code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): __UpperCamelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , 'html.parser' ) __UpperCamelCase =soup.find_all('td' , attrs='titleColumn' ) __UpperCamelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "IMDb_Top_250_Movies.csv" ): __UpperCamelCase =get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='' ) as out_file: __UpperCamelCase =csv.writer(SCREAMING_SNAKE_CASE__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
62
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _a = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } _a = { "xlnet-base-cased": None, "xlnet-large-cased": None, } _a = "▁" # Segments (not really needed) _a = 0 _a = 1 _a = 2 _a = 3 _a = 4 class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = """left""" lowerCAmelCase_ = XLNetTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token super().__init__( vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCamelCase__ = 3 lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = False if not self.vocab_file else True def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = [self.sep_token_id] lowerCamelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
209
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCAmelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=" " ): lowerCAmelCase__ = text.split(lowerCAmelCase__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] def __lowerCamelCase ( lowerCAmelCase__ ): lowerCAmelCase__ , lowerCAmelCase__ = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(lowerCAmelCase__ ): titles.append(title if title is not None else '' ) texts.append(lowerCAmelCase__ ) return {"title": titles, "text": texts} def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = ctx_tokenizer( documents['title'] , documents['text'] , truncation=lowerCAmelCase__ , padding='longest' , return_tensors='pt' )['input_ids'] lowerCAmelCase__ = ctx_encoder(input_ids.to(device=lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ = dataset.map(lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCAmelCase__ ) lowerCAmelCase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ = dataset.map( partial(lowerCAmelCase__ , ctx_encoder=lowerCAmelCase__ , ctx_tokenizer=lowerCAmelCase__ ) , batched=lowerCAmelCase__ , batch_size=processing_args.batch_size , features=lowerCAmelCase__ , ) # And finally save your dataset lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(lowerCAmelCase__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=lowerCAmelCase__ ) # And save the index lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(lowerCAmelCase__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = field( default=str(Path(SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) UpperCAmelCase_ = field( default=SCREAMING_SNAKE_CASE , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) UpperCAmelCase_ = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) UpperCAmelCase_ = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) UpperCAmelCase_ = field( default=str(Path(SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = field( default=SCREAMING_SNAKE_CASE , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) UpperCAmelCase_ = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class a_ : '''simple docstring''' UpperCAmelCase_ = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) UpperCAmelCase_ = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCAmelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
119
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 42 @flax_register_to_config class a_ ( nn.Module , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = 32 UpperCAmelCase_ = 4 UpperCAmelCase_ = 4 UpperCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase_ = False UpperCAmelCase_ = (320, 640, 1_280, 1_280) UpperCAmelCase_ = 2 UpperCAmelCase_ = 8 UpperCAmelCase_ = None UpperCAmelCase_ = 1_280 UpperCAmelCase_ = 0.0 UpperCAmelCase_ = False UpperCAmelCase_ = jnp.floataa UpperCAmelCase_ = True UpperCAmelCase_ = 0 UpperCAmelCase_ = False def __snake_case ( self : Optional[int] , lowercase__ : jax.random.KeyArray): '''simple docstring''' lowerCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase__ = jnp.zeros(lowercase__ , dtype=jnp.floataa) lowerCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa) lowerCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowercase__) lowerCAmelCase__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__)["params"] def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.block_out_channels lowerCAmelCase__ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) lowerCAmelCase__ = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype) lowerCAmelCase__ = self.only_cross_attention if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (only_cross_attention,) * len(self.down_block_types) if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = (num_attention_heads,) * len(self.down_block_types) # down lowerCAmelCase__ = [] lowerCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = block_out_channels[i] lowerCAmelCase__ = i == len(lowercase__) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase__ = FlaxCrossAttnDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxDownBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase__) lowerCAmelCase__ = down_blocks # mid lowerCAmelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCAmelCase__ = [] lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = list(reversed(lowercase__)) lowerCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): lowerCAmelCase__ = output_channel lowerCAmelCase__ = reversed_block_out_channels[i] lowerCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(lowercase__) - 1)] lowerCAmelCase__ = i == len(lowercase__) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCAmelCase__ = FlaxCrossAttnUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase__ = FlaxUpBlockaD( in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowercase__) lowerCAmelCase__ = output_channel lowerCAmelCase__ = up_blocks # out lowerCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5) lowerCAmelCase__ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : bool = True , lowercase__ : bool = False , ): '''simple docstring''' if not isinstance(lowercase__ , jnp.ndarray): lowerCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(lowercase__ , jnp.ndarray) and len(timesteps.shape) == 0: lowerCAmelCase__ = timesteps.astype(dtype=jnp.floataa) lowerCAmelCase__ = jnp.expand_dims(lowercase__ , 0) lowerCAmelCase__ = self.time_proj(lowercase__) lowerCAmelCase__ = self.time_embedding(lowercase__) # 2. pre-process lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 2, 3, 1)) lowerCAmelCase__ = self.conv_in(lowercase__) # 3. down lowerCAmelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) else: lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCAmelCase__ = () for down_block_res_sample, down_block_additional_residual in zip( lowercase__ , lowercase__): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase__ = new_down_block_res_samples # 4. mid lowerCAmelCase__ = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowercase__ , lowercase__): lowerCAmelCase__ = up_block( lowercase__ , temb=lowercase__ , encoder_hidden_states=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train , ) else: lowerCAmelCase__ = up_block(lowercase__ , temb=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train) # 6. post-process lowerCAmelCase__ = self.conv_norm_out(lowercase__) lowerCAmelCase__ = nn.silu(lowercase__) lowerCAmelCase__ = self.conv_out(lowercase__) lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowercase__)
119
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _A ( SCREAMING_SNAKE_CASE : int = 3 ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(SCREAMING_SNAKE_CASE ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) a__ : Optional[int] =QuantumRegister(SCREAMING_SNAKE_CASE , "qr" ) a__ : List[Any] =ClassicalRegister(SCREAMING_SNAKE_CASE , "cr" ) a__ : int =QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : Optional[Any] =number_of_qubits for i in range(SCREAMING_SNAKE_CASE ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # simulate with 10000 shots a__ : Optional[Any] =Aer.get_backend("qasm_simulator" ) a__ : List[str] =execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
95
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> Optional[int]: '''simple docstring''' a__ : str =size if size is not None else {"shortest_edge": 2_0} a__ : Union[str, Any] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Optional[int] =batch_size a__ : Any =num_channels a__ : List[str] =image_size a__ : Dict =min_resolution a__ : List[Any] =max_resolution a__ : Dict =do_resize a__ : Union[str, Any] =size a__ : str =do_center_crop a__ : List[str] =crop_size def _lowercase ( self ) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[int] =MobileNetVaImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size" ) ) def _lowercase ( self ) -> str: '''simple docstring''' a__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Any: '''simple docstring''' pass def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Dict =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> int: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : str =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
1
def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): """simple docstring""" def get_matched_characters(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> str: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Any = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase__ : str = int(max(0 , i - limit ) ) UpperCamelCase__ : Optional[Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = F"{_stra[0:_stra.index(SCREAMING_SNAKE_CASE )]} {_stra[_stra.index(SCREAMING_SNAKE_CASE ) + 1:]}" return "".join(SCREAMING_SNAKE_CASE ) # matching characters UpperCamelCase__ : List[Any] = get_matched_characters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = get_matched_characters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE ) # transposition UpperCamelCase__ : List[str] = ( len([(ca, ca) for ca, ca in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase__ : Optional[int] = 0.0 else: UpperCamelCase__ : Tuple = ( 1 / 3 * ( match_count / len(SCREAMING_SNAKE_CASE ) + match_count / len(SCREAMING_SNAKE_CASE ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase__ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
51
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: int = CTRLTokenizer A: List[Any] = False A: Dict = False def UpperCAmelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] UpperCamelCase__ : List[str] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] UpperCamelCase__ : int = {'''unk_token''': '''<unk>'''} UpperCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Tuple , **lowerCamelCase__ : str ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = '''adapt react readapt apt''' UpperCamelCase__ : Optional[Any] = '''adapt react readapt apt''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ : Optional[Any] = '''adapt react readapt apt''' UpperCamelCase__ : List[Any] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() UpperCamelCase__ : Tuple = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = tokens + [tokenizer.unk_token] UpperCamelCase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
51
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Union[str, Any] = CycleDiffusionPipeline _UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } _UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - {'''latents'''} _UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) _UpperCAmelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Optional[int]): torch.manual_seed(0) __lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=3_2 ,) __lowerCamelCase : Optional[int] = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,num_train_timesteps=1_0_0_0 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,) torch.manual_seed(0) __lowerCamelCase : str = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0) __lowerCamelCase : List[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) __lowerCamelCase : int = CLIPTextModel(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') __lowerCamelCase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str]=0): __lowerCamelCase : str = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = image / 2 + 0.5 if str(SCREAMING_SNAKE_CASE__).startswith('mps'): __lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__) else: __lowerCamelCase : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.get_dummy_components() __lowerCamelCase : Dict = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = output.images __lowerCamelCase : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __lowerCamelCase : Optional[int] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU') def lowerCAmelCase ( self : str): __lowerCamelCase : Any = self.get_dummy_components() for name, module in components.items(): if hasattr(SCREAMING_SNAKE_CASE__ ,'half'): __lowerCamelCase : Any = module.half() __lowerCamelCase : Union[str, Any] = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = pipe(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = output.images __lowerCamelCase : Any = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __lowerCamelCase : Optional[int] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Dict): return super().test_save_load_local() @unittest.skip('non-deterministic pipeline') def lowerCAmelCase ( self : Optional[Any]): return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : Any): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : Optional[Any]): return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : Tuple): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') __lowerCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy') __lowerCamelCase : Optional[int] = init_image.resize((5_1_2, 5_1_2)) __lowerCamelCase : Optional[int] = 'CompVis/stable-diffusion-v1-4' __lowerCamelCase : Tuple = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder='scheduler') __lowerCamelCase : Optional[int] = CycleDiffusionPipeline.from_pretrained( SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ,revision='fp16') pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) pipe.enable_attention_slicing() __lowerCamelCase : Union[str, Any] = 'A black colored car' __lowerCamelCase : Optional[int] = 'A blue colored car' __lowerCamelCase : List[Any] = torch.manual_seed(0) __lowerCamelCase : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE__ ,source_prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,eta=0.1 ,strength=0.85 ,guidance_scale=3 ,source_guidance_scale=1 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : List[Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image).max() < 5E-1 def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png') __lowerCamelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy') __lowerCamelCase : List[str] = init_image.resize((5_1_2, 5_1_2)) __lowerCamelCase : int = 'CompVis/stable-diffusion-v1-4' __lowerCamelCase : int = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder='scheduler') __lowerCamelCase : Optional[Any] = CycleDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__) pipe.to(SCREAMING_SNAKE_CASE__) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) pipe.enable_attention_slicing() __lowerCamelCase : str = 'A black colored car' __lowerCamelCase : List[str] = 'A blue colored car' __lowerCamelCase : int = torch.manual_seed(0) __lowerCamelCase : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE__ ,source_prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,eta=0.1 ,strength=0.85 ,guidance_scale=3 ,source_guidance_scale=1 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,) __lowerCamelCase : List[Any] = output.images assert np.abs(image - expected_image).max() < 2E-2
73
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets( a__ , a__ , number=a__ , min_len=1_026 , trim=a__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ ) print('''computing perplexity on objective set''' ) SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item() print('''perplexity on objective set:''' , a__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ ) # Train secondary learner SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner( a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ ) SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ ) SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ ) model.train() if secondary_learner is not None: secondary_learner.to(a__ ) secondary_learner.eval() SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Tuple = [] # Compute the performance of the transformer model at the beginning SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) for epoch in range(int(a__ ) ): for step, example in enumerate(a__ ): torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = True if secondary_learner is not None: SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward( torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(a__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: SCREAMING_SNAKE_CASE : Dict = -1 if predicted_q < threshold: SCREAMING_SNAKE_CASE : str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) SCREAMING_SNAKE_CASE : List[str] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ ) test_perps.append(a__ ) print('''Test perplexity, step''' , a__ , ''':''' , a__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , a__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=a__ , default=a__ , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=a__ , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=a__ , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner( a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
313
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE__ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = ["pixel_values"] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = True , A_ = None , A_ = None , **A_ , ) -> None: super().__init__(**A_ ) __UpperCamelCase =size if size is not None else {'shortest_edge': 256} __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) __UpperCamelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase =get_size_dict(A_ , param_name='crop_size' ) __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =do_center_crop __UpperCamelCase =crop_size __UpperCamelCase =resample __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =offset __UpperCamelCase =do_normalize __UpperCamelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self , A_ , A_ , A_ = PILImageResampling.BILINEAR , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" in size: __UpperCamelCase =get_resize_output_image_size(A_ , size['shortest_edge'] , default_to_square=A_ ) elif "height" in size and "width" in size: __UpperCamelCase =(size['height'], size['width']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: __UpperCamelCase =get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ = True , A_ = None , **A_ , ) -> List[str]: __UpperCamelCase =image.astype(np.floataa ) if offset: __UpperCamelCase =image - (scale / 2) return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. __UpperCamelCase =to_numpy_array(A_ ) if do_resize: __UpperCamelCase =self.resize(image=A_ , size=A_ , resample=A_ ) if do_center_crop: __UpperCamelCase =self.center_crop(A_ , size=A_ ) if do_rescale: __UpperCamelCase =self.rescale(image=A_ , scale=A_ , offset=A_ ) if do_normalize: __UpperCamelCase =self.normalize(image=A_ , mean=A_ , std=A_ ) __UpperCamelCase =to_channel_dimension_format(A_ , A_ ) return image def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image: __UpperCamelCase =do_resize if do_resize is not None else self.do_resize __UpperCamelCase =resample if resample is not None else self.resample __UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase =offset if offset is not None else self.offset __UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase =image_mean if image_mean is not None else self.image_mean __UpperCamelCase =image_std if image_std is not None else self.image_std __UpperCamelCase =size if size is not None else self.size __UpperCamelCase =get_size_dict(A_ , default_to_square=A_ ) __UpperCamelCase =crop_size if crop_size is not None else self.crop_size __UpperCamelCase =get_size_dict(A_ , param_name='crop_size' ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __UpperCamelCase =make_batched(A_ ) __UpperCamelCase =[ [ self._preprocess_image( image=A_ , do_resize=A_ , size=A_ , resample=A_ , do_center_crop=A_ , crop_size=A_ , do_rescale=A_ , rescale_factor=A_ , offset=A_ , do_normalize=A_ , image_mean=A_ , image_std=A_ , data_format=A_ , ) for img in video ] for video in videos ] __UpperCamelCase ={'pixel_values': videos} return BatchFeature(data=A_ , tensor_type=A_ )
