCase = sorted_examples[0] def is_too_big(UpperCamelCase__ : List[str] ): return tok(UpperCamelCase__ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowerCamelCase = new_src + ' ' + src __lowerCamelCase = new_tgt + ' ' + tgt if is_too_big(UpperCamelCase__ ) or is_too_big(UpperCamelCase__ ): # cant fit, finalize example finished_src.append(UpperCamelCase__ ) finished_tgt.append(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = src, tgt else: # can fit, keep adding __lowerCamelCase , __lowerCamelCase = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(UpperCamelCase__ ) finished_tgt.append(UpperCamelCase__ ) return finished_src, finished_tgt def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : Path , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" __lowerCamelCase = Path(UpperCamelCase__ ) save_path.mkdir(exist_ok=UpperCamelCase__ ) for split in ["train"]: __lowerCamelCase , __lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" __lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase__ ).open().readlines()] __lowerCamelCase = [x.rstrip() for x in Path(UpperCamelCase__ ).open().readlines()] __lowerCamelCase , __lowerCamelCase = pack_examples(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) print(F"""packed {split} split from {len(UpperCamelCase__ )} examples -> {len(UpperCamelCase__ )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(UpperCamelCase__ ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(UpperCamelCase__ ) ) for split in ["val", "test"]: __lowerCamelCase , __lowerCamelCase = data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(UpperCamelCase__ , save_path / F"""{split}.source""" ) shutil.copyfile(UpperCamelCase__ , save_path / F"""{split}.target""" ) def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=UpperCamelCase__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=UpperCamelCase__ , default=128 ) parser.add_argument('--data_dir' , type=UpperCamelCase__ ) parser.add_argument('--save_path' , type=UpperCamelCase__ ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(UpperCamelCase__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
90
0
import os from typing import Dict, List, Tuple, TypeVar, Union __A = TypeVar("T") __A = Union[List[T], Tuple[T, ...]] __A = Union[T, List[T], Dict[str, T]] __A = Union[str, bytes, os.PathLike]
368
__A = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.3_5_5_8_1_8, } def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __lowerCamelCase = ( F"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" F"""Valid values are: {', '.join(UpperCamelCase__ )}""" ) raise ValueError(UpperCamelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
348
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCamelCase__ ( _lowerCamelCase : Dict ) -> Optional[int]: if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def lowerCamelCase__ ( _lowerCamelCase : Union[str, Any] ) -> Tuple: for char in word: lowerCamelCase_ = ord(__A ) if not _is_chinese_char(__A ): return 0 return 1 def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] ) -> Dict: lowerCamelCase_ = set() for token in tokens: lowerCamelCase_ = len(__A ) > 1 and is_chinese(__A ) if chinese_word: word_set.add(__A ) lowerCamelCase_ = list(__A ) return word_list def lowerCamelCase__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ) -> Any: if not chinese_word_set: return bert_tokens lowerCamelCase_ = max([len(__A ) for w in chinese_word_set] ) lowerCamelCase_ = bert_tokens lowerCamelCase_ , lowerCamelCase_ = 0, len(__A ) while start < end: lowerCamelCase_ = True if is_chinese(bert_word[start] ): lowerCamelCase_ = min(end - start , __A ) for i in range(__A , 1 , -1 ): lowerCamelCase_ = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase_ = '##' + bert_word[j] lowerCamelCase_ = start + i lowerCamelCase_ = False break if single_word: start += 1 return bert_word def lowerCamelCase__ ( _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ) -> Dict: lowerCamelCase_ = [] for i in range(0 , len(__A ) , 100 ): lowerCamelCase_ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['cws'] ).cws lowerCamelCase_ = [get_chinese_word(__A ) for r in res] ltp_res.extend(__A ) assert len(__A ) == len(__A ) lowerCamelCase_ = [] for i in range(0 , len(__A ) , 100 ): lowerCamelCase_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__A , truncation=__A , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(__A ) == len(__A ) lowerCamelCase_ = [] for input_ids, chinese_word in zip(__A , __A ): lowerCamelCase_ = [] for id in input_ids: lowerCamelCase_ = bert_tokenizer._convert_id_to_token(__A ) input_tokens.append(__A ) lowerCamelCase_ = add_sub_symbol(__A , __A ) lowerCamelCase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__A ): if token[:2] == "##": lowerCamelCase_ = token[2:] # save chinese tokens' pos if len(__A ) == 1 and _is_chinese_char(ord(__A ) ): ref_id.append(__A ) ref_ids.append(__A ) assert len(__A ) == len(__A ) return ref_ids def lowerCamelCase__ ( _lowerCamelCase : List[Any] ) -> Dict: with open(args.file_name , 'r' , encoding='utf-8' ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [line.strip() for line in data if len(__A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase_ = LTP(args.ltp ) # faster in GPU device lowerCamelCase_ = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase_ = prepare_ref(__A , __A , __A ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: lowerCamelCase_ = [json.dumps(__A ) + '\n' for ref in ref_ids] f.writelines(__A ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() main(args)
183
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) lowercase_ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } lowercase_ = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase (__A , __A , __A , __A , __A , __A): """simple docstring""" for attribute in key.split('''.'''): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _a = '''lm_head''' _a = getattr(__A , __A) if weight_type is not None: _a = getattr(__A , __A).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [] _a = fairseq_model.state_dict() _a = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) _a = True else: for key, mapped_key in MAPPING.items(): _a = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]: _a = True if "*" in mapped_key: _a = name.split(__A)[0].split('''.''')[-2] _a = mapped_key.replace('''*''' , __A) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj _a = '''weight''' else: _a = None set_recursively(__A , __A , __A , __A , __A , __A) continue if not is_used: unused_weights.append(__A) logger.warning(F'''Unused weights: {unused_weights}''') def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = full_name.split('''conv_layers.''')[-1] _a = name.split('''.''') _a = int(items[0]) _a = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(__A) @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None , __A=None , __A=True): """simple docstring""" if config_path is not None: _a = UniSpeechConfig.from_pretrained(__A) else: _a = UniSpeechConfig() if is_finetuned: if dict_path: _a = Dictionary.load_from_json(__A) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols) _a = os.path.join(__A , '''vocab.json''') if not os.path.isdir(__A): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A)) return os.makedirs(__A , exist_ok=__A) _a = target_dict.indices # fairseq has the <pad> and <s> switched _a = 42 _a = 43 with open(__A , '''w''' , encoding='''utf-8''') as vocab_handle: json.dump(__A , __A) _a = WavaVecaPhonemeCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) _a = True if config.feat_extract_norm == '''layer''' else False _a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) _a = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A) processor.save_pretrained(__A) _a = UniSpeechForCTC(__A) else: _a = UniSpeechForPreTraining(__A) if is_finetuned: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1]), '''w2v_path''': checkpoint_path}) else: _a , _a , _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) _a = model[0].eval() recursively_load_weights(__A , __A , __A) hf_unispeech.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
211
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } UpperCAmelCase__ = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } UpperCAmelCase__ = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class __lowerCAmelCase ( A ): UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = PRETRAINED_INIT_CONFIGURATION UpperCamelCase = RoFormerTokenizer def __init__( self : Dict , A : Any=None , A : Optional[Any]=None , A : Union[str, Any]=True , A : List[str]="[UNK]" , A : List[str]="[SEP]" , A : Union[str, Any]="[PAD]" , A : Any="[CLS]" , A : str="[MASK]" , A : Optional[int]=True , A : str=None , **A : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , A) != do_lower_case or pre_tok_state.get('strip_accents' , A) != strip_accents ): _UpperCAmelCase = getattr(A , pre_tok_state.pop('type')) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = pre_tok_class(**A) _UpperCAmelCase = do_lower_case def __getstate__( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = BertPreTokenizer() return state def __setstate__( self : List[Any] , A : Optional[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = d _UpperCAmelCase = self.__dict__['_tokenizer'].get_vocab() _UpperCAmelCase = PreTokenizer.custom(JiebaPreTokenizer(A)) def _lowerCamelCase ( self : List[Any] , A : Optional[int] , A : List[Any]=None) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : List[str] , A : List[int] , A : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Union[str, Any] , A : str , A : Optional[str] = None) -> Tuple[str]: """simple docstring""" _UpperCAmelCase = self._tokenizer.model.save(A , name=A) return tuple(A) def _lowerCamelCase ( self : List[Any] , A : Tuple , A : str=None , A : Union[str, Any]=None , A : Union[str, Any]=False , **A : Tuple , ) -> str: """simple docstring""" _UpperCAmelCase = BertPreTokenizer() return super().save_pretrained(A , A , A , A , **A)
290
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''yolos''' def __init__( self :Union[str, Any] , snake_case :Tuple=768 , snake_case :str=12 , snake_case :Optional[int]=12 , snake_case :List[Any]=3_072 , snake_case :Dict="gelu" , snake_case :Union[str, Any]=0.0 , snake_case :List[Any]=0.0 , snake_case :Union[str, Any]=0.02 , snake_case :Optional[int]=1e-12 , snake_case :str=[512, 864] , snake_case :str=16 , snake_case :List[Any]=3 , snake_case :Dict=True , snake_case :List[Any]=100 , snake_case :int=True , snake_case :List[Any]=False , snake_case :Optional[Any]=1 , snake_case :List[str]=5 , snake_case :Any=2 , snake_case :int=5 , snake_case :Any=2 , snake_case :Any=0.1 , **snake_case :Any , ): '''simple docstring''' super().__init__(**snake_case ) A_ : int = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[Any] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[Any] = initializer_range A_ : List[str] = layer_norm_eps A_ : int = image_size A_ : Dict = patch_size A_ : Union[str, Any] = num_channels A_ : str = qkv_bias A_ : Dict = num_detection_tokens A_ : Tuple = use_mid_position_embeddings A_ : Union[str, Any] = auxiliary_loss # Hungarian matcher A_ : Union[str, Any] = class_cost A_ : int = bbox_cost A_ : Optional[Any] = giou_cost # Loss coefficients A_ : Optional[Any] = bbox_loss_coefficient A_ : Optional[int] = giou_loss_coefficient A_ : Tuple = eos_coefficient class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return 12
300
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
1
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_=-1 ) -> str: # in NER datasets, the last column is usually reserved for NER label _UpperCAmelCase : str = label_idx def _snake_case ( self ,a_ ,a_ ) -> List[InputExample]: if isinstance(a_ ,a_ ): _UpperCAmelCase : str = mode.value _UpperCAmelCase : List[str] = os.path.join(a_ ,f'''{mode}.txt''' ) _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = [] with open(a_ ,encoding="""utf-8""" ) as f: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Any = [] for line in f: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) guid_index += 1 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Any = [] else: _UpperCAmelCase : List[str] = line.split(""" """ ) words.append(splits[0] ) if len(a_ ) > 1: labels.append(splits[self.label_idx].replace("""\n""" ,"""""" ) ) else: # Examples could have no label for mode = "test" labels.append("""O""" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) return examples def _snake_case ( self ,a_ ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : Tuple = 0 for line in test_input_reader: if line.startswith("""-DOCSTART-""" ) or line == "" or line == "\n": writer.write(a_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _UpperCAmelCase : int = line.split()[0] + """ """ + preds_list[example_id].pop(0 ) + """\n""" writer.write(a_ ) else: logger.warning("""Maximum sequence length exceeded: No prediction for '%s'.""" ,line.split()[0] ) def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: _UpperCAmelCase : Any = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : int = ["""O"""] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ) -> Union[str, Any]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: _UpperCAmelCase : str = f.read().splitlines() if "O" not in labels: _UpperCAmelCase : int = ["""O"""] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowercase ( _lowerCamelCase ): """simple docstring""" def _snake_case ( self ,a_ ,a_ ) -> List[InputExample]: if isinstance(a_ ,a_ ): _UpperCAmelCase : List[str] = mode.value _UpperCAmelCase : int = os.path.join(a_ ,f'''{mode}.txt''' ) _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : List[str] = [] with open(a_ ,encoding="""utf-8""" ) as f: for sentence in parse_incr(a_ ): _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] for token in sentence: words.append(token["""form"""] ) labels.append(token["""upos"""] ) assert len(a_ ) == len(a_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' ,words=a_ ,labels=a_ ) ) guid_index += 1 return examples def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : Dict = 0 for sentence in parse_incr(a_ ): _UpperCAmelCase : Dict = preds_list[example_id] _UpperCAmelCase : Dict = """""" for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(a_ ) example_id += 1 def _snake_case ( self ,a_ ) -> List[str]: if path: with open(a_ ,"""r""" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' def UpperCamelCase_ ( snake_case_ : str , snake_case_ : str ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = len(snake_case_ ) + 1 __lowerCAmelCase = len(snake_case_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowerCAmelCase = [[0 for i in range(snake_case_ )] for j in range(snake_case_ )] # since string of zero length match pattern of zero length __lowerCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case_ ): __lowerCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case_ ): __lowerCAmelCase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case_ ): for j in range(1 , snake_case_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowerCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowerCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowerCAmelCase = dp[i - 1][j] else: __lowerCAmelCase = 0 else: __lowerCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _A : List[Any] = 'aab' _A : Optional[int] = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'{input_string} matches the given pattern {pattern}') else: print(f'{input_string} does not match with the given pattern {pattern}')
229
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __magic_name__ ( A : Union[str, Any], A : str, A : Optional[int]=None, A : List[str]=None ): '''simple docstring''' if attention_mask is None: a = tf.cast(tf.math.not_equal(A, config.pad_token_id ), tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : int = OPTConfig SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : List[str] = """gelu""" def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[Any]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : int=4 , __lowerCamelCase : Any=4 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Dict=20 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=16 , ) -> Any: a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = embed_dim a = word_embed_proj_dim a = False def __UpperCAmelCase ( self : str ) -> int: a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a = tf.concat([input_ids, eos_tensor] , axis=1 ) a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__lowerCamelCase , **self.config_updates , ) a = prepare_opt_inputs_dict(__lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[str]: a = TFOPTModel(config=__lowerCamelCase ) a = inputs_dict["input_ids"] a = input_ids[:1, :] a = inputs_dict["attention_mask"][:1, :] a = 1 # first forward pass a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) , config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] , axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] a = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1e-3 ) @require_tf class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : Tuple = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : List[str] = 10 def __UpperCAmelCase ( self : Tuple ) -> List[str]: a = TFOPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[str]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__lowerCamelCase : Tuple , __lowerCamelCase : int ): if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__lowerCamelCase , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings a = model_class(config=__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__lowerCamelCase ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) a = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __lowerCamelCase ) # check that weights remain the same after resizing a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __lowerCamelCase ) a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: a = False self.assertTrue(__lowerCamelCase ) def __magic_name__ ( A : List[Any] ): '''simple docstring''' return tf.constant(A, dtype=tf.intaa ) @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 99 def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) a = input_ids.shape[0] a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: a = TFOPTModel.from_pretrained("facebook/opt-350m" ) a = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) a = tf.not_equal(__lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): a = model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ).last_hidden_state a = (1, 11, 5_12) self.assertEqual(output.shape , __lowerCamelCase ) a = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-3 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = xla_generate(__lowerCamelCase , __lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4e-2 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: super().setUp() a = "facebook/opt-350m" def __UpperCAmelCase ( self : Any ) -> Tuple: a = TFOPTForCausalLM.from_pretrained(self.path_model ) a = GPTaTokenizer.from_pretrained(self.path_model ) a = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) a = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) a = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) ) @require_tf @slow class snake_case__ (unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: a = "facebook/opt-125m" a = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> Dict: a = "facebook/opt-350m" a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) a = "left" # use different length sentences to test batching a = [ "Hello, my dog is a little", "Today, I", ] a = tokenizer(__lowerCamelCase , return_tensors="tf" , padding=__lowerCamelCase ) a = inputs["input_ids"] a = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs["attention_mask"] ) a = tokenizer(sentences[0] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase ) a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) a = tokenizer(sentences[1] , return_tensors="tf" ).input_ids a = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) a = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) a = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: a = "facebook/opt-350m" a = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] a = [] a = GPTaTokenizer.from_pretrained(__lowerCamelCase ) a = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: a = tokenizer(__lowerCamelCase , return_tensors="tf" ).input_ids a = model.generate(__lowerCamelCase , max_length=10 ) a = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
107
0
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") __A : Any = parser.parse_args() if args.model_type == "roberta": __A : str = RobertaForMaskedLM.from_pretrained(args.model_name) __A : List[str] = "roberta" elif args.model_type == "gpt2": __A : Dict = GPTaLMHeadModel.from_pretrained(args.model_name) __A : Optional[int] = "transformer" __A : List[Any] = model.state_dict() __A : Union[str, Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __A : Optional[int] = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __A : Any = f'''{prefix}.embeddings.{w}.weight''' __A : Dict = state_dict[param_name] for w in ["weight", "bias"]: __A : Union[str, Any] = f'''{prefix}.embeddings.LayerNorm.{w}''' __A : str = state_dict[param_name] # Transformer Blocks # __A : Optional[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __A : Union[str, Any] = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] __A : str = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __A : Optional[int] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __A : Optional[Any] = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: __A : Tuple = state_dict[f'''lm_head.dense.{w}'''] __A : Tuple = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __A : Any = state_dict[f'''{prefix}.ln_f.{w}'''] __A : Optional[int] = state_dict["lm_head.weight"] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
351
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _a ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : str=False )->Optional[Any]: _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Any=1_3 , __UpperCamelCase : Any=7 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Optional[int]=3_2 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Optional[Any]=3_7 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Any=1_6 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[str]=None , )->Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = embedding_size def lowercase__ ( self : Optional[int] )->int: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->Tuple: _UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Dict )->List[Any]: _UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] )->Any: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Dict , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] )->List[str]: _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Any )->Dict: _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase ) _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] )->Optional[Any]: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def lowercase__ ( self : List[Any] )->str: _UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] )->List[str]: self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase ) def lowercase__ ( self : Any )->Union[str, Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase ) def lowercase__ ( self : str )->Optional[int]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase ) def lowercase__ ( self : Any )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase ) def lowercase__ ( self : Dict )->Any: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase ) def lowercase__ ( self : Any )->Optional[Any]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase ) def lowercase__ ( self : List[str] )->Tuple: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : Tuple )->List[str]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: _UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def lowercase__ ( self : str )->Dict: _UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) _UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = tf.constant( [ [ [-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6], [-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7], [-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 )
326
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self ) -> List[str]: UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) sd_pipe.set_scheduler("sample_euler" ) UpperCamelCase = "A painting of a squirrel eating a burger" UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=__a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ) -> Any: UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) sd_pipe.set_scheduler("sample_euler" ) UpperCamelCase = "A painting of a squirrel eating a burger" UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=__a , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def snake_case_ (self ) -> str: UpperCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCamelCase = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) UpperCamelCase = "A painting of a squirrel eating a burger" UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=__a , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=__a , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
153
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCamelCase ( _lowercase ): def __init__(self , __a , __a ) -> str: super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__(self , __a = 1 , __a = 1_00 , __a = None , __a = None , __a = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: UpperCamelCase = self.unet.config.sample_size / self.unet.config.sample_rate UpperCamelCase = audio_length_in_s * self.unet.config.sample_rate UpperCamelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"{audio_length_in_s} is too small. Make sure it's bigger or equal to" F" {3 * down_scale_factor / self.unet.config.sample_rate}." ) UpperCamelCase = int(__a ) if sample_size % down_scale_factor != 0: UpperCamelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" F" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" " process." ) UpperCamelCase = int(__a ) UpperCamelCase = next(iter(self.unet.parameters() ) ).dtype UpperCamelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(__a , __a ) and len(__a ) != batch_size: raise ValueError( F"You have passed a list of generators of length {len(__a )}, but requested an effective batch" F" size of {batch_size}. Make sure the batch size matches the length of the generators." ) UpperCamelCase = randn_tensor(__a , generator=__a , device=self.device , dtype=__a ) # set step values self.scheduler.set_timesteps(__a , device=audio.device ) UpperCamelCase = self.scheduler.timesteps.to(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(__a , __a ).sample # 2. compute previous image: x_t -> t_t-1 UpperCamelCase = self.scheduler.step(__a , __a , __a ).prev_sample UpperCamelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCamelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=__a )
153
1
'''simple docstring''' def a ( lowerCamelCase__ = 1_00_00_00 ): '''simple docstring''' A_ : List[str] = 1 A_ : Tuple = 1 A_ : Any = {1: 1} for inputa in range(2 , lowerCamelCase__ ): A_ : Optional[Any] = 0 A_ : Any = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: A_ : int = (3 * number) + 1 counter += 1 if inputa not in counters: A_ : Optional[Any] = counter if counter > pre_counter: A_ : Dict = inputa A_ : List[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
135
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ShapEPipeline __SCREAMING_SNAKE_CASE : Optional[int] = ['prompt'] __SCREAMING_SNAKE_CASE : str = ['prompt'] __SCREAMING_SNAKE_CASE : Dict = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __SCREAMING_SNAKE_CASE : Union[str, Any] = False @property def _a (self ): return 32 @property def _a (self ): return 32 @property def _a (self ): return self.time_input_dim * 4 @property def _a (self ): return 8 @property def _a (self ): A_ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _a (self ): torch.manual_seed(0 ) A_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase ) @property def _a (self ): torch.manual_seed(0 ) A_ : Any = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A_ : List[str] = PriorTransformer(**lowercase ) return model @property def _a (self ): torch.manual_seed(0 ) A_ : str = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A_ : Dict = ShapERenderer(**lowercase ) return model def _a (self ): A_ : Optional[int] = self.dummy_prior A_ : Optional[int] = self.dummy_text_encoder A_ : int = self.dummy_tokenizer A_ : Dict = self.dummy_renderer A_ : Tuple = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) A_ : Union[str, Any] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _a (self , lowercase , lowercase=0 ): if str(lowercase ).startswith("""mps""" ): A_ : Any = torch.manual_seed(lowercase ) else: A_ : str = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : List[str] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _a (self ): A_ : str = """cpu""" A_ : Union[str, Any] = self.get_dummy_components() A_ : Optional[int] = self.pipeline_class(**lowercase ) A_ : str = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Dict = pipe(**self.get_dummy_inputs(lowercase ) ) A_ : Dict = output.images[0] A_ : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A_ : Tuple = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a (self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a (self ): A_ : Tuple = torch_device == """cpu""" A_ : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def _a (self ): A_ : List[Any] = self.get_dummy_components() A_ : Any = self.pipeline_class(**lowercase ) A_ : Any = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = 1 A_ : Union[str, Any] = 2 A_ : Dict = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: A_ : Optional[Any] = batch_size * [inputs[key]] A_ : List[Any] = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a (self ): A_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) A_ : Tuple = ShapEPipeline.from_pretrained("""openai/shap-e""" ) A_ : int = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : int = torch.Generator(device=lowercase ).manual_seed(0 ) A_ : List[str] = pipe( """a shark""" , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
135
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: if isinstance(lowercase__ ,collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Any ) -> Any: '''simple docstring''' pass def __UpperCAmelCase ( self :Dict ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' pass def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any=None , **SCREAMING_SNAKE_CASE :List[str] ) -> Any: '''simple docstring''' _a : Tuple =VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : int =TFVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE ) _a : Optional[Any] =model(input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :List[Any]=None , **SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]: '''simple docstring''' _a : Dict =self.get_vision_text_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Optional[Any] =TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE , text_model=SCREAMING_SNAKE_CASE ) _a : List[str] =model(input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Optional[Any]=None , **SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Any: '''simple docstring''' _a : List[Any] =self.get_vision_text_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Tuple ={'vision_model': vision_model, 'text_model': text_model} _a : Dict =TFVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE ) _a : Dict =model(input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[Any]=None , **SCREAMING_SNAKE_CASE :str ) -> Union[str, Any]: '''simple docstring''' _a : int =self.get_vision_text_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[Any] =TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE , text_model=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =model(input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE ) _a : List[Any] =TFVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE ) _a : Tuple =model(input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE ) _a : List[str] =after_output[0].numpy() _a : Optional[int] =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-5 ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Union[str, Any]=None , **SCREAMING_SNAKE_CASE :List[Any] ) -> List[Any]: '''simple docstring''' _a : List[Any] =self.get_vision_text_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : List[str] =TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE , text_model=SCREAMING_SNAKE_CASE ) _a : Tuple =model( input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE ) _a : List[Any] =output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Any =to_atuple(vision_model.config.image_size ) _a : List[Any] =to_atuple(vision_model.config.patch_size ) _a : Optional[int] =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a : Tuple =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a : Union[str, Any] =output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Optional[int] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Dict: '''simple docstring''' _a : Tuple =np.abs((a - b) ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f"Difference between torch and flax is {diff} (>= {tol})." ) def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' _a : Any =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' _a : Optional[Any] =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' _a : Optional[int] =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' _a : List[Any] =self.prepare_config_and_inputs() self.check_save_load(**SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :str ) -> Dict: '''simple docstring''' _a : Any =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**SCREAMING_SNAKE_CASE ) @slow def __UpperCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' _a : int =self.get_pretrained_model_and_inputs() _a : str =model_a(**SCREAMING_SNAKE_CASE ) _a : List[Any] =outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(SCREAMING_SNAKE_CASE ) _a : List[Any] =TFVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =model_a(**SCREAMING_SNAKE_CASE ) _a : Optional[Any] =after_outputs[0].numpy() _a : Tuple =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-5 ) @require_tf class A__ ( UpperCAmelCase__ , unittest.TestCase ): def __UpperCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' _a : Optional[Any] =TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _a : Tuple =1_3 _a : Tuple =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _a : Dict =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _a : int =random_attention_mask([batch_size, 4] ) _a : Any ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :int ) -> int: '''simple docstring''' _a : int =TFViTModel(SCREAMING_SNAKE_CASE , name="""vision_model""" ) _a : Union[str, Any] =TFBertModel(SCREAMING_SNAKE_CASE , name="""text_model""" ) return vision_model, text_model def __UpperCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' _a : Optional[int] =TFViTModelTester(self ) _a : str =TFBertModelTester(self ) _a : int =vit_model_tester.prepare_config_and_inputs() _a : str =bert_model_tester.prepare_config_and_inputs() _a : Dict =vision_config_and_inputs ( _a ) : Union[str, Any] =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( UpperCAmelCase__ , unittest.TestCase ): def __UpperCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _a : int =TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _a : Tuple =1_3 _a : Tuple =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _a : Tuple =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _a : str =random_attention_mask([batch_size, 4] ) _a : Optional[Any] ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :str=None , **SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]: '''simple docstring''' _a : Union[str, Any] =self.get_vision_text_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict =TFVisionTextDualEncoderModel(vision_model=SCREAMING_SNAKE_CASE , text_model=SCREAMING_SNAKE_CASE ) _a : List[Any] =model( input_ids=SCREAMING_SNAKE_CASE , pixel_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _a : Any =to_atuple(vision_model.config.image_size ) _a : Union[str, Any] =to_atuple(vision_model.config.patch_size ) _a : Union[str, Any] =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _a : Optional[int] =num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _a : List[Any] =output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Dict ) -> Any: '''simple docstring''' _a : List[Any] =TFDeiTModel(SCREAMING_SNAKE_CASE , name="""vision_model""" ) _a : List[str] =TFRobertaModel(SCREAMING_SNAKE_CASE , name="""text_model""" ) return vision_model, text_model def __UpperCAmelCase ( self :List[str] ) -> Optional[Any]: '''simple docstring''' _a : Any =TFDeiTModelTester(self ) _a : Union[str, Any] =TFRobertaModelTester(self ) _a : Optional[int] =vit_model_tester.prepare_config_and_inputs() _a : int =bert_model_tester.prepare_config_and_inputs() _a : Dict =vision_config_and_inputs ( _a ) : Dict =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( UpperCAmelCase__ , unittest.TestCase ): def __UpperCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' _a : Dict =TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _a : Any =1_3 _a : List[Any] =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _a : Any =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _a : List[Any] =random_attention_mask([batch_size, 4] ) _a : List[Any] ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :List[Any] , SCREAMING_SNAKE_CASE :Any ) -> List[Any]: '''simple docstring''' _a : Optional[int] =TFCLIPVisionModel(SCREAMING_SNAKE_CASE , name="""vision_model""" ) _a : List[str] =TFBertModel(SCREAMING_SNAKE_CASE , name="""text_model""" ) return vision_model, text_model def __UpperCAmelCase ( self :str ) -> Tuple: '''simple docstring''' _a : Union[str, Any] =TFCLIPVisionModelTester(self ) _a : Optional[Any] =TFBertModelTester(self ) _a : str =clip_model_tester.prepare_config_and_inputs() _a : Optional[int] =bert_model_tester.prepare_config_and_inputs() _a : List[Any] =vision_config_and_inputs ( _a ) : List[str] =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _a : List[str] =TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=SCREAMING_SNAKE_CASE ) _a : str =VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _a : Optional[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _a : List[Any] =processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="""np""" ) _a : List[Any] =model(**SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _a : int =np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , SCREAMING_SNAKE_CASE , atol=1e-3 ) )
276
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowercase__ = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ lowercase__ = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ lowercase__ = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case ( lowercase__ , lowercase__ ): return float((preds == labels).mean() ) def _snake_case ( lowercase__ , lowercase__ , lowercase__="binary" ): _lowerCamelCase : str = simple_accuracy(lowercase__ , lowercase__ ) _lowerCamelCase : Any = float(fa_score(y_true=lowercase__ , y_pred=lowercase__ , average=lowercase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Any = {} for id_pred, label in zip(lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _lowerCamelCase : Union[str, Any] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _lowerCamelCase : Optional[Any] = [(pred, label)] _lowerCamelCase, _lowerCamelCase : Optional[int] = [], [] for question, preds_labels in question_map.items(): _lowerCamelCase, _lowerCamelCase : Tuple = zip(*lowercase__ ) _lowerCamelCase : List[str] = fa_score(y_true=lowercase__ , y_pred=lowercase__ , average='macro' ) fas.append(lowercase__ ) _lowerCamelCase : int = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase__ ) ) ems.append(lowercase__ ) _lowerCamelCase : Optional[Any] = float(sum(lowercase__ ) / len(lowercase__ ) ) _lowerCamelCase : Optional[int] = sum(lowercase__ ) / len(lowercase__ ) _lowerCamelCase : List[Any] = float(fa_score(y_true=lowercase__ , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def A_ ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def A_ ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def A_ ( self , lowercase , lowercase ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowercase , lowercase )} elif self.config_name == "cb": return acc_and_fa(lowercase , lowercase , fa_avg='macro' ) elif self.config_name == "record": _lowerCamelCase : List[str] = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] _lowerCamelCase : Union[str, Any] = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(lowercase , lowercase )[0] elif self.config_name == "multirc": return evaluate_multirc(lowercase , lowercase ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowercase , lowercase )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
96
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=6_4 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1_0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=[1, 1_6, 4, 4] , _lowerCamelCase=None , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: str = image_size UpperCamelCase_: Tuple = patch_size UpperCamelCase_: List[Any] = num_channels UpperCamelCase_: Union[str, Any] = is_training UpperCamelCase_: str = use_labels UpperCamelCase_: str = hidden_size UpperCamelCase_: Union[str, Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Any = intermediate_size UpperCamelCase_: Optional[Any] = hidden_act UpperCamelCase_: Any = hidden_dropout_prob UpperCamelCase_: Any = attention_probs_dropout_prob UpperCamelCase_: str = type_sequence_label_size UpperCamelCase_: str = initializer_range UpperCamelCase_: Optional[Any] = scope UpperCamelCase_: List[str] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCamelCase_: Union[str, Any] = (self.image_size // 3_2) ** 2 UpperCamelCase_: int = num_patches + 1 def _a ( self ): UpperCamelCase_: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: int = None if self.use_labels: UpperCamelCase_: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): UpperCamelCase_: int = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 1_6, 3_2], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = ViTHybridModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: List[str] = self.type_sequence_label_size UpperCamelCase_: Dict = ViTHybridForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[str] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: List[str] = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: Optional[int] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[Any] =(ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () a : str =( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) a : Optional[int] =False a : Tuple =False a : int =False def _a ( self ): UpperCamelCase_: Dict = ViTHybridModelTester(self ) UpperCamelCase_: int = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=3_7 ) def _a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Dict = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: List[str] = [*signature.parameters.keys()] UpperCamelCase_: List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: List[Any] = _config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase_: Optional[Any] = model_class(config=_lowerCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCamelCase_: List[str] = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _a ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_: str = ViTHybridModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def snake_case () -> List[str]: UpperCamelCase_: Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ): UpperCamelCase_: Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _lowerCamelCase ) UpperCamelCase_: List[str] = self.default_image_processor UpperCamelCase_: Optional[Any] = prepare_img() UpperCamelCase_: Dict = image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase_: Optional[Any] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: Union[str, Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: int = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate def _a ( self ): UpperCamelCase_: Dict = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) UpperCamelCase_: Optional[int] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) UpperCamelCase_: Dict = prepare_img() UpperCamelCase_: int = image_processor(images=_lowerCamelCase , return_tensors='pt' ) UpperCamelCase_: Optional[int] = model(**_lowerCamelCase ) UpperCamelCase_: List[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCamelCase_: Optional[int] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
292
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def snake_case (UpperCAmelCase__ , UpperCAmelCase__=() , UpperCAmelCase__=None , UpperCAmelCase__="no" , UpperCAmelCase__="29500" ) -> List[Any]: UpperCamelCase_: Any = False UpperCamelCase_: List[str] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): UpperCamelCase_: List[Any] = True elif "IPython" in sys.modules: UpperCamelCase_: List[Any] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: UpperCamelCase_: Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , UpperCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: UpperCamelCase_: List[str] = 8 UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='TPU' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*UpperCAmelCase__ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='127.0.01' , master_port=UpperCAmelCase__ , mixed_precision=UpperCAmelCase__ ): UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , distributed_type='MULTI_GPU' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase_: Tuple = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__=() , UpperCAmelCase__=2 ) -> Optional[int]: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCAmelCase__ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): UpperCamelCase_: str = PrepareForLaunch(UpperCAmelCase__ , debug=UpperCAmelCase__ ) start_processes(UpperCAmelCase__ , args=UpperCAmelCase__ , nprocs=UpperCAmelCase__ , start_method='fork' )
292
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __snake_case ( _UpperCAmelCase ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _A ( nn.Module ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : nn.Module , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' super().__init__() __a = module __a = nn.Sequential( nn.Linear(module.in_features , __UpperCamelCase , bias=__UpperCamelCase) , nn.Linear(__UpperCamelCase , module.out_features , bias=__UpperCamelCase) , ) __a = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__UpperCamelCase) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' return self.module(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase) + self.adapter(__UpperCamelCase) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _A ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module UpperCamelCase__ : Union[str, Any] = '''bigscience/bloom-1b7''' # Constant values UpperCamelCase__ : Optional[int] = 2.109659552692574 UpperCamelCase__ : List[str] = '''Hello my name is''' UpperCamelCase__ : Tuple = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) UpperCamelCase__ : Tuple = 10 def _lowerCamelCase ( self : Any): '''simple docstring''' __a = AutoTokenizer.from_pretrained(self.model_name) class _A ( lowercase_ ): def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().setUp() # Models and tokenizer __a = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''') __a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') def _lowerCamelCase ( self : Tuple): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = self.model_abit.config self.assertTrue(hasattr(__UpperCamelCase , '''quantization_config''')) __a = config.to_dict() __a = config.to_diff_dict() __a = config.to_json_string() def _lowerCamelCase ( self : int): '''simple docstring''' from bitsandbytes.nn import Paramsabit __a = self.model_fpaa.get_memory_footprint() __a = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) __a = get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def _lowerCamelCase ( self : int): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__UpperCamelCase , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = self.tokenizer(self.input_text , return_tensors='''pt''') __a = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCamelCase) , self.EXPECTED_OUTPUTS) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = BitsAndBytesConfig() __a = True __a = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCamelCase , device_map='''auto''') __a = self.tokenizer(self.input_text , return_tensors='''pt''') __a = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__UpperCamelCase) , self.EXPECTED_OUTPUTS) def _lowerCamelCase ( self : Any): '''simple docstring''' with self.assertRaises(__UpperCamelCase), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__UpperCamelCase) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = BitsAndBytesConfig() with self.assertRaises(__UpperCamelCase): __a = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__UpperCamelCase , load_in_abit=__UpperCamelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def _lowerCamelCase ( self : Tuple): '''simple docstring''' with self.assertRaises(__UpperCamelCase): # Tries with `str` self.model_abit.to('''cpu''') with self.assertRaises(__UpperCamelCase): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(__UpperCamelCase): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''')) with self.assertRaises(__UpperCamelCase): # Tries with a `device` self.model_abit.float() with self.assertRaises(__UpperCamelCase): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __a = self.tokenizer(self.input_text , return_tensors='''pt''') __a = self.model_fpaa.to(torch.floataa) __a = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10) # Check this does not throw an error __a = self.model_fpaa.to('''cpu''') # Check this does not throw an error __a = self.model_fpaa.half() # Check this does not throw an error __a = self.model_fpaa.float() def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__UpperCamelCase , device_map='''auto''') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _A ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : Optional[Any]): '''simple docstring''' __a = '''t5-small''' __a = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense __a = AutoTokenizer.from_pretrained(cls.model_name) __a = '''Translate in German: Hello, my dog is cute''' def _lowerCamelCase ( self : Dict): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : str): '''simple docstring''' from transformers import TaForConditionalGeneration __a = TaForConditionalGeneration._keep_in_fpaa_modules __a = None # test with `t5-small` __a = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') __a = self.tokenizer(self.input_text , return_tensors='''pt''').to(0) __a = model.generate(**__UpperCamelCase) # test with `flan-t5-small` __a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') __a = self.tokenizer(self.input_text , return_tensors='''pt''').to(0) __a = model.generate(**__UpperCamelCase) __a = modules def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __a = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) __a = self.tokenizer(self.input_text , return_tensors='''pt''').to(0) __a = model.generate(**__UpperCamelCase) # test with `flan-t5-small` __a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') __a = self.tokenizer(self.input_text , return_tensors='''pt''').to(0) __a = model.generate(**__UpperCamelCase) class _A ( lowercase_ ): def _lowerCamelCase ( self : List[Any]): '''simple docstring''' super().setUp() # model_name __a = '''bigscience/bloom-560m''' __a = '''t5-small''' # Different types of model __a = AutoModel.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') # Sequence classification model __a = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') # CausalLM model __a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase , device_map='''auto''') # Seq2seq model __a = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__UpperCamelCase , device_map='''auto''') def _lowerCamelCase ( self : Any): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class _A ( lowercase_ ): def _lowerCamelCase ( self : str): '''simple docstring''' super().setUp() def _lowerCamelCase ( self : Tuple): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __a = self.pipe(self.input_text) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class _A ( lowercase_ ): def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' super().setUp() def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__UpperCamelCase , device_map='''balanced''') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model __a = self.tokenizer(self.input_text , return_tensors='''pt''') # Second real batch __a = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__UpperCamelCase) , self.EXPECTED_OUTPUTS) class _A ( lowercase_ ): def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = '''facebook/opt-350m''' super().setUp() def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''')) < version.parse('''0.37.0'''): return # Step 1: freeze all parameters __a = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__UpperCamelCase) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): __a = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __a = param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__UpperCamelCase)): __a = LoRALayer(module.q_proj , rank=16) __a = LoRALayer(module.k_proj , rank=16) __a = LoRALayer(module.v_proj , rank=16) # Step 3: dummy batch __a = self.tokenizer('''Test batch ''' , return_tensors='''pt''').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __a = model.forward(**__UpperCamelCase) out.logits.norm().backward() for module in model.modules(): if isinstance(__UpperCamelCase , __UpperCamelCase): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(__UpperCamelCase , nn.Embedding): self.assertTrue(module.weight.grad is None) class _A ( lowercase_ ): UpperCamelCase__ : str = '''gpt2-xl''' UpperCamelCase__ : List[Any] = 3.3191854854152187
49
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class _UpperCAmelCase ( lowercase_ ): def __init__( self :int , __UpperCamelCase :Distribution , __UpperCamelCase :Dict=None , __UpperCamelCase :Optional[int]=None , __UpperCamelCase :List[str]=0 ): A = 1.0 if scale is None else scale A = 0.0 if loc is None else loc super().__init__(__UpperCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=__UpperCamelCase )] ) @property def lowerCamelCase ( self :Any ): return self.base_dist.mean * self.scale + self.loc @property def lowerCamelCase ( self :Optional[int] ): return self.base_dist.variance * self.scale**2 @property def lowerCamelCase ( self :Dict ): return self.variance.sqrt() class _UpperCAmelCase ( nn.Module ): def __init__( self :Dict , __UpperCamelCase :int , __UpperCamelCase :Dict[str, int] , __UpperCamelCase :Callable[..., Tuple[torch.Tensor]] , **__UpperCamelCase :str ): super().__init__(**__UpperCamelCase ) A = args_dim A = nn.ModuleList([nn.Linear(__UpperCamelCase , __UpperCamelCase ) for dim in args_dim.values()] ) A = domain_map def lowerCamelCase ( self :int , __UpperCamelCase :torch.Tensor ): A = [proj(__UpperCamelCase ) for proj in self.proj] return self.domain_map(*__UpperCamelCase ) class _UpperCAmelCase ( nn.Module ): def __init__( self :Dict , __UpperCamelCase :int ): super().__init__() A = function def lowerCamelCase ( self :List[str] , __UpperCamelCase :Any , *__UpperCamelCase :Any ): return self.function(__UpperCamelCase , *__UpperCamelCase ) class _UpperCAmelCase : UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Any , __UpperCamelCase :int = 1 ): A = dim A = {k: dim * self.args_dim[k] for k in self.args_dim} def lowerCamelCase ( self :List[Any] , __UpperCamelCase :Dict ): if self.dim == 1: return self.distribution_class(*__UpperCamelCase ) else: return Independent(self.distribution_class(*__UpperCamelCase ) , 1 ) def lowerCamelCase ( self :int , __UpperCamelCase :List[str] , __UpperCamelCase :Optional[torch.Tensor] = None , __UpperCamelCase :Optional[torch.Tensor] = None , ): A = self._base_distribution(__UpperCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(__UpperCamelCase , loc=__UpperCamelCase , scale=__UpperCamelCase , event_dim=self.event_dim ) @property def lowerCamelCase ( self :List[Any] ): return () if self.dim == 1 else (self.dim,) @property def lowerCamelCase ( self :Tuple ): return len(self.event_shape ) @property def lowerCamelCase ( self :int ): return 0.0 def lowerCamelCase ( self :str , __UpperCamelCase :int ): return ParameterProjection( in_features=__UpperCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowerCamelCase ( self :List[Any] , *__UpperCamelCase :torch.Tensor ): raise NotImplementedError() @staticmethod def lowerCamelCase ( __UpperCamelCase :torch.Tensor ): return (x + torch.sqrt(torch.square(__UpperCamelCase ) + 4.0 )) / 2.0 class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"df": 1, "loc": 1, "scale": 1} UpperCamelCase = StudentT @classmethod def lowerCamelCase ( cls :List[str] , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) A = 2.0 + cls.squareplus(__UpperCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"loc": 1, "scale": 1} UpperCamelCase = Normal @classmethod def lowerCamelCase ( cls :List[Any] , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class _UpperCAmelCase ( lowercase_ ): UpperCamelCase = {"total_count": 1, "logits": 1} UpperCamelCase = NegativeBinomial @classmethod def lowerCamelCase ( cls :str , __UpperCamelCase :torch.Tensor , __UpperCamelCase :torch.Tensor ): A = cls.squareplus(__UpperCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowerCamelCase ( self :Tuple , __UpperCamelCase :List[str] ): A, A = distr_args if self.dim == 1: return self.distribution_class(total_count=__UpperCamelCase , logits=__UpperCamelCase ) else: return Independent(self.distribution_class(total_count=__UpperCamelCase , logits=__UpperCamelCase ) , 1 ) def lowerCamelCase ( self :List[str] , __UpperCamelCase :str , __UpperCamelCase :Optional[torch.Tensor] = None , __UpperCamelCase :Optional[torch.Tensor] = None ): A, A = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
292
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : int , __a : List[str] , __a : Dict=13 , __a : Union[str, Any]=7 , __a : Tuple=True , __a : List[Any]=True , __a : Dict=True , __a : List[str]=True , __a : Optional[int]=99 , __a : int=32 , __a : int=2 , __a : Optional[int]=4 , __a : Union[str, Any]=37 , __a : Optional[int]="gelu" , __a : Tuple=0.1 , __a : Dict=0.1 , __a : Union[str, Any]=512 , __a : List[str]=16 , __a : Any=2 , __a : Dict=0.02 , __a : Any=False , __a : Dict=True , __a : Tuple="None" , __a : List[str]=3 , __a : List[Any]=4 , __a : Optional[int]=None , ) -> str: """simple docstring""" __lowercase : str = parent __lowercase : Union[str, Any] = batch_size __lowercase : List[Any] = seq_length __lowercase : Optional[int] = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Any = vocab_size __lowercase : int = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Any = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : int = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[str] = num_labels __lowercase : Any = num_choices __lowercase : Optional[Any] = relative_attention __lowercase : List[str] = position_biased_input __lowercase : List[str] = pos_att_type __lowercase : Dict = scope def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = None if self.use_input_mask: __lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : Any = None __lowercase : Any = None if self.use_labels: __lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : Optional[Any] , __a : Optional[Any] ) -> str: """simple docstring""" __lowercase : int = TFDebertaVaModel(config=__a ) __lowercase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Optional[int] = [input_ids, input_mask] __lowercase : str = model(__a ) __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : Any , __a : Optional[int] , __a : Tuple , __a : Dict ) -> str: """simple docstring""" __lowercase : Optional[Any] = TFDebertaVaForMaskedLM(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Optional[Any] , __a : Tuple , __a : Dict , __a : Dict , __a : Optional[int] , __a : int ) -> Any: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Tuple = TFDebertaVaForSequenceClassification(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[Any] , __a : Dict , __a : str , __a : Tuple , __a : int ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : List[str] = TFDebertaVaForTokenClassification(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Optional[int] , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = TFDebertaVaForQuestionAnswering(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : int = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Optional[Any] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _A : List[Any] = False _A : Optional[int] = False def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Optional[int] = TFDebertaVaModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Union[str, Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) __lowercase : List[str] = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __lowercase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : Tuple = model(__a , attention_mask=__a )[0] __lowercase : int = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __a , atol=1E-4 )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : str = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "unispeech" def __init__( self: Any , UpperCamelCase: int=32 , UpperCamelCase: Tuple=7_68 , UpperCamelCase: List[str]=12 , UpperCamelCase: Union[str, Any]=12 , UpperCamelCase: str=30_72 , UpperCamelCase: Union[str, Any]="gelu" , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Dict=0.1 , UpperCamelCase: Any=0.1 , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: str=0.1 , UpperCamelCase: Optional[int]=0.1 , UpperCamelCase: Dict=0.02 , UpperCamelCase: Optional[int]=1e-5 , UpperCamelCase: Optional[int]="group" , UpperCamelCase: List[Any]="gelu" , UpperCamelCase: List[Any]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , UpperCamelCase: str=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase: List[str]=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase: Tuple=False , UpperCamelCase: Dict=1_28 , UpperCamelCase: Optional[int]=16 , UpperCamelCase: Tuple=False , UpperCamelCase: List[Any]=True , UpperCamelCase: str=0.05 , UpperCamelCase: Optional[int]=10 , UpperCamelCase: Union[str, Any]=2 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: List[Any]=10 , UpperCamelCase: Union[str, Any]=0 , UpperCamelCase: List[str]=3_20 , UpperCamelCase: Union[str, Any]=2 , UpperCamelCase: int=0.1 , UpperCamelCase: int=1_00 , UpperCamelCase: Any=2_56 , UpperCamelCase: str=2_56 , UpperCamelCase: List[str]=0.1 , UpperCamelCase: List[Any]="mean" , UpperCamelCase: Optional[Any]=False , UpperCamelCase: str=False , UpperCamelCase: Dict=2_56 , UpperCamelCase: List[Any]=80 , UpperCamelCase: Union[str, Any]=0 , UpperCamelCase: Any=1 , UpperCamelCase: Any=2 , UpperCamelCase: int=0.5 , **UpperCamelCase: Union[str, Any] , ) -> Tuple: super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) snake_case__ = hidden_size snake_case__ = feat_extract_norm snake_case__ = feat_extract_activation snake_case__ = list(UpperCamelCase ) snake_case__ = list(UpperCamelCase ) snake_case__ = list(UpperCamelCase ) snake_case__ = conv_bias snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = len(self.conv_dim ) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = num_ctc_classes snake_case__ = vocab_size snake_case__ = do_stable_layer_norm snake_case__ = use_weighted_layer_sum snake_case__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = apply_spec_augment snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length snake_case__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case__ = num_codevectors_per_group snake_case__ = num_codevector_groups snake_case__ = contrastive_logits_temperature snake_case__ = feat_quantizer_dropout snake_case__ = num_negatives snake_case__ = codevector_dim snake_case__ = proj_codevector_dim snake_case__ = diversity_loss_weight # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # pretraining loss snake_case__ = replace_prob @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
307
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> None: snake_case__ = [2, 1, 2, -1] snake_case__ = [1, 2, 3, 4] def lowerCAmelCase_ ( self: List[str] ) -> list[float]: snake_case__ = len(self.first_signal ) snake_case__ = len(self.second_signal ) snake_case__ = max(UpperCamelCase , UpperCamelCase ) # create a zero matrix of max_length x max_length snake_case__ = [[0] * max_length for i in range(UpperCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase ): snake_case__ = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase ) for j, item in enumerate(UpperCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal snake_case__ = np.matmul(np.transpose(UpperCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
307
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __A = threading.Lock() __A = None __A = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __A = logging.WARNING __A = True def a__ ( ) -> Dict: __lowerCAmelCase: List[str] = os.getenv("TRANSFORMERS_VERBOSITY" , __SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def a__ ( ) -> str: return __name__.split("." )[0] def a__ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def a__ ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __lowerCAmelCase: str = logging.StreamHandler() # Set sys.stderr as stream. __lowerCAmelCase: Any = sys.stderr.flush # Apply our default configuration to the library root logger. __lowerCAmelCase: List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __lowerCAmelCase: List[Any] = False def a__ ( ) -> None: global _default_handler with _lock: if not _default_handler: return __lowerCAmelCase: Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __lowerCAmelCase: str = None def a__ ( ) -> int: return log_levels def a__ ( __SCREAMING_SNAKE_CASE = None ) -> logging.Logger: if name is None: __lowerCAmelCase: Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def a__ ( __SCREAMING_SNAKE_CASE ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> Any: return set_verbosity(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> Dict: return set_verbosity(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> str: return set_verbosity(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> Union[str, Any]: return set_verbosity(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def a__ ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def a__ ( __SCREAMING_SNAKE_CASE ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__SCREAMING_SNAKE_CASE ) def a__ ( __SCREAMING_SNAKE_CASE ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> None: _configure_library_root_logger() __lowerCAmelCase: Optional[Any] = False def a__ ( ) -> None: _configure_library_root_logger() __lowerCAmelCase: Union[str, Any] = True def a__ ( ) -> None: __lowerCAmelCase: Any = _get_library_root_logger().handlers for handler in handlers: __lowerCAmelCase: str = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(__SCREAMING_SNAKE_CASE ) def a__ ( ) -> None: __lowerCAmelCase: List[str] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__SCREAMING_SNAKE_CASE ) def a__ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> Any: __lowerCAmelCase: Any = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , __SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __A = warning_advice @functools.lru_cache(__SCREAMING_SNAKE_CASE ) def a__ ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[str]: self.warning(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __A = warning_once class snake_case : def __init__( self : Optional[int] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : str)-> Union[str, Any]: # pylint: disable=unused-argument '''simple docstring''' __lowerCAmelCase: Dict = args[0] if args else None def __iter__( self : Optional[Any])-> int: '''simple docstring''' return iter(self._iterator) def __getattr__( self : Tuple , UpperCamelCase__ : Tuple)-> int: '''simple docstring''' def empty_fn(*UpperCamelCase__ : str , **UpperCamelCase__ : List[Any]): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict)-> List[str]: '''simple docstring''' return self def __exit__( self : List[str] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict)-> str: '''simple docstring''' return class snake_case : def __call__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Union[str, Any])-> str: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*UpperCamelCase__ , **UpperCamelCase__) else: return EmptyTqdm(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Tuple)-> List[Any]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __A = _tqdm_cls() def a__ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def a__ ( ) -> Dict: global _tqdm_active __lowerCAmelCase: Union[str, Any] = True hf_hub_utils.enable_progress_bars() def a__ ( ) -> int: global _tqdm_active __lowerCAmelCase: str = False hf_hub_utils.disable_progress_bars()
366
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
108
0
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : Tuple = """vision-encoder-decoder""" __lowerCamelCase : Any = True def __init__( self , **_lowerCAmelCase ) -> Any: super().__init__(**_A ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _lowerCAmelCase = kwargs.pop("encoder" ) _lowerCAmelCase = encoder_config.pop("model_type" ) _lowerCAmelCase = kwargs.pop("decoder" ) _lowerCAmelCase = decoder_config.pop("model_type" ) _lowerCAmelCase = AutoConfig.for_model(_A , **_A ) _lowerCAmelCase = AutoConfig.for_model(_A , **_A ) _lowerCAmelCase = True @classmethod def _snake_case ( cls , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _lowerCAmelCase = True _lowerCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_A ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = copy.deepcopy(self.__dict__ ) _lowerCAmelCase = self.encoder.to_dict() _lowerCAmelCase = self.decoder.to_dict() _lowerCAmelCase = self.__class__.model_type return output class lowerCAmelCase_ ( lowercase__ ): __lowerCamelCase : List[str] = version.parse("1.11" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class lowerCAmelCase_ ( lowercase__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _lowerCAmelCase = OrderedDict() _lowerCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCAmelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCAmelCase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: import torch _lowerCAmelCase = OrderedDict() _lowerCAmelCase = super().generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) _lowerCAmelCase = dummy_input['input_ids'].shape _lowerCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCAmelCase = dummy_input.pop("input_ids" ) _lowerCAmelCase = dummy_input.pop("attention_mask" ) _lowerCAmelCase = torch.zeros(_A ) return common_inputs class lowerCAmelCase_ ( lowercase__ ): @property def _snake_case ( self ) -> None: pass def _snake_case ( self , _lowerCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(_A ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = "default" ) -> OnnxConfig: _lowerCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(_A , _A )
158
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase :str = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[Any] = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Dict = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Any = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
331
0
import doctest from collections import deque import numpy as np class __magic_name__ : def __init__( self )-> None: UpperCamelCase_ = [2, 1, 2, -1] UpperCamelCase_ = [1, 2, 3, 4] def UpperCAmelCase_ ( self )-> list[float]: UpperCamelCase_ = len(self.first_signal ) UpperCamelCase_ = len(self.second_signal ) UpperCamelCase_ = max(_lowercase , _lowercase ) # create a zero matrix of max_length x max_length UpperCamelCase_ = [[0] * max_length for i in range(_lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_lowercase ): UpperCamelCase_ = deque(self.second_signal ) rotated_signal.rotate(_lowercase ) for j, item in enumerate(_lowercase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase_ = np.matmul(np.transpose(_lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
60
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE :List[str] = logging.getLogger(__name__) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=SCREAMING_SNAKE_CASE_ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=SCREAMING_SNAKE_CASE_ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=SCREAMING_SNAKE_CASE_ , default=1_0_0_0 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=SCREAMING_SNAKE_CASE_ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE_ , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=SCREAMING_SNAKE_CASE_ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) UpperCamelCase_ = parser.parse_args() return args def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Tuple: """simple docstring""" def fn(SCREAMING_SNAKE_CASE_ ): return tokenizer(examples["text"] ) return fn def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[Any]: """simple docstring""" UpperCamelCase_ = [] for i in range(len(tokenized_data["input_ids"] ) ): UpperCamelCase_ = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } UpperCamelCase_ = tf.train.Features(feature=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = tf.train.Example(features=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE_ ) return records def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCamelCase_ = min(len(SCREAMING_SNAKE_CASE_ ) , args.limit ) UpperCamelCase_ = dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) print(f"Limiting the dataset to {args.limit} entries." ) UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCamelCase_ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase_ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCamelCase_ = tokenize_function(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE_ ): # Concatenate all texts. UpperCamelCase_ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCamelCase_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCamelCase_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCamelCase_ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE_ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCamelCase_ = dataset_tokenized.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , batch_size=1_0_0_0 , num_proc=4 ) UpperCamelCase_ = 0 UpperCamelCase_ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE_ ) , args.shard_size ): UpperCamelCase_ = grouped_dataset[shard : shard + args.shard_size] UpperCamelCase_ = len(dataset_snapshot["input_ids"] ) UpperCamelCase_ = os.path.join(SCREAMING_SNAKE_CASE_ , f"dataset-{shard_count}-{records_containing}.tfrecord" ) UpperCamelCase_ = get_serialized_examples(SCREAMING_SNAKE_CASE_ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE_ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase_ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE_ ) print("Wrote file {} containing {} records".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shard_count += 1 total_records += records_containing with open(f"split-{args.split}-records-count.txt" , "w" ) as f: print(f"Total {args.split} records: {total_records}" , file=SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :int = parse_args() main(args)
60
1
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase : Optional[Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
86
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _SCREAMING_SNAKE_CASE : Any = False try: _SCREAMING_SNAKE_CASE : Optional[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _snake_case : def __init__( self , a__ = None , a__ = [] ) -> List[str]: '''simple docstring''' snake_case_ = 0 snake_case_ = choices snake_case_ = prompt if sys.platform == "win32": snake_case_ = "*" else: snake_case_ = "➔ " def lowerCAmelCase__ ( self , a__ , a__ = "" ) -> int: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , a__ ) else: forceWrite(self.choices[index] , a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(a__ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def lowerCAmelCase__ ( self , a__ , a__ = 1 ) -> List[str]: '''simple docstring''' snake_case_ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a__ ) move_cursor(a__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a__ )] for number in range(10 )] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = int(chr(self.current_selection ) ) snake_case_ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a__ ) else: return else: return def lowerCAmelCase__ ( self , a__ = 0 ) -> List[str]: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) snake_case_ = default_choice for i in range(len(self.choices ) ): self.print_choice(a__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: snake_case_ = int(builtins.input() ) except ValueError: snake_case_ = default_choice else: snake_case_ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(a__ , "\n" ) return choice
85
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _SCREAMING_SNAKE_CASE : str = ['''text''', '''image''', '''audio'''] def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(a__ , a__ ): inputs.append(create_inputs(a__ ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for output in outputs: if isinstance(a__ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(a__ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(a__ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class UpperCAmelCase__ : """simple docstring""" def lowercase_ ( self : str ) -> Tuple: self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) SCREAMING_SNAKE_CASE__ = self.tool.inputs for _input in inputs: if isinstance(_input , __UpperCamelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowercase_ ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ = self.tool(*__UpperCamelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ = [outputs] self.assertListEqual(output_types(__UpperCamelCase ) , self.tool.outputs ) def lowercase_ ( self : List[Any] ) -> Dict: self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def lowercase_ ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE__ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ = self.tool(*__UpperCamelCase ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = [outputs] self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(__UpperCamelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE__ = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(__UpperCamelCase , __UpperCamelCase ) ) def lowercase_ ( self : str ) -> int: SCREAMING_SNAKE_CASE__ = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ = [] for _input, input_type in zip(__UpperCamelCase , self.tool.inputs ): if isinstance(__UpperCamelCase , __UpperCamelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ = self.tool(*__UpperCamelCase ) if not isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = [outputs] self.assertEqual(len(__UpperCamelCase ) , len(self.tool.outputs ) )