117
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _A = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : Optional[str] = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "The column name of the images in the files."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "A folder containing the training data."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "A folder containing the validation data."} ) UpperCAmelCase__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def _a ( self ) -> Optional[int]: __UpperCamelCase ={} if self.train_dir is not None: __UpperCamelCase =self.train_dir if self.validation_dir is not None: __UpperCamelCase =self.validation_dir __UpperCamelCase =data_files if data_files else None @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str = field( default=A_ , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) UpperCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCAmelCase__ : str = field(default=A_ , metadata={"help": "Name or path of preprocessor config."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCAmelCase__ : float = field( default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : float = field( default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCamelCase =training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __UpperCamelCase =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __UpperCamelCase =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __UpperCamelCase =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: __UpperCamelCase =ds['train'].train_test_split(data_args.train_val_split ) __UpperCamelCase =split['train'] __UpperCamelCase =split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCamelCase ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __UpperCamelCase =ViTMAEConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: __UpperCamelCase =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __UpperCamelCase =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ ) elif model_args.model_name_or_path: __UpperCamelCase =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =ViTImageProcessor() # create model if model_args.model_name_or_path: __UpperCamelCase =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __UpperCamelCase =ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ ) if training_args.do_train: __UpperCamelCase =ds['train'].column_names else: __UpperCamelCase =ds['validation'].column_names if data_args.image_column_name is not None: __UpperCamelCase =data_args.image_column_name elif "image" in column_names: __UpperCamelCase ='image' elif "img" in column_names: __UpperCamelCase ='img' else: __UpperCamelCase =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __UpperCamelCase =image_processor.size['shortest_edge'] else: __UpperCamelCase =(image_processor.size['height'], image_processor.size['width']) __UpperCamelCase =Compose( [ Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(SCREAMING_SNAKE_CASE__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =[transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __UpperCamelCase =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __UpperCamelCase =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Compute absolute learning rate __UpperCamelCase =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __UpperCamelCase =training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer __UpperCamelCase =Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: __UpperCamelCase =None if training_args.resume_from_checkpoint is not None: __UpperCamelCase =training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCamelCase =last_checkpoint __UpperCamelCase =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCamelCase =trainer.evaluate() trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub __UpperCamelCase ={ 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
117
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( a__ , a__ , a__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE = frozenset([] ) def UpperCamelCase ( self ): torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=9,out_channels=4,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''),up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''),cross_attention_dim=32,attention_head_dim=(2, 4),use_linear_projection=_UpperCAmelCase,) A__ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],latent_channels=4,sample_size=128,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='''gelu''',projection_dim=512,) A__ = CLIPTextModel(_UpperCAmelCase ) A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=0 ): A__ = floats_tensor((1, 3, 32, 32),rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) A__ = image.cpu().permute(0,2,3,1 )[0] A__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) A__ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith('''mps''' ): A__ = torch.manual_seed(_UpperCAmelCase ) else: A__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self ): A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) A__ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) A__ = self.get_dummy_inputs(_UpperCAmelCase ) A__ = sd_pipe(**_UpperCAmelCase ).images A__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) A__ = 'stabilityai/stable-diffusion-2-inpainting' A__ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase,safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() A__ = 'Face of a yellow cat, high resolution, sitting on a park bench' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=_UpperCAmelCase,image=_UpperCAmelCase,mask_image=_UpperCAmelCase,generator=_UpperCAmelCase,output_type='''np''',) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCamelCase ( self ): A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) A__ = 'stabilityai/stable-diffusion-2-inpainting' A__ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase,torch_dtype=torch.floataa,safety_checker=_UpperCAmelCase,) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() A__ = 'Face of a yellow cat, high resolution, sitting on a park bench' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=_UpperCAmelCase,image=_UpperCAmelCase,mask_image=_UpperCAmelCase,generator=_UpperCAmelCase,output_type='''np''',) A__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCamelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) A__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) A__ = 'stabilityai/stable-diffusion-2-inpainting' A__ = PNDMScheduler.from_pretrained(_UpperCAmelCase,subfolder='''scheduler''' ) A__ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase,safety_checker=_UpperCAmelCase,scheduler=_UpperCAmelCase,torch_dtype=torch.floataa,) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = 'Face of a yellow cat, high resolution, sitting on a park bench' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=_UpperCAmelCase,image=_UpperCAmelCase,mask_image=_UpperCAmelCase,generator=_UpperCAmelCase,num_inference_steps=2,output_type='''np''',) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
193
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _lowerCAmelCase ( __snake_case : Tuple ) -> Dict: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _lowerCAmelCase ( ) -> Tuple: __A : int = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__snake_case ) __A : Optional[Any] = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__snake_case ) EnvironmentCommand.register_subcommand(__snake_case ) TestCommand.register_subcommand(__snake_case ) RunBeamCommand.register_subcommand(__snake_case ) DummyDataCommand.register_subcommand(__snake_case ) # Parse args __A ,__A : Optional[Any] = parser.parse_known_args() if not hasattr(__snake_case , 'func' ): parser.print_help() exit(1 ) __A : Any = parse_unknown_args(__snake_case ) # Run __A : List[Any] = args.func(__snake_case , **__snake_case ) service.run() if __name__ == "__main__": main()
190
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Tuple: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]: lowerCamelCase_ ={} if top_k is not None: lowerCamelCase_ =top_k return {}, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> int: return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[Any]: lowerCamelCase_ =load_image(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[int]: lowerCamelCase_ =self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 )-> Optional[Any]: if top_k > self.model.config.num_labels: lowerCamelCase_ =self.model.config.num_labels if self.framework == "pt": lowerCamelCase_ =model_outputs.logits.softmax(-1 )[0] lowerCamelCase_ , lowerCamelCase_ =probs.topk(_SCREAMING_SNAKE_CASE ) elif self.framework == "tf": lowerCamelCase_ =stable_softmax(model_outputs.logits , axis=-1 )[0] lowerCamelCase_ =tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ , lowerCamelCase_ =topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'Unsupported framework: {self.framework}' ) lowerCamelCase_ =scores.tolist() lowerCamelCase_ =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
49
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_A ) if colsa != 1: lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase_ =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase_ =( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_A )} and {rowsa}' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ =table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase_ =[] for row in range(_A ): lowerCamelCase_ =0 for col in range(_A ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(_A ) lowerCamelCase_ =new_val return [float(_A ) for i in new_val] def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , _A ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
49
1
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: str =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Any =1 SCREAMING_SNAKE_CASE_: Tuple =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: List[str] =1 SCREAMING_SNAKE_CASE_: Optional[int] =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
173
"""simple docstring""" from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : Optional[int] = ['torch', 'torchsde'] def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] ) @classmethod def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """torchsde"""] )
173
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = '''ibert''' def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=False, lowercase_="none", **lowercase_, ) -> str: super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = quant_mode snake_case = force_dequant class lowerCamelCase ( __lowerCAmelCase ): @property def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
332
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __magic_name__ ( A ) -> Tuple: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __magic_name__ ( A , A ) -> Optional[int]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __magic_name__ ( A ) -> List[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def __magic_name__ ( ) -> Dict: snake_case = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __magic_name__ ( A , A , A , A ) -> int: snake_case = 'imagenet-1k-id2label.json' snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) ) snake_case = {int(A ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": snake_case = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": snake_case = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 2_0] snake_case = [3, 1_2, 1_6] snake_case = [1_9_2, 7_6_8, 1_0_2_4] snake_case = CvtForImageClassification(A ) snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) snake_case = image_size snake_case = torch.load(A , map_location=torch.device('cpu' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(A ) snake_case = list_of_state_dict + embeddings(A ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(A , A ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(A ) for i in range(len(A ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(A ) model.save_pretrained(A ) image_processor.save_pretrained(A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_8_4, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
332
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __A : '''simple docstring''' def __init__( self : Dict ,_snake_case : Dict ,_snake_case : str=None ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=None ,_snake_case : Dict="resnet50" ,_snake_case : Dict=3 ,_snake_case : Union[str, Any]=32 ,_snake_case : int=3 ,_snake_case : List[Any]=True ,_snake_case : Optional[int]=True ,) -> Any: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : List[str] = out_indices if out_indices is not None else [4] lowercase__ : Optional[int] = stage_names lowercase__ : Optional[int] = out_features lowercase__ : int = backbone lowercase__ : List[str] = batch_size lowercase__ : List[str] = image_size lowercase__ : int = num_channels lowercase__ : Any = use_pretrained_backbone lowercase__ : Any = is_training def UpperCAmelCase ( self : int ) -> Dict: """simple docstring""" lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Union[str, Any] = self.get_config() return config, pixel_values def UpperCAmelCase ( self : List[str] ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : List[Any] = TimmBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowercase__ : str = model(_snake_case ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ : str = config_and_inputs lowercase__ : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class __A ( A_ ,A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = (TimmBackbone,) if is_torch_available() else () lowerCAmelCase : List[Any] = {"feature-extraction": TimmBackbone} if is_torch_available() else {} lowerCAmelCase : int = False lowerCAmelCase : List[str] = False lowerCAmelCase : Tuple = False lowerCAmelCase : int = False def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" lowercase__ : Optional[Any] = TimmBackboneModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = '''resnet18''' lowercase__ : List[Any] = '''microsoft/resnet-18''' lowercase__ : str = AutoBackbone.from_pretrained(_snake_case ,use_timm_backbone=_snake_case ) lowercase__ : List[str] = AutoBackbone.from_pretrained(_snake_case ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) lowercase__ : Optional[Any] = AutoBackbone.from_pretrained(_snake_case ,use_timm_backbone=_snake_case ,out_indices=[1, 2, 3] ) lowercase__ : int = AutoBackbone.from_pretrained(_snake_case ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCAmelCase ( self : int ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def UpperCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def UpperCAmelCase ( self : str ) -> int: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCAmelCase ( self : Any ) -> int: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self : List[Any] ) -> int: """simple docstring""" pass def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(_snake_case ) lowercase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,_snake_case ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : int = True lowercase__ : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality lowercase__ : Union[str, Any] = self.all_model_classes[0] lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) lowercase__ : List[str] = self._prepare_for_class(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = model(**_snake_case ) lowercase__ : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models lowercase__ : Optional[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowercase__ : str = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Tuple = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Optional[Any] = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowercase__ : Optional[int] = copy.deepcopy(_snake_case ) lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : Any = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights lowercase__ : List[Any] = copy.deepcopy(_snake_case ) lowercase__ : List[Any] = False lowercase__ : Dict = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowercase__ : List[str] = model(**_snake_case )
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a ( __lowercase , unittest.TestCase ): snake_case__ = XGLMTokenizer snake_case__ = XGLMTokenizerFast snake_case__ = True snake_case__ = True def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = '<pad>' lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase__ ) , 10_08 ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ ) lowerCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCamelCase__ ( self ): """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCAmelCase__ , f.name ) lowerCAmelCase = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase__ ) lowerCAmelCase = pickle.dumps(UpperCAmelCase__ ) pickle.loads(UpperCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = 'I was born in 92000, and this is falsé.' lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ ) lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'Hello World!' lowerCAmelCase = [2, 3_12_27, 44_47, 35] self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='facebook/xglm-564M' , padding=UpperCAmelCase__ , )
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[str] = "data2vec-text" def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = vocab_size UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : Optional[int] = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Any = hidden_act UpperCamelCase : str = intermediate_size UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Optional[Any] = layer_norm_eps UpperCamelCase : List[Any] = position_embedding_type UpperCamelCase : Tuple = use_cache UpperCamelCase : List[str] = classifier_dropout class lowerCAmelCase_ ( a__ ): @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
119
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Tuple = "bloom" UpperCAmelCase__ : List[Any] = ["past_key_values"] UpperCAmelCase__ : str = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, SCREAMING_SNAKE_CASE_=25_0880, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple: UpperCamelCase : str = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase : Optional[Any] = kwargs.pop('n_embed', SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = hidden_size if n_embed is None else n_embed UpperCamelCase : Tuple = n_layer UpperCamelCase : Dict = n_head UpperCamelCase : List[Any] = layer_norm_epsilon UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : int = use_cache UpperCamelCase : int = pretraining_tp UpperCamelCase : Optional[int] = apply_residual_connection_post_layernorm UpperCamelCase : str = hidden_dropout UpperCamelCase : str = attention_dropout UpperCamelCase : List[Any] = bos_token_id UpperCamelCase : Tuple = eos_token_id UpperCamelCase : Union[str, Any] = slow_but_exact super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = version.parse("1.12" ) def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? UpperCamelCase : Tuple = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: UpperCamelCase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs', inverted_values_shape=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return common_inputs @property def snake_case_ ( self ) -> int: return self._config.n_layer @property def snake_case_ ( self ) -> int: return self._config.n_head @property def snake_case_ ( self ) -> float: return 1e-3 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]: UpperCamelCase : Dict = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() UpperCamelCase : Any = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase : Any = seqlen + 2 UpperCamelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads UpperCamelCase : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase : List[str] = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] UpperCamelCase : str = common_inputs['attention_mask'] if self.use_past: UpperCamelCase : int = ordered_inputs['attention_mask'].dtype UpperCamelCase : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: return 13
119
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : int = """megatron-bert""" def __init__( self , __UpperCAmelCase=29_056 , __UpperCAmelCase=1_024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4_096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> str: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : Dict = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[Any] = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Tuple = position_embedding_type __UpperCAmelCase : List[Any] = use_cache
366