360
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Tuple=0.01 , __lowerCamelCase : Optional[Any]=1000 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = p_stop SCREAMING_SNAKE_CASE__ = max_length def __iter__( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE__ = random.random() < self.p_stop class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=True ) -> Dict: SCREAMING_SNAKE_CASE__ = [ BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 ) ] SCREAMING_SNAKE_CASE__ = [list(__lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(__lowerCamelCase ) for shard in batch_sampler_shards] , [len(__lowerCamelCase ) for e in expected] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Any ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> int: # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase ) def lowercase_ ( self : str ) -> Dict: # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase ) def lowercase_ ( self : List[str] ) -> Tuple: # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase ) # Expected shouldn't change self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[[0, 1]], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [[], []] self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase ) def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE__ = [BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Dict=False ) -> str: random.seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = list(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [ IterableDatasetShard( __lowerCamelCase , batch_size=__lowerCamelCase , drop_last=__lowerCamelCase , num_processes=__lowerCamelCase , process_index=__lowerCamelCase , split_batches=__lowerCamelCase , ) for i in range(__lowerCamelCase ) ] SCREAMING_SNAKE_CASE__ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(__lowerCamelCase ) iterable_dataset_lists.append(list(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE__ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) self.assertTrue(len(__lowerCamelCase ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE__ = [] for idx in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(__lowerCamelCase ) < len(__lowerCamelCase ): reference += reference self.assertListEqual(__lowerCamelCase , reference[: len(__lowerCamelCase )] ) def lowercase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = RandomIterableDataset() self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE__ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase ) def lowercase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = SkipBatchSampler(__lowerCamelCase , 2 ) self.assertListEqual(list(__lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE__ = skip_first_batches(__lowerCamelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self : Union[str, Any] ) -> str: Accelerator() SCREAMING_SNAKE_CASE__ = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(__lowerCamelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
218
0
from importlib import import_module from .logging import get_logger UpperCamelCase_ = get_logger(__name__) class _snake_case : '''simple docstring''' def __init__( self: str ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=None ) -> int: UpperCAmelCase_ : int = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self ,lowerCamelCase_ ,getattr(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = module._original_module if isinstance(lowerCamelCase_ ,_PatchedModuleObj ) else module class _snake_case : '''simple docstring''' A__ : List[Any] = [] def __init__( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple=None ) -> Dict: UpperCAmelCase_ : Optional[Any] = obj UpperCAmelCase_ : Optional[Any] = target UpperCAmelCase_ : List[str] = new UpperCAmelCase_ : Union[str, Any] = target.split(""".""" )[0] UpperCAmelCase_ : List[Any] = {} UpperCAmelCase_ : Any = attrs or [] def __enter__( self: Tuple ) -> Dict: *UpperCAmelCase_ , UpperCAmelCase_ : int = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase_ ) ): try: UpperCAmelCase_ : int = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCAmelCase_ : Any = getattr(self.obj ,lowerCamelCase_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase_ ,_PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCAmelCase_ : str = obj_attr # patch at top level setattr(self.obj ,lowerCamelCase_ ,_PatchedModuleObj(lowerCamelCase_ ,attrs=self.attrs ) ) UpperCAmelCase_ : str = getattr(self.obj ,lowerCamelCase_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase_ ,lowerCamelCase_ ,_PatchedModuleObj(getattr(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) ,attrs=self.attrs ) ) UpperCAmelCase_ : str = getattr(lowerCamelCase_ ,lowerCamelCase_ ) # finally set the target attribute setattr(lowerCamelCase_ ,lowerCamelCase_ ,self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCAmelCase_ : Dict = getattr(import_module(""".""".join(lowerCamelCase_ ) ) ,lowerCamelCase_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj ,lowerCamelCase_ ) is attr_value: UpperCAmelCase_ : Dict = getattr(self.obj ,lowerCamelCase_ ) setattr(self.obj ,lowerCamelCase_ ,self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCAmelCase_ : Any = globals()["""__builtins__"""][target_attr] setattr(self.obj ,lowerCamelCase_ ,self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self: int ,*lowerCamelCase_: str ) -> Optional[Any]: for attr in list(self.original ): setattr(self.obj ,lowerCamelCase_ ,self.original.pop(lowerCamelCase_ ) ) def A__ ( self: str ) -> int: self.__enter__() self._active_patches.append(self ) def A__ ( self: Any ) -> Any: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
345
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
1
from math import factorial, radians def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = 18 , __lowerCAmelCase = 10 ) -> float: '''simple docstring''' lowercase_ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians lowercase_ = radians(__lowerCAmelCase ) lowercase_ = angle_in_radians lowercase_ = 3 lowercase_ = -1 for _ in range(__lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(__lowerCAmelCase ) lowercase_ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": __import__("doctest").testmod()
361
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def _SCREAMING_SNAKE_CASE () -> Generator[int, None, None]: '''simple docstring''' lowercase_ = {} lowercase_ = 2 while True: lowercase_ = factor_map.pop(__lowerCAmelCase , __lowerCAmelCase ) if factor: lowercase_ = factor + prime while x in factor_map: x += factor lowercase_ = factor else: lowercase_ = prime yield prime prime += 1 def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1E10 ) -> int: '''simple docstring''' lowercase_ = sieve() lowercase_ = 1 while True: lowercase_ = next(__lowerCAmelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__lowerCAmelCase ) n += 2 if __name__ == "__main__": print(solution())
313
0
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) UpperCAmelCase__ : Any = 'bert-base-cased' UpperCAmelCase__ : int = 'fp16' UpperCAmelCase__ : Dict = 'bf16' UpperCAmelCase__ : List[str] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def __magic_name__ (self ) -> Any: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Optional[Any] = F'''{i + 1}''' SCREAMING_SNAKE_CASE__ : int = strategy with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Tuple = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __magic_name__ (self ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = prefetch_policy with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : int = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : List[str] = state_dict_type with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = AutoModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ : int = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Optional[int] = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ : Union[str, Any] = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ : Union[str, Any] = """2000""" with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ : List[str] = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : str = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ : List[Any] = """T5Layer""" with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = FullyShardedDataParallelPlugin() with self.assertRaises(SCREAMING_SNAKE_CASE__ ) as cm: fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE__ ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ : Dict = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : List[Any] = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ : int = """0""" with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : str = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(SCREAMING_SNAKE_CASE__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __magic_name__ (self ) -> int: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ : List[Any] = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Optional[int] = mp_dtype with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ : str = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ : int = torch.bfloataa SCREAMING_SNAKE_CASE__ : List[Any] = MixedPrecision(param_dtype=SCREAMING_SNAKE_CASE__ , reduce_dtype=SCREAMING_SNAKE_CASE__ , buffer_dtype=SCREAMING_SNAKE_CASE__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , SCREAMING_SNAKE_CASE__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , SCREAMING_SNAKE_CASE__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ : Tuple = self.dist_env.copy() SCREAMING_SNAKE_CASE__ : Any = str(SCREAMING_SNAKE_CASE__ ).lower() with mockenv_context(**SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=SCREAMING_SNAKE_CASE__ ) ) @require_fsdp @require_multi_gpu @slow class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> int: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : Optional[int] = 0.82 SCREAMING_SNAKE_CASE__ : Optional[int] = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ : Dict = { """multi_gpu_fp16""": 32_00, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 20_00, """fsdp_full_shard_transformer_based_wrap_fp16""": 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ : List[str] = 1_60 SCREAMING_SNAKE_CASE__ : Any = 1_60 SCREAMING_SNAKE_CASE__ : Optional[Any] = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ : Optional[int] = cmd.copy() for i, strategy in enumerate(SCREAMING_SNAKE_CASE__ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ : List[str] = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ : List[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ : Dict = cmd_config[:-1] SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ : int = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ : List[Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(SCREAMING_SNAKE_CASE__ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
25
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCAmelCase : def __init__( self : List[str] , __lowercase : Collection[float] | None = None ): """simple docstring""" if components is None: __lowercase =[] __lowercase =list(__lowercase ) def __len__( self : Union[str, Any] ): """simple docstring""" return len(self.__components ) def __str__( self : int ): """simple docstring""" return "(" + ",".join(map(__lowercase , self.__components ) ) + ")" def __add__( self : List[Any] , __lowercase : Vector ): """simple docstring""" __lowercase =len(self ) if size == len(__lowercase ): __lowercase =[self.__components[i] + other.component(__lowercase ) for i in range(__lowercase )] return Vector(__lowercase ) else: raise Exception('must have the same size' ) def __sub__( self : str , __lowercase : Vector ): """simple docstring""" __lowercase =len(self ) if size == len(__lowercase ): __lowercase =[self.__components[i] - other.component(__lowercase ) for i in range(__lowercase )] return Vector(__lowercase ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , __lowercase : float ): """simple docstring""" ... @overload def __mul__( self : Tuple , __lowercase : Vector ): """simple docstring""" ... def __mul__( self : int , __lowercase : float | Vector ): """simple docstring""" if isinstance(__lowercase , (float, int) ): __lowercase =[c * other for c in self.__components] return Vector(__lowercase ) elif isinstance(__lowercase , __lowercase ) and len(self ) == len(__lowercase ): __lowercase =len(self ) __lowercase =[self.__components[i] * other.component(__lowercase ) for i in range(__lowercase )] return sum(__lowercase ) else: # error case raise Exception('invalid operand!' ) def snake_case ( self : Optional[Any] ): """simple docstring""" return Vector(self.__components ) def snake_case ( self : str , __lowercase : int ): """simple docstring""" if isinstance(__lowercase , __lowercase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def snake_case ( self : List[str] , __lowercase : int , __lowercase : float ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __lowercase =value def snake_case ( self : Tuple ): """simple docstring""" if len(self.__components ) == 0: raise Exception('Vector is empty' ) __lowercase =[c**2 for c in self.__components] return math.sqrt(sum(__lowercase ) ) def snake_case ( self : List[Any] , __lowercase : Vector , __lowercase : bool = False ): """simple docstring""" __lowercase =self * other __lowercase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' assert isinstance(lowercase__, lowercase__ ) return Vector([0] * dimension ) def __UpperCamelCase ( lowercase__ : int, lowercase__ : int ): '''simple docstring''' assert isinstance(lowercase__, lowercase__ ) and (isinstance(lowercase__, lowercase__ )) __lowercase =[0] * dimension __lowercase =1 return Vector(lowercase__ ) def __UpperCamelCase ( lowercase__ : float, lowercase__ : Vector, lowercase__ : Vector ): '''simple docstring''' assert ( isinstance(lowercase__, lowercase__ ) and isinstance(lowercase__, lowercase__ ) and (isinstance(lowercase__, (int, float) )) ) return x * scalar + y def __UpperCamelCase ( lowercase__ : int, lowercase__ : int, lowercase__ : int ): '''simple docstring''' random.seed(lowercase__ ) __lowercase =[random.randint(lowercase__, lowercase__ ) for _ in range(lowercase__ )] return Vector(lowercase__ ) class lowerCAmelCase : def __init__( self : Dict , __lowercase : list[list[float]] , __lowercase : int , __lowercase : int ): """simple docstring""" __lowercase =matrix __lowercase =w __lowercase =h def __str__( self : Optional[Any] ): """simple docstring""" __lowercase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Union[str, Any] , __lowercase : Matrix ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __lowercase =[] for i in range(self.__height ): __lowercase =[ self.__matrix[i][j] + other.component(__lowercase , __lowercase ) for j in range(self.__width ) ] matrix.append(__lowercase ) return Matrix(__lowercase , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : int , __lowercase : Matrix ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __lowercase =[] for i in range(self.__height ): __lowercase =[ self.__matrix[i][j] - other.component(__lowercase , __lowercase ) for j in range(self.__width ) ] matrix.append(__lowercase ) return Matrix(__lowercase , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , __lowercase : float ): """simple docstring""" ... @overload def __mul__( self : str , __lowercase : Vector ): """simple docstring""" ... def __mul__( self : Tuple , __lowercase : float | Vector ): """simple docstring""" if isinstance(__lowercase , __lowercase ): # matrix-vector if len(__lowercase ) == self.__width: __lowercase =zero_vector(self.__height ) for i in range(self.__height ): __lowercase =[ self.__matrix[i][j] * other.component(__lowercase ) for j in range(self.__width ) ] ans.change_component(__lowercase , sum(__lowercase ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(__lowercase , (int, float) ): # matrix-scalar __lowercase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__lowercase , self.__width , self.__height ) return None def snake_case ( self : int ): """simple docstring""" return self.__height def snake_case ( self : List[str] ): """simple docstring""" return self.__width def snake_case ( self : Dict , __lowercase : int , __lowercase : int ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def snake_case ( self : Dict , __lowercase : int , __lowercase : int , __lowercase : float ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __lowercase =value else: raise Exception('change_component: indices out of bounds' ) def snake_case ( self : Dict , __lowercase : int , __lowercase : int ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) __lowercase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowercase ) ): __lowercase =minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowercase , self.__width - 1 , self.__height - 1 ).determinant() def snake_case ( self : Union[str, Any] , __lowercase : int , __lowercase : int ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowercase , __lowercase ) else: raise Exception('Indices out of bounds' ) def snake_case ( self : Tuple ): """simple docstring""" if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __lowercase =[ self.__matrix[0][y] * self.cofactor(0 , __lowercase ) for y in range(self.__width ) ] return sum(__lowercase ) def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' __lowercase =[[0] * n for _ in range(lowercase__ )] return Matrix(lowercase__, lowercase__, lowercase__ ) def __UpperCamelCase ( lowercase__ : int, lowercase__ : int, lowercase__ : int, lowercase__ : int ): '''simple docstring''' random.seed(lowercase__ ) __lowercase =[ [random.randint(lowercase__, lowercase__ ) for _ in range(lowercase__ )] for _ in range(lowercase__ ) ] return Matrix(lowercase__, lowercase__, lowercase__ )
141
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np a : Tuple = re.compile(R"""\b(a|an|the)\b""", re.UNICODE) a : int = None def __lowerCamelCase ( ) -> Optional[Any]: UpperCAmelCase : List[str] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=_lowercase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=_lowercase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase : Union[str, Any] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __lowerCamelCase ( _lowercase ) -> Dict: def remove_articles(_lowercase ): return ARTICLES_REGEX.sub(""" """ , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): UpperCAmelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def __lowerCamelCase ( _lowercase ) -> List[str]: if not s: return [] return normalize_answer(_lowercase ).split() def __lowerCamelCase ( _lowercase , _lowercase ) -> List[Any]: return int(normalize_answer(_lowercase ) == normalize_answer(_lowercase ) ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : Optional[Any] = get_tokens(_lowercase ) UpperCAmelCase : str = get_tokens(_lowercase ) UpperCAmelCase : Dict = collections.Counter(_lowercase ) & collections.Counter(_lowercase ) UpperCAmelCase : Any = sum(common.values() ) if len(_lowercase ) == 0 or len(_lowercase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCAmelCase : Tuple = 1.0 * num_same / len(_lowercase ) UpperCAmelCase : Union[str, Any] = 1.0 * num_same / len(_lowercase ) UpperCAmelCase : Any = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[int]: UpperCAmelCase : int = {} UpperCAmelCase : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCAmelCase : str = qa["""id"""] UpperCAmelCase : str = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_lowercase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCAmelCase : Dict = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue UpperCAmelCase : Optional[Any] = preds[qid] # Take max over all gold answers UpperCAmelCase : List[Any] = max(compute_exact(_lowercase , _lowercase ) for a in gold_answers ) UpperCAmelCase : str = max(compute_fa(_lowercase , _lowercase ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase : List[Any] = {} for qid, s in scores.items(): UpperCAmelCase : Dict = na_probs[qid] > na_prob_thresh if pred_na: UpperCAmelCase : Union[str, Any] = float(not qid_to_has_ans[qid] ) else: UpperCAmelCase : str = s return new_scores def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> Dict: if not qid_list: UpperCAmelCase : Tuple = len(_lowercase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: UpperCAmelCase : int = len(_lowercase ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: for k in new_eval: UpperCAmelCase : int = new_eval[k] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: plt.step(_lowercase , _lowercase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(_lowercase , _lowercase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_lowercase ) plt.savefig(_lowercase ) plt.clf() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> str: UpperCAmelCase : Optional[Any] = sorted(_lowercase , key=lambda _lowercase : na_probs[k] ) UpperCAmelCase : List[str] = 0.0 UpperCAmelCase : List[Any] = 1.0 UpperCAmelCase : Union[str, Any] = 0.0 UpperCAmelCase : List[str] = [1.0] UpperCAmelCase : Union[str, Any] = [0.0] UpperCAmelCase : Optional[int] = 0.0 for i, qid in enumerate(_lowercase ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCAmelCase : int = true_pos / float(i + 1 ) UpperCAmelCase : List[str] = true_pos / float(_lowercase ) if i == len(_lowercase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowercase ) recalls.append(_lowercase ) if out_image: plot_pr_curve(_lowercase , _lowercase , _lowercase , _lowercase ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if out_image_dir and not os.path.exists(_lowercase ): os.makedirs(_lowercase ) UpperCAmelCase : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCAmelCase : List[str] = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) UpperCAmelCase : Optional[Any] = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) UpperCAmelCase : Union[str, Any] = {k: float(_lowercase ) for k, v in qid_to_has_ans.items()} UpperCAmelCase : int = make_precision_recall_eval( _lowercase , _lowercase , _lowercase , _lowercase , out_image=os.path.join(_lowercase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(_lowercase , _lowercase , """pr_exact""" ) merge_eval(_lowercase , _lowercase , """pr_f1""" ) merge_eval(_lowercase , _lowercase , """pr_oracle""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Optional[int]: if not qid_list: return UpperCAmelCase : int = [na_probs[k] for k in qid_list] UpperCAmelCase : Tuple = np.ones_like(_lowercase ) / float(len(_lowercase ) ) plt.hist(_lowercase , weights=_lowercase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_lowercase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: UpperCAmelCase : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCAmelCase : Optional[Any] = num_no_ans UpperCAmelCase : Any = cur_score UpperCAmelCase : int = 0.0 UpperCAmelCase : str = sorted(_lowercase , key=lambda _lowercase : na_probs[k] ) for i, qid in enumerate(_lowercase ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCAmelCase : Optional[int] = scores[qid] else: if preds[qid]: UpperCAmelCase : Optional[int] = -1 else: UpperCAmelCase : int = 0 cur_score += diff if cur_score > best_score: UpperCAmelCase : List[str] = cur_score UpperCAmelCase : str = na_probs[qid] return 100.0 * best_score / len(_lowercase ), best_thresh def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: UpperCAmelCase , UpperCAmelCase : Optional[Any] = find_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase , UpperCAmelCase : Any = find_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : List[str] = best_exact UpperCAmelCase : str = exact_thresh UpperCAmelCase : Any = best_fa UpperCAmelCase : str = fa_thresh def __lowerCamelCase ( ) -> Dict: with open(OPTS.data_file ) as f: UpperCAmelCase : List[str] = json.load(_lowercase ) UpperCAmelCase : List[str] = dataset_json["""data"""] with open(OPTS.pred_file ) as f: UpperCAmelCase : Tuple = json.load(_lowercase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCAmelCase : Union[str, Any] = json.load(_lowercase ) else: UpperCAmelCase : Union[str, Any] = {k: 0.0 for k in preds} UpperCAmelCase : Dict = make_qid_to_has_ans(_lowercase ) # maps qid to True/False UpperCAmelCase : Tuple = [k for k, v in qid_to_has_ans.items() if v] UpperCAmelCase : Tuple = [k for k, v in qid_to_has_ans.items() if not v] UpperCAmelCase , UpperCAmelCase : List[str] = get_raw_scores(_lowercase , _lowercase ) UpperCAmelCase : List[Any] = apply_no_ans_threshold(_lowercase , _lowercase , _lowercase , OPTS.na_prob_thresh ) UpperCAmelCase : int = apply_no_ans_threshold(_lowercase , _lowercase , _lowercase , OPTS.na_prob_thresh ) UpperCAmelCase : int = make_eval_dict(_lowercase , _lowercase ) if has_ans_qids: UpperCAmelCase : Dict = make_eval_dict(_lowercase , _lowercase , qid_list=_lowercase ) merge_eval(_lowercase , _lowercase , """HasAns""" ) if no_ans_qids: UpperCAmelCase : List[str] = make_eval_dict(_lowercase , _lowercase , qid_list=_lowercase ) merge_eval(_lowercase , _lowercase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , OPTS.out_image_dir ) histogram_na_prob(_lowercase , _lowercase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(_lowercase , _lowercase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(_lowercase , _lowercase ) else: print(json.dumps(_lowercase , indent=2 ) ) if __name__ == "__main__": a : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
338
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. a : Optional[int] = 1_0 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: for i in range(_lowercase , _lowercase ): if array[i] == target: return i return -1 def __lowerCamelCase ( _lowercase , _lowercase ) -> int: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = len(_lowercase ) while left <= right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : Union[str, Any] = (left + right) // 3 + 1 UpperCAmelCase : Union[str, Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase : Any = one_third - 1 elif array[two_third] < target: UpperCAmelCase : Tuple = two_third + 1 else: UpperCAmelCase : int = one_third + 1 UpperCAmelCase : List[Any] = two_third - 1 else: return -1 def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase ) -> int: if left < right: if right - left < precision: return lin_search(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase : str = (left + right) // 3 + 1 UpperCAmelCase : Optional[Any] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(_lowercase , one_third - 1 , _lowercase , _lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , _lowercase , _lowercase , _lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , _lowercase , _lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() a : Any = input("""Enter numbers separated by comma:\n""").strip() a : Any = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." a : Tuple = int(input("""Enter the number to be found in the list:\n""").strip()) a : Union[str, Any] = ite_ternary_search(collection, target) a : Optional[Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
338
1
'''simple docstring''' import argparse import struct import unittest class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : Any = data # Initialize hash values __lowerCamelCase : Union[str, Any] = [ 0X6a_09_e6_67, 0Xbb_67_ae_85, 0X3c_6e_f3_72, 0Xa5_4f_f5_3a, 0X51_0e_52_7f, 0X9b_05_68_8c, 0X1f_83_d9_ab, 0X5b_e0_cd_19, ] # Initialize round constants __lowerCamelCase : Union[str, Any] = [ 0X42_8a_2f_98, 0X71_37_44_91, 0Xb5_c0_fb_cf, 0Xe9_b5_db_a5, 0X39_56_c2_5b, 0X59_f1_11_f1, 0X92_3f_82_a4, 0Xab_1c_5e_d5, 0Xd8_07_aa_98, 0X12_83_5b_01, 0X24_31_85_be, 0X55_0c_7d_c3, 0X72_be_5d_74, 0X80_de_b1_fe, 0X9b_dc_06_a7, 0Xc1_9b_f1_74, 0Xe4_9b_69_c1, 0Xef_be_47_86, 0X0f_c1_9d_c6, 0X24_0c_a1_cc, 0X2d_e9_2c_6f, 0X4a_74_84_aa, 0X5c_b0_a9_dc, 0X76_f9_88_da, 0X98_3e_51_52, 0Xa8_31_c6_6d, 0Xb0_03_27_c8, 0Xbf_59_7f_c7, 0Xc6_e0_0b_f3, 0Xd5_a7_91_47, 0X06_ca_63_51, 0X14_29_29_67, 0X27_b7_0a_85, 0X2e_1b_21_38, 0X4d_2c_6d_fc, 0X53_38_0d_13, 0X65_0a_73_54, 0X76_6a_0a_bb, 0X81_c2_c9_2e, 0X92_72_2c_85, 0Xa2_bf_e8_a1, 0Xa8_1a_66_4b, 0Xc2_4b_8b_70, 0Xc7_6c_51_a3, 0Xd1_92_e8_19, 0Xd6_99_06_24, 0Xf4_0e_35_85, 0X10_6a_a0_70, 0X19_a4_c1_16, 0X1e_37_6c_08, 0X27_48_77_4c, 0X34_b0_bc_b5, 0X39_1c_0c_b3, 0X4e_d8_aa_4a, 0X5b_9c_ca_4f, 0X68_2e_6f_f3, 0X74_8f_82_ee, 0X78_a5_63_6f, 0X84_c8_78_14, 0X8c_c7_02_08, 0X90_be_ff_fa, 0Xa4_50_6c_eb, 0Xbe_f9_a3_f7, 0Xc6_71_78_f2, ] __lowerCamelCase : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowercase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: __lowerCamelCase : Union[str, Any] = B'\x80' + (B'\x00' * (63 - (len(SCREAMING_SNAKE_CASE_ ) + 8) % 64)) __lowerCamelCase : List[Any] = struct.pack('>Q' , (len(SCREAMING_SNAKE_CASE_ ) * 8) ) return data + padding + big_endian_integer def lowercase_ ( self ) -> None: # Convert into blocks of 64 bytes __lowerCamelCase : List[str] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __lowerCamelCase : Optional[int] = list(struct.unpack('>16L' , SCREAMING_SNAKE_CASE_ ) ) # add 48 0-ed integers words += [0] * 48 __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __lowerCamelCase : Tuple = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __lowerCamelCase : Optional[int] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __lowerCamelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression __lowerCamelCase : Optional[Any] = self.ror(SCREAMING_SNAKE_CASE_ , 6 ) ^ self.ror(SCREAMING_SNAKE_CASE_ , 11 ) ^ self.ror(SCREAMING_SNAKE_CASE_ , 25 ) __lowerCamelCase : Any = (e & f) ^ ((~e & 0Xff_ff_ff_ff) & g) __lowerCamelCase : Any = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 __lowerCamelCase : Optional[Any] = self.ror(SCREAMING_SNAKE_CASE_ , 2 ) ^ self.ror(SCREAMING_SNAKE_CASE_ , 13 ) ^ self.ror(SCREAMING_SNAKE_CASE_ , 22 ) __lowerCamelCase : List[str] = (a & b) ^ (a & c) ^ (b & c) __lowerCamelCase : List[Any] = (sa + maj) % 0X1_00_00_00_00 __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) __lowerCamelCase : Tuple = [a, b, c, d, e, f, g, h] # Modify final values __lowerCamelCase : Any = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] __lowerCamelCase : Any = ''.join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(8 ) for value in self.hashes] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: return 0Xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> None: import hashlib __lowerCamelCase : Any = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(SCREAMING_SNAKE_CASE_ ).hash , hashlib.shaaaa(SCREAMING_SNAKE_CASE_ ).hexdigest() ) def UpperCAmelCase__ ( ) -> None: import doctest doctest.testmod() __lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: __lowerCamelCase : Optional[int] = f.read() else: __lowerCamelCase : int = bytes(UpperCAmelCase_ , 'utf-8' ) print(SHAaaa(UpperCAmelCase_ ).hash ) if __name__ == "__main__": main()
185
'''simple docstring''' from importlib import import_module from .logging import get_logger A__ : str = get_logger(__name__) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: __lowerCamelCase : List[str] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : Optional[int] = module._original_module if isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj ) else module class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Tuple = [] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = obj __lowerCamelCase : List[Any] = target __lowerCamelCase : Union[str, Any] = new __lowerCamelCase : Union[str, Any] = target.split('.' )[0] __lowerCamelCase : Dict = {} __lowerCamelCase : Dict = attrs or [] def __enter__( self ) -> Optional[int]: *__lowerCamelCase , __lowerCamelCase : int = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(SCREAMING_SNAKE_CASE_ ) ): try: __lowerCamelCase : Optional[int] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowerCamelCase : List[Any] = getattr(self.obj , SCREAMING_SNAKE_CASE_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowerCamelCase : Optional[Any] = obj_attr # patch at top level setattr(self.obj , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(SCREAMING_SNAKE_CASE_ , attrs=self.attrs ) ) __lowerCamelCase : str = getattr(self.obj , SCREAMING_SNAKE_CASE_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , attrs=self.attrs ) ) __lowerCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # finally set the target attribute setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowerCamelCase : Union[str, Any] = getattr(import_module('.'.join(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , SCREAMING_SNAKE_CASE_ ) is attr_value: __lowerCamelCase : Optional[int] = getattr(self.obj , SCREAMING_SNAKE_CASE_ ) setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowerCamelCase : List[Any] = globals()['__builtins__'][target_attr] setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new ) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self , *SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: for attr in list(self.original ): setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.original.pop(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self ) -> Optional[int]: self.__enter__() self._active_patches.append(self ) def lowercase_ ( self ) -> str: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
185
1
import math from datetime import datetime, timedelta def __lowercase ( a__ ) -> datetime: __SCREAMING_SNAKE_CASE = year % 19 __SCREAMING_SNAKE_CASE = year % 4 __SCREAMING_SNAKE_CASE = year % 7 __SCREAMING_SNAKE_CASE = math.floor(year / 1_00 ) __SCREAMING_SNAKE_CASE = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __SCREAMING_SNAKE_CASE = leap_day_inhibits / 4 __SCREAMING_SNAKE_CASE = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __SCREAMING_SNAKE_CASE = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __SCREAMING_SNAKE_CASE = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __SCREAMING_SNAKE_CASE = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(a__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(a__ , 4 , 18 ) else: return datetime(a__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): lowerCAmelCase__ : str ='''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
118
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase__ : Dict =random.Random() if is_torch_available(): import torch def __lowercase ( a__ , a__=1.0 , a__=None , a__=None ) -> Any: if rng is None: __SCREAMING_SNAKE_CASE = global_rng __SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _A , _A=7 , _A=400 , _A=2_000 , _A=1 , _A=0.0 , _A=16_000 , _A=True , _A=True , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = min_seq_length __SCREAMING_SNAKE_CASE = max_seq_length __SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = return_attention_mask __SCREAMING_SNAKE_CASE = do_normalize def _A ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _A ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: __SCREAMING_SNAKE_CASE = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ASTFeatureExtractor def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ASTFeatureExtractionTester(self ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __SCREAMING_SNAKE_CASE = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input __SCREAMING_SNAKE_CASE = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __SCREAMING_SNAKE_CASE = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched __SCREAMING_SNAKE_CASE = feat_extract(_A , padding=_A , return_tensors='np' ).input_values __SCREAMING_SNAKE_CASE = feat_extract(_A , padding=_A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] __SCREAMING_SNAKE_CASE = np.asarray(_A ) __SCREAMING_SNAKE_CASE = feat_extract(_A , return_tensors='np' ).input_values __SCREAMING_SNAKE_CASE = feat_extract(_A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def _A ( self ): '''simple docstring''' import torch __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = np.random.rand(100 ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __SCREAMING_SNAKE_CASE = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __SCREAMING_SNAKE_CASE = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _A ( self , _A ): '''simple docstring''' from datasets import load_dataset __SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE = ds.sort('id' ).select(range(_A ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE = ASTFeatureExtractor() __SCREAMING_SNAKE_CASE = feature_extractor(_A , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
118
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCAmelCase_( _lowercase ): '''simple docstring''' __lowercase : Optional[int] = "poolformer" def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=16 ,__UpperCAmelCase=16 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4.0 ,__UpperCAmelCase=[2, 2, 6, 2] ,__UpperCAmelCase=[64, 128, 320, 512] ,__UpperCAmelCase=[7, 3, 3, 3] ,__UpperCAmelCase=[4, 2, 2, 2] ,__UpperCAmelCase=[2, 1, 1, 1] ,__UpperCAmelCase=4 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=True ,__UpperCAmelCase=1E-5 ,__UpperCAmelCase=0.0_2 ,**__UpperCAmelCase ,) -> Tuple: lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Any = patch_size lowerCAmelCase__ : List[str] = stride lowerCAmelCase__ : int = padding lowerCAmelCase__ : Tuple = pool_size lowerCAmelCase__ : List[Any] = hidden_sizes lowerCAmelCase__ : Tuple = mlp_ratio lowerCAmelCase__ : Union[str, Any] = depths lowerCAmelCase__ : Optional[Any] = patch_sizes lowerCAmelCase__ : Dict = strides lowerCAmelCase__ : Optional[int] = num_encoder_blocks lowerCAmelCase__ : Optional[Any] = drop_path_rate lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : int = use_layer_scale lowerCAmelCase__ : Optional[Any] = layer_scale_init_value lowerCAmelCase__ : Dict = initializer_range super().__init__(**__lowerCAmelCase ) class lowerCAmelCase_( _lowercase ): '''simple docstring''' __lowercase : Any = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self ) -> Dict: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: return 2E-3
37
"""simple docstring""" import unittest import numpy as np def snake_case_ ( A_ : np.ndarray, A_ : np.ndarray, A_ : np.ndarray, A_ : np.ndarray | None = None, ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = np.shape(A_ ) _lowerCamelCase : List[str] = np.shape(A_ ) _lowerCamelCase : List[str] = np.shape(A_ ) if shape_a[0] != shape_b[0]: _lowerCamelCase : Tuple = ( '''Expected the same number of rows for A and B. ''' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(A_ ) if shape_b[1] != shape_c[1]: _lowerCamelCase : Tuple = ( '''Expected the same number of columns for B and C. ''' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(A_ ) _lowerCamelCase : List[str] = pseudo_inv if a_inv is None: try: _lowerCamelCase : Any = np.linalg.inv(A_ ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : List[str] = np.array([[2, 1], [6, 3]] ) _lowerCamelCase : List[Any] = schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = np.block([[a, b], [b.T, c]] ) _lowerCamelCase : Tuple = np.linalg.det(__lowerCAmelCase ) _lowerCamelCase : List[str] = np.linalg.det(__lowerCAmelCase ) _lowerCamelCase : Any = np.linalg.det(__lowerCAmelCase ) self.assertAlmostEqual(__lowerCAmelCase , det_a * det_s ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : int = np.array([[2, 1], [6, 3]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _lowerCamelCase : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) _lowerCamelCase : Union[str, Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(__lowerCAmelCase ): schur_complement(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