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _a ( __a ): __a : Optional[int] = """xlm-roberta-xl""" def __init__( self : Union[str, Any] , lowercase : str=250_880 , lowercase : Dict=2_560 , lowercase : str=36 , lowercase : Optional[Any]=32 , lowercase : List[str]=10_240 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=0.1 , lowercase : Dict=0.1 , lowercase : List[str]=514 , lowercase : Dict=1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=1E-05 , lowercase : Optional[Any]=1 , lowercase : str=0 , lowercase : int=2 , lowercase : int="absolute" , lowercase : Optional[int]=True , lowercase : List[str]=None , **lowercase : int , ): '''simple docstring''' super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache UpperCAmelCase = classifier_dropout class _a ( __a ): @property def A ( self : int ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
34
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) A =logging.getLogger(__name__) A ='Hello world! cécé herlolip' A =namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def snake_case_ (_a : List[Any] , _a : Any ): UpperCAmelCase = BertAbsConfig( temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , ) UpperCAmelCase = torch.load(_a , lambda _a , _a : storage ) UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a ) original.eval() UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) ) UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass UpperCAmelCase = encoder_input_ids UpperCAmelCase = decoder_input_ids UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = UpperCAmelCase = None UpperCAmelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0] UpperCAmelCase = original.generator(_a ) UpperCAmelCase = new_model( _a , _a , _a , _a , _a )[0] UpperCAmelCase = new_model.generator(_a ) UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) ) UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) A =parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
34
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase_ = logging.get_logger(__name__) class __lowerCamelCase ( __A ): lowerCamelCase_ : List[str] = ['input_features', 'is_longer'] def __init__( self , lowerCamelCase=64 , lowerCamelCase=48000 , lowerCamelCase=480 , lowerCamelCase=10 , lowerCamelCase=1024 , lowerCamelCase=0.0 , lowerCamelCase=False , lowerCamelCase = 0 , lowerCamelCase = 14000 , lowerCamelCase = None , lowerCamelCase = "fusion" , lowerCamelCase = "repeatpad" , **lowerCamelCase , ) -> Union[str, Any]: super().__init__( feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) snake_case_ = top_db snake_case_ = truncation snake_case_ = padding snake_case_ = fft_window_size snake_case_ = (fft_window_size >> 1) + 1 snake_case_ = hop_length snake_case_ = max_length_s snake_case_ = max_length_s * sampling_rate snake_case_ = sampling_rate snake_case_ = frequency_min snake_case_ = frequency_max snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm=__lowercase , mel_scale="""htk""" , ) snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCAmelCase_ ( self ) -> int: snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[str]: snake_case_ = spectrogram( __lowercase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowercase , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: snake_case_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] # randomly choose index for each part snake_case_ = np.random.choice(ranges[0] ) snake_case_ = np.random.choice(ranges[1] ) snake_case_ = np.random.choice(ranges[2] ) snake_case_ = mel[idx_front : idx_front + chunk_frames, :] snake_case_ = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ = mel[idx_back : idx_back + chunk_frames, :] snake_case_ = torch.tensor(mel[None, None, :] ) snake_case_ = torch.nn.functional.interpolate( __lowercase , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__lowercase ) snake_case_ = mel_shrink[0][0].numpy() snake_case_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ = len(__lowercase ) - max_length snake_case_ = np.random.randint(0 , overflow + 1 ) snake_case_ = waveform[idx : idx + max_length] snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters ) snake_case_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ = False else: snake_case_ = self._random_mel_fusion(__lowercase , __lowercase , __lowercase ) snake_case_ = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: snake_case_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ = int(max_length / len(__lowercase ) ) snake_case_ = np.stack(np.tile(__lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ = int(max_length / len(__lowercase ) ) snake_case_ = np.stack(np.tile(__lowercase , __lowercase ) ) snake_case_ = np.pad(__lowercase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters ) snake_case_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> str: snake_case_ = truncation if truncation is not None else self.truncation snake_case_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) snake_case_ = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): snake_case_ = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [np.asarray(__lowercase )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ = [ self._get_input_mel(__lowercase , max_length if max_length else self.nb_max_samples , __lowercase , __lowercase ) for waveform in raw_speech ] snake_case_ = [] snake_case_ = [] for mel, longer in padded_inputs: input_mel.append(__lowercase ) is_longer.append(__lowercase ) if truncation == "fusion" and sum(__lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ = np.random.randint(0 , len(__lowercase ) ) snake_case_ = True if isinstance(input_mel[0] , __lowercase ): snake_case_ = [np.asarray(__lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ = [[longer] for longer in is_longer] snake_case_ = {"""input_features""": input_mel, """is_longer""": is_longer} snake_case_ = BatchFeature(__lowercase ) if return_tensors is not None: snake_case_ = input_features.convert_to_tensors(__lowercase ) return input_features
359
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCamelCase_ = { '''yjernite/retribert-base-uncased''': 512, } lowerCamelCase_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Union[str, Any] = RetriBertTokenizer lowerCamelCase_ : str = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**lowerCamelCase ) snake_case_ = do_lower_case def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase=None ) -> str: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
34
0
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __snake_case = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ : int = VOCAB_FILES_NAMES A_ : int = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = ["""input_ids""", """attention_mask"""] A_ : List[int] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Union[str, Any]: _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> List[Any]: return self.sp_model.get_piece_size() def _UpperCAmelCase ( self ) -> Tuple: _a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __UpperCAmelCase ) -> Dict: _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: return self.sp_model.piece_to_id(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any: _a = self.sp_model.IdToPiece(__UpperCAmelCase ) return token def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = [] _a = """""" _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token _a = True _a = [] else: current_sub_tokens.append(__UpperCAmelCase ) _a = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Dict: _a = kwargs.pop('''use_source_tokenizer''' , __UpperCAmelCase ) _a = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a = [] _a = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _a = [] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__UpperCAmelCase ) ) else: _a = """""".join(__UpperCAmelCase ) _a = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a = self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Dict: if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> Optional[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
320
from scipy.stats import pearsonr import datasets _lowerCamelCase =""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ _lowerCamelCase =""" Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ _lowerCamelCase =""" @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class A__ ( datasets.Metric): def UpperCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): if return_pvalue: lowerCamelCase : Optional[Any] = pearsonr(__magic_name__ , __magic_name__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__magic_name__ , __magic_name__ )[0] )}
287
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, Iterable[int]] , lowerCamelCase : bool , lowerCamelCase : int ): def constraint_to_multiple_of(lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=0 , lowerCamelCase : Dict=None ): UpperCamelCase_ : Optional[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase_ : Tuple = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase_ : Any = math.ceil(val / multiple ) * multiple return x UpperCamelCase_ : List[Any] = (output_size, output_size) if isinstance(lowerCamelCase , lowerCamelCase ) else output_size UpperCamelCase_, UpperCamelCase_ : int = get_image_size(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = output_size # determine new height and width UpperCamelCase_ : List[Any] = output_height / input_height UpperCamelCase_ : Tuple = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase_ : List[str] = scale_width else: # fit height UpperCamelCase_ : Optional[int] = scale_height UpperCamelCase_ : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCamelCase ) UpperCamelCase_ : Tuple = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCamelCase ) return (new_height, new_width) class _lowercase ( snake_case_ ): lowercase = ['pixel_values'] def __init__( self : List[Any] , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = False , snake_case : int = 1 , snake_case : bool = True , snake_case : Union[int, float] = 1 / 2_5_5 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , **snake_case : List[str] , ) -> None: """simple docstring""" super().__init__(**snake_case ) UpperCamelCase_ : Dict = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} UpperCamelCase_ : str = get_size_dict(snake_case ) UpperCamelCase_ : List[Any] = do_resize UpperCamelCase_ : List[str] = size UpperCamelCase_ : Optional[Any] = keep_aspect_ratio UpperCamelCase_ : Optional[Any] = ensure_multiple_of UpperCamelCase_ : List[Any] = resample UpperCamelCase_ : Optional[int] = do_rescale UpperCamelCase_ : Union[str, Any] = rescale_factor UpperCamelCase_ : Optional[Any] = do_normalize UpperCamelCase_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : bool = False , snake_case : int = 1 , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : str , ) -> np.ndarray: """simple docstring""" UpperCamelCase_ : str = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) UpperCamelCase_ : Union[str, Any] = get_resize_output_image_size( snake_case , output_size=(size['height'], size['width']) , keep_aspect_ratio=snake_case , multiple=snake_case , ) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ) -> List[Any]: """simple docstring""" return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : ImageInput , snake_case : bool = None , snake_case : int = None , snake_case : bool = None , snake_case : int = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : List[str] , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ : List[str] = size if size is not None else self.size UpperCamelCase_ : Union[str, Any] = get_size_dict(snake_case ) UpperCamelCase_ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase_ : int = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase_ : Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ : str = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ : Any = image_std if image_std is not None else self.image_std UpperCamelCase_ : List[str] = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ : str = [to_numpy_array(snake_case ) for image in images] if do_resize: UpperCamelCase_ : List[Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_rescale: UpperCamelCase_ : Tuple = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: UpperCamelCase_ : Union[str, Any] = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] UpperCamelCase_ : Dict = [to_channel_dimension_format(snake_case , snake_case ) for image in images] UpperCamelCase_ : Optional[int] = {'pixel_values': images} return BatchFeature(data=snake_case , tensor_type=snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Optional[int] , snake_case : List[Tuple] = None ) -> List[str]: """simple docstring""" UpperCamelCase_ : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case ) != len(snake_case ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(snake_case ): UpperCamelCase_ : int = target_sizes.numpy() UpperCamelCase_ : Tuple = [] for idx in range(len(snake_case ) ): UpperCamelCase_ : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=snake_case ) UpperCamelCase_ : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case ) else: UpperCamelCase_ : int = logits.argmax(dim=1 ) UpperCamelCase_ : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
50
from manim import * class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : List[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : List[str] = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = Text('CPU' , font_size=2_4 ) UpperCamelCase_ : List[str] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) UpperCamelCase_ : Union[str, Any] = [mem.copy() for i in range(1 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Union[str, Any] = Text('GPU' , font_size=2_4 ) UpperCamelCase_ : Optional[Any] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.align_to(snake_case , snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : int = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Tuple = Text('Model' , font_size=2_4 ) UpperCamelCase_ : Dict = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , ) UpperCamelCase_ : Union[str, Any] = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) UpperCamelCase_ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_ : Dict = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=2.5 ) , Write(snake_case ) , Write(snake_case ) ) self.add(snake_case ) UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Tuple = [] for i, rect in enumerate(snake_case ): UpperCamelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) cpu_target.move_to(snake_case ) cpu_target.generate_target() UpperCamelCase_ : int = 0.46 / 4 UpperCamelCase_ : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case , buff=0.0 ) cpu_targs.append(snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case ) ) second_animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(*snake_case ) self.wait()
50
1
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class A__ ( unittest.TestCase ): def __UpperCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' _a : Optional[int] =0 @slow def __UpperCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): _a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): _a : List[str] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 ) def __UpperCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' _a : Union[str, Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def __UpperCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' _a : Dict =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 2_0 ) def __UpperCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' _a : Any =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Check that tokenizer_type ≠ model_type _a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 1_2 ) def __UpperCAmelCase ( self :Tuple ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.txt""" ) ) _a : List[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" , use_fast=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """merges.txt""" ) ) _a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" , use_fast=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_tokenizers def __UpperCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.txt""" ) ) _a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """merges.txt""" ) ) _a : Optional[int] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def __UpperCAmelCase ( self :Any ) -> str: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: _a : Optional[int] =tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) @require_tokenizers def __UpperCAmelCase ( self :Optional[Any] ) -> int: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): _a : Any =tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def __UpperCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai _a : Dict =TOKENIZER_MAPPING.values() _a : Tuple =[] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE ) @require_tokenizers def __UpperCAmelCase ( self :int ) -> List[str]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , SCREAMING_SNAKE_CASE ) @require_tokenizers def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' _a : List[str] =AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=SCREAMING_SNAKE_CASE ) _a : List[Any] ="""Hello, world. How are you?""" _a : Optional[int] =tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertEqual("""[UNK]""" , tokens[0] ) _a : Optional[int] =AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=SCREAMING_SNAKE_CASE ) _a : int =tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def __UpperCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' _a : Optional[int] =AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.model_max_length , 5_1_2 ) self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def __UpperCAmelCase ( self :Optional[int] ) -> Any: '''simple docstring''' _a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 1_2 ) def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' _a : str =AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' # Check we can load the tokenizer config of an online model. _a : Optional[int] =get_tokenizer_config("""bert-base-cased""" ) _a : Any =config.pop("""_commit_hash""" , SCREAMING_SNAKE_CASE ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. _a : List[str] =get_tokenizer_config(SCREAMING_SNAKE_CASE ) self.assertDictEqual(SCREAMING_SNAKE_CASE , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. _a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Any =get_tokenizer_config(SCREAMING_SNAKE_CASE ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def __UpperCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' try: AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) _a : List[str] =CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __UpperCAmelCase ( self :List[str] ) -> Optional[Any]: '''simple docstring''' try: AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE ): AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: _a : int =BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : int =CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Tuple =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self :int ) -> Tuple: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE ): _a : Dict =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE ): _a : Optional[Any] =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE ) _a : Any =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _a : List[Any] =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) _a : Tuple =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def __UpperCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = False class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[str] = NewTokenizer __UpperCamelCase : Tuple = False try: AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE ) AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local _a : str =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _a : Optional[int] =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. _a : Tuple =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) _a : List[str] =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub _a : Optional[int] =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) _a : Dict =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' _a : List[str] =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version _a : str =AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def __UpperCAmelCase ( self :int ) -> int: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ): _a : Dict =AutoTokenizer.from_pretrained("""bert-base""" ) def __UpperCAmelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' # Make sure we have cached the tokenizer. _a : int =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: _a : Optional[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
276
'''simple docstring''' from __future__ import annotations import requests def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> dict: _a : Any =F"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(_UpperCAmelCase ).json() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> list[dict]: _a : Union[str, Any] ="""https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" _a : int =requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> str: _a : Union[str, Any] =hackernews_top_stories(_UpperCAmelCase ) return "\n".join("""* [{title}]({url})""".format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