72
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( lowerCamelCase: Dict=None ) -> Tuple: '''simple docstring''' if subparsers is not None: __A = subparsers.add_parser('''test''' ) else: __A = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCamelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase ) return parser def _a ( lowerCamelCase: Optional[int] ) -> str: '''simple docstring''' __A = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: __A = script_name else: __A = F"""--config_file={args.config_file} {script_name}""" __A = ['''accelerate-launch'''] + test_args.split() __A = execute_subprocess_async(lowerCamelCase , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def _a ( ) -> str: '''simple docstring''' __A = test_command_parser() __A = parser.parse_args() test_command(lowerCamelCase ) if __name__ == "__main__": main()
353
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case__ : Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case__ : Any = 'main' # Default branch name snake_case__ : Union[str, Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case__ : Optional[int] = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case__ : int = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _a ( ) -> Tuple: '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def _a ( ) -> Optional[int]: '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> Optional[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class A_ ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :str , _UpperCamelCase :str )-> Optional[int]: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Union[str, Any]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :int , _UpperCamelCase :Union[str, Any] )-> int: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def _lowerCAmelCase (self :int )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_tf def _lowerCAmelCase (self :Any )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_flax def _lowerCAmelCase (self :Optional[int] )-> Dict: # Flax models don't have labels self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , [] )
250
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""ViTFeatureExtractor"""] _UpperCAmelCase = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
173
1
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCamelCase_ ( ) -> Dict: """simple docstring""" lowerCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=lowerCAmelCase__ , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=lowerCAmelCase__ , default=5 ) parser.add_argument('--batch_size' , type=lowerCAmelCase__ , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=lowerCAmelCase__ , default=1 ) parser.add_argument('--freeze' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument('--learning_rate' , type=lowerCAmelCase__ , default=5e-4 ) parser.add_argument('--seed' , type=lowerCAmelCase__ , default=0 ) parser.add_argument('--lr_scheduler_type' , type=lowerCAmelCase__ , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=lowerCAmelCase__ , default=10 ) parser.add_argument('--weight_decay' , type=lowerCAmelCase__ , default=0.01 ) parser.add_argument('--output_dir' , type=lowerCAmelCase__ , default='./results' ) return parser.parse_args() lowercase__ : int = load("""accuracy""") def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = eval_pred lowerCAmelCase_ : Optional[Any] = np.argmax(lowerCAmelCase__ , axis=1 ) return metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): super().__init__() lowerCAmelCase_ : Dict = trainer def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : str ): if control.should_evaluate: lowerCAmelCase_ : Tuple = deepcopy(SCREAMING_SNAKE_CASE_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def UpperCamelCase_ ( ) -> Any: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = get_args() set_seed(args.seed ) lowerCAmelCase_ : Any = load_dataset('codeparrot/codecomplex' , split='train' ) lowerCAmelCase_ : Union[str, Any] = dataset.train_test_split(test_size=0.2 ) lowerCAmelCase_ : Optional[int] = train_test['test'].train_test_split(test_size=0.5 ) lowerCAmelCase_ : Tuple = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCAmelCase_ : Union[str, Any] = tokenizer.eos_token lowerCAmelCase_ : List[str] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) lowerCAmelCase_ : Union[str, Any] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : List[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(lowerCAmelCase__ : List[Any] ): lowerCAmelCase_ : Optional[int] = tokenizer(example['src'] , truncation=lowerCAmelCase__ , max_length=1024 ) lowerCAmelCase_ : Dict = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } lowerCAmelCase_ : str = train_test_validation.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=train_test_validation['train'].column_names , ) lowerCAmelCase_ : Tuple = DataCollatorWithPadding(tokenizer=lowerCAmelCase__ ) lowerCAmelCase_ : List[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) lowerCAmelCase_ : List[Any] = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) print('Training...' ) trainer.add_callback(CustomCallback(lowerCAmelCase__ ) ) trainer.train() if __name__ == "__main__": main()
289
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCamelCase__ : """simple docstring""" pass
289
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : "DiagonalGaussianDistribution" class __lowerCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): snake_case_ : Tuple = True @register_to_config def __init__( self : Union[str, Any] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 4 , snake_case__ : int = 32 , snake_case__ : int = 32 , snake_case__ : float = 0.18_215 , ): """simple docstring""" super().__init__() # pass init params to Encoder _UpperCAmelCase = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) # pass init params to Decoder _UpperCAmelCase = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , norm_num_groups=snake_case__ , act_fn=snake_case__ , ) _UpperCAmelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _UpperCAmelCase = nn.Convad(snake_case__ , snake_case__ , 1 ) _UpperCAmelCase = False _UpperCAmelCase = False # only relevant if vae tiling is enabled _UpperCAmelCase = self.config.sample_size _UpperCAmelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _UpperCAmelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _UpperCAmelCase = 0.25 def UpperCamelCase ( self : Any , snake_case__ : str , snake_case__ : Dict=False ): """simple docstring""" if isinstance(snake_case__ , (Encoder, Decoder) ): _UpperCAmelCase = value def UpperCamelCase ( self : Any , snake_case__ : bool = True ): """simple docstring""" _UpperCAmelCase = use_tiling def UpperCamelCase ( self : int ): """simple docstring""" self.enable_tiling(snake_case__ ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = True def UpperCamelCase ( self : Optional[int] ): """simple docstring""" _UpperCAmelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = {} def fn_recursive_add_processors(snake_case__ : str , snake_case__ : torch.nn.Module , snake_case__ : Dict[str, AttentionProcessor] ): if hasattr(snake_case__ , "set_processor" ): _UpperCAmelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , snake_case__ , snake_case__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ) return processors def UpperCamelCase ( self : Dict , snake_case__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): """simple docstring""" _UpperCAmelCase = len(self.attn_processors.keys() ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(snake_case__ : str , snake_case__ : torch.nn.Module , snake_case__ : int ): if hasattr(snake_case__ , "set_processor" ): if not isinstance(snake_case__ , snake_case__ ): module.set_processor(snake_case__ ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , snake_case__ , snake_case__ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def UpperCamelCase ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): """simple docstring""" if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case__ , return_dict=snake_case__ ) if self.use_slicing and x.shape[0] > 1: _UpperCAmelCase = [self.encoder(snake_case__ ) for x_slice in x.split(1 )] _UpperCAmelCase = torch.cat(snake_case__ ) else: _UpperCAmelCase = self.encoder(snake_case__ ) _UpperCAmelCase = self.quant_conv(snake_case__ ) _UpperCAmelCase = DiagonalGaussianDistribution(snake_case__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): """simple docstring""" if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case__ , return_dict=snake_case__ ) _UpperCAmelCase = self.post_quant_conv(snake_case__ ) _UpperCAmelCase = self.decoder(snake_case__ ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) @apply_forward_hook def UpperCamelCase ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): """simple docstring""" if self.use_slicing and z.shape[0] > 1: _UpperCAmelCase = [self._decode(snake_case__ ).sample for z_slice in z.split(1 )] _UpperCAmelCase = torch.cat(snake_case__ ) else: _UpperCAmelCase = self._decode(snake_case__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = min(a.shape[2] , b.shape[2] , snake_case__ ) for y in range(snake_case__ ): _UpperCAmelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def UpperCamelCase ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Optional[Any] ): """simple docstring""" _UpperCAmelCase = min(a.shape[3] , b.shape[3] , snake_case__ ) for x in range(snake_case__ ): _UpperCAmelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def UpperCamelCase ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): """simple docstring""" _UpperCAmelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _UpperCAmelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) _UpperCAmelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _UpperCAmelCase = [] for i in range(0 , x.shape[2] , snake_case__ ): _UpperCAmelCase = [] for j in range(0 , x.shape[3] , snake_case__ ): _UpperCAmelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _UpperCAmelCase = self.encoder(snake_case__ ) _UpperCAmelCase = self.quant_conv(snake_case__ ) row.append(snake_case__ ) rows.append(snake_case__ ) _UpperCAmelCase = [] for i, row in enumerate(snake_case__ ): _UpperCAmelCase = [] for j, tile in enumerate(snake_case__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _UpperCAmelCase = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__ ) if j > 0: _UpperCAmelCase = self.blend_h(row[j - 1] , snake_case__ , snake_case__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case__ , dim=3 ) ) _UpperCAmelCase = torch.cat(snake_case__ , dim=2 ) _UpperCAmelCase = DiagonalGaussianDistribution(snake_case__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case__ ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): """simple docstring""" _UpperCAmelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _UpperCAmelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) _UpperCAmelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _UpperCAmelCase = [] for i in range(0 , z.shape[2] , snake_case__ ): _UpperCAmelCase = [] for j in range(0 , z.shape[3] , snake_case__ ): _UpperCAmelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _UpperCAmelCase = self.post_quant_conv(snake_case__ ) _UpperCAmelCase = self.decoder(snake_case__ ) row.append(snake_case__ ) rows.append(snake_case__ ) _UpperCAmelCase = [] for i, row in enumerate(snake_case__ ): _UpperCAmelCase = [] for j, tile in enumerate(snake_case__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _UpperCAmelCase = self.blend_v(rows[i - 1][j] , snake_case__ , snake_case__ ) if j > 0: _UpperCAmelCase = self.blend_h(row[j - 1] , snake_case__ , snake_case__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case__ , dim=3 ) ) _UpperCAmelCase = torch.cat(snake_case__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCamelCase ( self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : Optional[torch.Generator] = None , ): """simple docstring""" _UpperCAmelCase = sample _UpperCAmelCase = self.encode(snake_case__ ).latent_dist if sample_posterior: _UpperCAmelCase = posterior.sample(generator=snake_case__ ) else: _UpperCAmelCase = posterior.mode() _UpperCAmelCase = self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
133
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): snake_case_ : Tuple = StableDiffusionLDMaDPipeline snake_case_ : Optional[int] = TEXT_TO_IMAGE_PARAMS snake_case_ : str = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _UpperCAmelCase = CLIPTextModel(snake_case__ ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int]=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(snake_case__ ) else: _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) _UpperCAmelCase = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = 3 * [inputs["prompt"]] # forward _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = 3 * [inputs.pop("prompt" )] _UpperCAmelCase = ldmad_pipe.tokenizer( snake_case__ , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) _UpperCAmelCase = text_inputs["input_ids"].to(snake_case__ ) _UpperCAmelCase = ldmad_pipe.text_encoder(snake_case__ )[0] _UpperCAmelCase = prompt_embeds # forward _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCAmelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase ( self : List[str] ): """simple docstring""" _UpperCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = PNDMScheduler(skip_prk_steps=snake_case__ ) _UpperCAmelCase = StableDiffusionLDMaDPipeline(**snake_case__ ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_dummy_inputs(snake_case__ ) _UpperCAmelCase = "french fries" _UpperCAmelCase = ldmad_pipe(**snake_case__ , negative_prompt=snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1] _UpperCAmelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCAmelCase = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) _UpperCAmelCase = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : str , snake_case__ : Optional[int] , snake_case__ : Tuple="cpu" , snake_case__ : Any=torch.floataa , snake_case__ : Dict=0 ): """simple docstring""" _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _UpperCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) _UpperCAmelCase = ldmad_pipe.to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = rgb[0, -3:, -3:, -1].flatten() _UpperCAmelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCAmelCase = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) _UpperCAmelCase = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any , snake_case__ : Optional[Any] , snake_case__ : int="cpu" , snake_case__ : Optional[Any]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" _UpperCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _UpperCAmelCase = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) _UpperCAmelCase = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) _UpperCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.495_586 _UpperCAmelCase = 0.33_795_515 _UpperCAmelCase = 112.48_518 _UpperCAmelCase = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase ( self : Tuple ): """simple docstring""" _UpperCAmelCase = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(snake_case__ ) ldmad_pipe.set_progress_bar_config(disable=snake_case__ ) _UpperCAmelCase = self.get_inputs(snake_case__ ) _UpperCAmelCase = ldmad_pipe(**snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = output.rgb, output.depth _UpperCAmelCase = 0.4_194_127 _UpperCAmelCase = 0.35_375_586 _UpperCAmelCase = 0.5_638_502 _UpperCAmelCase = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
133
1
def _A ( _a : int = 1_0_0 ): """simple docstring""" A = (n * (n + 1) // 2) ** 2 A = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
355
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase =logging.get_logger(__name__) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = ['''pixel_values'''] def __init__( self ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = True ,lowerCamelCase_ = None ,lowerCamelCase_ = True ,lowerCamelCase_ = 1 / 2_5_5 ,lowerCamelCase_ = True ,lowerCamelCase_ = IMAGENET_DEFAULT_MEAN ,lowerCamelCase_ = IMAGENET_DEFAULT_STD ,**lowerCamelCase_ ,) -> None: super().__init__(**lowerCamelCase_ ) A = size if size is not None else {"""shortest_edge""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = PILImageResampling.BICUBIC ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: A = int((2_5_6 / 2_2_4) * size["""shortest_edge"""] ) A = get_resize_output_image_size(lowerCamelCase_ ,size=lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = {"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( lowerCamelCase_ ,size=(size_dict["""height"""], size_dict["""width"""]) ,resample=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: A = get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(lowerCamelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return rescale(lowerCamelCase_ ,scale=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> np.ndarray: return normalize(lowerCamelCase_ ,mean=lowerCamelCase_ ,std=lowerCamelCase_ ,data_format=lowerCamelCase_ ,**lowerCamelCase_ ) def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = ChannelDimension.FIRST ,**lowerCamelCase_ ,) -> BatchFeature: A = do_resize if do_resize is not None else self.do_resize A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = size if size is not None else self.size A = get_size_dict(lowerCamelCase_ ,default_to_square=lowerCamelCase_ ) A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(lowerCamelCase_ ,param_name="""crop_size""" ) A = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: A = [self.resize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_center_crop: A = [self.center_crop(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_rescale: A = [self.rescale(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] if do_normalize: A = [self.normalize(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = [to_channel_dimension_format(lowerCamelCase_ ,lowerCamelCase_ ) for image in images] A = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ ,tensor_type=lowerCamelCase_ )
77
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants A_ : Optional[int] = Mapping[str, np.ndarray] A_ : Union[str, Any] = Mapping[str, Any] # Is a nested dict. A_ : Any = 0.01 @dataclasses.dataclass(frozen=_lowerCamelCase ) class lowercase : """simple docstring""" UpperCAmelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. UpperCAmelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. UpperCAmelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. UpperCAmelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. UpperCAmelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions UpperCAmelCase = None # Optional remark about the protein. Included as a comment in output PDB # files UpperCAmelCase = None # Templates used to generate this protein (prediction-only) UpperCAmelCase = None # Chain corresponding to each parent UpperCAmelCase = None def snake_case_ ( lowerCAmelCase_ )-> Protein: '''simple docstring''' _UpperCAmelCase : List[Any] = R"""(\[[A-Z]+\]\n)""" _UpperCAmelCase : List[str] = [tag.strip() for tag in re.split(lowerCAmelCase_ , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0] _UpperCAmelCase : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("""\n""" ) for l in tags[1::2]] ) _UpperCAmelCase : List[str] = ["N", "CA", "C"] _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : Union[str, Any] = None for g in groups: if "[PRIMARY]" == g[0]: _UpperCAmelCase : List[str] = g[1][0].strip() for i in range(len(lowerCAmelCase_ ) ): if seq[i] not in residue_constants.restypes: _UpperCAmelCase : Any = """X""" # FIXME: strings are immutable _UpperCAmelCase : List[Any] = np.array( [residue_constants.restype_order.get(lowerCAmelCase_ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _UpperCAmelCase : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(lowerCAmelCase_ , g[1][axis].split() ) ) ) _UpperCAmelCase : Tuple = np.array(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _UpperCAmelCase : List[str] = np.array(list(map({"""-""": 0, """+""": 1}.get , g[1][0].strip() ) ) ) _UpperCAmelCase : str = np.zeros( ( len(lowerCAmelCase_ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowerCAmelCase_ , atom_mask=lowerCAmelCase_ , aatype=lowerCAmelCase_ , residue_index=np.arange(len(lowerCAmelCase_ ) ) , b_factors=lowerCAmelCase_ , ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 0 )-> List[str]: '''simple docstring''' _UpperCAmelCase : List[str] = [] _UpperCAmelCase : int = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) _UpperCAmelCase : Tuple = prot.parents _UpperCAmelCase : str = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _UpperCAmelCase : Tuple = [p for i, p in zip(lowerCAmelCase_ , lowerCAmelCase_ ) if i == chain_id] if parents is None or len(lowerCAmelCase_ ) == 0: _UpperCAmelCase : Optional[Any] = ["""N/A"""] pdb_headers.append(F'''PARENT {' '.join(lowerCAmelCase_ )}''' ) return pdb_headers def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = pdb_str.split("""\n""" ) _UpperCAmelCase : Optional[Any] = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) _UpperCAmelCase : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _UpperCAmelCase : List[str] = [] if prot.parents_chain_index is not None: _UpperCAmelCase : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowerCAmelCase_ ) , [] ) parent_dict[str(lowerCAmelCase_ )].append(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = max([int(lowerCAmelCase_ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _UpperCAmelCase : Optional[Any] = parent_dict.get(str(lowerCAmelCase_ ) , ["""N/A"""] ) parents_per_chain.append(lowerCAmelCase_ ) else: parents_per_chain.append(list(prot.parents ) ) else: _UpperCAmelCase : Union[str, Any] = [["""N/A"""]] def make_parent_line(lowerCAmelCase_ ) -> str: return F'''PARENT {' '.join(lowerCAmelCase_ )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _UpperCAmelCase : int = 0 for i, l in enumerate(lowerCAmelCase_ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowerCAmelCase_ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowerCAmelCase_ ): _UpperCAmelCase : Union[str, Any] = parents_per_chain[chain_counter] else: _UpperCAmelCase : Dict = ["""N/A"""] out_pdb_lines.append(make_parent_line(lowerCAmelCase_ ) ) return "\n".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = residue_constants.restypes + ["""X"""] def res_atoa(lowerCAmelCase_ ) -> str: return residue_constants.restype_atoa.get(restypes[r] , """UNK""" ) _UpperCAmelCase : Optional[int] = residue_constants.atom_types _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Any = prot.atom_mask _UpperCAmelCase : Tuple = prot.aatype _UpperCAmelCase : Any = prot.atom_positions _UpperCAmelCase : Optional[Any] = prot.residue_index.astype(np.intaa ) _UpperCAmelCase : Optional[int] = prot.b_factors _UpperCAmelCase : Optional[int] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) _UpperCAmelCase : Any = get_pdb_headers(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: pdb_lines.extend(lowerCAmelCase_ ) _UpperCAmelCase : Any = aatype.shape[0] _UpperCAmelCase : str = 1 _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[Any] = string.ascii_uppercase _UpperCAmelCase : List[Any] = None # Add all atom sites. for i in range(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowerCAmelCase_ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _UpperCAmelCase : str = """ATOM""" _UpperCAmelCase : Any = atom_name if len(lowerCAmelCase_ ) == 4 else F''' {atom_name}''' _UpperCAmelCase : Dict = """""" _UpperCAmelCase : Union[str, Any] = """""" _UpperCAmelCase : Tuple = 1.0_0 _UpperCAmelCase : Dict = atom_name[0] # Protein supports only C, N, O, S, this works. _UpperCAmelCase : Optional[Any] = """""" _UpperCAmelCase : List[str] = """A""" if chain_index is not None: _UpperCAmelCase : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _UpperCAmelCase : Tuple = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(lowerCAmelCase_ ) atom_index += 1 _UpperCAmelCase : int = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : str = chain_index[i + 1] if should_terminate: # Close the chain. _UpperCAmelCase : Tuple = """TER""" _UpperCAmelCase : List[str] = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(lowerCAmelCase_ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowerCAmelCase_ , lowerCAmelCase_ ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , )-> Protein: '''simple docstring''' return Protein( aatype=features["""aatype"""] , atom_positions=result["""final_atom_positions"""] , atom_mask=result["""final_atom_mask"""] , residue_index=features["""residue_index"""] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ) , chain_index=lowerCAmelCase_ , remark=lowerCAmelCase_ , parents=lowerCAmelCase_ , parents_chain_index=lowerCAmelCase_ , )
215
'''simple docstring''' from numpy import exp, pi, sqrt def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1.0 )-> int: '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
215
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[Any] = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case : Dict = logging.get_logger(__name__) _snake_case : Dict = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } _snake_case : Optional[Any] = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[Any] = EfficientNetConfig() __snake_case : Union[str, Any] = CONFIG_MAP[model_name]["hidden_dim"] __snake_case : List[str] = CONFIG_MAP[model_name]["width_coef"] __snake_case : str = CONFIG_MAP[model_name]["depth_coef"] __snake_case : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] __snake_case : List[str] = CONFIG_MAP[model_name]["dropout_rate"] __snake_case : Union[str, Any] = CONFIG_MAP[model_name]["dw_padding"] __snake_case : List[Any] = "huggingface/label-files" __snake_case : Optional[Any] = "imagenet-1k-id2label.json" __snake_case : Tuple = 1_0_0_0 __snake_case : int = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) __snake_case : Dict = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __snake_case : List[str] = idalabel __snake_case : int = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ): __snake_case : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case : int = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = CONFIG_MAP[model_name]["image_size"] __snake_case : List[str] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=_UpperCamelCase , ) return preprocessor def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[Any] = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] __snake_case : Optional[Any] = sorted(set(_UpperCamelCase ) ) __snake_case : List[Any] = len(_UpperCamelCase ) __snake_case : Optional[int] = {b: str(_UpperCamelCase ) for b, i in zip(_UpperCamelCase , range(_UpperCamelCase ) )} __snake_case : List[Any] = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: __snake_case : List[str] = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) __snake_case : Tuple = {} for item in rename_keys: if item[0] in original_param_names: __snake_case : str = "efficientnet." + item[1] __snake_case : Dict = "classifier.weight" __snake_case : Tuple = "classifier.bias" return key_mapping def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): for key, value in tf_params.items(): if "normalization" in key: continue __snake_case : Any = key_mapping[key] if "_conv" in key and "kernel" in key: __snake_case : List[Any] = torch.from_numpy(_UpperCamelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __snake_case : str = torch.from_numpy(_UpperCamelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __snake_case : Tuple = torch.from_numpy(np.transpose(_UpperCamelCase ) ) else: __snake_case : Optional[int] = torch.from_numpy(_UpperCamelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_UpperCamelCase ) @torch.no_grad() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Any = model_classes[model_name]( include_top=_UpperCamelCase , weights="imagenet" , input_tensor=_UpperCamelCase , input_shape=_UpperCamelCase , pooling=_UpperCamelCase , classes=1_0_0_0 , classifier_activation="softmax" , ) __snake_case : Tuple = original_model.trainable_variables __snake_case : List[str] = original_model.non_trainable_variables __snake_case : int = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __snake_case : int = param.numpy() __snake_case : str = list(tf_params.keys() ) # Load HuggingFace model __snake_case : List[Any] = get_efficientnet_config(_UpperCamelCase ) __snake_case : Any = EfficientNetForImageClassification(_UpperCamelCase ).eval() __snake_case : Any = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) __snake_case : List[Any] = rename_keys(_UpperCamelCase ) replace_params(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Initialize preprocessor and preprocess input image __snake_case : Any = convert_image_processor(_UpperCamelCase ) __snake_case : Union[str, Any] = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): __snake_case : Tuple = hf_model(**_UpperCamelCase ) __snake_case : Any = outputs.logits.detach().numpy() # Original model inference __snake_case : Tuple = False __snake_case : Tuple = CONFIG_MAP[model_name]["image_size"] __snake_case : List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __snake_case : Optional[Any] = image.img_to_array(_UpperCamelCase ) __snake_case : Dict = np.expand_dims(_UpperCamelCase , axis=0 ) __snake_case : List[str] = original_model.predict(_UpperCamelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(_UpperCamelCase ): os.mkdir(_UpperCamelCase ) # Save converted model and image processor hf_model.save_pretrained(_UpperCamelCase ) preprocessor.save_pretrained(_UpperCamelCase ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) __snake_case : Union[str, Any] = F'efficientnet-{model_name}' preprocessor.push_to_hub(_UpperCamelCase ) hf_model.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") _snake_case : Any = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
123
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> tuple[str, float]: A: Tuple = len([g for position, g in enumerate(__lowercase ) if g == main_target[position]] ) return (item, float(__lowercase )) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> tuple[str, str]: A: Optional[Any] = random.randint(0 , len(__lowercase ) - 1 ) A: int = parent_a[:random_slice] + parent_a[random_slice:] A: Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[int] = list(__lowercase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: A: Any = random.choice(__lowercase ) return "".join(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , ) -> list[str]: A: List[str] = [] # Generate more children proportionally to the fitness score. A: List[str] = int(parent_a[1] * 1_0_0 ) + 1 A: Tuple = 1_0 if child_n >= 1_0 else child_n for _ in range(__lowercase ): A: List[str] = population_score[random.randint(0 , __lowercase )][0] A , A: List[str] = crossover(parent_a[0] , __lowercase ) # Append new string to the population list. pop.append(mutate(__lowercase , __lowercase ) ) pop.append(mutate(__lowercase , __lowercase ) ) return pop def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: A: str = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(__lowercase ) # Verify that the target contains no genes besides the ones inside genes variable. A: List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: A: Any = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(__lowercase ) # Generate random starting population. A: Optional[Any] = [] for _ in range(__lowercase ): population.append(''''''.join([random.choice(__lowercase ) for i in range(len(__lowercase ) )] ) ) # Just some logs to know what the algorithms is doing. A , A: Optional[Any] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__lowercase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. A: Optional[int] = [evaluate(__lowercase , __lowercase ) for item in population] # Check if there is a matching evolution. A: Tuple = sorted(__lowercase , key=lambda __lowercase : x[1] , reverse=__lowercase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. A: Union[str, Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__lowercase ) # Normalize population score to be between 0 and 1. A: Union[str, Any] = [ (item, score / len(__lowercase )) for item, score in population_score ] # This is selection for i in range(__lowercase ): population.extend(select(population_score[int(__lowercase )] , __lowercase , __lowercase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__lowercase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) UpperCamelCase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
334
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
1
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = VideoMAEConfig() set_architecture_configs(__UpperCAmelCase, __UpperCAmelCase ) if "finetuned" not in model_name: snake_case_ = False if "finetuned" in model_name: snake_case_ = '''huggingface/label-files''' if "kinetics" in model_name: snake_case_ = 400 snake_case_ = '''kinetics400-id2label.json''' elif "ssv2" in model_name: snake_case_ = 174 snake_case_ = '''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) snake_case_ = json.load(open(hf_hub_download(__UpperCAmelCase, __UpperCAmelCase, repo_type='''dataset''' ), '''r''' ) ) snake_case_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' if "small" in model_name: snake_case_ = 384 snake_case_ = 1536 snake_case_ = 12 snake_case_ = 16 snake_case_ = 12 snake_case_ = 3 snake_case_ = 192 snake_case_ = 768 elif "large" in model_name: snake_case_ = 1024 snake_case_ = 4096 snake_case_ = 24 snake_case_ = 16 snake_case_ = 12 snake_case_ = 8 snake_case_ = 512 snake_case_ = 2048 elif "huge" in model_name: snake_case_ = 1280 snake_case_ = 5120 snake_case_ = 32 snake_case_ = 16 snake_case_ = 12 snake_case_ = 8 snake_case_ = 640 snake_case_ = 2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def __magic_name__ ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "encoder." in name: snake_case_ = name.replace('''encoder.''', '''''' ) if "cls_token" in name: snake_case_ = name.replace('''cls_token''', '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: snake_case_ = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: snake_case_ = name.replace('''pos_embed''', '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case_ = name.replace('''patch_embed.proj''', '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ = name.replace('''patch_embed.norm''', '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: snake_case_ = name.replace('''decoder.blocks''', '''decoder.decoder_layers''' ) if "blocks" in name: snake_case_ = name.replace('''blocks''', '''videomae.encoder.layer''' ) if "attn.proj" in name: snake_case_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name and "bias" not in name: snake_case_ = name.replace('''attn''', '''attention.self''' ) if "attn" in name: snake_case_ = name.replace('''attn''', '''attention.attention''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: snake_case_ = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "decoder_embed" in name: snake_case_ = name.replace('''decoder_embed''', '''decoder.decoder_embed''' ) if "decoder_norm" in name: snake_case_ = name.replace('''decoder_norm''', '''decoder.decoder_norm''' ) if "decoder_pred" in name: snake_case_ = name.replace('''decoder_pred''', '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case_ = name.replace('''norm.weight''', '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case_ = name.replace('''norm.bias''', '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: snake_case_ = name.replace('''head''', '''classifier''' ) return name def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(__UpperCAmelCase ) if key.startswith('''encoder.''' ): snake_case_ = key.replace('''encoder.''', '''''' ) if "qkv" in key: snake_case_ = key.split('''.''' ) if key.startswith('''decoder.blocks''' ): snake_case_ = config.decoder_hidden_size snake_case_ = int(key_split[2] ) snake_case_ = '''decoder.decoder_layers.''' if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = config.hidden_size snake_case_ = int(key_split[1] ) snake_case_ = '''videomae.encoder.layer.''' if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val return orig_state_dict def __magic_name__ ( ) -> List[Any]: '''simple docstring''' snake_case_ = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' ) snake_case_ = np.load(__UpperCAmelCase ) return list(__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = get_videomae_config(__UpperCAmelCase ) if "finetuned" in model_name: snake_case_ = VideoMAEForVideoClassification(__UpperCAmelCase ) else: snake_case_ = VideoMAEForPreTraining(__UpperCAmelCase ) # download original checkpoint, hosted on Google Drive snake_case_ = '''pytorch_model.bin''' gdown.cached_download(__UpperCAmelCase, __UpperCAmelCase, quiet=__UpperCAmelCase ) snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' ) if "model" in files: snake_case_ = files['''model'''] else: snake_case_ = files['''module'''] snake_case_ = convert_state_dict(__UpperCAmelCase, __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # verify model on basic input snake_case_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) snake_case_ = prepare_video() snake_case_ = image_processor(__UpperCAmelCase, return_tensors='''pt''' ) if "finetuned" not in model_name: snake_case_ = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''', filename='''bool_masked_pos.pt''' ) snake_case_ = torch.load(__UpperCAmelCase ) snake_case_ = model(**__UpperCAmelCase ) snake_case_ = outputs.logits snake_case_ = [ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case_ = torch.Size([1, 174] ) snake_case_ = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case_ = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case_ = torch.Size([1, 400] ) snake_case_ = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case_ = torch.Size([1, 174] ) snake_case_ = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": snake_case_ = torch.Size([1, 1408, 1536] ) snake_case_ = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case_ = torch.Size([1, 174] ) snake_case_ = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(F"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3], __UpperCAmelCase, atol=1e-4 ) else: print('''Logits:''', logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3], __UpperCAmelCase, atol=1e-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case_ = outputs.loss assert torch.allclose(__UpperCAmelCase, __UpperCAmelCase, atol=1e-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__UpperCAmelCase, organization='''nielsr''' ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a : Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
56