276
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SMALL_MODEL_IDENTIFIER UpperCAmelCase__ = 'pt' UpperCAmelCase__ = 'tf' def UpperCamelCase__ (self , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = 'mock_framework' # Framework provided - return whatever the user provides UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) UpperCAmelCase__ = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
353
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : '''simple docstring''' def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = embed_dim UpperCAmelCase__ = depths UpperCAmelCase__ = num_heads UpperCAmelCase__ = window_size UpperCAmelCase__ = mlp_ratio UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = drop_path_rate UpperCAmelCase__ = hidden_act UpperCAmelCase__ = use_absolute_embeddings UpperCAmelCase__ = patch_norm UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = is_training UpperCAmelCase__ = scope UpperCAmelCase__ = use_labels UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = encoder_stride def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ (self ) -> str: """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = SwinvaModel(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ = 1 UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ (self , __a , __a , __a ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.type_sequence_label_size UpperCAmelCase__ = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() UpperCAmelCase__ = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> Any: """simple docstring""" UpperCAmelCase__ = SwinvaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(__a ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True for model_class in self.all_model_classes: UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions UpperCAmelCase__ = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ = True UpperCAmelCase__ = config.window_size**2 UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCAmelCase__ = len(__a ) # Check attention is always last and order is fine UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): UpperCAmelCase__ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase__ = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) UpperCAmelCase__ = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) ) UpperCAmelCase__ = outputs.hidden_states UpperCAmelCase__ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCAmelCase__ = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape UpperCAmelCase__ = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = 3 UpperCAmelCase__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(__a ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __a ) UpperCAmelCase__ = self.default_image_processor UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**__a ) # verify the logits UpperCAmelCase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
335
0
import functools def a ( snake_case__: list[int] , snake_case__: list[int] ): '''simple docstring''' # Validation if not isinstance(snake_case__ , snake_case__ ) or not all(isinstance(snake_case__ , snake_case__ ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(snake_case__ ) != 3 or not all(isinstance(snake_case__ , snake_case__ ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(snake_case__ ) == 0: return 0 if min(snake_case__ ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(snake_case__ ) >= 366: raise ValueError('''All days elements should be less than 366''' ) lowercase_ = set(snake_case__ ) @functools.cache def dynamic_programming(snake_case__: int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
30
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase = 9 _UpperCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCamelCase = kruskal(__snake_case, __snake_case ) _UpperCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__snake_case ) == sorted(__snake_case )
194
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: Optional[int] , **__A: Optional[int] ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[int] , *__A: Tuple , **__A: List[str] ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Tuple , *__A: Optional[int] , **__A: Union[str, Any] ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: Tuple , **__A: Tuple ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[Any] , *__A: Union[str, Any] , **__A: Union[str, Any] ) -> Optional[int]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[Any] , *__A: List[Any] , **__A: List[str] ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[int] , *__A: Tuple , **__A: Dict ) -> Union[str, Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: str , **__A: Optional[Any] ) -> Dict: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Union[str, Any] , *__A: Optional[Any] , **__A: Optional[int] ) -> Union[str, Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[int] , *__A: List[str] , **__A: List[Any] ) -> Any: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: Any , **__A: str ) -> List[str]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: Union[str, Any] , **__A: Optional[int] ) -> Dict: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Dict , *__A: List[Any] , **__A: Tuple ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: str , *__A: List[Any] , **__A: Union[str, Any] ) -> List[str]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: int , *__A: List[str] , **__A: List[Any] ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: int , *__A: List[str] , **__A: List[str] ) -> int: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Any , *__A: Optional[int] , **__A: List[Any] ) -> Dict: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Any , *__A: List[str] , **__A: str ) -> str: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Dict , *__A: str , **__A: str ) -> List[str]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[Any] , *__A: List[str] , **__A: Optional[Any] ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[Any] , *__A: str , **__A: Optional[int] ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Dict , *__A: Optional[int] , **__A: List[str] ) -> str: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: List[str] , **__A: Dict ) -> Dict: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[int] , *__A: List[Any] , **__A: str ) -> Tuple: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Any , *__A: List[Any] , **__A: Tuple ) -> int: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[int] , *__A: Union[str, Any] , **__A: Optional[int] ) -> Optional[int]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: Tuple , **__A: List[Any] ) -> int: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: int , *__A: List[str] , **__A: Any ) -> str: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Optional[Any] , *__A: List[Any] , **__A: Any ) -> List[Any]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: List[Any] , *__A: Dict , **__A: Tuple ) -> Optional[int]: requires_backends(self , ['''sentencepiece'''] ) class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ): """simple docstring""" A_ = ["sentencepiece"] def __init__( self: Union[str, Any] , *__A: Optional[Any] , **__A: Optional[Any] ) -> Optional[Any]: requires_backends(self , ['''sentencepiece'''] )
367
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "facebook/bart-large-mnli" A_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) A_ = "text_classifier" A_ = AutoTokenizer A_ = AutoModelForSequenceClassification A_ = ["text", ["text"]] A_ = ["text"] def __A ( self: int ) -> str: super().setup() _A = self.model.config _A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): _A = int(__A ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int: _A = labels return self.pre_processor( [text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __A ( self: str , __A: List[Any] ) -> Union[str, Any]: _A = outputs.logits _A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
75
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
256
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase ( a__ : str , a__ : bool = True , a__ : float = math.inf , a__ : float = -math.inf , a__ : float = math.inf , a__ : float = -math.inf , a__ : bool = False , a__ : float = 100 , a__ : float = 0.01 , a__ : float = 1 , ) -> Any: _UpperCamelCase = False _UpperCamelCase = search_prob _UpperCamelCase = start_temperate _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = None while not search_end: _UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): _UpperCamelCase = current_state scores.append(a__ ) iterations += 1 _UpperCamelCase = None _UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _UpperCamelCase = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor _UpperCamelCase = neighbors.pop(a__ ) _UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution _UpperCamelCase = picked_neighbor else: _UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _UpperCamelCase = picked_neighbor _UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _UpperCamelCase = True else: _UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(a__ ) , a__ ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def lowercase ( a__ : str , a__ : List[Any] ) -> Tuple: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase ( a__ : str , a__ : Optional[Any] ) -> Union[str, Any]: return (3 * x**2) - (6 * y) UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
256
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a = logging.get_logger(__name__) def _snake_case ( _snake_case : bool , _snake_case : bool ) -> Tuple: '''simple docstring''' def run_func(_snake_case : Any ): @wraps(_snake_case ) def run_in_eager_mode(*_snake_case : List[str] , **_snake_case : Tuple ): return func(*_snake_case , **_snake_case ) @wraps(_snake_case ) @tf.function(experimental_compile=_snake_case ) def run_in_graph_mode(*_snake_case : Dict , **_snake_case : Tuple ): return func(*_snake_case , **_snake_case ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ) -> ["tf.Tensor"]: '''simple docstring''' _A = random.Random() _A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : TensorFlowBenchmarkArguments UpperCAmelCase : PretrainedConfig UpperCAmelCase : str = "TensorFlow" @property def lowerCAmelCase_ ( self : str ): return tf.__version__ def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): # initialize GPU on separate process _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_inference ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_speed(_train ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_inference ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase ) _A = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self._measure_memory(_train ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _A = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _A = __import__('transformers' , fromlist=[model_class] ) _A = getattr(_UpperCAmelCase , _UpperCAmelCase ) _A = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _A = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , training=_UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_UpperCAmelCase , training=_UpperCAmelCase ) _A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _A = ( hasattr(_UpperCAmelCase , 'architectures' ) and isinstance(config.architectures , _UpperCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _A = __import__('transformers' , fromlist=[model_class] ) _A = getattr(_UpperCAmelCase , _UpperCAmelCase ) _A = model_cls(_UpperCAmelCase ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase ) # encoder-decoder has vocab size saved differently _A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size _A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _A = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _A = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _A = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0] _A = tf.gradients(_UpperCAmelCase , model.trainable_variables ) return gradients _A = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(_UpperCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _A = timeit.repeat( _UpperCAmelCase , repeat=self.args.repeat , number=10 , ) return min(_UpperCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Callable[[], None] ): logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) _A = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) _A = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() _A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _A = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase ) _A = meminfo.used _A = Memory(_UpperCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) _A = None else: _A = measure_peak_memory_cpu(_UpperCAmelCase ) _A = Memory(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _A = stop_memory_tracing(_UpperCAmelCase ) if memory is None: _A = summary.total else: _A = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
360
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = (IPNDMScheduler,) UpperCAmelCase : Optional[Any] = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ): _A = {'num_train_timesteps': 1_000} config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Any ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _A = dummy_past_residuals[:] if time_step is None: _A = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _A = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _A = dummy_past_residuals[:] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(**_UpperCAmelCase ) _A = scheduler_class(**_UpperCAmelCase ) _A = 10 _A = self.dummy_model() _A = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowerCAmelCase_ ( self : Union[str, Any] ): _A = dict(self.forward_default_kwargs ) _A = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) _A = self.dummy_sample _A = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _A = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _A = dummy_past_residuals[:] _A = scheduler.timesteps[5] _A = scheduler.timesteps[6] _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self : Tuple ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.full_loop() _A = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
271
0
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if number < 0: raise ValueError('number must not be negative' ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
172
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _a : int= datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase ( datasets.BuilderConfig ): UpperCAmelCase : Optional[datasets.Features] = None UpperCAmelCase : str = "utf-8" UpperCAmelCase : Optional[str] = None UpperCAmelCase : Optional[str] = None UpperCAmelCase : bool = True # deprecated UpperCAmelCase : Optional[int] = None # deprecated UpperCAmelCase : int = 10 << 20 # 10MB UpperCAmelCase : Optional[bool] = None class UpperCamelCase ( datasets.ArrowBasedBuilder ): UpperCAmelCase : int = JsonConfig def _lowercase (self : int) -> List[str]: if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead') __snake_case : Any = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.') if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported') return datasets.DatasetInfo(features=self.config.features) def _lowercase (self : Dict , _A : Any) -> Optional[Any]: if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") __snake_case : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_A , (str, list, tuple)): __snake_case : str = data_files if isinstance(_A , _A): __snake_case : int = [files] __snake_case : Tuple = [dl_manager.iter_files(_A) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __snake_case : str = [] for split_name, files in data_files.items(): if isinstance(_A , _A): __snake_case : Optional[int] = [files] __snake_case : int = [dl_manager.iter_files(_A) for file in files] splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files})) return splits def _lowercase (self : Optional[Any] , _A : pa.Table) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): __snake_case : List[Any] = self.config.features.arrow_schema.field(_A).type __snake_case : Any = pa_table.append_column(_A , pa.array([None] * len(_A) , type=_A)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[str] = table_cast(_A , self.config.features.arrow_schema) return pa_table def _lowercase (self : Dict , _A : Any) -> Union[str, Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(_A)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __snake_case : Tuple = json.load(_A) # We keep only the field we are interested in __snake_case : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_A , (list, tuple)): __snake_case : Optional[int] = set().union(*[row.keys() for row in dataset]) __snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys} else: __snake_case : Optional[int] = dataset __snake_case : Tuple = pa.Table.from_pydict(_A) yield file_idx, self._cast_table(_A) # If the file has one json object per line else: with open(_A , 'rb') as f: __snake_case : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small __snake_case : Tuple = max(self.config.chunksize // 32 , 16 << 10) __snake_case : str = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: __snake_case : Union[str, Any] = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_A) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": __snake_case : int = batch.decode(self.config.encoding , errors=_A).encode('utf-8') try: while True: try: __snake_case : Tuple = paj.read_json( io.BytesIO(_A) , read_options=paj.ReadOptions(block_size=_A)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_A , pa.ArrowInvalid) and "straddling" not in str(_A) or block_size > len(_A) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"Batch of {len(_A)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( _A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: __snake_case : List[Any] = json.load(_A) except json.JSONDecodeError: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_A , _A): # list is the only sequence type supported in JSON try: __snake_case : List[str] = set().union(*[row.keys() for row in dataset]) __snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys} __snake_case : List[str] = pa.Table.from_pydict(_A) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise ValueError(f"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(_A) break else: logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}") raise ValueError( f"Not able to read records in the JSON file at {file}. " f"You should probably indicate the field of the JSON file containing your records. " f"This JSON file contain the following fields: {str(list(dataset.keys()))}. " f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_A) batch_idx += 1
172
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __magic_name__( lowerCamelCase): __lowerCAmelCase = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False __lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase = [3, 3, 3, 3] __lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase = [4, 4, 4, 4] __lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase = [3, 3, 3, 3] else: __lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase = 9_6 elif "small" in model_name: __lowerCAmelCase = 9_6 elif "base" in model_name: __lowerCAmelCase = 1_2_8 elif "large" in model_name: __lowerCAmelCase = 1_9_2 elif "xlarge" in model_name: __lowerCAmelCase = 2_5_6 elif "huge" in model_name: __lowerCAmelCase = 3_5_2 # set label information __lowerCAmelCase = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __lowerCAmelCase = '''imagenet-22k-id2label.json''' else: __lowerCAmelCase = '''imagenet-1k-id2label.json''' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r''')) __lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = FocalNetConfig( embed_dim=lowerCamelCase, depths=lowerCamelCase, focal_levels=lowerCamelCase, focal_windows=lowerCamelCase, use_conv_embed=lowerCamelCase, idalabel=lowerCamelCase, labelaid=lowerCamelCase, use_post_layernorm=lowerCamelCase, use_layerscale=lowerCamelCase, ) return config def __magic_name__( lowerCamelCase): if "patch_embed.proj" in name: __lowerCAmelCase = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''') if "patch_embed.norm" in name: __lowerCAmelCase = name.replace('''patch_embed.norm''', '''embeddings.norm''') if "layers" in name: __lowerCAmelCase = '''encoder.''' + name if "encoder.layers" in name: __lowerCAmelCase = name.replace('''encoder.layers''', '''encoder.stages''') if "downsample.proj" in name: __lowerCAmelCase = name.replace('''downsample.proj''', '''downsample.projection''') if "blocks" in name: __lowerCAmelCase = name.replace('''blocks''', '''layers''') if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase = name.replace('''modulation.f''', '''modulation.projection_in''') if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase = name.replace('''modulation.h''', '''modulation.projection_context''') if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase = name.replace('''modulation.proj''', '''modulation.projection_out''') if name == "norm.weight": __lowerCAmelCase = '''layernorm.weight''' if name == "norm.bias": __lowerCAmelCase = '''layernorm.bias''' if "head" in name: __lowerCAmelCase = name.replace('''head''', '''classifier''') else: __lowerCAmelCase = '''focalnet.''' + name return name def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False): # fmt: off __lowerCAmelCase = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __lowerCAmelCase = model_name_to_url[model_name] print('''Checkpoint URL: ''', lowerCamelCase) __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase, map_location='''cpu''')['''model'''] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(lowerCamelCase) __lowerCAmelCase = val __lowerCAmelCase = get_focalnet_config(lowerCamelCase) __lowerCAmelCase = FocalNetForImageClassification(lowerCamelCase) model.eval() # load state dict model.load_state_dict(lowerCamelCase) # verify conversion __lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCAmelCase = BitImageProcessor( do_resize=lowerCamelCase, size={'''shortest_edge''': 2_5_6}, resample=PILImageResampling.BILINEAR, do_center_crop=lowerCamelCase, crop_size=2_2_4, do_normalize=lowerCamelCase, image_mean=lowerCamelCase, image_std=lowerCamelCase, ) __lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw) __lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''') __lowerCAmelCase = transforms.Compose( [ transforms.Resize(2_5_6), transforms.CenterCrop(2_2_4), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25]), ]) __lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0) # verify pixel_values assert torch.allclose(inputs.pixel_values, lowerCamelCase, atol=1E-4) __lowerCAmelCase = model(**lowerCamelCase) __lowerCAmelCase = outputs.logits.argmax(-1).item() print('''Predicted class:''', model.config.idalabel[predicted_class_idx]) print('''First values of logits:''', outputs.logits[0, :3]) if model_name == "focalnet-tiny": __lowerCAmelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91]) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95]) elif model_name == "focalnet-small": __lowerCAmelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41]) elif model_name == "focalnet-small-lrf": __lowerCAmelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31]) elif model_name == "focalnet-base": __lowerCAmelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30]) elif model_name == "focalnet-base-lrf": __lowerCAmelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28]) assert torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) processor.save_pretrained(lowerCamelCase) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""") model.push_to_hub(F"""{model_name}""") processor.push_to_hub(F"""{model_name}""") if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __magic_name__( ): __lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)] __lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0) return (arr, r) _UpperCAmelCase : Dict = make_dataset() def __magic_name__( lowerCamelCase, lowerCamelCase): for triplet in permutations(lowerCamelCase, 3): if sum(lowerCamelCase) == target: return tuple(sorted(lowerCamelCase)) return (0, 0, 0) def __magic_name__( lowerCamelCase, lowerCamelCase): arr.sort() __lowerCAmelCase = len(lowerCamelCase) for i in range(n - 1): __lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __magic_name__( ): __lowerCAmelCase = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __lowerCAmelCase = ''' triplet_sum1(*dataset) ''' __lowerCAmelCase = ''' triplet_sum2(*dataset) ''' __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) __lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0) return (min(lowerCamelCase), min(lowerCamelCase)) if __name__ == "__main__": from doctest import testmod testmod() _UpperCAmelCase : Union[str, Any] = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
9
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Tuple = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __UpperCamelCase : lowerCamelCase : Any =PegasusConfig lowerCamelCase : Optional[Any] ={} lowerCamelCase : Dict ="""gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ) -> List[Any]: a : str = parent a : Optional[Any] = batch_size a : Optional[Any] = seq_length a : int = is_training a : Any = use_labels a : Tuple = vocab_size a : List[str] = hidden_size a : Union[str, Any] = num_hidden_layers a : List[str] = num_attention_heads a : List[str] = intermediate_size a : List[Any] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = max_position_embeddings a : Dict = eos_token_id a : List[str] = pad_token_id a : Dict = bos_token_id def __a ( self ) -> List[Any]: a : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a : Dict = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: a : List[str] = 20 a : Dict = model_class_name(lowerCAmelCase__ ) a : Union[str, Any] = model.encode(inputs_dict["input_ids"] ) a, a : str = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) a : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) a : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) a : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : Any = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) a : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) a : List[str] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) a : int = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: a : Any = 20 a : List[Any] = model_class_name(lowerCAmelCase__ ) a : str = model.encode(inputs_dict["input_ids"] ) a, a : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) a : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a : str = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) a : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) a : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) a : Optional[int] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) a : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Any , _lowercase : Tuple , _lowercase : List[Any]=None , _lowercase : str=None , ) ->List[Any]: '''simple docstring''' if attention_mask is None: a : Union[str, Any] = np.not_equal(_lowercase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: a : Optional[int] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[str] =( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCamelCase : str =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCamelCase : List[Any] =True lowerCamelCase : Tuple =False lowerCamelCase : Any =False lowerCamelCase : Optional[Any] =False def __a ( self ) -> List[Any]: a : Tuple = FlaxPegasusModelTester(self ) a : Dict = ConfigTester(self , config_class=lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __a ( self ) -> int: a, a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> str: a, a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): a : Optional[Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a : Optional[Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def __a ( self ) -> int: a, a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a : str = model_class(lowerCAmelCase__ ) a : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) a : str = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest("JIT Enabled" ): a : Dict = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a : Any = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __a ( self ) -> Any: for model_class_name in self.all_model_classes: a : List[Any] = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCAmelCase__ ) a : Any = np.ones((1, 1) ) a : Dict = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow def __a ( self ) -> Optional[int]: a : Tuple = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) a : List[str] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) a : Tuple = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] a : Any = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] a : Tuple = tokenizer(lowerCAmelCase__ , return_tensors="np" , truncation=lowerCAmelCase__ , max_length=512 , padding=lowerCAmelCase__ ) a : str = model.generate(**lowerCAmelCase__ , num_beams=2 ).sequences a : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) assert tgt_text == decoded
105
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) ) binary_number += "0" * shift_amount return binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('''both inputs must be positive integers''' ) UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:] if shift_amount >= len(__lowerCAmelCase ): return "0b0" UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount] return "0b" + shifted_binary_number def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' if number >= 0: # Get binary representation of positive number UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:] else: # Get binary (2's complement) representation of negative number UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:] UpperCAmelCase : Optional[Any] =( '''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number ) if shift_amount >= len(__lowerCAmelCase ): return "0b" + binary_number[0] * len(__lowerCAmelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__lowerCAmelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
348
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 __UpperCAmelCase = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase ( cls ) -> str: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(_A ) @classmethod def _UpperCamelCase ( cls ) -> str: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_A , repo_id='''test-config''' , push_to_hub=_A , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _A , repo_id='''valid_org/test-config-org''' , push_to_hub=_A , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_A , getattr(_A , _A ) ) def _UpperCamelCase ( self ) -> int: CustomConfig.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=_A ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated SCREAMING_SNAKE_CASE_ = c.n_embd + 1 # int SCREAMING_SNAKE_CASE_ = c.resid_pdrop + 1.0 # float SCREAMING_SNAKE_CASE_ = not c.scale_attn_weights # bool SCREAMING_SNAKE_CASE_ = c.summary_type + '''foo''' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(_A , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(_A , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(_A , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(_A , c.summary_type , '''mismatch for key: summary_type''' ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = PretrainedConfig() SCREAMING_SNAKE_CASE_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _A , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) SCREAMING_SNAKE_CASE_ = [key for key, value in config_common_kwargs.items() if value == getattr(_A , _A )] if len(_A ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F''' {", ".join(_A )}.''' ) def _UpperCamelCase ( self ) -> str: with self.assertRaises(_A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(_A ) def _UpperCamelCase ( self ) -> Any: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_A ) as mock_head: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCamelCase ( self ) -> Optional[Any]: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_A , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 SCREAMING_SNAKE_CASE_ = ['''config.42.0.0.json'''] SCREAMING_SNAKE_CASE_ = 768 configuration.save_pretrained(_A ) shutil.move(os.path.join(_A , '''config.4.0.0.json''' ) , os.path.join(_A , '''config.42.0.0.json''' ) ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A ) self.assertEqual(new_configuration.hidden_size , 768 ) def _UpperCamelCase ( self ) -> List[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. SCREAMING_SNAKE_CASE_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers SCREAMING_SNAKE_CASE_ = '''v4.0.0''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = new_transformers.models.auto.AutoConfig.from_pretrained( _A , return_unused_kwargs=_A ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_A , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers SCREAMING_SNAKE_CASE_ = '''v3.0.0''' SCREAMING_SNAKE_CASE_ = old_transformers.models.auto.AutoConfig.from_pretrained(_A ) self.assertEqual(old_configuration.hidden_size , 768 )
257
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ) -> Optional[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean SCREAMING_SNAKE_CASE_ = image_std SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_pad def _UpperCamelCase ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _UpperCamelCase ( self , _A , _A=False ) -> str: if not batched: SCREAMING_SNAKE_CASE_ = image_inputs[0] if isinstance(_A , Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE_ = [] for image in image_inputs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[0] )[0] SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =ConditionalDetrImageProcessor if is_vision_available() else None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessingTester(self ) @property def _UpperCamelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _A ) def _UpperCamelCase ( self ) -> Any: pass def _UpperCamelCase ( self ) -> int: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> List[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _UpperCamelCase ( self ) -> str: # prepare image and target SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''image_id''': 39769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def _UpperCamelCase ( self ) -> Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE_ = json.loads(f.read() ) SCREAMING_SNAKE_CASE_ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} SCREAMING_SNAKE_CASE_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) ) # verify area SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) ) # verify image_id SCREAMING_SNAKE_CASE_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks SCREAMING_SNAKE_CASE_ = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
257
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : Dict = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) snake_case_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def A__ ( UpperCAmelCase_ ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCamelCase : Any = model_type_to_module_name(UpperCAmelCase_ ) _UpperCamelCase : List[str] = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCAmelCase_ , '__name__' , UpperCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCamelCase : List[Any] = importlib.import_module('transformers' ) if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ): return getattr(UpperCAmelCase_ , UpperCAmelCase_ ) return None def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , **UpperCAmelCase_ , ): _UpperCamelCase : Optional[Any] = get_file_from_repo( UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(UpperCAmelCase_ , encoding='utf-8' ) as reader: return json.load(UpperCAmelCase_ ) class lowercase__ : def __init__( self : Tuple ): '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowerCamelCase__ ) def UpperCamelCase_ ( cls : Tuple ,lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : int = kwargs.pop('config' ,lowerCamelCase__ ) _UpperCamelCase : List[Any] = kwargs.pop('trust_remote_code' ,lowerCamelCase__ ) _UpperCamelCase : Tuple = True _UpperCamelCase , _UpperCamelCase : Dict = ImageProcessingMixin.get_image_processor_dict(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : List[Any] = config_dict.get('image_processor_type' ,lowerCamelCase__ ) _UpperCamelCase : Tuple = None if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ): _UpperCamelCase : Optional[int] = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCamelCase : Optional[Any] = config_dict.pop('feature_extractor_type' ,lowerCamelCase__ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _UpperCamelCase : int = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ): _UpperCamelCase : List[Any] = config_dict['auto_map']['AutoFeatureExtractor'] _UpperCamelCase : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = AutoConfig.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) # It could be in `config.image_processor_type`` _UpperCamelCase : List[Any] = getattr(lowerCamelCase__ ,'image_processor_type' ,lowerCamelCase__ ) if hasattr(lowerCamelCase__ ,'auto_map' ) and "AutoImageProcessor" in config.auto_map: _UpperCamelCase : List[str] = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _UpperCamelCase : Union[str, Any] = image_processor_class_from_name(lowerCamelCase__ ) _UpperCamelCase : str = image_processor_auto_map is not None _UpperCamelCase : Any = image_processor_class is not None or type(lowerCamelCase__ ) in IMAGE_PROCESSOR_MAPPING _UpperCamelCase : Any = resolve_trust_remote_code( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) if has_remote_code and trust_remote_code: _UpperCamelCase : str = get_class_from_dynamic_module( lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = kwargs.pop('code_revision' ,lowerCamelCase__ ) if os.path.isdir(lowerCamelCase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCamelCase__ ) in IMAGE_PROCESSOR_MAPPING: _UpperCamelCase : int = IMAGE_PROCESSOR_MAPPING[type(lowerCamelCase__ )] return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) raise ValueError( F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCamelCase_ ( lowerCamelCase__ : List[str] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(lowerCamelCase__ ,lowerCamelCase__ )
83
"""simple docstring""" import os def __UpperCAmelCase ( ) -> int: with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file: lowercase__ : List[Any] = str(file.readlines()[0] ) lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() lowercase__ : int = 0 lowercase__ : Optional[Any] = 0 for i, name in enumerate(__lowerCamelCase ): for letter in name: name_score += ord(__lowerCamelCase ) - 64 total_score += (i + 1) * name_score lowercase__ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
16
0
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = (DDIMParallelScheduler,) __lowerCAmelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def A (self : Dict , **_lowerCAmelCase : str ): A = { """num_train_timesteps""": 1000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCAmelCase ) return config def A (self : List[Any] , **_lowerCAmelCase : Dict ): A = self.scheduler_classes[0] A = self.get_scheduler_config(**_lowerCAmelCase ) A = scheduler_class(**_lowerCAmelCase ) A , A = 10, 0.0 A = self.dummy_model() A = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: A = model(_lowerCAmelCase , _lowerCAmelCase ) A = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample return sample def A (self : Optional[int] ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def A (self : str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) A = self.scheduler_classes[0] A = self.get_scheduler_config(steps_offset=1 ) A = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def A (self : Dict ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase ) def A (self : List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def A (self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def A (self : Optional[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def A (self : Any ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def A (self : Optional[int] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def A (self : Optional[Any] ): self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , ) def A (self : Optional[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def A (self : Any ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase ) def A (self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase ) def A (self : Tuple ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def A (self : Union[str, Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowerCAmelCase ) A , A = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] , dim=0 ) A = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase ) A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase ) A = torch.sum(torch.abs(_lowerCAmelCase ) ) A = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def A (self : Union[str, Any] ): A = self.full_loop() A = torch.sum(torch.abs(_lowerCAmelCase ) ) A = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def A (self : Any ): A = self.full_loop(prediction_type="""v_prediction""" ) A = torch.sum(torch.abs(_lowerCAmelCase ) ) A = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def A (self : int ): # We specify different beta, so that the first alpha is 0.99 A = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) A = torch.sum(torch.abs(_lowerCAmelCase ) ) A = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def A (self : int ): # We specify different beta, so that the first alpha is 0.99 A = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 ) A = torch.sum(torch.abs(_lowerCAmelCase ) ) A = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