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __A =namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = _TestCommandArgs(dataset=UpperCamelCase__ , all_configs=UpperCamelCase__ , save_infos=UpperCamelCase__ ) UpperCAmelCase__ : Any = TestCommand(*UpperCamelCase__ ) test_command.run() UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , """README.md""" ) assert os.path.exists(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = DatasetInfosDict.from_directory(UpperCamelCase__ ) UpperCAmelCase__ : Any = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2_3_5_1_5_6_3, """num_examples""": 1_0_0_0_0, }, { """name""": """validation""", """num_bytes""": 2_3_8_4_1_8, """num_examples""": 1_0_0_0, }, ] , download_size=3_9_4_0_6_8_0 , dataset_size=2_5_8_9_9_8_1 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = getattr(dataset_infos["""default"""] , UpperCamelCase__ ), getattr(expected_dataset_infos["""default"""] , UpperCamelCase__ ) if key == "num_bytes": assert is_apercent_close(UpperCamelCase__ , UpperCamelCase__ ) elif key == "splits": assert list(UpperCamelCase__ ) == list(UpperCamelCase__ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
163
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case : int = logging.get_logger(__name__) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = ['''input_features'''] def __init__( self :Any ,__snake_case :Union[str, Any]=80 ,__snake_case :Any=1_60_00 ,__snake_case :Any=1_60 ,__snake_case :Optional[Any]=30 ,__snake_case :Optional[int]=4_00 ,__snake_case :List[str]=0.0 ,__snake_case :Union[str, Any]=False ,**__snake_case :str ,) -> Tuple: super().__init__( feature_size=__snake_case ,sampling_rate=__snake_case ,padding_value=__snake_case ,return_attention_mask=__snake_case ,**__snake_case ,) a__ = n_fft a__ = hop_length a__ = chunk_length a__ = chunk_length * sampling_rate a__ = self.n_samples // hop_length a__ = sampling_rate a__ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=__snake_case ,min_frequency=0.0 ,max_frequency=80_00.0 ,sampling_rate=__snake_case ,norm='slaney' ,mel_scale='slaney' ,) def lowerCamelCase__( self :Tuple ,__snake_case :np.array ) -> np.ndarray: a__ = spectrogram( __snake_case ,window_function(self.n_fft ,'hann' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters ,log_mel='log10' ,) a__ = log_spec[:, :-1] a__ = np.maximum(__snake_case ,log_spec.max() - 8.0 ) a__ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase__( __snake_case :List[np.ndarray] ,__snake_case :List[np.ndarray] ,__snake_case :float = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: a__ = np.array(__snake_case ,np.intaa ) a__ = [] for vector, length in zip(__snake_case ,attention_mask.sum(-1 ) ): a__ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a__ = padding_value normed_input_values.append(__snake_case ) else: a__ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self :List[Any] ,__snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__snake_case :bool = True ,__snake_case :Optional[int] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :Optional[bool] = None ,__snake_case :Optional[str] = "max_length" ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = None ,__snake_case :Optional[bool] = None ,**__snake_case :str ,) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) a__ = isinstance(__snake_case ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) a__ = is_batched_numpy or ( isinstance(__snake_case ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: a__ = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case ,np.ndarray ): a__ = np.asarray(__snake_case ,dtype=np.floataa ) elif isinstance(__snake_case ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ = [np.asarray([raw_speech] ).T] a__ = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding a__ = self.pad( __snake_case ,padding=__snake_case ,max_length=max_length if max_length else self.n_samples ,truncation=__snake_case ,pad_to_multiple_of=__snake_case ,return_attention_mask=return_attention_mask or do_normalize ,) # zero-mean and unit-variance normalization if do_normalize: a__ = self.zero_mean_unit_var_norm( padded_inputs['input_features'] ,attention_mask=padded_inputs['attention_mask'] ,padding_value=self.padding_value ,) a__ = np.stack(padded_inputs['input_features'] ,axis=0 ) # make sure list is in array format a__ = padded_inputs.get('input_features' ).transpose(2 ,0 ,1 ) a__ = [self._np_extract_fbank_features(__snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] ,__snake_case ): a__ = [np.asarray(__snake_case ,dtype=np.floataa ) for feature in input_features] else: a__ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) a__ = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: a__ = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs def lowerCamelCase__( self :Dict ) -> Dict[str, Any]: a__ = copy.deepcopy(self.__dict__ ) a__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
109
from __future__ import annotations class snake_case_ : def __init__( self :List[str] ,__snake_case :int ) -> None: a__ = data a__ = None a__ = None def __lowercase ( __lowerCAmelCase : Node | None ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __lowercase ( __lowerCAmelCase : Node | None ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __lowercase ( __lowerCAmelCase : Node ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __lowercase ( ): # Main function for testing. a__ = Node(1 ) a__ = Node(2 ) a__ = Node(3 ) a__ = Node(4 ) a__ = Node(5 ) a__ = Node(6 ) a__ = Node(7 ) a__ = Node(8 ) a__ = Node(9 ) print(is_full_binary_tree(__lowerCAmelCase ) ) print(depth_of_tree(__lowerCAmelCase ) ) print('Tree is: ' ) display(__lowerCAmelCase ) if __name__ == "__main__": main()
109
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(snake_case_ , 2 ) - pow(snake_case_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(snake_case_ , 2 ) - pow(snake_case_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(snake_case_ , 2 ) + pow(snake_case_ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
1
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> List[Any]: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' SCREAMING_SNAKE_CASE__ : str = nn.Parameter(SCREAMING_SNAKE_CASE__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' SCREAMING_SNAKE_CASE__ : Any = nn.Parameter(SCREAMING_SNAKE_CASE__ ) def _a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE__ : Any = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 , SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 , 1 ) , ) def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE__ : str = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(weights[2] ) SCREAMING_SNAKE_CASE__ : Tuple = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 , SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 , 1 ) , ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = weights[0][0][0] SCREAMING_SNAKE_CASE__ : Dict = np.asarray(layer_norm_a[0] ) SCREAMING_SNAKE_CASE__ : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # lsh weights + output SCREAMING_SNAKE_CASE__ : Dict = weights[0][1] if len(SCREAMING_SNAKE_CASE__ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE__ , torch_block.attention , SCREAMING_SNAKE_CASE__ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE__ , torch_block.attention , SCREAMING_SNAKE_CASE__ ) # intermediate weighs SCREAMING_SNAKE_CASE__ : int = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE__ ) == 4: SCREAMING_SNAKE_CASE__ : List[Any] = intermediate_weights[2] # layernorm 2 SCREAMING_SNAKE_CASE__ : int = np.asarray(intermediate_weights[0][0] ) SCREAMING_SNAKE_CASE__ : Tuple = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # intermediate dense SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(intermediate_weights[1][0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # intermediate out SCREAMING_SNAKE_CASE__ : Optional[Any] = np.asarray(intermediate_weights[4][0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) def _a ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = torch_model.reformer # word embeds SCREAMING_SNAKE_CASE__ : Dict = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : str = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): SCREAMING_SNAKE_CASE__ : str = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): SCREAMING_SNAKE_CASE__ : Optional[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # output layer norm SCREAMING_SNAKE_CASE__ : Dict = np.asarray(weights[7][0] ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # output embeddings SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(weights[9][0] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) def _a ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE__ : Optional[int] = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: SCREAMING_SNAKE_CASE__ : List[Any] = pickle.load(SCREAMING_SNAKE_CASE__ )["weights"] set_model_weights_in_torch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
191
class lowerCamelCase : """simple docstring""" def __init__( self : int, _UpperCAmelCase : Dict, _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = name SCREAMING_SNAKE_CASE__ : Tuple = val def __str__( self : str ) -> List[Any]: """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : str, _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" return self.val < other.val class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any], _UpperCAmelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.build_heap(_UpperCAmelCase ) def __getitem__( self : Union[str, Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return self.get_value(_UpperCAmelCase ) def A_ ( self : int, _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" return (idx - 1) // 2 def A_ ( self : Optional[Any], _UpperCAmelCase : Any ) -> Dict: """simple docstring""" return idx * 2 + 1 def A_ ( self : str, _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" return idx * 2 + 2 def A_ ( self : Tuple, _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return self.heap_dict[key] def A_ ( self : Optional[int], _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = len(_UpperCAmelCase ) - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_parent_idx(_UpperCAmelCase ) for idx, i in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Optional[int] = idx SCREAMING_SNAKE_CASE__ : Optional[Any] = i.val for i in range(_UpperCAmelCase, -1, -1 ): self.sift_down(_UpperCAmelCase, _UpperCAmelCase ) return array def A_ ( self : List[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" while True: SCREAMING_SNAKE_CASE__ : str = self.get_left_child_idx(_UpperCAmelCase ) # noqa: E741 SCREAMING_SNAKE_CASE__ : Tuple = self.get_right_child_idx(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = idx if l < len(_UpperCAmelCase ) and array[l] < array[idx]: SCREAMING_SNAKE_CASE__ : List[Any] = l if r < len(_UpperCAmelCase ) and array[r] < array[smallest]: SCREAMING_SNAKE_CASE__ : int = r if smallest != idx: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = array[smallest], array[idx] ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) SCREAMING_SNAKE_CASE__ : Optional[Any] = smallest else: break def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_parent_idx(_UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Any = self.heap[idx], self.heap[p] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) SCREAMING_SNAKE_CASE__ : Dict = p SCREAMING_SNAKE_CASE__ : List[str] = self.get_parent_idx(_UpperCAmelCase ) def A_ ( self : str ) -> List[str]: """simple docstring""" return self.heap[0] def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.heap[-1], self.heap[0] SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) SCREAMING_SNAKE_CASE__ : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0, self.heap ) return x def A_ ( self : Union[str, Any], _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" self.heap.append(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = len(self.heap ) - 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.heap ) == 0 def A_ ( self : Any, _UpperCAmelCase : Tuple, _UpperCAmelCase : str ) -> Dict: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" SCREAMING_SNAKE_CASE__ : Tuple = new_value SCREAMING_SNAKE_CASE__ : List[Any] = new_value self.sift_up(self.idx_of_element[node] ) _lowerCamelCase : Tuple = Node('''R''', -1) _lowerCamelCase : int = Node('''B''', 6) _lowerCamelCase : str = Node('''A''', 3) _lowerCamelCase : Optional[Any] = Node('''X''', 1) _lowerCamelCase : str = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowerCamelCase : int = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
191
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __magic_name__ ( A : List[str], A : str, A : str, A : Path, A : str = None, A : str = None, A : str = None, ): '''simple docstring''' if config_name_or_path is None: a = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: a = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: a = question_encoder_name_or_path a = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. a = RagConfig.from_pretrained(A ) a = AutoConfig.from_pretrained(A ) a = AutoConfig.from_pretrained(A ) a = gen_config a = question_encoder_config a = model_class.from_pretrained_question_encoder_generator( A, A, config=A ) rag_model.save_pretrained(A ) # Sanity check. model_class.from_pretrained(A ) # Save tokenizers. a = AutoTokenizer.from_pretrained(A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) a = AutoTokenizer.from_pretrained(A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) __lowerCAmelCase : Any = parser.parse_args() __lowerCAmelCase : Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
107
from __future__ import annotations import os from collections.abc import Mapping _UpperCAmelCase : Tuple = tuple[int, int] class lowercase : def __init__( self , A_ , A_ ) -> None: """simple docstring""" UpperCamelCase = vertices UpperCamelCase = { (min(A_ ), max(A_ )): weight for edge, weight in edges.items() } def __UpperCamelCase ( self , A_ , A_ ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase = weight def __UpperCamelCase ( self ) -> Graph: """simple docstring""" UpperCamelCase = Graph({min(self.vertices )} , {} ) UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase = edge UpperCamelCase = weight subgraph.add_edge(A_ , A_ ) return subgraph def A ( lowercase = "p107_network.txt" ) -> int: '''simple docstring''' UpperCamelCase = os.path.abspath(os.path.dirname(lowercase ) ) UpperCamelCase = os.path.join(lowercase , lowercase ) UpperCamelCase = {} UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 with open(lowercase ) as f: UpperCamelCase = f.read().strip().split('\n' ) UpperCamelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase ) ): for edgea in range(lowercase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase = Graph(set(range(len(lowercase ) ) ) , lowercase ) UpperCamelCase = graph.prims_algorithm() UpperCamelCase = sum(graph.edges.values() ) UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : Dict = ['keras_nlp'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''keras_nlp'''] )
9
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowerCAmelCase = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) __lowerCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowerCAmelCase = {'''unk_token''': '''<unk>'''} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowercase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowercase ) ) __lowerCAmelCase = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCAmelCase = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowercase , __lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self , **__lowercase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def _snake_case (self ): shutil.rmtree(self.tmpdirname ) def _snake_case (self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case (self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) __lowerCAmelCase = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__lowercase , return_tensors='''np''' ) __lowerCAmelCase = processor(images=__lowercase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = processor(text=__lowercase ) __lowerCAmelCase = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__lowercase ) __lowerCAmelCase = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) __lowerCAmelCase = '''lower newer''' __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding="""utf-8""" , check=_UpperCamelCase , ) assert hasattr(self , """env""" ) def _snake_case ( self , lowercase ) -> List[Any]: lowerCAmelCase = f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings lowerCAmelCase = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_UpperCamelCase , instance_count=_UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCamelCase , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_UpperCamelCase , py_version="""py36""" , ) def _snake_case ( self , lowercase ) -> Union[str, Any]: TrainingJobAnalytics(_UpperCamelCase ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def _snake_case ( self , lowercase ) -> Dict: lowerCAmelCase = self.create_estimator(_UpperCamelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _UpperCamelCase )
46
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=10 , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=2 , _UpperCamelCase=2 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.0_2 , _UpperCamelCase=0.9 , _UpperCamelCase=None , ): """simple docstring""" _lowercase : List[str] = parent _lowercase : Tuple = batch_size _lowercase : Tuple = image_size _lowercase : Any = num_channels _lowercase : Tuple = patch_size _lowercase : Union[str, Any] = tubelet_size _lowercase : str = num_frames _lowercase : Any = is_training _lowercase : Tuple = use_labels _lowercase : List[Any] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Optional[Any] = type_sequence_label_size _lowercase : Optional[Any] = initializer_range _lowercase : int = mask_ratio _lowercase : Union[str, Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _lowercase : List[str] = (image_size // patch_size) ** 2 _lowercase : Optional[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _lowercase : str = int(mask_ratio * self.seq_length ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = VideoMAEModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _lowercase : Dict = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = VideoMAEForPreTraining(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase : Optional[int] = torch.ones((self.num_masks,) ) _lowercase : List[Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _lowercase : Tuple = mask.expand(self.batch_size , -1 ).bool() _lowercase : Tuple = model(_UpperCamelCase , _UpperCamelCase ) # model only returns predictions for masked patches _lowercase : Tuple = mask.sum().item() _lowercase : Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[Any] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Tuple = False _SCREAMING_SNAKE_CASE : Dict = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = VideoMAEModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" _lowercase : Any = copy.deepcopy(_UpperCamelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase : Union[str, Any] = torch.ones((self.model_tester.num_masks,) ) _lowercase : Dict = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _lowercase : List[str] = mask.expand(self.model_tester.batch_size , -1 ).bool() _lowercase : Any = bool_masked_pos.to(_UpperCamelCase ) if return_labels: if model_class in [ *get_values(_UpperCamelCase ), ]: _lowercase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCamelCase ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(_UpperCamelCase ) _lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : str = [*signature.parameters.keys()] _lowercase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : int = VideoMAEModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" if not self.has_attentions: pass else: _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[int] = True for model_class in self.all_model_classes: _lowercase : List[str] = self.model_tester.seq_length - self.model_tester.num_masks _lowercase : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _lowercase : int = True _lowercase : str = False _lowercase : Any = True _lowercase : Optional[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowercase : Union[str, Any] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowercase : List[str] = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase : Tuple = True _lowercase : Optional[Any] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowercase : Dict = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowercase : Tuple = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowercase : str = len(_UpperCamelCase ) # Check attention is always last and order is fine _lowercase : List[Any] = True _lowercase : List[str] = True _lowercase : Any = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + 1 , len(_UpperCamelCase ) ) _lowercase : Optional[int] = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ): """simple docstring""" def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _lowercase : Optional[int] = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): _lowercase : Tuple = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) _lowercase : List[str] = outputs.hidden_states _lowercase : List[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) _lowercase : List[str] = self.model_tester.seq_length - self.model_tester.num_masks _lowercase : Optional[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Dict = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : List[str] = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self ): """simple docstring""" pass def _A ( ) -> Any: _lowercase : Tuple = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _lowercase : int = np.load(snake_case ) return list(snake_case ) @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( _UpperCamelCase ) _lowercase : Dict = self.default_image_processor _lowercase : Optional[Any] = prepare_video() _lowercase : Union[str, Any] = image_processor(_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowercase : str = model(**_UpperCamelCase ) # verify the logits _lowercase : List[Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _lowercase : int = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(_UpperCamelCase ) _lowercase : Dict = self.default_image_processor _lowercase : Optional[Any] = prepare_video() _lowercase : List[Any] = image_processor(_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # add boolean mask, indicating which patches to mask _lowercase : int = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _lowercase : Any = torch.load(_UpperCamelCase ) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**_UpperCamelCase ) # verify the logits _lowercase : Dict = torch.Size([1, 1408, 1536] ) _lowercase : Tuple = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=_UpperCamelCase ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _lowercase : Tuple = torch.tensor([0.5_1_4_2] , device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , _UpperCamelCase , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _lowercase : Dict = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_UpperCamelCase ).to( _UpperCamelCase ) with torch.no_grad(): _lowercase : Optional[int] = model(**_UpperCamelCase ) _lowercase : List[str] = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.loss , _UpperCamelCase , atol=1E-4 ) )
250
0
from __future__ import annotations def UpperCamelCase ( __magic_name__ : int | str ) -> bool: """simple docstring""" lowercase__ = str(__magic_name__ ) return n == n[::-1] def UpperCamelCase ( __magic_name__ : int = 100_0000 ) -> List[str]: """simple docstring""" lowercase__ = 0 for i in range(1 , __magic_name__ ): if is_palindrome(__magic_name__ ) and is_palindrome(bin(__magic_name__ ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
146
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A : str = logging.get_logger(__name__) # pylint: disable=invalid-name class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Tuple: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__(self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[torch.FloatTensor] = None , **_UpperCAmelCase : Any , ) -> Tuple: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = len(_UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_UpperCAmelCase )}.''' ) # get prompt text embeddings lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowercase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowercase__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase__ , lowercase__ , lowercase__ = text_embeddings.shape lowercase__ = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) lowercase__ = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ = 42 if negative_prompt is None: lowercase__ = [""""""] elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=''' f''' {type(_UpperCAmelCase )}.''' ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase__ = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowercase__ = negative_prompt lowercase__ = text_input_ids.shape[-1] lowercase__ = self.tokenizer( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""pt""" , ) lowercase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase__ = uncond_embeddings.shape[1] lowercase__ = uncond_embeddings.repeat(_UpperCAmelCase , _UpperCAmelCase , 1 ) lowercase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowercase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to(self.device ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device="""cpu""" , dtype=_UpperCAmelCase ).to( self.device ) else: lowercase__ = torch.randn( _UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase__ = latents_reference.to(self.device ) lowercase__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase__ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase__ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase__ = 0 if dx < 0 else dx lowercase__ = 0 if dy < 0 else dy lowercase__ = max(-dx , 0 ) lowercase__ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowercase__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ = {} if accepts_eta: lowercase__ = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowercase__ , lowercase__ = noise_pred.chunk(2 ) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ = 1 / 0.18_215 * latents lowercase__ = self.vae.decode(_UpperCAmelCase ).sample lowercase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowercase__ = self.feature_extractor(self.numpy_to_pil(_UpperCAmelCase ) , return_tensors="""pt""" ).to( self.device ) lowercase__ , lowercase__ = self.safety_checker( images=_UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowercase__ = None if output_type == "pil": lowercase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
146
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case__ (_UpperCamelCase ): """simple docstring""" @staticmethod @abstractmethod def __UpperCAmelCase ( __lowerCamelCase : ArgumentParser ) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def __UpperCAmelCase ( self : Optional[Any] ) -> Any: raise NotImplementedError()
107
def __magic_name__ ( A : str ): '''simple docstring''' a = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __magic_name__ ( A : str ): '''simple docstring''' a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key a = remove_duplicates(key.upper() ) a = len(A ) # First fill cipher with key characters a = {alphabet[i]: char for i, char in enumerate(A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A ), 26 ): a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 a = alphabet[i - offset] a = char return cipher_alphabet def __magic_name__ ( A : str, A : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(A, A ) for ch in message.upper() ) def __magic_name__ ( A : str, A : dict[str, str] ): '''simple docstring''' a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A, A ) for ch in message.upper() ) def __magic_name__ ( ): '''simple docstring''' a = input("Enter message to encode or decode: " ).strip() a = input("Enter keyword: " ).strip() a = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: a = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) a = create_cipher_map(A ) print(func(A, A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
107
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _snake_case ( _snake_case : str , _snake_case : str ) -> str | Literal[False]: '''simple docstring''' _A = list(_snake_case ) _A = list(_snake_case ) _A = 0 for i in range(len(_snake_case ) ): if lista[i] != lista[i]: count += 1 _A = '_' if count > 1: return False else: return "".join(_snake_case ) def _snake_case ( _snake_case : list[str] ) -> list[str]: '''simple docstring''' _A = [] while True: _A = ['$'] * len(_snake_case ) _A = [] for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): _A = compare_string(binary[i] , binary[j] ) if k is False: _A = '*' _A = '*' temp.append('X' ) for i in range(len(_snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_snake_case ) == 0: return pi _A = list(set(_snake_case ) ) def _snake_case ( _snake_case : int , _snake_case : Sequence[float] ) -> list[str]: '''simple docstring''' _A = [] for minterm in minterms: _A = '' for _ in range(_snake_case ): _A = str(minterm % 2 ) + string minterm //= 2 temp.append(_snake_case ) return temp def _snake_case ( _snake_case : str , _snake_case : str , _snake_case : int ) -> bool: '''simple docstring''' _A = list(_snake_case ) _A = list(_snake_case ) _A = 0 for i in range(len(_snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _snake_case ( _snake_case : list[list[int]] , _snake_case : list[str] ) -> list[str]: '''simple docstring''' _A = [] _A = [0] * len(_snake_case ) for i in range(len(chart[0] ) ): _A = 0 _A = -1 for j in range(len(_snake_case ) ): if chart[j][i] == 1: count += 1 _A = j if count == 1: _A = 1 for i in range(len(_snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_snake_case ) ): _A = 0 temp.append(prime_implicants[i] ) while True: _A = 0 _A = -1 _A = 0 for i in range(len(_snake_case ) ): _A = chart[i].count(1 ) if count_n > max_n: _A = count_n _A = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_snake_case ) ): _A = 0 def _snake_case ( _snake_case : list[str] , _snake_case : list[str] ) -> list[list[int]]: '''simple docstring''' _A = [[0 for x in range(len(_snake_case ) )] for x in range(len(_snake_case ) )] for i in range(len(_snake_case ) ): _A = prime_implicants[i].count('_' ) for j in range(len(_snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , _snake_case ): _A = 1 return chart def _snake_case ( ) -> None: '''simple docstring''' _A = int(input('Enter the no. of variables\n' ) ) _A = [ float(_snake_case ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] _A = decimal_to_binary(_snake_case , _snake_case ) _A = check(_snake_case ) print('Prime Implicants are:' ) print(_snake_case ) _A = prime_implicant_chart(_snake_case , _snake_case ) _A = selection(_snake_case , _snake_case ) print('Essential Prime Implicants are:' ) print(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
271
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : "DiagonalGaussianDistribution" class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = True @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase : Tuple[int] = (64,) , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = "silu" , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder _A = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) # pass init params to Decoder _A = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , act_fn=_UpperCAmelCase , ) _A = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _A = False _A = False # only relevant if vae tiling is enabled _A = self.config.sample_size _A = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A = 0.25 def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ): if isinstance(_UpperCAmelCase , (Encoder, Decoder) ): _A = value def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : bool = True ): _A = use_tiling def lowerCAmelCase_ ( self : Union[str, Any] ): self.enable_tiling(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = True def lowerCAmelCase_ ( self : str ): _A = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self : str ): _A = {} def fn_recursive_add_processors(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(_UpperCAmelCase , 'set_processor' ): _A = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return processors def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): _A = len(self.attn_processors.keys() ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , 'set_processor' ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.set_processor(_UpperCAmelCase ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: _A = [self.encoder(_UpperCAmelCase ) for x_slice in x.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_slicing and z.shape[0] > 1: _A = [self._decode(_UpperCAmelCase ).sample for z_slice in z.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self._decode(_UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): _A = min(a.shape[2] , b.shape[2] , _UpperCAmelCase ) for y in range(_UpperCAmelCase ): _A = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): _A = min(a.shape[3] , b.shape[3] , _UpperCAmelCase ) for x in range(_UpperCAmelCase ): _A = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A = [] for i in range(0 , x.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , x.shape[3] , _UpperCAmelCase ): _A = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A = [] for i in range(0 , z.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , z.shape[3] , _UpperCAmelCase ): _A = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[torch.Generator] = None , ): _A = sample _A = self.encode(_UpperCAmelCase ).latent_dist if sample_posterior: _A = posterior.sample(generator=_UpperCAmelCase ) else: _A = posterior.mode() _A = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
271
1
from __future__ import annotations import requests def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case__ ).json() def __lowerCamelCase ( snake_case__ = 10 ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" _SCREAMING_SNAKE_CASE = requests.get(snake_case__ ).json()[:max_stories] return [get_hackernews_story(snake_case__ ) for story_id in story_ids] def __lowerCamelCase ( snake_case__ = 10 ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = hackernews_top_stories(snake_case__ ) return "\n".join("""* [{title}]({url})""".format(**snake_case__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
306
"""simple docstring""" A: Union[str, Any] = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def _snake_case ( UpperCamelCase : float ): assert type(UpperCamelCase ) in (int, float) and decimal == int(UpperCamelCase ) UpperCAmelCase : str = int(UpperCamelCase ) UpperCAmelCase : Optional[int] = """""" UpperCAmelCase : List[str] = False if decimal < 0: UpperCAmelCase : Any = True decimal *= -1 while decimal > 0: UpperCAmelCase , UpperCAmelCase : Dict = divmod(UpperCamelCase , 16 ) UpperCAmelCase : Union[str, Any] = values[remainder] + hexadecimal UpperCAmelCase : int = """0x""" + hexadecimal if negative: UpperCAmelCase : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
109
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
238
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Tuple = {'''vocab_file''': '''sentencepiece.bpe.model'''} __A : Optional[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } __A : str = { '''camembert-base''': 512, } __A : Any = '''▁''' class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Any , A : Any , A : Optional[Any]="<s>" , A : Optional[Any]="</s>" , A : str="</s>" , A : Optional[int]="<s>" , A : List[str]="<unk>" , A : List[Any]="<pad>" , A : Optional[Any]="<mask>" , A : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , A : Optional[Dict[str, Any]] = None , **A : List[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Union[str, Any] = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowercase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowercase_ : Union[str, Any] = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowercase_ : List[Any] = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} lowercase_ : Dict = len(self.fairseq_tokens_to_ids ) lowercase_ : List[Any] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowercase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Any , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] lowercase_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : List[Any] , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def A ( self : Union[str, Any] , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : List[str] ) -> Union[str, Any]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def A ( self : Any ) -> Optional[Any]: lowercase_ : List[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[int] , A : str ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def A ( self : Union[str, Any] , A : str ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(A ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(A ) def A ( self : int , A : List[str] ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : Tuple , A : Tuple ) -> Optional[Any]: lowercase_ : Tuple = [] lowercase_ : int = '''''' lowercase_ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token lowercase_ : Dict = True lowercase_ : Any = [] else: current_sub_tokens.append(A ) lowercase_ : int = False out_string += self.sp_model.decode(A ) return out_string.strip() def __getstate__( self : Dict ) -> Union[str, Any]: lowercase_ : Optional[int] = self.__dict__.copy() lowercase_ : Tuple = None return state def __setstate__( self : Optional[int] , A : Optional[Any] ) -> Union[str, Any]: lowercase_ : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : List[str] = {} lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : List[Any] , A : str , A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Union[str, Any] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
33