364
'''simple docstring''' def __a ( UpperCAmelCase ) ->bool: """simple docstring""" return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") ) def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = credit_card_number A = 0 A = len(UpperCAmelCase ) - 2 for i in range(UpperCAmelCase , -1 , -2 ): # double the value of every second digit A = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __a ( UpperCAmelCase ) ->bool: """simple docstring""" A = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(UpperCAmelCase ) <= 16: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(UpperCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(UpperCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
337
0
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) snake_case_ = snake_case_ = snake_case_ = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # update the maximum and minimum subarray products snake_case_ = numbers[i] if number < 0: snake_case_, snake_case_ = min_till_now, max_till_now snake_case_ = max(SCREAMING_SNAKE_CASE__ , max_till_now * number ) snake_case_ = min(SCREAMING_SNAKE_CASE__ , min_till_now * number ) # update the maximum product found till now snake_case_ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_prod
8
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _lowerCamelCase : Dict = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase__ ) class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None @dataclass(frozen=lowerCamelCase__ ) class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if is_torch_available(): import torch from torch.utils.data import Dataset class __UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __lowerCAmelCase = 42 def __init__(self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Any=False , _lowerCAmelCase : bool = False , ): A = hans_processors[task]() A = os.path.join( _lowerCAmelCase , """cached_{}_{}_{}_{}""".format( """dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(_lowerCAmelCase ) , _lowerCAmelCase , ) , ) A = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A = label_list[2], label_list[1] A = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + ".lock" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) A = torch.load(_lowerCAmelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) A = ( processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase ) ) logger.info("""Training examples: %s""" , len(_lowerCAmelCase ) ) A = hans_convert_examples_to_features(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) logger.info("""Saving features into cached file %s""" , _lowerCAmelCase ) torch.save(self.features , _lowerCAmelCase ) def __len__(self : str ): return len(self.features ) def __getitem__(self : List[str] , _lowerCAmelCase : Optional[Any] ): return self.features[i] def A (self : Optional[int] ): return self.label_list if is_tf_available(): import tensorflow as tf class __UpperCAmelCase : '''simple docstring''' __lowerCAmelCase = 42 def __init__(self : int , _lowerCAmelCase : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] = 128 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : bool = False , ): A = hans_processors[task]() A = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) A = label_list[2], label_list[1] A = label_list A = processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase ) A = hans_convert_examples_to_features(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ): if ex_index % 1_0000 == 0: logger.info("""Writing example %d of %d""" % (ex_index, len(_lowerCAmelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) A = tf.data.Dataset.from_generator( _lowerCAmelCase , ( { """example_id""": tf.intaa, """input_ids""": tf.intaa, """attention_mask""": tf.intaa, """token_type_ids""": tf.intaa, }, tf.intaa, ) , ( { """example_id""": tf.TensorShape([] ), """input_ids""": tf.TensorShape([None, None] ), """attention_mask""": tf.TensorShape([None, None] ), """token_type_ids""": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A (self : Optional[Any] ): return self.dataset def __len__(self : int ): return len(self.features ) def __getitem__(self : Optional[Any] , _lowerCAmelCase : List[Any] ): return self.features[i] def A (self : Any ): return self.label_list class __UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def A (self : Any , _lowerCAmelCase : Dict ): return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase , """heuristics_train_set.txt""" ) ) , """train""" ) def A (self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase , """heuristics_evaluation_set.txt""" ) ) , """dev""" ) def A (self : Union[str, Any] ): return ["contradiction", "entailment", "neutral"] def A (self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ): A = [] for i, line in enumerate(_lowerCAmelCase ): if i == 0: continue A = "%s-%s" % (set_type, line[0]) A = line[5] A = line[6] A = line[7][2:] if line[7].startswith("""ex""" ) else line[7] A = line[0] examples.append(InputExample(guid=_lowerCAmelCase , text_a=_lowerCAmelCase , text_b=_lowerCAmelCase , label=_lowerCAmelCase , pairID=_lowerCAmelCase ) ) return examples def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->Optional[int]: """simple docstring""" A = {label: i for i, label in enumerate(_lowerCAmelCase )} A = [] for ex_index, example in tqdm.tqdm(enumerate(_lowerCAmelCase ) , desc="""convert examples to features""" ): if ex_index % 10000 == 0: logger.info("""Writing example %d""" % (ex_index) ) A = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , truncation=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , ) A = label_map[example.label] if example.label in label_map else 0 A = int(example.pairID ) features.append(InputFeatures(**_lowerCAmelCase , label=_lowerCAmelCase , pairID=_lowerCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("""*** Example ***""" ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features _lowerCamelCase : Any = { '''hans''': 3, } _lowerCamelCase : int = { '''hans''': HansProcessor, }
354
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''yolos''' def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__(**_lowerCAmelCase ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def A (self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A (self : Any ): return 1e-4 @property def A (self : int ): return 12
337
0
from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCAmelCase , 2 ) + pow(_UpperCAmelCase , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
50
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : Any ) -> Any: lowerCamelCase__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape lowerCamelCase__ : Union[str, Any] = jax.image.resize( UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> int: lowerCamelCase__ : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): UpperCAmelCase__ = 42 UpperCAmelCase__ = None UpperCAmelCase__ = 0.0 UpperCAmelCase__ = None UpperCAmelCase__ = jnp.floataa def A_ ( self : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : int = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob ) lowerCamelCase__ : Tuple = nn.Conv( UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowerCamelCase__ : Union[str, Any] = None if use_nin_shortcut: lowerCamelCase__ : Dict = nn.Conv( UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]: lowerCamelCase__ : Union[str, Any] = hidden_states lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Any = self.conva(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) ) lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 ) lowerCamelCase__ : List[str] = hidden_states + temb lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase ) lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : str = self.conva(UpperCAmelCase ) if self.conv_shortcut is not None: lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase ) return hidden_states + residual
50
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a_ : Union[str, Any] = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _A () -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowerCAmelCase__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _A () -> Any: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _A () -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowerCAmelCase__ ): http_head('https://huggingface.co' )
104
0
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowerCamelCase_ = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowerCamelCase_ = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCamelCase_ = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
79
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None ): '''simple docstring''' super().__init__() _A = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _A = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ) else: _A = None _A = torch.nn.Parameter(__UpperCAmelCase ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Any , __UpperCAmelCase : VQModel , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : TransformeraDModel , __UpperCAmelCase : VQDiffusionScheduler , __UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): '''simple docstring''' _A = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) _A = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _A = text_input_ids[:, : self.tokenizer.model_max_length] _A = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _A = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt _A = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _A = self.learned_classifier_free_sampling_embeddings.embeddings _A = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 ) else: _A = [""] * batch_size _A = text_input_ids.shape[-1] _A = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) _A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _A = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _A = negative_prompt_embeds.shape[1] _A = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 ) _A = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _A = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 5.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _A = len(__UpperCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}''' ) _A = batch_size * num_images_per_prompt _A = guidance_scale > 1.0 _A = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__UpperCAmelCase )}.''' ) # get the initial completely masked latents unless the user supplied it _A = (batch_size, self.transformer.num_latent_pixels) if latents is None: _A = self.transformer.num_vector_embeds - 1 _A = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _A = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) _A = self.scheduler.timesteps.to(self.device ) _A = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance _A = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _A = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: _A , _A = model_output.chunk(2 ) _A = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase ) _A = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) _A = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = self.vqvae.config.vq_embed_dim _A = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _A = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase ) _A = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : float ): '''simple docstring''' _A , _A = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase ) _A = torch.exp(__UpperCAmelCase ) _A = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _A = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase ) _A = torch.cat((all_true, keep_mask) , dim=1 ) _A = keep_mask[:, :-1, :] _A = keep_mask.gather(1 , indices.argsort(1 ) ) _A = log_p_x_0.clone() _A = -torch.inf # -inf = log(0) return rv
79
1
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _A ( ) -> int: '''simple docstring''' __lowercase = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]") __lowercase = parser.add_subparsers(help="diffusers-cli command helpers") # Register commands EnvironmentCommand.register_subcommand(UpperCamelCase_) # Let's go __lowercase = parser.parse_args() if not hasattr(UpperCamelCase_, "func"): parser.print_help() exit(1) # Run __lowercase = args.func(UpperCamelCase_) service.run() if __name__ == "__main__": main()
353
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
144
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union __lowerCAmelCase : str = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$') @total_ordering @dataclass class snake_case__ : """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: a , a , a = _str_to_version_tuple(self.version_str ) def __repr__( self : List[str] ) -> Dict: return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def __UpperCAmelCase ( self : Tuple ) -> Any: return self.major, self.minor, self.patch def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] ) -> Optional[Any]: if isinstance(__lowerCamelCase , __lowerCamelCase ): return Version(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): return other raise TypeError(f"""{other} (type {type(__lowerCamelCase )}) cannot be compared to version.""" ) def __eq__( self : int , __lowerCamelCase : Any ) -> Optional[int]: try: a = self._validate_operand(__lowerCamelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] ) -> Dict: a = self._validate_operand(__lowerCamelCase ) return self.tuple < other.tuple def __hash__( self : Any ) -> Optional[Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCAmelCase ( cls : Optional[Any] , __lowerCamelCase : Dict ) -> Any: a = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCAmelCase ( self : List[Any] ) -> str: return self.version_str def __magic_name__ ( A : Optional[int] ): '''simple docstring''' a = _VERSION_REG.match(A ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(A ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __magic_name__ ( A : Optional[Any] ): '''simple docstring''' return ".".join(str(A ) for v in version_tuple )
107
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( A : NDArray[floataa], A : NDArray[floataa], A : list[int], A : int, ): '''simple docstring''' a , a = coefficient_matrix.shape a , a = constant_matrix.shape if rowsa != colsa: a = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: a = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: a = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: a = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) a = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) a , a = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): a = [] for row in range(A ): a = 0 for col in range(A ): if col == row: a = table[row][col] elif col == cols - 1: a = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a = (temp + val) / denom new_val.append(A ) a = new_val return [float(A ) for i in new_val] def __magic_name__ ( A : NDArray[floataa] ): '''simple docstring''' a , a = table.shape a = True for i in range(0, A ): a = 0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
107
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
0
from __future__ import annotations def lowerCamelCase__ ( _a , _a): print(f"Vertex\tShortest Distance from vertex {src}") for i, d in enumerate(_a): print(f"{i}\t\t{d}") def lowerCamelCase__ ( _a , _a , _a): for j in range(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf") and distance[u] + w < distance[v]: return True return False def lowerCamelCase__ ( _a , _a , _a , _a): SCREAMING_SNAKE_CASE : Union[str, Any] = [float("inf")] * vertex_count SCREAMING_SNAKE_CASE : Optional[Any] = 0.0 for _ in range(vertex_count - 1): for j in range(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf") and distance[u] + w < distance[v]: SCREAMING_SNAKE_CASE : Any = distance[u] + w SCREAMING_SNAKE_CASE : List[str] = check_negative_cycle(_a , _a , _a) if negative_cycle_exists: raise Exception("Negative cycle found") return distance if __name__ == "__main__": import doctest doctest.testmod() a_ = int(input('Enter number of vertices: ').strip()) a_ = int(input('Enter number of edges: ').strip()) a_ = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) a_ , a_ , a_ = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) a_ = {'src': src, 'dst': dest, 'weight': weight} a_ = int(input('\nEnter shortest path source:').strip()) a_ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
76
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [] for part_id in partition_order: lowercase__ : str = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(lowerCamelCase__ ): expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Tuple = spark.range(10 ).repartition(2 ) lowercase__ : Any = [1, 0] lowercase__ : Optional[int] = _generate_iterable_examples(lowerCamelCase__ , lowerCamelCase__ ) # Reverse the partitions. lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , lowerCamelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase__ , lowercase__ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(10 ).repartition(1 ) lowercase__ : Optional[int] = SparkExamplesIterable(lowerCamelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): assert row_id == F"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: lowercase__ : int = lambda lowerCamelCase__ : x.reverse() lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [2, 1, 0] ) lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shuffle_data_sources(lowerCamelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase__ : Optional[Any] = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ): lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ): """simple docstring""" lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() lowercase__ : int = spark.range(100 ).repartition(1 ) lowercase__ : Tuple = Spark(lowerCamelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
130
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _A ( __SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def __A ( __UpperCAmelCase ) -> str: '''simple docstring''' raise NotImplementedError() @abstractmethod def __A ( self ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError()
354
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __SCREAMING_SNAKE_CASE : Tuple = True if '''large''' in model_name or '''huge''' in model_name else False __SCREAMING_SNAKE_CASE : str = True if '''large''' in model_name or '''huge''' in model_name else False __SCREAMING_SNAKE_CASE : Any = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __SCREAMING_SNAKE_CASE : Any = [3, 3, 3, 3] __SCREAMING_SNAKE_CASE : Optional[Any] = [5, 5, 5, 5] elif "fl4" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = [4, 4, 4, 4] __SCREAMING_SNAKE_CASE : str = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = [3, 3, 3, 3] if "lrf" in model_name: __SCREAMING_SNAKE_CASE : List[str] = [3, 3, 3, 3] else: __SCREAMING_SNAKE_CASE : str = [2, 2, 2, 2] if "tiny" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = 96 elif "small" in model_name: __SCREAMING_SNAKE_CASE : List[str] = 96 elif "base" in model_name: __SCREAMING_SNAKE_CASE : List[str] = 128 elif "large" in model_name: __SCREAMING_SNAKE_CASE : List[str] = 192 elif "xlarge" in model_name: __SCREAMING_SNAKE_CASE : List[str] = 256 elif "huge" in model_name: __SCREAMING_SNAKE_CASE : Tuple = 352 # set label information __SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __SCREAMING_SNAKE_CASE : int = '''imagenet-22k-id2label.json''' else: __SCREAMING_SNAKE_CASE : Dict = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = FocalNetConfig( embed_dim=lowercase__ , depths=lowercase__ , focal_levels=lowercase__ , focal_windows=lowercase__ , use_conv_embed=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ , use_post_layernorm=lowercase__ , use_layerscale=lowercase__ , ) return config def _UpperCamelCase ( lowercase__ ): if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = '''encoder.''' + name if "encoder.layers" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __SCREAMING_SNAKE_CASE : int = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __SCREAMING_SNAKE_CASE : Optional[int] = '''layernorm.weight''' if name == "norm.bias": __SCREAMING_SNAKE_CASE : Union[str, Any] = '''layernorm.bias''' if "head" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''head''' , '''classifier''' ) else: __SCREAMING_SNAKE_CASE : List[str] = '''focalnet.''' + name return name def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): # fmt: off __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __SCREAMING_SNAKE_CASE : Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load_state_dict_from_url(lowercase__ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : str = state_dict.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val __SCREAMING_SNAKE_CASE : List[str] = get_focalnet_config(lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = FocalNetForImageClassification(lowercase__ ) model.eval() # load state dict model.load_state_dict(lowercase__ ) # verify conversion __SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : str = BitImageProcessor( do_resize=lowercase__ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase__ , crop_size=224 , do_normalize=lowercase__ , image_mean=lowercase__ , image_std=lowercase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) __SCREAMING_SNAKE_CASE : Tuple = processor(images=lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : List[Any] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __SCREAMING_SNAKE_CASE : int = image_transforms(lowercase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowercase__ , atol=1e-4 ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Any = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __SCREAMING_SNAKE_CASE : int = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __SCREAMING_SNAKE_CASE : Any = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __lowerCAmelCase : Tuple =parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = is_training __SCREAMING_SNAKE_CASE : int = use_token_type_ids __SCREAMING_SNAKE_CASE : Any = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : Union[str, Any] = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1 def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __magic_name__( self :Any ) -> Optional[Any]: self.config_tester.run_common_tests() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :Any ) -> List[Any]: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is __SCREAMING_SNAKE_CASE : Dict = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
9
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = torch.device('cpu') def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im def __magic_name__ ( __a : Tuple ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def __magic_name__ ( __a : Tuple , __a : int , __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = dct.pop(snake_case_ ) UpperCamelCase__ = val def __magic_name__ ( __a : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ = [] for k in state_dict.keys(): UpperCamelCase__ = k if ".pwconv" in k: UpperCamelCase__ = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: UpperCamelCase__ = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: UpperCamelCase__ = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: UpperCamelCase__ = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: UpperCamelCase__ = k_new.split(""".""" ) if ls[2].isdigit(): UpperCamelCase__ = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: UpperCamelCase__ = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __magic_name__ ( __a : int , __a : List[str] , __a : Any ): '''simple docstring''' UpperCamelCase__ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase__ = 1_000 UpperCamelCase__ = """huggingface/label-files""" UpperCamelCase__ = """imagenet-1k-id2label.json""" UpperCamelCase__ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase__ = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase__ = [3, 3, 6, 4] UpperCamelCase__ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase__ = [3, 3, 9, 6] UpperCamelCase__ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase__ = [4, 3, 10, 5] UpperCamelCase__ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase__ = [4, 4, 12, 6] UpperCamelCase__ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): UpperCamelCase__ = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" , check_hash=snake_case_ ) else: UpperCamelCase__ = torch.load(snake_case_ , map_location="""cpu""" ) UpperCamelCase__ = checkpoint UpperCamelCase__ = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load HuggingFace model UpperCamelCase__ = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs UpperCamelCase__ = prepare_img() UpperCamelCase__ = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) UpperCamelCase__ = processor(images=snake_case_ , return_tensors="""pt""" ) # compare outputs from both models UpperCamelCase__ = get_expected_output(snake_case_ ) UpperCamelCase__ = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , snake_case_ , atol=1E-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') lowerCamelCase_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
370
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __magic_name__ ( __a : dict ): '''simple docstring''' return (data["data"], data["target"]) def __magic_name__ ( __a : np.ndarray , __a : np.ndarray , __a : np.ndarray ): '''simple docstring''' UpperCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(__a , __a ) # Predict target for test data UpperCamelCase__ = xgb.predict(__a ) UpperCamelCase__ = predictions.reshape(len(__a ) , 1 ) return predictions def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = fetch_california_housing() UpperCamelCase__ , UpperCamelCase__ = data_handling(__a ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_test_split( __a , __a , test_size=0.25 , random_state=1 ) UpperCamelCase__ = xgboost(__a , __a , __a ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(__a , __a )}" ) print(f"Mean Square Error : {mean_squared_error(__a , __a )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
178
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __snake_case : int =logging.get_logger(__name__) class lowerCamelCase__ ( enum.Enum): '''simple docstring''' snake_case_ =0 snake_case_ =1 @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""generated""" def __init__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = {} if truncation is not None: lowerCAmelCase__ : str = truncation lowerCAmelCase__ : int = generate_kwargs lowerCAmelCase__ : str = {} if return_tensors is not None and return_type is None: lowerCAmelCase__ : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase__ : Tuple = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ : str = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ : List[str] = self.tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) if len(__lowerCamelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) lowerCAmelCase__ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]: """simple docstring""" return True def lowerCAmelCase__ (self ,*__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Dict = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] ,__lowerCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) lowerCAmelCase__ : Optional[Any] = ([prefix + arg for arg in args[0]],) lowerCAmelCase__ : Optional[int] = True elif isinstance(args[0] ,__lowerCamelCase ): lowerCAmelCase__ : int = (prefix + args[0],) lowerCAmelCase__ : int = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) lowerCAmelCase__ : str = self.tokenizer(*__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = super().__call__(*__lowerCamelCase ,**__lowerCamelCase ) if ( isinstance(args[0] ,__lowerCamelCase ) and all(isinstance(__lowerCamelCase ,__lowerCamelCase ) for el in args[0] ) and all(len(__lowerCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : List[str] = self._parse_and_tokenize(__lowerCamelCase ,truncation=__lowerCamelCase ,**__lowerCamelCase ) return inputs def lowerCAmelCase__ (self ,__lowerCamelCase ,**__lowerCamelCase ) -> str: """simple docstring""" if self.framework == "pt": lowerCAmelCase__ , lowerCAmelCase__ : int = model_inputs['''input_ids'''].shape elif self.framework == "tf": lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy() lowerCAmelCase__ : str = generate_kwargs.get('''min_length''' ,self.model.config.min_length ) lowerCAmelCase__ : Optional[Any] = generate_kwargs.get('''max_length''' ,self.model.config.max_length ) self.check_inputs(__lowerCamelCase ,generate_kwargs['''min_length'''] ,generate_kwargs['''max_length'''] ) lowerCAmelCase__ : Optional[int] = self.model.generate(**__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase__ : Dict = output_ids.reshape(__lowerCamelCase ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ : Any = tf.reshape(__lowerCamelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=ReturnType.TEXT ,__lowerCamelCase=False ) -> str: """simple docstring""" lowerCAmelCase__ : Tuple = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase__ : Tuple = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase__ : List[str] = { f"""{self.return_name}_text""": self.tokenizer.decode( __lowerCamelCase ,skip_special_tokens=__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ,) } records.append(__lowerCamelCase ) return records @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""summary""" def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return super().__call__(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""translation""" def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def lowerCAmelCase__ (self ,*__lowerCamelCase ,__lowerCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,__lowerCamelCase=None ,__lowerCamelCase=None ) -> Optional[Any]: """simple docstring""" if getattr(self.tokenizer ,'''_build_translation_inputs''' ,__lowerCamelCase ): return self.tokenizer._build_translation_inputs( *__lowerCamelCase ,return_tensors=self.framework ,truncation=__lowerCamelCase ,src_lang=__lowerCamelCase ,tgt_lang=__lowerCamelCase ) else: return super()._parse_and_tokenize(*__lowerCamelCase ,truncation=__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,**__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = super()._sanitize_parameters(**__lowerCamelCase ) if src_lang is not None: lowerCAmelCase__ : str = src_lang if tgt_lang is not None: lowerCAmelCase__ : Optional[int] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase__ : str = kwargs.get('''task''' ,self.task ) lowerCAmelCase__ : Union[str, Any] = task.split('''_''' ) if task and len(__lowerCamelCase ) == 4: # translation, XX, to YY lowerCAmelCase__ : Union[str, Any] = items[1] lowerCAmelCase__ : List[Any] = items[3] return preprocess_params, forward_params, postprocess_params def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Optional[int]: """simple docstring""" return super().__call__(*__lowerCamelCase ,**__lowerCamelCase )
129
def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : Any = [0] * len(lowerCamelCase_) for i in range(1 ,len(lowerCamelCase_)): # use last results for better performance - dynamic programming lowerCAmelCase__ : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowerCAmelCase__ : Optional[int] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowerCAmelCase__ : Union[str, Any] = j return prefix_result def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' return max(prefix_function(lowerCamelCase_)) if __name__ == "__main__": import doctest doctest.testmod()
129
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase_ ( ) -> int: """simple docstring""" lowerCAmelCase_ : List[Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=lowerCAmelCase__ ) env_command_parser(subparsers=lowerCAmelCase__ ) launch_command_parser(subparsers=lowerCAmelCase__ ) tpu_command_parser(subparsers=lowerCAmelCase__ ) test_command_parser(subparsers=lowerCAmelCase__ ) # Let's go lowerCAmelCase_ : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase__ , 'func' ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase__ ) if __name__ == "__main__": main()
289
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int ): # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[Any] = False while not completed: if counter == 1: self.reset() lowerCAmelCase_ : Any = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = self.update(SCREAMING_SNAKE_CASE_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Tuple ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : str ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCAmelCase_ : Union[str, Any] = token_ids lowerCAmelCase_ : Union[str, Any] = len(self.token_ids ) lowerCAmelCase_ : Union[str, Any] = -1 # the index of the currently fulfilled step lowerCAmelCase_ : Dict = False def SCREAMING_SNAKE_CASE__ ( self : int ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.fulfilled_idx += 1 lowerCAmelCase_ : Optional[int] = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : List[str] = completed else: # failed to make progress. lowerCAmelCase_ : Optional[Any] = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = 0 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple=False ): lowerCAmelCase_ : Any = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : int = self.seqlen lowerCAmelCase_ : Dict = self.fulfilled_idx lowerCAmelCase_ : Optional[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): lowerCAmelCase_ : Tuple = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] ) lowerCAmelCase_ : Optional[Any] = {} for token_ids in nested_token_ids: lowerCAmelCase_ : Union[str, Any] = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ): if token_id not in level: lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Tuple = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) lowerCAmelCase_ : Union[str, Any] = root def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : str = self.trie for current_token in current_seq: lowerCAmelCase_ : Optional[int] = start[current_token] lowerCAmelCase_ : Dict = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : Any = self.next_tokens(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 0 def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Tuple = list(root.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Any = self.count_leaves(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) != leaf_count class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCAmelCase_ : Dict = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = nested_token_ids lowerCAmelCase_ : Tuple = self.trie.max_height lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : int = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : Optional[int] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.current_seq.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = True else: lowerCAmelCase_ : List[str] = True self.reset() lowerCAmelCase_ : Dict = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase_ : List[str] = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : int = False lowerCAmelCase_ : Optional[Any] = [] def SCREAMING_SNAKE_CASE__ ( self : str ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict=False ): lowerCAmelCase_ : Dict = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : Dict = self.seqlen lowerCAmelCase_ : Optional[Any] = self.current_seq lowerCAmelCase_ : List[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Constraint] ): lowerCAmelCase_ : Optional[int] = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase_ : Optional[int] = max([c.seqlen for c in constraints] ) lowerCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = None lowerCAmelCase_ : Optional[int] = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase_ : List[Any] = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : Dict = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = self.add(SCREAMING_SNAKE_CASE_ ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = False, False if self.completed: lowerCAmelCase_ : Any = True lowerCAmelCase_ : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Any = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase_ : str = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase_ : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : str = pending_constraint.update(SCREAMING_SNAKE_CASE_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = None if not complete and stepped: lowerCAmelCase_ : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase_ : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase_ : Optional[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=True ): lowerCAmelCase_ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase_ : Any = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase_ : List[str] = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
289
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Union[str, Any] = ["pixel_values"] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) UpperCamelCase = size if size is not None else {'shortest_edge': 256} UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase = get_size_dict(A_ ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase = get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" UpperCamelCase = get_size_dict(A_ ) return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ = None , **A_ ) -> np.ndarray: """simple docstring""" return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray: """simple docstring""" return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ ) def __UpperCamelCase ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(A_ , default_to_square=A_ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(A_ ) UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(A_ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images] UpperCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images] UpperCamelCase = {'pixel_values': images} return BatchFeature(data=A_ , tensor_type=A_ )
222
def A ( lowercase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
222
1
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A : Any = TypeVar("T") class _UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = data __lowerCAmelCase = self __lowerCAmelCase = 0 class _UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): # map from node name to the node object __lowerCAmelCase = {} def snake_case ( self , __a ): # create a new set with x as its member __lowerCAmelCase = DisjointSetTreeNode(__a ) def snake_case ( self , __a ): # find the set x belongs to (with path-compression) __lowerCAmelCase = self.map[data] if elem_ref != elem_ref.parent: __lowerCAmelCase = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case ( self , __a , __a ): # helper function for union operation if nodea.rank > nodea.rank: __lowerCAmelCase = nodea else: __lowerCAmelCase = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case ( self , __a , __a ): # merge 2 disjoint sets self.link(self.find_set(__a ) , self.find_set(__a ) ) class _UpperCamelCase ( Generic[T] ): '''simple docstring''' def __init__( self ): # connections: map from the node to the neighbouring nodes (with weights) __lowerCAmelCase = {} def snake_case ( self , __a ): # add a node ONLY if its not present in the graph if node not in self.connections: __lowerCAmelCase = {} def snake_case ( self , __a , __a , __a ): # add an edge with the given weight self.add_node(__a ) self.add_node(__a ) __lowerCAmelCase = weight __lowerCAmelCase = weight def snake_case ( self ): __lowerCAmelCase = [] __lowerCAmelCase = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __a : x[2] ) # creating the disjoint set __lowerCAmelCase = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__a ) # MST generation __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edges[index] index += 1 __lowerCAmelCase = disjoint_set.find_set(__a ) __lowerCAmelCase = disjoint_set.find_set(__a ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__a , __a , __a ) disjoint_set.union(__a , __a ) return graph
259
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
259
1
import math def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCamelCase ( _lowerCAmelCase = 1_0001 ) -> int: """simple docstring""" try: A : Any = int(_lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) A : list[int] = [] A : List[Any] = 2 while len(_lowerCAmelCase ) < nth: if is_prime(_lowerCAmelCase ): primes.append(_lowerCAmelCase ) num += 1 else: num += 1 return primes[len(_lowerCAmelCase ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
116