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , A : Any , A : Tuple=7 , A : Tuple=3 , A : Optional[Any]=30 , A : List[Any]=4_00 , A : Tuple=True , A : Dict=None , A : List[str]=True , A : Optional[int]=[0.5, 0.5, 0.5] , A : Tuple=[0.5, 0.5, 0.5] , A : List[str]=True , A : List[Any]=1 / 2_55 , A : Union[str, Any]=True , ) -> Tuple: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase_ : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} lowercase_ : Optional[int] = parent lowercase_ : str = batch_size lowercase_ : Tuple = num_channels lowercase_ : str = min_resolution lowercase_ : Any = max_resolution lowercase_ : str = do_resize lowercase_ : Any = size lowercase_ : Optional[int] = do_normalize lowercase_ : List[str] = image_mean lowercase_ : Optional[Any] = image_std lowercase_ : int = do_rescale lowercase_ : List[str] = rescale_factor lowercase_ : int = do_pad def A ( self : Any ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A ( self : Optional[Any] , A : int , A : int=False ) -> Tuple: if not batched: lowercase_ : Optional[int] = image_inputs[0] if isinstance(A , Image.Image ): lowercase_ , lowercase_ : int = image.size else: lowercase_ , lowercase_ : Tuple = image.shape[1], image.shape[2] if w < h: lowercase_ : int = int(self.size['''shortest_edge'''] * h / w ) lowercase_ : Optional[Any] = self.size['''shortest_edge'''] elif w > h: lowercase_ : Optional[Any] = self.size['''shortest_edge'''] lowercase_ : Optional[int] = int(self.size['''shortest_edge'''] * w / h ) else: lowercase_ : Any = self.size['''shortest_edge'''] lowercase_ : Any = self.size['''shortest_edge'''] else: lowercase_ : Tuple = [] for image in image_inputs: lowercase_ , lowercase_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase_ : Union[str, Any] = max(A , key=lambda A : item[0] )[0] lowercase_ : Optional[Any] = max(A , key=lambda A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCAmelCase ( _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] = YolosImageProcessor if is_vision_available() else None def A ( self : Optional[int] ) -> Optional[int]: lowercase_ : Optional[Any] = YolosImageProcessingTester(self ) @property def A ( self : str ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Optional[int] ) -> List[str]: lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def A ( self : Dict ) -> Tuple: lowercase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , A ) lowercase_ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , A ) def A ( self : Optional[int] ) -> Tuple: pass def A ( self : Tuple ) -> int: # Initialize image_processing lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input lowercase_ : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ , lowercase_ : Dict = self.image_processor_tester.get_expected_values(A , batched=A ) lowercase_ : str = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : str ) -> Any: # Initialize image_processing lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input lowercase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : int = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ : Optional[int] = image_processing(A , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : List[Any] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Optional[int]: # Initialize image_processing lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input lowercase_ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase_ : Any = image_processing(A , return_tensors='''pt''' ).pixel_values lowercase_ , lowercase_ : List[str] = self.image_processor_tester.get_expected_values(A , batched=A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A ( self : Tuple ) -> Optional[Any]: # Initialize image_processings lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Tuple = self.image_processing_class(do_resize=A , do_normalize=A , do_rescale=A ) # create random PyTorch tensors lowercase_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowercase_ : Union[str, Any] = image_processing_a.pad(A , return_tensors='''pt''' ) lowercase_ : List[Any] = image_processing_a(A , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def A ( self : str ) -> List[Any]: # prepare image and target lowercase_ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase_ : List[Any] = json.loads(f.read() ) lowercase_ : Tuple = {'''image_id''': 3_97_69, '''annotations''': target} # encode them lowercase_ : Union[str, Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) lowercase_ : List[Any] = image_processing(images=A , annotations=A , return_tensors='''pt''' ) # verify pixel values lowercase_ : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowercase_ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowercase_ : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowercase_ : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowercase_ : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowercase_ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowercase_ : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowercase_ : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify orig_size lowercase_ : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowercase_ : Optional[Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) ) @slow def A ( self : List[Any] ) -> Dict: # prepare image, target and masks_path lowercase_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase_ : str = json.loads(f.read() ) lowercase_ : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} lowercase_ : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase_ : int = YolosImageProcessor(format='''coco_panoptic''' ) lowercase_ : Any = image_processing(images=A , annotations=A , masks_path=A , return_tensors='''pt''' ) # verify pixel values lowercase_ : Optional[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , A ) lowercase_ : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , A , atol=1e-4 ) ) # verify area lowercase_ : List[Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , A ) ) # verify boxes lowercase_ : str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , A ) lowercase_ : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , A , atol=1e-3 ) ) # verify image_id lowercase_ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , A ) ) # verify is_crowd lowercase_ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , A ) ) # verify class_labels lowercase_ : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , A ) ) # verify masks lowercase_ : Dict = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , A ) # verify orig_size lowercase_ : Tuple = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , A ) ) # verify size lowercase_ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , A ) )
33
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Dict =get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Tuple = PegasusTokenizer __lowerCAmelCase :Union[str, Any] = PegasusTokenizerFast __lowerCAmelCase :Any = True __lowerCAmelCase :List[str] = True def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a__ : str = PegasusTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Any: """simple docstring""" return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Dict = """</s>""" a__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(__lowercase ) , 1_1_0_3 ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) a__ : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) a__ : Optional[int] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) a__ : str = rust_tokenizer([raw_input_str] , return_tensors=__lowercase , add_special_tokens=__lowercase ).input_ids[0] a__ : int = py_tokenizer([raw_input_str] , return_tensors=__lowercase , add_special_tokens=__lowercase ).input_ids[0] self.assertListEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word a__ : Optional[Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" a__ : Tuple = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] a__ : Tuple = tokenizer([raw_input_str] , return_tensors=__lowercase ).input_ids[0] self.assertListEqual(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 a__ : List[Any] = """To ensure a smooth flow of bank resolutions.""" a__ : str = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] a__ : int = tokenizer([raw_input_str] , return_tensors=__lowercase ).input_ids[0] self.assertListEqual(__lowercase , __lowercase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Any = ["""This is going to be way too long.""" * 1_5_0, """short example"""] a__ : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] a__ : Tuple = self._large_tokenizer(__lowercase , padding=__lowercase , truncation=__lowercase , return_tensors="""pt""" ) a__ : Union[str, Any] = self._large_tokenizer( text_target=__lowercase , max_length=5 , padding=__lowercase , truncation=__lowercase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(__lowercase ) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : List[Any] = {"""input_ids""": [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Dict = PegasusTokenizer __lowerCAmelCase :Union[str, Any] = PegasusTokenizerFast __lowerCAmelCase :Tuple = True __lowerCAmelCase :Dict = True def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a__ : Optional[int] = PegasusTokenizer(__lowercase , offset=0 , mask_token_sent=__lowercase , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def SCREAMING_SNAKE_CASE__( self , **__lowercase ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) a__ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) a__ : Optional[int] = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) a__ : Tuple = rust_tokenizer([raw_input_str] , return_tensors=__lowercase , add_special_tokens=__lowercase ).input_ids[0] a__ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=__lowercase , add_special_tokens=__lowercase ).input_ids[0] self.assertListEqual(__lowercase , __lowercase ) @require_torch def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : str = ["""This is going to be way too long.""" * 1_0_0_0, """short example"""] a__ : int = ["""not super long but more than 5 tokens""", """tiny"""] a__ : Optional[Any] = self._large_tokenizer(__lowercase , padding=__lowercase , truncation=__lowercase , return_tensors="""pt""" ) a__ : List[str] = self._large_tokenizer( text_target=__lowercase , max_length=5 , padding=__lowercase , truncation=__lowercase , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(__lowercase ) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : List[Any] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) a__ : str = self._large_tokenizer(__lowercase ).input_ids self.assertListEqual( __lowercase , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
266
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase : int ={ "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =[ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _lowercase : Any =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
266
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCAmelCase ( __lowerCamelCase : str ) -> List[Any]: return 1 / (1 + np.exp(-z )) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Optional[Any]: return (-y * np.log(__lowerCamelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> List[str]: _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(__lowerCamelCase ) ) ) def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str=7_00_00 ) -> Optional[Any]: _snake_case = np.zeros(x.shape[1] ) for iterations in range(__lowerCamelCase ): _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(__lowerCamelCase , __lowerCamelCase ) _snake_case = sigmoid_function(__lowerCamelCase ) _snake_case = cost_function(__lowerCamelCase , __lowerCamelCase ) if iterations % 1_00 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase__ = datasets.load_iris() UpperCAmelCase__ = iris.data[:, :2] UpperCAmelCase__ = (iris.target != 0) * 1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = logistic_reg(alpha, x, y, max_iterations=70000) print('theta: ', theta) # printing the theta i.e our weights vector def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Union[str, Any]: return sigmoid_function( np.dot(__lowerCamelCase , __lowerCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase__) , (UpperCAmelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase__ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
288
0
def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = [], [] while len(_A ) > 1: lowerCAmelCase_ , lowerCAmelCase_ = min(_A ), max(_A ) start.append(_A ) end.append(_A ) collection.remove(_A ) collection.remove(_A ) end.reverse() return start + collection + end if __name__ == "__main__": _A = input('''Enter numbers separated by a comma:\n''').strip() _A = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
167
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A = logging.get_logger(__name__) _A = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class A ( __UpperCAmelCase , __UpperCAmelCase ): __snake_case = 'dinat' __snake_case = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, UpperCamelCase__=4, UpperCamelCase__=3, UpperCamelCase__=64, UpperCamelCase__=[3, 4, 6, 5], UpperCamelCase__=[2, 4, 8, 16], UpperCamelCase__=7, UpperCamelCase__=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], UpperCamelCase__=3.0, UpperCamelCase__=True, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.1, UpperCamelCase__="gelu", UpperCamelCase__=0.02, UpperCamelCase__=1E-5, UpperCamelCase__=0.0, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(UpperCamelCase__ ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = dilations lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1, len(UpperCamelCase__ ) + 1 )] lowerCAmelCase_ , lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=UpperCamelCase__, out_indices=UpperCamelCase__, stage_names=self.stage_names )
167
1
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
270
import os def __magic_name__ ( ) -> str: __lowerCamelCase = os.path.join(os.path.dirname(__lowerCAmelCase ) , '''num.txt''' ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
270
1
def snake_case_ ( snake_case ) -> list[list]: lowercase__: Tuple = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): lowercase__: str = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: lowercase__: Union[str, Any] = column continue lowercase__: Any = column / magnitude # Subtract to cancel term lowercase__: Optional[int] = current_set[0] lowercase__: Optional[Any] = [first_row] lowercase__: str = current_set[1::] for row in current_set: lowercase__: Dict = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase__: Optional[Any] = final_set[0] lowercase__: int = [] lowercase__: int = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase__: Optional[int] = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) lowercase__: int = resultant return final_set def snake_case_ ( snake_case ) -> list: if len(lowerCAmelCase__ ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) lowercase__: int = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase__: Optional[Any] = equations.copy() if any(0 in row for row in data_set ): lowercase__: Tuple = data_set.copy() lowercase__: List[Any] = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: lowercase__: int = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , lowerCAmelCase__ ) lowercase__: List[Any] = data_set.copy() lowercase__: List[str] = simplify(lowerCAmelCase__ ) lowercase__: Dict = simplified[::-1] lowercase__: List[str] = [] for row in simplified: lowercase__: Union[str, Any] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase__: List[str] = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue lowercase__: List[str] = temp_row[1::] lowercase__: Optional[int] = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) lowercase__: List[str] = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
366
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
0
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants a_ = 3_0_0 # TEMPERATURE (unit = K) def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): if donor_conc <= 0: raise ValueError('''Donor concentration should be positive''' ) elif acceptor_conc <= 0: raise ValueError('''Acceptor concentration should be positive''' ) elif intrinsic_conc <= 0: raise ValueError('''Intrinsic concentration should be positive''' ) elif donor_conc <= intrinsic_conc: raise ValueError( '''Donor concentration should be greater than intrinsic concentration''' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( '''Acceptor concentration should be greater than intrinsic concentration''' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
249
"""simple docstring""" from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig a_ = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="ernie_m" UpperCamelCase ={"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , UpperCamelCase_ = 25_00_02 , UpperCamelCase_ = 7_68 , UpperCamelCase_ = 12 , UpperCamelCase_ = 12 , UpperCamelCase_ = 30_72 , UpperCamelCase_ = "gelu" , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 5_14 , UpperCamelCase_ = 0.0_2 , UpperCamelCase_ = 1 , UpperCamelCase_ = 1E-05 , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=0.0 , **UpperCamelCase_ , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : List[str] = vocab_size __lowercase : Optional[Any] = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Any = hidden_act __lowercase : List[str] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = max_position_embeddings __lowercase : Optional[Any] = initializer_range __lowercase : int = layer_norm_eps __lowercase : Optional[int] = classifier_dropout __lowercase : List[Any] = is_decoder __lowercase : List[str] = act_dropout
249
1
def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = 1 while len(SCREAMING_SNAKE_CASE_ ) < 1E6: constant.append(str(SCREAMING_SNAKE_CASE_ ) ) i += 1 UpperCamelCase_ = "".join(SCREAMING_SNAKE_CASE_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
60
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase_ = f"Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}" raise ValueError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
1
from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''keras_nlp'''] def __init__( self :Tuple , *lowerCAmelCase__ :Optional[Any] , **lowerCAmelCase__ :Dict ) -> Dict: requires_backends(self , ['''keras_nlp'''] )
9
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = TransfoXLTokenizer SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False def __magic_name__( self :str ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = '''<unk> UNwanted , running''' __SCREAMING_SNAKE_CASE : List[str] = '''<unk> unwanted, running''' return input_text, output_text def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(lowerCAmelCase__ , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [0, 4, 8, 7] ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[str] = TransfoXLTokenizer(lower_case=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :str ) -> int: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = len(lowerCAmelCase__ ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(lowerCAmelCase__ ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
9
1
"""simple docstring""" from torch import nn def _snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
0
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _UpperCAmelCase : Optional[int] ="""src/transformers""" _UpperCAmelCase : str ="""docs/source/en""" _UpperCAmelCase : Optional[int] =""".""" def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase_ : int = f.readlines() # Find the start prompt. lowerCAmelCase_ : List[Any] = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase_ : List[str] = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _UpperCAmelCase : Optional[Any] ="""Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. _UpperCAmelCase : Optional[int] =re.compile(R"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") _UpperCAmelCase : Dict =re.compile(R"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCAmelCase : Optional[Any] =re.compile(R"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : Optional[int] =direct_transformers_import(TRANSFORMERS_PATH) def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: lowerCAmelCase_ : str = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: lowerCAmelCase_ : Tuple = 2 if text == '''✅''' or text == '''❌''' else len(lowerCAmelCase_ ) lowerCAmelCase_ : int = (width - text_length) // 2 lowerCAmelCase_ : Union[str, Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCAmelCase ( )-> str: lowerCAmelCase_ : Any = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase_ : Dict = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowerCAmelCase_ : List[Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowerCAmelCase_ : Tuple = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = collections.defaultdict(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase_ ): lowerCAmelCase_ : Optional[int] = None if attr_name.endswith('''Tokenizer''' ): lowerCAmelCase_ : Union[str, Any] = slow_tokenizers lowerCAmelCase_ : List[str] = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): lowerCAmelCase_ : int = fast_tokenizers lowerCAmelCase_ : Union[str, Any] = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase_ ) is not None: lowerCAmelCase_ : Tuple = tf_models lowerCAmelCase_ : str = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: lowerCAmelCase_ : Tuple = flax_models lowerCAmelCase_ : Union[str, Any] = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: lowerCAmelCase_ : Any = pt_models lowerCAmelCase_ : List[Any] = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): lowerCAmelCase_ : Union[str, Any] = True break # Try again after removing the last word in the name lowerCAmelCase_ : Any = ''''''.join(camel_case_split(lowerCAmelCase_ )[:-1] ) # Let's build that table! lowerCAmelCase_ : int = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowerCAmelCase_ : Tuple = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowerCAmelCase_ : Union[str, Any] = [len(lowerCAmelCase_ ) + 2 for c in columns] lowerCAmelCase_ : Optional[Any] = max([len(lowerCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se lowerCAmelCase_ : Dict = '''|''' + '''|'''.join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" lowerCAmelCase_ : List[str] = {True: '''✅''', False: '''❌'''} for name in model_names: lowerCAmelCase_ : List[Any] = model_name_to_prefix[name] lowerCAmelCase_ : Union[str, Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + "|\n" return table def lowerCAmelCase ( lowerCAmelCase_=False )-> Tuple: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) lowerCAmelCase_ : Tuple = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase_ , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] =argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _UpperCAmelCase : Tuple =parser.parse_args() check_model_table(args.fix_and_overwrite)
262
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
1
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _A = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') _A = get_tests_dir('''fixtures/vocab.json''') _A = get_tests_dir('''fixtures''') class A ( unittest.TestCase ): __snake_case = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = 0 def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = WavaVecaConfig() lowerCAmelCase_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) lowerCAmelCase_ = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_, os.path.join(lowercase_, lowercase_ ) ) copyfile(lowercase_, os.path.join(lowercase_, '''vocab.json''' ) ) lowerCAmelCase_ = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = WavaVecaFeatureExtractor() lowerCAmelCase_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowerCAmelCase_ = WavaVecaProcessor(lowercase_, lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_, lowercase_ ), '''r''' ) as f: lowerCAmelCase_ = json.load(lowercase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowercase_, lowercase_ ), '''w''' ) as f: f.write(json.dumps(lowercase_ ) ) lowerCAmelCase_ = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = WavaVecaFeatureExtractor() lowerCAmelCase_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) lowerCAmelCase_ = WavaVecaProcessor(lowercase_, lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_, lowercase_ ), '''r''' ) as f: lowerCAmelCase_ = json.load(lowercase_ ) config_dict.pop('''processor_class''' ) with open(os.path.join(lowercase_, lowercase_ ), '''w''' ) as f: f.write(json.dumps(lowercase_ ) ) lowerCAmelCase_ = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_, os.path.join(lowercase_, '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(lowercase_, lowercase_ ), '''w''' ) as f: f.write('''{}''' ) lowerCAmelCase_ = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): lowerCAmelCase_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): lowerCAmelCase_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''', trust_remote_code=lowercase_ ) lowerCAmelCase_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''', trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__, '''NewProcessor''' ) lowerCAmelCase_ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__, '''NewFeatureExtractor''' ) lowerCAmelCase_ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__, '''NewTokenizerFast''' ) # Test we can also load the slow version lowerCAmelCase_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''', trust_remote_code=lowercase_, use_fast=lowercase_ ) lowerCAmelCase_ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__, '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__, '''NewTokenizer''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" try: AutoConfig.register('''custom''', lowercase_ ) AutoFeatureExtractor.register(lowercase_, lowercase_ ) AutoTokenizer.register(lowercase_, slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_, lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_, lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(lowercase_, '''vocab.txt''' ) with open(lowercase_, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowerCAmelCase_ = CustomTokenizer(lowercase_ ) lowerCAmelCase_ = CustomProcessor(lowercase_, lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) lowerCAmelCase_ = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_, lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" class A ( a_ ): __snake_case = False class A ( a_ ): __snake_case = False class A ( a_ ): __snake_case = 'AutoFeatureExtractor' __snake_case = 'AutoTokenizer' __snake_case = False try: AutoConfig.register('''custom''', lowercase_ ) AutoFeatureExtractor.register(lowercase_, lowercase_ ) AutoTokenizer.register(lowercase_, slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_, lowercase_ ) # If remote code is not set, the default is to use local classes. lowerCAmelCase_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__, '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''', trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__, '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''', trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__, '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__, '''BertTokenizerFast''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__, '''ConvNextImageProcessor''' ) @is_staging_test class A ( unittest.TestCase ): __snake_case = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token, repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-processor''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_, '''test-processor''' ), push_to_hub=lowercase_, use_auth_token=self._token ) lowerCAmelCase_ = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_, getattr(new_processor.feature_extractor, lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_, '''test-processor-org''' ), push_to_hub=lowercase_, use_auth_token=self._token, organization='''valid_org''', ) lowerCAmelCase_ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_, getattr(new_processor.feature_extractor, lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase_ = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = os.path.join(lowercase_, '''vocab.txt''' ) with open(lowercase_, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) lowerCAmelCase_ = CustomTokenizer(lowercase_ ) lowerCAmelCase_ = CustomProcessor(lowercase_, lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor", token=self._token ) lowerCAmelCase_ = Repository(lowercase_, clone_from=f"{USER}/test-dynamic-processor", token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map, { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', }, ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_, '''tokenizer_config.json''' ) ) as f: lowerCAmelCase_ = json.load(lowercase_ ) self.assertDictEqual( tokenizer_config['''auto_map'''], { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', }, ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_, '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_, '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_, '''custom_processing.py''' ) ) ) repo.push_to_hub() lowerCAmelCase_ = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor", trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__, '''CustomProcessor''' )
358
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=7, UpperCamelCase__=3, UpperCamelCase__=30, UpperCamelCase__=400, UpperCamelCase__=True, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=True, UpperCamelCase__=1 / 255, UpperCamelCase__=True, ): """simple docstring""" lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(UpperCamelCase__, Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase_ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = self.size['''shortest_edge'''] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[0] )[0] lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowerCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, masks_path=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify masks lowerCAmelCase_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCamelCase__ ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) )
167
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowerCamelCase ( UpperCAmelCase_ : Any ): """simple docstring""" return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowerCamelCase ( ): """simple docstring""" a :Tuple = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=UpperCAmelCase_ ) a :Optional[int] = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(UpperCAmelCase_ ) EnvironmentCommand.register_subcommand(UpperCAmelCase_ ) TestCommand.register_subcommand(UpperCAmelCase_ ) RunBeamCommand.register_subcommand(UpperCAmelCase_ ) DummyDataCommand.register_subcommand(UpperCAmelCase_ ) # Parse args a , a :Dict = parser.parse_known_args() if not hasattr(UpperCAmelCase_ , '''func''' ): parser.print_help() exit(1 ) a :Union[str, Any] = parse_unknown_args(UpperCAmelCase_ ) # Run a :Any = args.func(UpperCAmelCase_ , **UpperCAmelCase_ ) service.run() if __name__ == "__main__": main()
94
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): lowerCamelCase_ : Tuple = 'roberta' def __init__( self , lowerCamelCase=50265 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class __lowerCamelCase ( SCREAMING_SNAKE_CASE__ ): @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
358
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCamelCase_ = float('''nan''') class __lowerCamelCase : def __init__( self , lowerCamelCase ) -> Any: snake_case_ = sys.stdout snake_case_ = open(lowerCamelCase , """a""" ) def __getattr__( self , lowerCamelCase ) -> Optional[int]: return getattr(self.stdout , lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> Optional[int]: self.stdout.write(lowerCamelCase ) # strip tqdm codes self.file.write(re.sub(r"""^.*\r""" , """""" , lowerCamelCase , 0 , re.M ) ) def UpperCamelCase( lowercase_=80 , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' snake_case_ = [] # deal with critical env vars snake_case_ = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: snake_case_ = os.environ.get(lowercase_ , lowercase_ ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) snake_case_ = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(lowercase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes snake_case_ = [] snake_case_ = """""" while len(lowercase_ ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(lowercase_ ) == 0 or len(lowercase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase_ ) snake_case_ = """""" return "\\\n".join(lowercase_ ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' snake_case_ = re.sub(r"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own snake_case_ = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir snake_case_ = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) snake_case_ = subprocess.run(lowercase_ , capture_output=lowercase_ , text=lowercase_ ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams snake_case_ = variation.replace(""" """ , """-""" ) with open(Path(lowercase_ ) / f'''log.{prefix}.stdout.txt''' , """w""" ) as f: f.write(result.stdout ) with open(Path(lowercase_ ) / f'''log.{prefix}.stderr.txt''' , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , """r""" , encoding="""utf-8""" ) as f: snake_case_ = json.load(lowercase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> List[Any]: '''simple docstring''' snake_case_ = [] snake_case_ = [] snake_case_ = f'''{id}: {variation:<{longest_variation_len}}''' snake_case_ = f'''{preamble}: ''' snake_case_ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase_ ) , desc=lowercase_ , leave=lowercase_ ): snake_case_ = process_run_single( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = single_run_metrics[target_metric_key] if not math.isnan(lowercase_ ): metrics.append(lowercase_ ) results.append(lowercase_ ) outcome += "✓" else: outcome += "✘" snake_case_ = f'''\33[2K\r{outcome}''' if len(lowercase_ ) > 0: snake_case_ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} snake_case_ = round(mean_metrics[target_metric_key] , 2 ) snake_case_ = f'''{outcome} {mean_target}''' if len(lowercase_ ) > 1: results_str += f''' {tuple(round(lowercase_ , 2 ) for x in results )}''' print(lowercase_ ) snake_case_ = variation return mean_metrics else: print(lowercase_ ) return {variation_key: variation, target_metric_key: nan} def UpperCamelCase( ) -> Any: '''simple docstring''' snake_case_ = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = pd.DataFrame(lowercase_ ) snake_case_ = """variation""" snake_case_ = """diff_%""" snake_case_ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan snake_case_ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase_ ): # as a fallback, use the minimal value as the sentinel snake_case_ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase_ ): snake_case_ = df.apply( lambda lowercase_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns snake_case_ = [variation_key, target_metric_key, diff_key, *report_metric_keys] snake_case_ = df.reindex(lowercase_ , axis="""columns""" ) # reorder cols # capitalize snake_case_ = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible snake_case_ = df.rename(lambda lowercase_ : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) snake_case_ = df.rename(lambda lowercase_ : c.replace("""_""" , """\n""" ) , axis="""columns""" ) snake_case_ = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase_ , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase_ , floatfmt=""".2f""" )] print("""\n\n""".join(lowercase_ ) ) def UpperCamelCase( ) -> Union[str, Any]: '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=lowercase_ , type=lowercase_ , required=lowercase_ , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=lowercase_ , type=lowercase_ , nargs="""+""" , required=lowercase_ , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=lowercase_ , type=lowercase_ , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=lowercase_ , type=lowercase_ , required=lowercase_ , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=lowercase_ , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=lowercase_ , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=lowercase_ , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=lowercase_ , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) snake_case_ = parser.parse_args() snake_case_ = args.output_dir Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) snake_case_ = get_base_command(lowercase_ , lowercase_ ) # split each dimension into its --foo variations snake_case_ = [list(map(str.strip , re.split(r"""\|""" , lowercase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty snake_case_ = list(map(str.strip , map(""" """.join , itertools.product(*lowercase_ ) ) ) ) snake_case_ = max(len(lowercase_ ) for x in variations ) # split wanted keys snake_case_ = args.report_metric_keys.split() # capture prints into a log file for convenience snake_case_ = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) snake_case_ = Tee(lowercase_ ) print(f'''\n*** Running {len(lowercase_ )} benchmarks:''' ) print(f'''Base command: {" ".join(lowercase_ )}''' ) snake_case_ = """variation""" snake_case_ = [] for id, variation in enumerate(tqdm(lowercase_ , desc="""Total completion: """ , leave=lowercase_ ) ): snake_case_ = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , args.target_metric_key , lowercase_ , args.repeat_times , lowercase_ , args.verbose , ) ) process_results(lowercase_ , args.target_metric_key , lowercase_ , args.base_variation , lowercase_ ) if __name__ == "__main__": main()
34
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 1_00 , ) -> List[Any]: __lowerCamelCase = x_start __lowerCamelCase = fnc(UpperCamelCase__ ) __lowerCamelCase = 0.0 for _ in range(UpperCamelCase__ ): # Approximates curve as a sequence of linear lines and sums their length __lowerCamelCase = (x_end - x_start) / steps + xa __lowerCamelCase = fnc(UpperCamelCase__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __lowerCamelCase = xa __lowerCamelCase = fxa return length if __name__ == "__main__": def __lowerCAmelCase ( UpperCamelCase__ ) -> Optional[int]: return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") __UpperCAmelCase =1_0 while i <= 1_0_0_0_0_0: print(f'With {i} steps: {line_length(f, -1_0, 1_0, i)}') i *= 1_0
67
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __a : Tuple = """pt""" elif is_tf_available(): __a : int = """tf""" else: __a : Tuple = """jax""" class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : List[Any] = ByTaTokenizer __a : str = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' super().setUp() __lowercase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=20 , lowerCAmelCase__=5 ) -> Tuple[str, list]: '''simple docstring''' __lowercase = [] for i in range(len(lowerCAmelCase__ ) ): try: __lowercase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowercase = list(filter(lambda lowerCAmelCase__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase__ ) ) __lowercase = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: __lowercase = toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: __lowercase = toks + toks # toks_str = [t[1] for t in toks] __lowercase = [t[0] for t in toks] # Ensure consistency __lowercase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: __lowercase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: __lowercase = ''' ''' + output_txt __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) __lowercase = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = '''Unicode €.''' __lowercase = tokenizer(lowerCAmelCase__ ) __lowercase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''Unicode €.</s>''' ) __lowercase = tokenizer('''e è é ê ë''' ) __lowercase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": __lowercase = list(batch.input_ids.numpy()[0] ) else: __lowercase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase__ ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = [ '''Summary of the text.''', '''Another summary.''', ] __lowercase = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization. </s>'''] __lowercase = ['''Summary of the text. </s>'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __lowercase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch['''input_ids'''][0] ) self.assertEqual(lowerCAmelCase__ , batch['''labels'''][0] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowercase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) __lowercase = [F"<extra_id_{i}>" for i in range(1_25 )] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase__ )] __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] __lowercase = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = 0 __lowercase = tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [] ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
210
0
'''simple docstring''' def A_( A : str): UpperCamelCase = [int(A) for i in ip_va_address.split('.') if i.isdigit()] return len(A) == 4 and all(0 <= int(A) <= 254 for octet in octets) if __name__ == "__main__": lowerCAmelCase : int = input().strip() lowerCAmelCase : Optional[Any] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(f"""{ip} is a {valid_or_invalid} IP v4 address.""")
251
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
251
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : torch.FloatTensor class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int], _lowerCamelCase : List[Any]=3, _lowerCamelCase : List[str]=3, _lowerCamelCase : Optional[int]=("DownEncoderBlock2D",), _lowerCamelCase : List[str]=(64,), _lowerCamelCase : int=2, _lowerCamelCase : str=32, _lowerCamelCase : Optional[Any]="silu", _lowerCamelCase : Optional[int]=True, ): '''simple docstring''' super().__init__() __A = layers_per_block __A = torch.nn.Convad( _lowerCamelCase, block_out_channels[0], kernel_size=3, stride=1, padding=1, ) __A = None __A = nn.ModuleList([] ) # down __A = block_out_channels[0] for i, down_block_type in enumerate(_lowerCamelCase ): __A = output_channel __A = block_out_channels[i] __A = i == len(_lowerCamelCase ) - 1 __A = get_down_block( _lowerCamelCase, num_layers=self.layers_per_block, in_channels=_lowerCamelCase, out_channels=_lowerCamelCase, add_downsample=not is_final_block, resnet_eps=1e-6, downsample_padding=0, resnet_act_fn=_lowerCamelCase, resnet_groups=_lowerCamelCase, attention_head_dim=_lowerCamelCase, temb_channels=_lowerCamelCase, ) self.down_blocks.append(_lowerCamelCase ) # mid __A = UNetMidBlockaD( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=_lowerCamelCase, output_scale_factor=1, resnet_time_scale_shift='''default''', attention_head_dim=block_out_channels[-1], resnet_groups=_lowerCamelCase, temb_channels=_lowerCamelCase, ) # out __A = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=_lowerCamelCase, eps=1e-6 ) __A = nn.SiLU() __A = 2 * out_channels if double_z else out_channels __A = nn.Convad(block_out_channels[-1], _lowerCamelCase, 3, padding=1 ) __A = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Dict ): '''simple docstring''' __A = x __A = self.conv_in(_lowerCamelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCamelCase : Optional[Any] ): def custom_forward(*_lowerCamelCase : Optional[Any] ): return module(*_lowerCamelCase ) return custom_forward # down if is_torch_version('''>=''', '''1.11.0''' ): for down_block in self.down_blocks: __A = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCamelCase ), _lowerCamelCase, use_reentrant=_lowerCamelCase ) # middle __A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ), _lowerCamelCase, use_reentrant=_lowerCamelCase ) else: for down_block in self.down_blocks: __A = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCamelCase ), _lowerCamelCase ) # middle __A = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ), _lowerCamelCase ) else: # down for down_block in self.down_blocks: __A = down_block(_lowerCamelCase ) # middle __A = self.mid_block(_lowerCamelCase ) # post-process __A = self.conv_norm_out(_lowerCamelCase ) __A = self.conv_act(_lowerCamelCase ) __A = self.conv_out(_lowerCamelCase ) return sample class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : List[str]=3, _lowerCamelCase : List[Any]=3, _lowerCamelCase : Dict=("UpDecoderBlock2D",), _lowerCamelCase : List[str]=(64,), _lowerCamelCase : str=2, _lowerCamelCase : List[str]=32, _lowerCamelCase : Dict="silu", _lowerCamelCase : Optional[int]="group", ): '''simple docstring''' super().__init__() __A = layers_per_block __A = nn.Convad( _lowerCamelCase, block_out_channels[-1], kernel_size=3, stride=1, padding=1, ) __A = None __A = nn.ModuleList([] ) __A = in_channels if norm_type == '''spatial''' else None # mid __A = UNetMidBlockaD( in_channels=block_out_channels[-1], resnet_eps=1e-6, resnet_act_fn=_lowerCamelCase, output_scale_factor=1, resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type, attention_head_dim=block_out_channels[-1], resnet_groups=_lowerCamelCase, temb_channels=_lowerCamelCase, ) # up __A = list(reversed(_lowerCamelCase ) ) __A = reversed_block_out_channels[0] for i, up_block_type in enumerate(_lowerCamelCase ): __A = output_channel __A = reversed_block_out_channels[i] __A = i == len(_lowerCamelCase ) - 1 __A = get_up_block( _lowerCamelCase, num_layers=self.layers_per_block + 1, in_channels=_lowerCamelCase, out_channels=_lowerCamelCase, prev_output_channel=_lowerCamelCase, add_upsample=not is_final_block, resnet_eps=1e-6, resnet_act_fn=_lowerCamelCase, resnet_groups=_lowerCamelCase, attention_head_dim=_lowerCamelCase, temb_channels=_lowerCamelCase, resnet_time_scale_shift=_lowerCamelCase, ) self.up_blocks.append(_lowerCamelCase ) __A = output_channel # out if norm_type == "spatial": __A = SpatialNorm(block_out_channels[0], _lowerCamelCase ) else: __A = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=_lowerCamelCase, eps=1e-6 ) __A = nn.SiLU() __A = nn.Convad(block_out_channels[0], _lowerCamelCase, 3, padding=1 ) __A = False def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Optional[Any], _lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' __A = z __A = self.conv_in(_lowerCamelCase ) __A = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_lowerCamelCase : str ): def custom_forward(*_lowerCamelCase : Optional[int] ): return module(*_lowerCamelCase ) return custom_forward if is_torch_version('''>=''', '''1.11.0''' ): # middle __A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ), _lowerCamelCase, _lowerCamelCase, use_reentrant=_lowerCamelCase ) __A = sample.to(_lowerCamelCase ) # up for up_block in self.up_blocks: __A = torch.utils.checkpoint.checkpoint( create_custom_forward(_lowerCamelCase ), _lowerCamelCase, _lowerCamelCase, use_reentrant=_lowerCamelCase ) else: # middle __A = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ), _lowerCamelCase, _lowerCamelCase ) __A = sample.to(_lowerCamelCase ) # up for up_block in self.up_blocks: __A = torch.utils.checkpoint.checkpoint(create_custom_forward(_lowerCamelCase ), _lowerCamelCase, _lowerCamelCase ) else: # middle __A = self.mid_block(_lowerCamelCase, _lowerCamelCase ) __A = sample.to(_lowerCamelCase ) # up for up_block in self.up_blocks: __A = up_block(_lowerCamelCase, _lowerCamelCase ) # post-process if latent_embeds is None: __A = self.conv_norm_out(_lowerCamelCase ) else: __A = self.conv_norm_out(_lowerCamelCase, _lowerCamelCase ) __A = self.conv_act(_lowerCamelCase ) __A = self.conv_out(_lowerCamelCase ) return sample class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any], _lowerCamelCase : int, _lowerCamelCase : str, _lowerCamelCase : Tuple, _lowerCamelCase : Any=None, _lowerCamelCase : Tuple="random", _lowerCamelCase : Dict=False, _lowerCamelCase : Any=True ): '''simple docstring''' super().__init__() __A = n_e __A = vq_embed_dim __A = beta __A = legacy __A = nn.Embedding(self.n_e, self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e ) __A = remap if self.remap is not None: self.register_buffer('''used''', torch.tensor(np.load(self.remap ) ) ) __A = self.used.shape[0] __A = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __A = self.re_embed __A = self.re_embed + 1 print( f'Remapping {self.n_e} indices to {self.re_embed} indices. ' f'Using {self.unknown_index} for unknown indices.' ) else: __A = n_e __A = sane_index_shape def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : int ): '''simple docstring''' __A = inds.shape assert len(_lowerCamelCase ) > 1 __A = inds.reshape(ishape[0], -1 ) __A = self.used.to(_lowerCamelCase ) __A = (inds[:, :, None] == used[None, None, ...]).long() __A = match.argmax(-1 ) __A = match.sum(2 ) < 1 if self.unknown_index == "random": __A = torch.randint(0, self.re_embed, size=new[unknown].shape ).to(device=new.device ) else: __A = self.unknown_index return new.reshape(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __A = inds.shape assert len(_lowerCamelCase ) > 1 __A = inds.reshape(ishape[0], -1 ) __A = self.used.to(_lowerCamelCase ) if self.re_embed > self.used.shape[0]: # extra token __A = 0 # simply set to zero __A = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, _lowerCamelCase ) return back.reshape(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Any ): '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten __A = z.permute(0, 2, 3, 1 ).contiguous() __A = z.view(-1, self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __A = torch.argmin(torch.cdist(_lowerCamelCase, self.embedding.weight ), dim=1 ) __A = self.embedding(_lowerCamelCase ).view(z.shape ) __A = None __A = None # compute loss for embedding if not self.legacy: __A = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __A = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __A = z + (z_q - z).detach() # reshape back to match original input shape __A = z_q.permute(0, 3, 1, 2 ).contiguous() if self.remap is not None: __A = min_encoding_indices.reshape(z.shape[0], -1 ) # add batch axis __A = self.remap_to_used(_lowerCamelCase ) __A = min_encoding_indices.reshape(-1, 1 ) # flatten if self.sane_index_shape: __A = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Optional[Any], _lowerCamelCase : List[Any] ): '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: __A = indices.reshape(shape[0], -1 ) # add batch axis __A = self.unmap_to_all(_lowerCamelCase ) __A = indices.reshape(-1 ) # flatten again # get quantized latent vectors __A = self.embedding(_lowerCamelCase ) if shape is not None: __A = z_q.view(_lowerCamelCase ) # reshape back to match original input shape __A = z_q.permute(0, 3, 1, 2 ).contiguous() return z_q class snake_case ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : str, _lowerCamelCase : List[Any]=False ): '''simple docstring''' __A = parameters __A , __A = torch.chunk(_lowerCamelCase, 2, dim=1 ) __A = torch.clamp(self.logvar, -30.0, 20.0 ) __A = deterministic __A = torch.exp(0.5 * self.logvar ) __A = torch.exp(self.logvar ) if self.deterministic: __A = __A = torch.zeros_like( self.mean, device=self.parameters.device, dtype=self.parameters.dtype ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Optional[torch.Generator] = None ): '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype __A = randn_tensor( self.mean.shape, generator=_lowerCamelCase, device=self.parameters.device, dtype=self.parameters.dtype ) __A = self.mean + self.std * sample return x def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int]=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2 ) + self.var - 1.0 - self.logvar, dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3], ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : Optional[Any], _lowerCamelCase : Tuple=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) __A = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2 ) / self.var, dim=_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' return self.mean
266
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowercase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowercase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowercase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='''https://github.com/krishnap25/mauve''', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/krishnap25/mauve'''], reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ], ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : str, _lowerCamelCase : Optional[Any], _lowerCamelCase : Any=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str="auto", _lowerCamelCase : Union[str, Any]=-1, _lowerCamelCase : List[str]=0.9, _lowerCamelCase : int=5, _lowerCamelCase : Tuple=5_00, _lowerCamelCase : Union[str, Any]="gpt2-large", _lowerCamelCase : int=-1, _lowerCamelCase : Union[str, Any]=10_24, _lowerCamelCase : Union[str, Any]=25, _lowerCamelCase : str=5, _lowerCamelCase : Any=True, _lowerCamelCase : Union[str, Any]=25, ): '''simple docstring''' __A = compute_mauve( p_text=_lowerCamelCase, q_text=_lowerCamelCase, p_features=_lowerCamelCase, q_features=_lowerCamelCase, p_tokens=_lowerCamelCase, q_tokens=_lowerCamelCase, num_buckets=_lowerCamelCase, pca_max_data=_lowerCamelCase, kmeans_explained_var=_lowerCamelCase, kmeans_num_redo=_lowerCamelCase, kmeans_max_iter=_lowerCamelCase, featurize_model_name=_lowerCamelCase, device_id=_lowerCamelCase, max_text_length=_lowerCamelCase, divergence_curve_discretization_size=_lowerCamelCase, mauve_scaling_factor=_lowerCamelCase, verbose=_lowerCamelCase, seed=_lowerCamelCase, ) return out
266
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase = 't5' lowercase = ['past_key_values'] lowercase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self ,__UpperCamelCase=3_2128 ,__UpperCamelCase=512 ,__UpperCamelCase=64 ,__UpperCamelCase=2048 ,__UpperCamelCase=6 ,__UpperCamelCase=None ,__UpperCamelCase=8 ,__UpperCamelCase=32 ,__UpperCamelCase=128 ,__UpperCamelCase=0.1 ,__UpperCamelCase=1e-6 ,__UpperCamelCase=1.0 ,__UpperCamelCase="relu" ,__UpperCamelCase=True ,__UpperCamelCase=True ,__UpperCamelCase=0 ,__UpperCamelCase=1 ,**__UpperCamelCase ,) -> Union[str, Any]: '''simple docstring''' lowercase_ : int = vocab_size lowercase_ : str = d_model lowercase_ : str = d_kv lowercase_ : List[Any] = d_ff lowercase_ : List[str] = num_layers lowercase_ : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase_ : Union[str, Any] = num_heads lowercase_ : Tuple = relative_attention_num_buckets lowercase_ : Optional[int] = relative_attention_max_distance lowercase_ : Optional[Any] = dropout_rate lowercase_ : str = layer_norm_epsilon lowercase_ : List[str] = initializer_factor lowercase_ : int = feed_forward_proj lowercase_ : Optional[Any] = use_cache lowercase_ : Optional[Any] = self.feed_forward_proj.split('-' ) lowercase_ : Dict = act_info[-1] lowercase_ : List[str] = act_info[0] == 'gated' if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase_ : Dict = 'gelu_new' super().__init__( pad_token_id=__a ,eos_token_id=__a ,is_encoder_decoder=__a ,**__a ,) class UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowercase_ : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase_ : Tuple = 'past_encoder_sequence + sequence' lowercase_ : Dict = {0: 'batch'} lowercase_ : Dict = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase_ : Tuple = {0: 'batch', 1: 'decoder_sequence'} lowercase_ : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__a ,direction='inputs' ) return common_inputs @property def _UpperCAmelCase ( self ) -> int: '''simple docstring''' return 13
350
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=0.2 ,__UpperCamelCase=0.2 ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[int] = bp_numa lowercase_ : Dict = bp_numa lowercase_ : Tuple = bp_numa lowercase_ : List[Any] = conva_get[:2] lowercase_ : int = conva_get[2] lowercase_ : Dict = size_pa lowercase_ : int = rate_w lowercase_ : Union[str, Any] = rate_t lowercase_ : Dict = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) lowercase_ : str = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Tuple = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__UpperCamelCase ,'wb' ) as f: pickle.dump(__UpperCamelCase ,__UpperCamelCase ) print(f'''Model saved: {save_path}''' ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' with open(__UpperCamelCase ,'rb' ) as f: lowercase_ : Any = pickle.load(__UpperCamelCase ) # noqa: S301 lowercase_ : str = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) lowercase_ : Union[str, Any] = model_dic.get('size_pooling1' ) lowercase_ : Optional[Any] = model_dic.get('num_bp1' ) lowercase_ : str = model_dic.get('num_bp2' ) lowercase_ : Optional[Any] = model_dic.get('num_bp3' ) lowercase_ : Union[str, Any] = model_dic.get('rate_weight' ) lowercase_ : Optional[int] = model_dic.get('rate_thre' ) # create model instance lowercase_ : Any = CNN(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # modify model parameter lowercase_ : Optional[Any] = model_dic.get('w_conv1' ) lowercase_ : Tuple = model_dic.get('wkj' ) lowercase_ : Union[str, Any] = model_dic.get('vji' ) lowercase_ : Optional[Any] = model_dic.get('thre_conv1' ) lowercase_ : Dict = model_dic.get('thre_bp2' ) lowercase_ : Optional[int] = model_dic.get('thre_bp3' ) return conv_ins def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return round(__UpperCamelCase ,3 ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Dict = convs[0] lowercase_ : Any = convs[1] lowercase_ : Optional[Any] = np.shape(__UpperCamelCase )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): for j_focus in range(0 ,size_data - size_conv + 1 ,__UpperCamelCase ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__UpperCamelCase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : Dict = [] lowercase_ : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__UpperCamelCase ): lowercase_ : Tuple = [] for i_focus in range(len(__UpperCamelCase ) ): lowercase_ : Optional[int] = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__UpperCamelCase ) ) lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ).reshape( __UpperCamelCase ,__UpperCamelCase ) data_featuremap.append(__UpperCamelCase ) # expanding the data slice to One dimenssion lowercase_ : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__UpperCamelCase ) ) lowercase_ : str = np.asarray(__UpperCamelCase ) return focus_list, data_featuremap def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase="average_pool" ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[int] = [] for i_map in range(len(__UpperCamelCase ) ): lowercase_ : int = featuremaps[i_map] lowercase_ : List[str] = [] for i_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j_focus in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[str] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__UpperCamelCase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__UpperCamelCase ) ) lowercase_ : Dict = np.asmatrix(__UpperCamelCase ).reshape(__UpperCamelCase ,__UpperCamelCase ) featuremap_pooled.append(__UpperCamelCase ) return featuremap_pooled def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Tuple = [] for i in range(len(__UpperCamelCase ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : List[str] = data[i].reshape(1 ,shapes[0] * shapes[1] ) lowercase_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(__UpperCamelCase ) lowercase_ : int = np.asarray(__UpperCamelCase ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ) -> int: '''simple docstring''' lowercase_ : Any = np.asarray(__UpperCamelCase ) lowercase_ : Any = np.shape(__UpperCamelCase ) lowercase_ : Optional[Any] = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = [] lowercase_ : List[Any] = 0 for i_map in range(__UpperCamelCase ): lowercase_ : List[str] = np.ones((size_map, size_map) ) for i in range(0 ,__UpperCamelCase ,__UpperCamelCase ): for j in range(0 ,__UpperCamelCase ,__UpperCamelCase ): lowercase_ : List[Any] = pd_pool[ i_pool ] lowercase_ : Any = i_pool + 1 lowercase_ : Optional[int] = np.multiply( __UpperCamelCase ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(__UpperCamelCase ) return pd_all def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=bool ) -> Optional[int]: '''simple docstring''' print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__UpperCamelCase )) ) print((' - - Shape: Teach_Data ', np.shape(__UpperCamelCase )) ) lowercase_ : int = 0 lowercase_ : Tuple = [] lowercase_ : Tuple = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase_ : List[str] = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__UpperCamelCase ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : int = np.asmatrix(datas_train[p] ) lowercase_ : Any = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Any = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : Optional[int] = np.shape(__UpperCamelCase ) lowercase_ : Optional[int] = self._expand(__UpperCamelCase ) lowercase_ : int = data_bp_input lowercase_ : Tuple = np.dot(__UpperCamelCase ,self.vji.T ) - self.thre_bpa lowercase_ : Dict = self.sig(__UpperCamelCase ) lowercase_ : int = np.dot(__UpperCamelCase ,self.wkj.T ) - self.thre_bpa lowercase_ : int = self.sig(__UpperCamelCase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : str = np.multiply( (data_teach - bp_outa) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Optional[int] = np.multiply( np.dot(__UpperCamelCase ,self.wkj ) ,np.multiply(__UpperCamelCase ,(1 - bp_outa) ) ) lowercase_ : Any = np.dot(__UpperCamelCase ,self.vji ) lowercase_ : str = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Dict = pd_conva_pooled.T.getA().tolist() lowercase_ : List[Any] = self._calculate_gradient_from_pool( __UpperCamelCase ,__UpperCamelCase ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Optional[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Dict = self.rate_weight * np.dot(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Any = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : str = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : int = rp + 1 lowercase_ : Union[str, Any] = error_count / patterns all_mse.append(__UpperCamelCase ) def draw_error(): lowercase_ : str = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__UpperCamelCase ,'+-' ) plt.plot(__UpperCamelCase ,'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__UpperCamelCase ,alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' lowercase_ : Union[str, Any] = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__UpperCamelCase )) ) for p in range(len(__UpperCamelCase ) ): lowercase_ : List[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : Optional[Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : List[Any] = self.pooling(__UpperCamelCase ,self.size_poolinga ) lowercase_ : List[str] = self._expand(__UpperCamelCase ) lowercase_ : Any = data_bp_input lowercase_ : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : str = self.sig(__UpperCamelCase ) lowercase_ : List[str] = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Optional[int] = self.sig(__UpperCamelCase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : List[str] = [list(map(self.do_round ,__UpperCamelCase ) ) for each in produce_out] return np.asarray(__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ : Optional[int] = np.asmatrix(__UpperCamelCase ) lowercase_ , lowercase_ : Union[str, Any] = self.convolute( __UpperCamelCase ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) lowercase_ : Optional[int] = self.pooling(__UpperCamelCase ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
321
0
"""simple docstring""" import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel _lowerCamelCase : Optional[Any] = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48000, 'sample_size': 65536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48000, 'sample_size': 65536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48000, 'sample_size': 131072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16000, 'sample_size': 65536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16000, 'sample_size': 65536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16000, 'sample_size': 65536, }, } def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return torch.atana(_UpperCAmelCase , _UpperCAmelCase ) / math.pi * 2 def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : str = torch.sin(t * math.pi / 2 ) ** 2 A_ : Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_UpperCAmelCase , _UpperCAmelCase ) class lowercase ( __UpperCAmelCase): pass class lowercase ( nn.Module): def __init__( self : Optional[int] , _lowerCamelCase : int ): """simple docstring""" super().__init__() A_ : List[Any] = DiffusionAttnUnetaD(_lowerCamelCase , n_attn_layers=4 ) A_ : Optional[Any] = deepcopy(self.diffusion ) A_ : Union[str, Any] = torch.quasirandom.SobolEngine(1 , scramble=_lowerCamelCase ) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Dict = MODELS_MAP[model_name]['''url'''] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" _lowerCamelCase : List[str] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } _lowerCamelCase : Tuple = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } _lowerCamelCase : Any = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } _lowerCamelCase : Dict = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } _lowerCamelCase : Tuple = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } _lowerCamelCase : Optional[int] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(_UpperCAmelCase ) and not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return name.replace(_UpperCAmelCase , _UpperCAmelCase ) elif name.startswith(_UpperCAmelCase ): return [name.replace(_UpperCAmelCase , _UpperCAmelCase ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=13 ): """simple docstring""" A_ : Optional[int] = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) A_ : Optional[Any] = 0 if string.startswith('''net.3.''' ): depth += 1 A_ : Dict = string[6:] elif string.startswith('''net.''' ): A_ : int = string[4:] while string.startswith('''main.7.''' ): depth += 1 A_ : Optional[int] = string[7:] if string.startswith('''main.''' ): A_ : int = string[5:] # mid block if string[:2].isdigit(): A_ : List[str] = string[:2] A_ : Union[str, Any] = string[2:] else: A_ : List[Any] = string[0] A_ : Tuple = string[1:] if depth == max_depth: A_ : Union[str, Any] = MID_NUM_TO_LAYER[layer_num] A_ : Optional[Any] = '''mid_block''' elif depth > 0 and int(_UpperCAmelCase ) < 7: A_ : List[str] = DOWN_NUM_TO_LAYER[layer_num] A_ : Optional[Any] = f"""down_blocks.{depth}""" elif depth > 0 and int(_UpperCAmelCase ) > 7: A_ : Optional[Any] = UP_NUM_TO_LAYER[layer_num] A_ : List[str] = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: A_ : List[Any] = DEPTH_0_TO_LAYER[layer_num] A_ : str = f"""up_blocks.{max_depth - 1}""" if int(_UpperCAmelCase ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) A_ : Any = string_left[1:] if "resnets" in new_layer: A_ : List[Any] = convert_resconv_naming(_UpperCAmelCase ) elif "attentions" in new_layer: A_ : str = convert_attn_naming(_UpperCAmelCase ) A_ : List[Any] = new_string_left if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ : Union[str, Any] = prefix + '''.''' + new_layer + '''.''' + string_left else: A_ : str = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : str = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue A_ : Optional[Any] = rename(_UpperCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ : str = transform_conv_attns(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: A_ : Any = v return new_state_dict def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if len(_UpperCAmelCase ) == 1: if len(v.shape ) == 3: # weight A_ : List[Any] = v[:, :, 0] else: # bias A_ : Union[str, Any] = v else: # qkv matrices A_ : int = v.shape[0] A_ : Dict = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: A_ : str = v[i * single_shape : (i + 1) * single_shape, :, 0] else: A_ : Optional[int] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) A_ : Dict = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" A_ : str = download(_UpperCAmelCase ) A_ : Dict = MODELS_MAP[model_name]['''sample_rate'''] A_ : Dict = MODELS_MAP[model_name]['''sample_size'''] A_ : Union[str, Any] = Object() A_ : Union[str, Any] = sample_size A_ : Optional[int] = sample_rate A_ : Dict = 0 A_ : Tuple = UNetaDModel(sample_size=_UpperCAmelCase , sample_rate=_UpperCAmelCase ) A_ : int = diffusers_model.state_dict() A_ : Optional[Any] = DiffusionUncond(_UpperCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_UpperCAmelCase )['''state_dict'''] ) A_ : Union[str, Any] = orig_model.diffusion_ema.eval() A_ : Any = orig_model.state_dict() A_ : Tuple = rename_orig_weights(_UpperCAmelCase ) A_ : Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) A_ : str = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_UpperCAmelCase ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('''kernel''' ) for k in list(_UpperCAmelCase ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": A_ : Dict = value.squeeze() A_ : Dict = value diffusers_model.load_state_dict(_UpperCAmelCase ) A_ : Dict = 100 A_ : List[Any] = 33 A_ : Any = IPNDMScheduler(num_train_timesteps=_UpperCAmelCase ) A_ : Tuple = torch.manual_seed(_UpperCAmelCase ) A_ : str = torch.randn([1, 2, config.sample_size] , generator=_UpperCAmelCase ).to(_UpperCAmelCase ) A_ : Any = torch.linspace(1 , 0 , steps + 1 , device=_UpperCAmelCase )[:-1] A_ : str = get_crash_schedule(_UpperCAmelCase ) A_ : List[str] = DanceDiffusionPipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) A_ : int = torch.manual_seed(33 ) A_ : Optional[int] = pipe(num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase ).audios A_ : str = sampling.iplms_sample(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , {} ) A_ : List[Any] = generated.clamp(-1 , 1 ) A_ : int = (generated - audio).abs().sum() A_ : List[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , _UpperCAmelCase ) print('''Diff max''' , _UpperCAmelCase ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') _lowerCamelCase : int = parser.parse_args() main(args)
167
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : str = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class lowercase ( __UpperCAmelCase , __UpperCAmelCase): __lowerCAmelCase : List[Any] = """convnextv2""" def __init__( self : int , _lowerCamelCase : str=3 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=4 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : List[str]=1E-12 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : Optional[int]=2_24 , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Optional[Any]=None , **_lowerCamelCase : Optional[Any] , ): """simple docstring""" super().__init__(**_lowerCamelCase ) A_ : str = num_channels A_ : int = patch_size A_ : Union[str, Any] = num_stages A_ : Any = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes A_ : Any = [3, 3, 9, 3] if depths is None else depths A_ : Optional[int] = hidden_act A_ : Tuple = initializer_range A_ : int = layer_norm_eps A_ : List[Any] = drop_path_rate A_ : Union[str, Any] = image_size A_ : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] A_ , A_ : Tuple = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
167
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
from typing import List from .keymap import KEYMAP, get_character def __lowerCAmelCase ( a__ ) -> List[str]: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += [key] setattr(a__ , '''handle_key''' , a__ ) return func return decorator def __lowerCAmelCase ( *a__ ) -> str: def decorator(a__ ): __a = getattr(a__ , '''handle_key''' , [] ) handle += keys setattr(a__ , '''handle_key''' , a__ ) return func return decorator class __A( a ): def __new__( cls , _snake_case , _snake_case , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = super().__new__(cls , _snake_case , _snake_case , _snake_case ) if not hasattr(_snake_case , '''key_handler''' ): setattr(_snake_case , '''key_handler''' , {} ) setattr(_snake_case , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a = getattr(_snake_case , '''handle_key''' , [] ) for key in handled_keys: __a = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> List[str]: '''simple docstring''' __a = get_character() if char != KEYMAP["undefined"]: __a = ord(_snake_case ) __a = cls.key_handler.get(_snake_case ) if handler: __a = char return handler(cls ) else: return None def __lowerCAmelCase ( cls ) -> Union[str, Any]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
33
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a :Union[str, Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE__ : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Tuple: for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE__ : str = """""" else: SCREAMING_SNAKE_CASE__ : Optional[int] = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : str = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : str = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias[-config.hidden_size :] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] = dct.pop(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = val def _lowercase ( ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) return im @torch.no_grad() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Dict = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE__ : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE__ : Tuple = 1000 SCREAMING_SNAKE_CASE__ : List[str] = """huggingface/label-files""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : str = idalabel SCREAMING_SNAKE_CASE__ : Tuple = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[Any] = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE__ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): SCREAMING_SNAKE_CASE__ : List[str] = 192 SCREAMING_SNAKE_CASE__ : Any = 768 SCREAMING_SNAKE_CASE__ : Any = 12 SCREAMING_SNAKE_CASE__ : List[Any] = 3 elif deit_name[9:].startswith("""small""" ): SCREAMING_SNAKE_CASE__ : List[str] = 384 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1536 SCREAMING_SNAKE_CASE__ : List[Any] = 12 SCREAMING_SNAKE_CASE__ : Any = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): SCREAMING_SNAKE_CASE__ : Tuple = 1024 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 4096 SCREAMING_SNAKE_CASE__ : Optional[Any] = 24 SCREAMING_SNAKE_CASE__ : Union[str, Any] = 16 # load original model from timm SCREAMING_SNAKE_CASE__ : int = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Union[str, Any] = timm_model.state_dict() SCREAMING_SNAKE_CASE__ : Tuple = create_rename_keys(__lowerCamelCase , __lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) read_in_q_k_v(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE__ : int = DeiTForImageClassificationWithTeacher(__lowerCamelCase ).eval() model.load_state_dict(__lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE__ : Dict = DeiTImageProcessor(size=__lowerCamelCase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : int = encoding["""pixel_values"""] SCREAMING_SNAKE_CASE__ : Tuple = model(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = timm_model(__lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCamelCase , outputs.logits , atol=1E-3 ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) a :Union[str, Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
132
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'sentencepiece.model'} UpperCAmelCase__ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCAmelCase__ = { 'google/rembert': 256, } class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Any=True , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : int="[CLS]" , _lowerCamelCase : Optional[int]="[SEP]" , _lowerCamelCase : Optional[int]="[UNK]" , _lowerCamelCase : Optional[Any]="[SEP]" , _lowerCamelCase : str="[PAD]" , _lowerCamelCase : List[Any]="[CLS]" , _lowerCamelCase : Any="[MASK]" , **_lowerCamelCase : Optional[int] , ): super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(_lowerCamelCase ) @property def lowercase ( self : int ): return len(self.sp_model ) def lowercase ( self : Any ): _snake_case = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : List[str] , _lowerCamelCase : Tuple ): _snake_case = d _snake_case = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowercase ( self : str , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=False ): _snake_case = self.sp_model.EncodeAsPieces(_lowerCamelCase ) return pieces def lowercase ( self : str , _lowerCamelCase : str ): return self.sp_model.PieceToId(_lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : int ): return self.sp_model.IdToPiece(_lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Any ): _snake_case = self.sp_model.decode_pieces(_lowerCamelCase ) return out_string def lowercase ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Tuple , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] def lowercase ( self : Optional[int] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : List[str] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return _snake_case = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
288
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) lowercase__ : Tuple = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } lowercase__ : List[Any] = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Optional[int]: a = EfficientNetConfig() a = CONFIG_MAP[model_name]["hidden_dim"] a = CONFIG_MAP[model_name]["width_coef"] a = CONFIG_MAP[model_name]["depth_coef"] a = CONFIG_MAP[model_name]["image_size"] a = CONFIG_MAP[model_name]["dropout_rate"] a = CONFIG_MAP[model_name]["dw_padding"] a = "huggingface/label-files" a = "imagenet-1k-id2label.json" a = 10_00 a = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset") , "r")) a = {int(__UpperCamelCase): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( ) -> List[Any]: a = "http://images.cocodataset.org/val2017/000000039769.jpg" a = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase).raw) return im def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: a = CONFIG_MAP[model_name]["image_size"] a = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=__UpperCamelCase , ) return preprocessor def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: a = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")] a = sorted(set(__UpperCamelCase)) a = len(__UpperCamelCase) a = {b: str(__UpperCamelCase) for b, i in zip(__UpperCamelCase , range(__UpperCamelCase))} a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight")) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight")) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias")) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean")) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var")) for b in block_names: a = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''')) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''')) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''')) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''')) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''')) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''')) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''')) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''')) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''')) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''')) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''')) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''')) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''')) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''')) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''')) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''')) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''')) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''')) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''')) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight")) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight")) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias")) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean")) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var")) a = {} for item in rename_keys: if item[0] in original_param_names: a = "efficientnet." + item[1] a = "classifier.weight" a = "classifier.bias" return key_mapping def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue a = key_mapping[key] if "_conv" in key and "kernel" in key: a = torch.from_numpy(__UpperCamelCase).permute(3 , 2 , 0 , 1) elif "depthwise_kernel" in key: a = torch.from_numpy(__UpperCamelCase).permute(2 , 3 , 0 , 1) elif "kernel" in key: a = torch.from_numpy(np.transpose(__UpperCamelCase)) else: a = torch.from_numpy(__UpperCamelCase) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCamelCase) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[str]: a = model_classes[model_name]( include_top=__UpperCamelCase , weights="imagenet" , input_tensor=__UpperCamelCase , input_shape=__UpperCamelCase , pooling=__UpperCamelCase , classes=10_00 , classifier_activation="softmax" , ) a = original_model.trainable_variables a = original_model.non_trainable_variables a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: a = param.numpy() a = list(tf_params.keys()) # Load HuggingFace model a = get_efficientnet_config(__UpperCamelCase) a = EfficientNetForImageClassification(__UpperCamelCase).eval() a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters...") a = rename_keys(__UpperCamelCase) replace_params(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) # Initialize preprocessor and preprocess input image a = convert_image_processor(__UpperCamelCase) a = preprocessor(images=prepare_img() , return_tensors="pt") # HF model inference hf_model.eval() with torch.no_grad(): a = hf_model(**__UpperCamelCase) a = outputs.logits.detach().numpy() # Original model inference a = False a = CONFIG_MAP[model_name]["image_size"] a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST) a = image.img_to_array(__UpperCamelCase) a = np.expand_dims(__UpperCamelCase , axis=0) a = original_model.predict(__UpperCamelCase) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3), "The predicted logits are not the same." print("Model outputs match!") if save_model: # Create folder to save model if not os.path.isdir(__UpperCamelCase): os.mkdir(__UpperCamelCase) # Save converted model and image processor hf_model.save_pretrained(__UpperCamelCase) preprocessor.save_pretrained(__UpperCamelCase) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''') a = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(__UpperCamelCase) hf_model.push_to_hub(__UpperCamelCase) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") lowercase__ : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class a__ ( pl.LightningModule ): def __init__( self , A ) -> Optional[Any]: '''simple docstring''' super().__init__() a = model a = 2 a = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> List[Any]: # load longformer model from model identifier a = LongformerModel.from_pretrained(__UpperCamelCase) a = LightningModel(__UpperCamelCase) a = torch.load(__UpperCamelCase , map_location=torch.device("cpu")) lightning_model.load_state_dict(ckpt["state_dict"]) # init longformer question answering model a = LongformerForQuestionAnswering.from_pretrained(__UpperCamelCase) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict()) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict()) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__UpperCamelCase) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''') if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Union[str, Any] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
180
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger('''transformers.models.encodec''') lowerCAmelCase__ = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCAmelCase__ = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCAmelCase__ = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCAmelCase__ = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCAmelCase__ = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase__ = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase__ = [] lowerCAmelCase__ = [] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for attribute in key.split("." ): lowercase__ : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: lowercase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: lowercase__ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Tuple = value elif weight_type == "weight_v": lowercase__ : Optional[int] = value elif weight_type == "bias": lowercase__ : Tuple = value elif weight_type == "running_mean": lowercase__ : str = value elif weight_type == "running_var": lowercase__ : int = value elif weight_type == "num_batches_tracked": lowercase__ : int = value elif weight_type == "weight_ih_l0": lowercase__ : List[Any] = value elif weight_type == "weight_hh_l0": lowercase__ : Any = value elif weight_type == "bias_ih_l0": lowercase__ : Tuple = value elif weight_type == "bias_hh_l0": lowercase__ : Any = value elif weight_type == "weight_ih_l1": lowercase__ : Any = value elif weight_type == "weight_hh_l1": lowercase__ : int = value elif weight_type == "bias_ih_l1": lowercase__ : Union[str, Any] = value elif weight_type == "bias_hh_l1": lowercase__ : int = value else: lowercase__ : Union[str, Any] = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase__ , lowercase__ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [] if model_name == "encodec_24khz" or "encodec_32khz": lowercase__ : Union[str, Any] = MAPPING_24K elif model_name == "encodec_48khz": lowercase__ : Optional[Any] = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.info(F"""{name} was ignored""" ) continue lowercase__ : Optional[int] = False for key, mapped_key in MAPPING.items(): if "*" in key: lowercase__ , lowercase__ : Tuple = key.split(".*." ) if prefix in name and suffix in name: lowercase__ : Optional[int] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue lowercase__ : Any = True if "*" in mapped_key: lowercase__ : List[str] = name.split(SCREAMING_SNAKE_CASE__ )[0].split("." )[-2] lowercase__ : Optional[int] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: lowercase__ : List[Any] = "weight_g" elif "weight_v" in name: lowercase__ : Optional[Any] = "weight_v" elif "weight_ih_l0" in name: lowercase__ : str = "weight_ih_l0" elif "weight_hh_l0" in name: lowercase__ : List[str] = "weight_hh_l0" elif "bias_ih_l0" in name: lowercase__ : Optional[Any] = "bias_ih_l0" elif "bias_hh_l0" in name: lowercase__ : Union[str, Any] = "bias_hh_l0" elif "weight_ih_l1" in name: lowercase__ : str = "weight_ih_l1" elif "weight_hh_l1" in name: lowercase__ : Optional[Any] = "weight_hh_l1" elif "bias_ih_l1" in name: lowercase__ : Dict = "bias_ih_l1" elif "bias_hh_l1" in name: lowercase__ : Union[str, Any] = "bias_hh_l1" elif "bias" in name: lowercase__ : Dict = "bias" elif "weight" in name: lowercase__ : Tuple = "weight" elif "running_mean" in name: lowercase__ : Any = "running_mean" elif "running_var" in name: lowercase__ : List[str] = "running_var" elif "num_batches_tracked" in name: lowercase__ : str = "num_batches_tracked" else: lowercase__ : Dict = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ): """simple docstring""" if config_path is not None: lowercase__ : Tuple = EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: lowercase__ : Tuple = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowercase__ : List[Any] = [8, 5, 4, 4] lowercase__ : Union[str, Any] = [2.2] lowercase__ : Optional[int] = 64 lowercase__ : Optional[Any] = 32_000 lowercase__ : Optional[Any] = 2_048 lowercase__ : List[str] = False lowercase__ : Optional[Any] = False lowercase__ : Dict = False elif model_name == "encodec_48khz": lowercase__ : Any = [8, 5, 4, 2] lowercase__ : Optional[Any] = [3.0, 6.0, 12.0, 24.0] lowercase__ : Tuple = 48_000 lowercase__ : int = 2 lowercase__ : Any = False lowercase__ : int = "time_group_norm" lowercase__ : Tuple = True lowercase__ : int = 1.0 lowercase__ : str = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) lowercase__ : List[str] = EncodecModel(SCREAMING_SNAKE_CASE__ ) lowercase__ : Tuple = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase__ : Tuple = torch.load(SCREAMING_SNAKE_CASE__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowercase__ : List[Any] = original_checkpoint["best_state"] recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
130
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) return np.sum(outputs == labels ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ , encoding='utf_8' ) as f: __UpperCamelCase =csv.reader(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] next(SCREAMING_SNAKE_CASE__ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] for dataset in encoded_datasets: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch, 2) , dtype=np.intaa ) __UpperCamelCase =np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __UpperCamelCase =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) - 1 __UpperCamelCase =with_conta __UpperCamelCase =with_conta __UpperCamelCase =mc_label __UpperCamelCase =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE__ ) for t in all_inputs ) ) return tensor_datasets def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE__ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE__ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE__ , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=SCREAMING_SNAKE_CASE__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE__ , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE__ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE__ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE__ , default=3_74 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() print(SCREAMING_SNAKE_CASE__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __UpperCamelCase =['_start_', '_delimiter_', '_classify_'] __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE__ ) ) model.to(SCREAMING_SNAKE_CASE__ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE__ : str ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) for o in obj] logger.info('Encoding dataset...' ) __UpperCamelCase =load_rocstories_dataset(args.train_dataset ) __UpperCamelCase =load_rocstories_dataset(args.eval_dataset ) __UpperCamelCase =(train_dataset, eval_dataset) __UpperCamelCase =tokenize_and_encode(SCREAMING_SNAKE_CASE__ ) # Compute the max input length for the Transformer __UpperCamelCase =model.config.n_positions // 2 - 2 __UpperCamelCase =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __UpperCamelCase =pre_process_datasets(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =tensor_datasets[0], tensor_datasets[1] __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.train_batch_size ) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =SequentialSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __UpperCamelCase =args.max_steps __UpperCamelCase =args.max_steps // (len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps) + 1 else: __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // args.gradient_accumulation_steps * args.num_train_epochs __UpperCamelCase =list(model.named_parameters() ) __UpperCamelCase =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __UpperCamelCase =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __UpperCamelCase =AdamW(SCREAMING_SNAKE_CASE__ , lr=args.learning_rate , eps=args.adam_epsilon ) __UpperCamelCase =get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE__ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE__ ) if args.do_train: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(SCREAMING_SNAKE_CASE__ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __UpperCamelCase =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __UpperCamelCase ='Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __UpperCamelCase =model.module if hasattr(SCREAMING_SNAKE_CASE__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(args.output_dir , SCREAMING_SNAKE_CASE__ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE__ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __UpperCamelCase =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __UpperCamelCase =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE__ ) if args.do_eval: model.eval() __UpperCamelCase , __UpperCamelCase =0, 0 __UpperCamelCase , __UpperCamelCase =0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE__ , desc='Evaluating' ): __UpperCamelCase =tuple(t.to(SCREAMING_SNAKE_CASE__ ) for t in batch ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =batch with torch.no_grad(): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =model( SCREAMING_SNAKE_CASE__ , mc_token_ids=SCREAMING_SNAKE_CASE__ , lm_labels=SCREAMING_SNAKE_CASE__ , mc_labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =mc_logits.detach().cpu().numpy() __UpperCamelCase =mc_labels.to('cpu' ).numpy() __UpperCamelCase =accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __UpperCamelCase =eval_loss / nb_eval_steps __UpperCamelCase =eval_accuracy / nb_eval_examples __UpperCamelCase =tr_loss / nb_tr_steps if args.do_train else None __UpperCamelCase ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __UpperCamelCase =os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
62
0
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
364
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
1
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _a ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Dict = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Any = False , **UpperCAmelCase : Any , ): super().__init__(features=A__ , cache_dir=A__ , keep_in_memory=A__ , **A__ ) A_ = Sql( cache_dir=A__ , features=A__ , sql=A__ , con=A__ , **A__ , ) def __A ( self : str ): A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=A__ , download_mode=A__ , verification_mode=A__ , base_path=A__ , ) # Build dataset for splits A_ = self.builder.as_dataset( split="train" , verification_mode=A__ , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : int = None , **UpperCAmelCase : List[str] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) A_ = dataset A_ = name A_ = con A_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A_ = num_proc A_ = to_sql_kwargs def __A ( self : Tuple ): A_ = self.to_sql_kwargs.pop("sql" , A__ ) A_ = self.to_sql_kwargs.pop("con" , A__ ) A_ = self.to_sql_kwargs.pop("index" , A__ ) A_ = self._write(index=A__ , **self.to_sql_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : Dict ): A_ , A_ , A_ = args A_ = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs A_ = query_table( table=self.dataset.data , key=slice(A__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A_ = batch.to_pandas() A_ = df.to_sql(self.name , self.con , index=A__ , **A__ ) return num_rows or len(A__ ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): A_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: A_ , A_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , A__ , A__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
312
from functools import lru_cache @lru_cache def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
101
0
def lowerCamelCase__ ( __lowercase : Tuple ) -> Union[str, Any]: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _snake_case = len(__lowercase ) _snake_case = max(__lowercase ) _snake_case = min(__lowercase ) # create the counting array _snake_case = coll_max + 1 - coll_min _snake_case = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __lowercase ): _snake_case = counting_arr[i] + counting_arr[i - 1] # create the output collection _snake_case = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __lowercase ) ): _snake_case = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCamelCase__ ( __lowercase : str ) -> int: return "".join([chr(__lowercase ) for i in counting_sort([ord(__lowercase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" _lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() _lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
356
from functools import lru_cache @lru_cache def a_ ( __lowercase : int ) -> int: if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
130
0
"""simple docstring""" import socket def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCAmelCase = socket.gethostname() lowerCAmelCase = 1_23_12 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowerCAmelCase = sock.recv(10_24 ) if not data: break out_file.write(lowercase__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
46
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): _UpperCamelCase = ViTImageProcessor if is_vision_available() else None @property def UpperCamelCase__ ( self ) ->str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = (3, 32, 128) __lowerCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : List[str] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __lowerCAmelCase : Optional[int] = dict(zip(A_ , range(len(A_ ) ) ) ) __lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) __lowerCAmelCase : Union[str, Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self , **A_ ) ->Tuple: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __lowerCAmelCase : str = Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) return image_input def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : Dict = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Union[str, Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = self.get_image_processor() __lowerCAmelCase : List[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __lowerCAmelCase : int = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __lowerCAmelCase : int = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : Optional[Any] = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Optional[int] = self.prepare_image_inputs() __lowerCAmelCase : Optional[Any] = image_processor(A_ , return_tensors='''np''' ) __lowerCAmelCase : Tuple = processor(images=A_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Any = '''test''' __lowerCAmelCase : Dict = processor(text=A_ ) __lowerCAmelCase : str = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = '''test''' __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : int = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : Optional[int] = processor.char_decode(A_ ) __lowerCAmelCase : Tuple = tokenizer.batch_decode(A_ ) __lowerCAmelCase : Any = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(A_ , A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : str = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : int = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() __lowerCAmelCase : List[Any] = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : List[str] = self.get_image_processor() __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : Any = MgpstrProcessor(tokenizer=A_ , image_processor=A_ ) __lowerCAmelCase : List[Any] = torch.randn(1 , 27 , 38 ) __lowerCAmelCase : Optional[int] = torch.randn(1 , 27 , 5_0257 ) __lowerCAmelCase : Optional[Any] = torch.randn(1 , 27 , 3_0522 ) __lowerCAmelCase : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
275
0
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCamelCase ( a , a , a , a , a ) -> np.array: '''simple docstring''' __magic_name__ = int(np.ceil((x_end - xa) / step_size ) ) __magic_name__ = np.zeros((n + 1,) ) __magic_name__ = ya __magic_name__ = xa for k in range(a ): __magic_name__ = y[k] + step_size * ode_func(a , y[k] ) __magic_name__ = y[k] + ( (step_size / 2) * (ode_func(a , y[k] ) + ode_func(x + step_size , a )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
98
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , a__ : Union[str, Any] , a__ : Union[str, Any]=7 , a__ : Dict=3 , a__ : Optional[Any]=18 , a__ : Optional[Any]=30 , a__ : Tuple=400 , a__ : Optional[int]=True , a__ : int=None , a__ : Union[str, Any]=True , a__ : Optional[Any]=None , a__ : str=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : Tuple=[0.5, 0.5, 0.5] , a__ : Union[str, Any]=False , ): __magic_name__ = size if size is not None else {'''height''': 20, '''width''': 20} __magic_name__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_reduce_labels def snake_case__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ) -> str: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(dataset[0]['''file'''] ) __magic_name__ = Image.open(dataset[1]['''file'''] ) return image, map def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(ds[0]['''file'''] ) __magic_name__ = Image.open(ds[1]['''file'''] ) __magic_name__ = Image.open(ds[2]['''file'''] ) __magic_name__ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): __magic_name__ = BeitImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) self.assertTrue(hasattr(a__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a__ , '''center_crop''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) def snake_case__ ( self : int ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) def snake_case__ ( self : Optional[Any] ): pass def snake_case__ ( self : Dict ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Union[str, Any] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) __magic_name__ = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_batch_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def snake_case__ ( self : Any ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __magic_name__ = True __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
98
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __lowerCamelCase : Tuple = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :Tuple = ['pixel_values'] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Optional[Any] = size if size is not None else {"shortest_edge": 256} UpperCamelCase : List[Any] = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase : List[Any] = get_size_dict(A_ , param_name="crop_size" ) UpperCamelCase : Optional[int] = do_resize UpperCamelCase : str = size UpperCamelCase : str = resample UpperCamelCase : Optional[int] = do_center_crop UpperCamelCase : List[Any] = crop_size UpperCamelCase : Optional[int] = do_rescale UpperCamelCase : Any = rescale_factor UpperCamelCase : Optional[Any] = do_normalize UpperCamelCase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase : Any = get_resize_output_image_size(A_ , size=size["shortest_edge"] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ , A_ = None , **A_ , ): '''simple docstring''' UpperCamelCase : Dict = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(A_ , size=(size["height"], size["width"]) , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ , A_ = None , **A_ ): '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ = None , **A_ , ): '''simple docstring''' return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ): '''simple docstring''' UpperCamelCase : str = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Tuple = size if size is not None else self.size UpperCamelCase : Any = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample UpperCamelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : str = crop_size if crop_size is not None else self.crop_size UpperCamelCase : List[Any] = get_size_dict(A_ , param_name="crop_size" ) UpperCamelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Optional[Any] = image_std if image_std is not None else self.image_std UpperCamelCase : List[Any] = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase : Tuple = [to_numpy_array(A_ ) for image in images] if do_resize: UpperCamelCase : Union[str, Any] = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: UpperCamelCase : Optional[Any] = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: UpperCamelCase : int = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: UpperCamelCase : str = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] UpperCamelCase : List[str] = [to_channel_dimension_format(A_ , A_ ) for image in images] UpperCamelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=A_ , tensor_type=A_ ) def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A_ ): UpperCamelCase : Tuple = target_sizes.numpy() UpperCamelCase : Tuple = [] for idx in range(len(A_ ) ): UpperCamelCase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A_ ) UpperCamelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: UpperCamelCase : Optional[Any] = logits.argmax(dim=1 ) UpperCamelCase : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
52
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal A =logging.get_logger(__name__) A =TypeVar('DatasetType', Dataset, IterableDataset) def snake_case_ (_a : List[DatasetType] , _a : Optional[List[float]] = None , _a : Optional[int] = None , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) else: return _interleave_iterable_datasets( _a , _a , _a , info=_a , split=_a , stopping_strategy=_a ) def snake_case_ (_a : List[DatasetType] , _a : Optional[DatasetInfo] = None , _a : Optional[NamedSplit] = None , _a : int = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_a ): if not isinstance(_a , (Dataset, IterableDataset) ): if isinstance(_a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( F"Dataset at position {i} has at least one split: {list(_a )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_a ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_a ).__name__}." ) if i == 0: UpperCAmelCase , UpperCAmelCase = ( (Dataset, IterableDataset) if isinstance(_a , _a ) else (IterableDataset, Dataset) ) elif not isinstance(_a , _a ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_a , info=_a , split=_a , axis=_a ) else: return _concatenate_iterable_datasets(_a , info=_a , split=_a , axis=_a )
34
0
from __future__ import annotations from random import random class _a : '''simple docstring''' def __init__( self , A__ = None ): A__ : Optional[int] = value A__ : Any = random() A__ : Node | None = None A__ : Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return F"""'{self.value}: {self.prior:.5}'""" else: return pformat( {F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self ): A__ : str = str(self.value ) + """ """ A__ : Tuple = str(self.left or """""" ) A__ : int = str(self.right or """""" ) return value + left + right def UpperCamelCase (lowercase_: Node | None , lowercase_: int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A__ , A__ : List[str] = split(root.left , lowercase_ ) return left, root else: A__ , A__ : Tuple = split(root.right , lowercase_ ) return root, right def UpperCamelCase (lowercase_: Node | None , lowercase_: Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A__ : int = merge(left.right , lowercase_ ) return left else: A__ : Optional[int] = merge(lowercase_ , right.left ) return right def UpperCamelCase (lowercase_: Node | None , lowercase_: int ) -> Node | None: A__ : Any = Node(lowercase_ ) A__ , A__ : Dict = split(lowercase_ , lowercase_ ) return merge(merge(lowercase_ , lowercase_ ) , lowercase_ ) def UpperCamelCase (lowercase_: Node | None , lowercase_: int ) -> Node | None: A__ , A__ : List[Any] = split(lowercase_ , value - 1 ) A__ , A__ : int = split(lowercase_ , lowercase_ ) return merge(lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def UpperCamelCase (lowercase_: Node | None , lowercase_: str ) -> Node | None: for arg in args.split(): if arg[0] == "+": A__ : Any = insert(lowercase_ , int(arg[1:] ) ) elif arg[0] == "-": A__ : Union[str, Any] = erase(lowercase_ , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def UpperCamelCase () -> None: A__ : Optional[int] = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) A__ : int = input() while args != "q": A__ : Tuple = interact_treap(lowercase_ , lowercase_ ) print(lowercase_ ) A__ : List[str] = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
141
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
1
from __future__ import annotations import math import random from typing import Any class lowercase : def __init__( self): lowercase = [] lowercase = 0 lowercase = 0 def A__ ( self): return self.head == self.tail def A__ ( self ,A__): self.data.append(A__) lowercase = self.tail + 1 def A__ ( self): lowercase = self.data[self.head] lowercase = self.head + 1 return ret def A__ ( self): return self.tail - self.head def A__ ( self): print(self.data) print('''**************''') print(self.data[self.head : self.tail]) class lowercase : def __init__( self ,A__): lowercase = data lowercase = None lowercase = None lowercase = 1 def A__ ( self): return self.data def A__ ( self): return self.left def A__ ( self): return self.right def A__ ( self): return self.height def A__ ( self ,A__): lowercase = data def A__ ( self ,A__): lowercase = node def A__ ( self ,A__): lowercase = node def A__ ( self ,A__): lowercase = height def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if node is None: return 0 return node.get_height() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if a > b: return a return b def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' print('''left rotation node:''' , node.get_data() ) lowercase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) lowercase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' print('''right rotation node:''' , node.get_data() ) lowercase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) lowercase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowerCAmelCase__ ) return ret def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = node.get_left() assert left_child is not None node.set_left(left_rotation(lowerCAmelCase__ ) ) return right_rotation(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = node.get_right() assert right_child is not None node.set_right(right_rotation(lowerCAmelCase__ ) ) return left_rotation(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if node is None: return MyNode(lowerCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowerCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase = right_rotation(lowerCAmelCase__ ) else: lowercase = lr_rotation(lowerCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , lowerCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase = rl_rotation(lowerCAmelCase__ ) else: lowercase = left_rotation(lowerCAmelCase__ ) lowercase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowerCAmelCase__ ) return node def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' while True: lowercase = root.get_right() if right_child is None: break lowercase = right_child return root.get_data() def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' while True: lowercase = root.get_left() if left_child is None: break lowercase = left_child return root.get_data() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = root.get_left() lowercase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase = get_left_most(lowerCAmelCase__ ) root.set_data(lowerCAmelCase__ ) root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) elif left_child is not None: lowercase = left_child elif right_child is not None: lowercase = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowerCAmelCase__ , lowerCAmelCase__ ) ) if get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase = left_rotation(lowerCAmelCase__ ) else: lowercase = rl_rotation(lowerCAmelCase__ ) elif get_height(lowerCAmelCase__ ) - get_height(lowerCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase = right_rotation(lowerCAmelCase__ ) else: lowercase = lr_rotation(lowerCAmelCase__ ) lowercase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowerCAmelCase__ ) return root class lowercase : def __init__( self): lowercase = None def A__ ( self): return get_height(self.root) def A__ ( self ,A__): print('''insert:''' + str(A__)) lowercase = insert_node(self.root ,A__) def A__ ( self ,A__): print('''delete:''' + str(A__)) if self.root is None: print('''Tree is empty!''') return lowercase = del_node(self.root ,A__) def __str__( self ,): # a level traversale, gives a more intuitive look on the tree lowercase = '''''' lowercase = MyQueue() q.push(self.root) lowercase = self.get_height() if layer == 0: return output lowercase = 0 while not q.is_empty(): lowercase = q.pop() lowercase = ''' ''' * int(math.pow(2 ,layer - 1)) output += space if node is None: output += "*" q.push(A__) q.push(A__) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space lowercase = cnt + 1 for i in range(1_0_0): if cnt == math.pow(2 ,A__) - 1: lowercase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCamelCase ( ): '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase__ :Union[str, Any] = AVLtree() lowercase__ :List[str] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
101
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self ,A__ ,A__=2 ,A__=3 ,A__=4 ,A__=2 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=3_6 ,A__=3 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=6 ,A__=6 ,A__=3 ,A__=4 ,A__=None ,A__=1_0_0_0 ,): lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = patch_size lowercase = text_seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = coordinate_size lowercase = shape_size lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase = text_seq_length lowercase = (image_size // patch_size) ** 2 + 1 lowercase = self.text_seq_length + self.image_seq_length def A__ ( self): lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size) lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase = bbox[i, j, 3] lowercase = bbox[i, j, 1] lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase = bbox[i, j, 2] lowercase = bbox[i, j, 0] lowercase = t lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.text_seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size) lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels) lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = LayoutLMvaModel(config=A__) model.to(A__) model.eval() # text + image lowercase = model(A__ ,pixel_values=A__) lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__) lowercase = model(A__ ,bbox=A__ ,pixel_values=A__ ,token_type_ids=A__) lowercase = model(A__ ,bbox=A__ ,pixel_values=A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) # text only lowercase = model(A__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowercase = model(pixel_values=A__) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = LayoutLMvaForSequenceClassification(A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = self.num_labels lowercase = LayoutLMvaForTokenClassification(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,labels=A__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels)) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__): lowercase = LayoutLMvaForQuestionAnswering(config=A__) model.to(A__) model.eval() lowercase = model( A__ ,bbox=A__ ,pixel_values=A__ ,attention_mask=A__ ,token_type_ids=A__ ,start_positions=A__ ,end_positions=A__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def A__ ( self): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Dict =False lowercase_ : Any =False lowercase_ : Tuple =False lowercase_ : Any =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : int =( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def A__ ( self): lowercase = LayoutLMvaModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,hidden_size=3_7) def A__ ( self ,A__ ,A__ ,A__=False): lowercase = copy.deepcopy(A__) if model_class in get_values(A__): lowercase = { k: v.unsqueeze(1).expand(-1 ,self.model_tester.num_choices ,-1).contiguous() if isinstance(A__ ,torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A__): lowercase = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in get_values(A__): lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in [ *get_values(A__), ]: lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) elif model_class in [ *get_values(A__), ]: lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A__ ,) return inputs_dict def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__) @slow def A__ ( self): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = LayoutLMvaModel.from_pretrained(A__) self.assertIsNotNone(A__) def UpperCamelCase ( ): '''simple docstring''' lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase ( unittest.TestCase ): @cached_property def A__ ( self): return LayoutLMvaImageProcessor(apply_ocr=A__) if is_vision_available() else None @slow def A__ ( self): lowercase = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''').to(A__) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=A__ ,return_tensors='''pt''').pixel_values.to(A__) lowercase = torch.tensor([[1, 2]]) lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowercase = model( input_ids=input_ids.to(A__) ,bbox=bbox.to(A__) ,pixel_values=pixel_values.to(A__) ,) # verify the logits lowercase = torch.Size((1, 1_9_9, 7_6_8)) self.assertEqual(outputs.last_hidden_state.shape ,A__) lowercase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(A__) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A__ ,atol=1E-4))
101
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a : int = 'base_with_context' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' snake_case_ = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[F"layers_{lyr_num}"] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) snake_case_ = ly_weight['''attention'''] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' snake_case_ = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case_ = weights[F"layers_{lyr_num}"] snake_case_ = ly_weight['''attention'''] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' snake_case_ = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ), requires_grad=__UpperCAmelCase ) snake_case_ = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case_ = weights[F"layers_{lyr_num}"] snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) snake_case_ = ly_weight['''self_attention'''] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ = ly_weight['''MultiHeadDotProductAttention_0'''] snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) snake_case_ = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def __magic_name__ ( __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' snake_case_ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case_ = jnp.tree_util.tree_map(onp.array, __UpperCAmelCase ) snake_case_ = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] snake_case_ = os.path.join(args.checkpoint_path, '''..''', '''config.gin''' ) snake_case_ = inference.parse_training_gin_file(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ = inference.InferenceModel(args.checkpoint_path, __UpperCAmelCase ) snake_case_ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''', variance_type='''fixed_large''' ) snake_case_ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) snake_case_ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length['''targets_context'''], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj='''gated-gelu''', ) snake_case_ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length['''targets_context'''], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) snake_case_ = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''], __UpperCAmelCase ) snake_case_ = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''], __UpperCAmelCase ) snake_case_ = load_decoder(ta_checkpoint['''target''']['''decoder'''], __UpperCAmelCase ) snake_case_ = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) snake_case_ = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase, continuous_encoder=__UpperCAmelCase, decoder=__UpperCAmelCase, scheduler=__UpperCAmelCase, melgan=__UpperCAmelCase, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) a : List[str] = parser.parse_args() main(args)
72
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class a ( unittest.TestCase ): def A_ ( self : List[Any] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Optional[Any] ): snake_case_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : List[Any] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : str ): snake_case_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Optional[int] ): snake_case_ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(lowercase_ ) ) def A_ ( self : Union[str, Any] ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : int ): snake_case_ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : Any ): # pass variant but use the non-variant filenames snake_case_ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : int ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] snake_case_ = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : str ): snake_case_ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : Tuple ): # pass variant but use the non-variant filenames snake_case_ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] snake_case_ = '''fp16''' self.assertTrue(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) ) def A_ ( self : List[str] ): snake_case_ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] snake_case_ = '''fp16''' self.assertFalse(is_safetensors_compatible(lowercase_ , variant=lowercase_ ) )
72
1
lowercase_ : str = [ (10_00, 'M'), (9_00, 'CM'), (5_00, 'D'), (4_00, 'CD'), (1_00, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} _UpperCAmelCase = 0 _UpperCAmelCase = 0 while place < len(snake_case_ ): if (place + 1 < len(snake_case_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = [] for arabic, roman in ROMAN: ((_UpperCAmelCase) , (_UpperCAmelCase)) = divmod(snake_case_ , snake_case_ ) result.append(roman * factor ) if number == 0: break return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
133
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase_ : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) lowercase_ : str = [] lowercase_ : int = [] lowercase_ : Dict = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} lowercase_ : int = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", 'emoji': True, }, } ] lowercase_ : int = 0 for log in Path().glob('*.log'): lowercase_ : int = 0 with open(log, 'r') as f: for line in f: lowercase_ : List[str] = json.loads(line) if line.get('nodeid', '') != "": lowercase_ : List[str] = line['nodeid'] if line.get('duration', None) is not None: lowercase_ : Tuple = f"""{line["duration"]:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase_ : List[Any] = [] log.unlink() lowercase_ : int = '' lowercase_ : int = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" lowercase_ : Optional[Any] = [] lowercase_ : Any = {} for test in failed_tests: lowercase_ : List[str] = test[0].split('::') lowercase_ : int = data[0].split('/')[-1] if data[0] not in filesafailed: lowercase_ : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase_ : Any = [test[0] for test in failed_table] lowercase_ : Optional[Any] = list(set(files)) # Count number of instances in failed_tests lowercase_ : Optional[Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase_ : Optional[Any] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowercase_ : List[Any] = 'Too many failed tests, please see the full report in the Action results.' lowercase_ : Union[str, Any] = len(err) + 10 lowercase_ : Tuple = message[: 30_00 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: lowercase_ : int = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient lowercase_ : Union[str, Any] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) lowercase_ : List[Any] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowercase_ : List[str] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowercase_ : Any = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) lowercase_ : Any = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase_ : Optional[int] = '' for i, row in enumerate(test_failures): if row[0] != test_class: lowercase_ : Tuple = row[0] else: lowercase_ : Tuple = '' lowercase_ : int = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
133
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
359
'''simple docstring''' from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = order # a_{0} ... a_{k} _lowerCAmelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} _lowerCAmelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _lowerCAmelCase = [0.0] * self.order # y[n-1] ... y[n-k] _lowerCAmelCase = [0.0] * self.order def _lowercase ( self , _lowercase , _lowercase ): """simple docstring""" if len(_lowercase ) < self.order: _lowerCAmelCase = [1.0, *a_coeffs] if len(_lowercase ) != self.order + 1: _lowerCAmelCase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) if len(_lowercase ) != self.order + 1: _lowerCAmelCase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(_lowercase )}' ) raise ValueError(_lowercase ) _lowerCAmelCase = a_coeffs _lowerCAmelCase = b_coeffs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _lowerCAmelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _lowerCAmelCase = self.input_history[:-1] _lowerCAmelCase = self.output_history[:-1] _lowerCAmelCase = sample _lowerCAmelCase = result return result
229
0