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ["input_features", "is_longer"] def __init__( self, lowerCamelCase__=64, lowerCamelCase__=4_8000, lowerCamelCase__=480, lowerCamelCase__=10, lowerCamelCase__=1024, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__ = 0, lowerCamelCase__ = 1_4000, lowerCamelCase__ = None, lowerCamelCase__ = "fusion", lowerCamelCase__ = "repeatpad", **lowerCamelCase__, ): super().__init__( feature_size=lowerCamelCase__, sampling_rate=lowerCamelCase__, padding_value=lowerCamelCase__, return_attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Tuple = top_db A : Dict = truncation A : int = padding A : Optional[Any] = fft_window_size A : Optional[Any] = (fft_window_size >> 1) + 1 A : List[Any] = hop_length A : Tuple = max_length_s A : str = max_length_s * sampling_rate A : List[str] = sampling_rate A : Dict = frequency_min A : str = frequency_max A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm=lowerCamelCase__, mel_scale="""htk""", ) A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm="""slaney""", mel_scale="""slaney""", ) def _lowerCAmelCase ( self ): A : Any = copy.deepcopy(self.__dict__ ) A : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : Optional[Any] = spectrogram( lowerCamelCase__, window_function(self.fft_window_size, """hann""" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase__, log_mel="""dB""", ) return log_mel_spectrogram.T def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A : Union[str, Any] = [0] # randomly choose index for each part A : str = np.random.choice(ranges[0] ) A : str = np.random.choice(ranges[1] ) A : Tuple = np.random.choice(ranges[2] ) A : List[str] = mel[idx_front : idx_front + chunk_frames, :] A : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :] A : Any = mel[idx_back : idx_back + chunk_frames, :] A : Any = torch.tensor(mel[None, None, :] ) A : Union[str, Any] = torch.nn.functional.interpolate( lowerCamelCase__, size=[chunk_frames, 64], mode="""bilinear""", align_corners=lowerCamelCase__ ) A : List[Any] = mel_shrink[0][0].numpy() A : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": A : List[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A : int = len(lowerCamelCase__ ) - max_length A : Optional[int] = np.random.randint(0, overflow + 1 ) A : List[Any] = waveform[idx : idx + max_length] A : Optional[Any] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] elif truncation == "fusion": A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A : str = np.stack([mel, mel, mel, mel], axis=0 ) A : Union[str, Any] = False else: A : Dict = self._random_mel_fusion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : Tuple = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: A : int = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A : Optional[int] = int(max_length / len(lowerCamelCase__ ) ) A : Union[str, Any] = np.stack(np.tile(lowerCamelCase__, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A : Dict = int(max_length / len(lowerCamelCase__ ) ) A : Dict = np.stack(np.tile(lowerCamelCase__, lowerCamelCase__ ) ) A : Any = np.pad(lowerCamelCase__, (0, max_length - waveform.shape[0]), mode="""constant""", constant_values=0 ) if truncation == "fusion": A : Union[str, Any] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Any = truncation if truncation is not None else self.truncation A : Union[str, Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A : str = isinstance(lowerCamelCase__, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A : Any = is_batched_numpy or ( isinstance(lowerCamelCase__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: A : Optional[int] = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__, np.ndarray ): A : int = np.asarray(lowerCamelCase__, dtype=np.floataa ) elif isinstance(lowerCamelCase__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : List[Any] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. A : Tuple = [ self._get_input_mel(lowerCamelCase__, max_length if max_length else self.nb_max_samples, lowerCamelCase__, lowerCamelCase__ ) for waveform in raw_speech ] A : Optional[Any] = [] A : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A : Tuple = np.random.randint(0, len(lowerCamelCase__ ) ) A : str = True if isinstance(input_mel[0], lowerCamelCase__ ): A : int = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A : Optional[int] = [[longer] for longer in is_longer] A : Union[str, Any] = {"""input_features""": input_mel, """is_longer""": is_longer} A : Tuple = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: A : List[str] = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
116
1
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple ) -> str: # noqa: E741 '''simple docstring''' _UpperCAmelCase : str = len(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[Any] = [0] * n _UpperCAmelCase : str = [False] * n _UpperCAmelCase : Dict = [False] * n def dfs(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): if parent == root: out_edge_count += 1 _UpperCAmelCase : int = True _UpperCAmelCase : Dict = at for to in l[at]: if to == parent: pass elif not visited[to]: _UpperCAmelCase : str = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _UpperCAmelCase : List[Any] = True # AP found via cycle if at == low[to]: _UpperCAmelCase : Union[str, Any] = True else: _UpperCAmelCase : Union[str, Any] = min(low[at] , SCREAMING_SNAKE_CASE__ ) return out_edge_count for i in range(SCREAMING_SNAKE_CASE__ ): if not visited[i]: _UpperCAmelCase : str = 0 _UpperCAmelCase : List[Any] = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Dict = out_edge_count > 1 for x in range(len(SCREAMING_SNAKE_CASE__ ) ): if is_art[x] is True: print(SCREAMING_SNAKE_CASE__ ) # Adjacency list of graph _lowerCAmelCase : Optional[int] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
202
"""simple docstring""" import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase : Any = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : List[str] __SCREAMING_SNAKE_CASE : Optional[List[str]] @dataclass class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : Optional[List[int]] = None __SCREAMING_SNAKE_CASE : Optional[List[int]] = None class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'train' __SCREAMING_SNAKE_CASE : Tuple = 'dev' __SCREAMING_SNAKE_CASE : Optional[int] = 'test' class UpperCAmelCase_ : @staticmethod def snake_case_ ( A : Union[str, Any] , A : Union[Split, str] ): raise NotImplementedError @staticmethod def snake_case_ ( A : str ): raise NotImplementedError @staticmethod def snake_case_ ( A : List[InputExample] , A : List[str] , A : int , A : PreTrainedTokenizer , A : Optional[int]=False , A : List[str]="[CLS]" , A : List[Any]=1 , A : str="[SEP]" , A : int=False , A : int=False , A : Any=0 , A : List[str]=0 , A : Dict=-1_0_0 , A : str=0 , A : Optional[Any]=True , ): _UpperCAmelCase : Dict = {label: i for i, label in enumerate(A )} _UpperCAmelCase : str = [] for ex_index, example in enumerate(A ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d of %d" , A , len(A ) ) _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = [] for word, label in zip(example.words , example.labels ): _UpperCAmelCase : str = tokenizer.tokenize(A ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(A ) > 0: tokens.extend(A ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _UpperCAmelCase : List[str] = tokenizer.num_special_tokens_to_add() if len(A ) > max_seq_length - special_tokens_count: _UpperCAmelCase : List[Any] = tokens[: (max_seq_length - special_tokens_count)] _UpperCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _UpperCAmelCase : Dict = [sequence_a_segment_id] * len(A ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _UpperCAmelCase : str = [cls_token] + tokens _UpperCAmelCase : Dict = [pad_token_label_id] + label_ids _UpperCAmelCase : Any = [cls_token_segment_id] + segment_ids _UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(A ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _UpperCAmelCase : List[Any] = [1 if mask_padding_with_zero else 0] * len(A ) # Zero-pad up to the sequence length. _UpperCAmelCase : List[str] = max_seq_length - len(A ) if pad_on_left: _UpperCAmelCase : str = ([pad_token] * padding_length) + input_ids _UpperCAmelCase : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _UpperCAmelCase : Any = ([pad_token_segment_id] * padding_length) + segment_ids _UpperCAmelCase : Dict = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length assert len(A ) == max_seq_length if ex_index < 5: logger.info("*** Example ***" ) logger.info("guid: %s" , example.guid ) logger.info("tokens: %s" , " ".join([str(A ) for x in tokens] ) ) logger.info("input_ids: %s" , " ".join([str(A ) for x in input_ids] ) ) logger.info("input_mask: %s" , " ".join([str(A ) for x in input_mask] ) ) logger.info("segment_ids: %s" , " ".join([str(A ) for x in segment_ids] ) ) logger.info("label_ids: %s" , " ".join([str(A ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : Dict = None features.append( InputFeatures( input_ids=A , attention_mask=A , token_type_ids=A , label_ids=A ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[InputFeatures] __SCREAMING_SNAKE_CASE : int = nn.CrossEntropyLoss().ignore_index def __init__( self : Dict , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : List[str]=False , A : Split = Split.train , ): # Load data features from cache or dataset file _UpperCAmelCase : int = os.path.join( A , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(A ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : List[str] = cached_features_file + ".lock" with FileLock(A ): if os.path.exists(A ) and not overwrite_cache: logger.info(f'Loading features from cached file {cached_features_file}' ) _UpperCAmelCase : Tuple = torch.load(A ) else: logger.info(f'Creating features from dataset file at {data_dir}' ) _UpperCAmelCase : List[str] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : List[Any] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f'Saving features into cached file {cached_features_file}' ) torch.save(self.features , A ) def __len__( self : Dict ): return len(self.features ) def __getitem__( self : List[str] , A : Optional[Any] ): return self.features[i] if is_tf_available(): import tensorflow as tf class UpperCAmelCase_ : __SCREAMING_SNAKE_CASE : List[InputFeatures] __SCREAMING_SNAKE_CASE : int = -1_0_0 def __init__( self : Tuple , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : Optional[Any]=False , A : Split = Split.train , ): _UpperCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(A , A ) # TODO clean up all this to leverage built-in features of tokenizers _UpperCAmelCase : List[str] = token_classification_task.convert_examples_to_features( A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _UpperCAmelCase : List[str] = tf.data.Dataset.from_generator( A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , ( {"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: _UpperCAmelCase : List[Any] = tf.data.Dataset.from_generator( A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , ( { "input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] ), "token_type_ids": tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def snake_case_ ( self : str ): _UpperCAmelCase : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : List[Any] ): return len(self.features ) def __getitem__( self : int , A : int ): return self.features[i]
202
1
"""simple docstring""" import requests from bsa import BeautifulSoup def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = BeautifulSoup(requests.get(lowerCamelCase , params=lowerCamelCase ).content , 'html.parser' ) UpperCAmelCase__ = soup.find('div' , attrs={'class': 'gs_ri'} ) UpperCAmelCase__ = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 30, 'pages': '3979-3990', 'year': 2_018, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
98
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern snake_case_ , snake_case_ = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case_ = failure[j - 1] continue i += 1 return False def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [0] snake_case_ = 0 snake_case_ = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case_ = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE : Optional[int] = 'abc1abc12' __SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE : List[str] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE : int = 'ABABX' __SCREAMING_SNAKE_CASE : Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE : Any = 'AAAB' __SCREAMING_SNAKE_CASE : List[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE : Optional[int] = 'abcdabcy' __SCREAMING_SNAKE_CASE : str = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE : Any = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
347
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Tuple: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict: requires_backends(cls , ['flax'] ) class _lowercase ( metaclass=lowerCAmelCase_ ): lowercase_ = ['flax'] def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Tuple: requires_backends(self , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any: requires_backends(cls , ['flax'] ) @classmethod def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int: requires_backends(cls , ['flax'] )
358
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : List[Any] = 1 for i in range(1, num + 1 ): fact *= i return fact def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Optional[Any] = 0 while number > 0: lowerCamelCase : str = number % 10 sum_of_digits += last_digit lowerCamelCase : Tuple = number // 10 # Removing the last_digit from the given number return sum_of_digits def UpperCAmelCase ( a_ = 100 ): '''simple docstring''' lowerCamelCase : Optional[Any] = factorial(a_ ) lowerCamelCase : int = split_and_add(a_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
205
0
import math import sys def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = """""" try: with open(_lowerCAmelCase , """rb""" ) as binary_file: lowerCamelCase = binary_file.read() for dat in data: lowerCamelCase = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = {"""0""": """0""", """1""": """1"""} lowerCamelCase = """""", """""" lowerCamelCase = len(_lowerCAmelCase ) for i in range(len(_lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowerCamelCase = lexicon[curr_string] result += last_match_id lowerCamelCase = last_match_id + """0""" if math.loga(_lowerCAmelCase ).is_integer(): lowerCamelCase = {} for curr_key in list(_lowerCAmelCase ): lowerCamelCase = lexicon.pop(_lowerCAmelCase ) lowerCamelCase = new_lex lowerCamelCase = last_match_id + """1""" index += 1 lowerCamelCase = """""" return result def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 8 try: with open(_lowerCAmelCase , """wb""" ) as opened_file: lowerCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 lowerCamelCase = data_bits[counter:] lowerCamelCase = data_bits[counter + 1 :] return data_bits def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = read_file_binary(_lowerCAmelCase ) lowerCamelCase = remove_prefix(_lowerCAmelCase ) lowerCamelCase = decompress_data(_lowerCAmelCase ) write_file_binary(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
252
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _UpperCAmelCase ( __a): __a : Optional[torch.FloatTensor] = None __a : torch.FloatTensor = None __a : Optional[Tuple[torch.FloatTensor]] = None __a : Optional[Tuple[torch.FloatTensor]] = None class _UpperCAmelCase ( __a): def __init__( self , _A=1 , _A=0 , _A=2 , _A=5_12 , _A="cls" , _A=False , _A=True , **_A , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCAmelCase : int = project_dim _UpperCAmelCase : str = pooler_fn _UpperCAmelCase : Union[str, Any] = learn_encoder _UpperCAmelCase : Tuple = use_attention_mask class _UpperCAmelCase ( __a): __a : str = [R"""pooler""", R"""logit_scale"""] __a : str = [R"""position_ids""", R"""predictions.decoder.bias"""] __a : int = """roberta""" __a : Optional[int] = RobertaSeriesConfig def __init__( self , _A ) -> List[Any]: '''simple docstring''' super().__init__(_A ) _UpperCAmelCase : Dict = XLMRobertaModel(_A ) _UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Optional[int] = getattr(_A , """has_pre_transformation""" , _A ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) _UpperCAmelCase : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __snake_case ( self , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Any = self.base_model( input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , ) if self.has_pre_transformation: _UpperCAmelCase : Optional[int] = outputs["""hidden_states"""][-2] _UpperCAmelCase : str = self.pre_LN(_A ) _UpperCAmelCase : str = self.transformation_pre(_A ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _UpperCAmelCase : Union[str, Any] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
246
0
import os from math import logaa def lowerCAmelCase_ (lowerCAmelCase__: str = "base_exp.txt" ): """simple docstring""" UpperCAmelCase_: float = 0 UpperCAmelCase_: Tuple = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ): UpperCAmelCase_ , UpperCAmelCase_: Any = list(map(lowerCAmelCase__ , line.split(""",""" ) ) ) if x * logaa(lowerCAmelCase__ ) > largest: UpperCAmelCase_: Optional[Any] = x * logaa(lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = i + 1 return result if __name__ == "__main__": print(solution())
82
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a : str = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Dict=None ): """simple docstring""" UpperCAmelCase_: Any = XLNetConfig.from_json_file(lowerCAmelCase__ ) UpperCAmelCase_: int = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) UpperCAmelCase_: Optional[int] = finetuning_task UpperCAmelCase_: int = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_: Optional[Any] = XLNetForSequenceClassification(lowerCAmelCase__ ) elif "squad" in finetuning_task: UpperCAmelCase_: List[Any] = finetuning_task UpperCAmelCase_: Optional[Any] = XLNetForQuestionAnswering(lowerCAmelCase__ ) else: UpperCAmelCase_: Tuple = XLNetLMHeadModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model UpperCAmelCase_: Tuple = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) print(F'Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}' ) torch.save(model.state_dict() , lowerCAmelCase__ ) print(F'Save configuration file to {os.path.abspath(lowerCAmelCase__ )}' ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) a : List[str] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
82
1
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__(self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2_000.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ): """simple docstring""" super().__init__() UpperCAmelCase__ : Any = nn.Sequential( nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , ) UpperCAmelCase__ : List[str] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) UpperCAmelCase__ : List[str] = nn.Dropout(p=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): # FiLM conditional T5 decoder UpperCAmelCase__ : Dict = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) self.decoders.append(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = TaLayerNorm(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = nn.Dropout(p=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase__ : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase__ : List[str] = self.conditioning_emb(_lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase__ : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase__ : List[Any] = torch.broadcast_to( torch.arange(_lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase__ : Optional[Any] = self.position_encoding(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = self.continuous_inputs_projection(_lowerCamelCase ) inputs += position_encodings UpperCAmelCase__ : List[Any] = self.dropout(_lowerCamelCase ) # decoder: No padding present. UpperCAmelCase__ : Optional[int] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase__ : Any = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase__ : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase__ : List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase__ : Optional[Any] = lyr( _lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0] UpperCAmelCase__ : str = self.decoder_norm(_lowerCamelCase ) UpperCAmelCase__ : Any = self.post_dropout(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.spec_out(_lowerCamelCase ) return spec_out class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6 ): """simple docstring""" super().__init__() UpperCAmelCase__ : str = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase ) ) def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : Tuple = self.layer[0]( _lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , ) if encoder_hidden_states is not None: UpperCAmelCase__ : Dict = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase__ : Any = self.layer[1]( _lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase__ : Optional[Any] = self.layer[-1](_lowerCamelCase , _lowerCamelCase ) return (hidden_states,) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" super().__init__() UpperCAmelCase__ : Union[str, Any] = TaLayerNorm(_lowerCamelCase ) UpperCAmelCase__ : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = nn.Dropout(_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : Dict = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: UpperCAmelCase__ : List[Any] = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase ) # Self-attention block UpperCAmelCase__ : Tuple = self.attention(_lowerCamelCase ) UpperCAmelCase__ : List[str] = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" super().__init__() UpperCAmelCase__ : Dict = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) UpperCAmelCase__ : Dict = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) UpperCAmelCase__ : List[Any] = nn.Dropout(_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : List[str] = self.layer_norm(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.attention( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase__ : Optional[int] = hidden_states + self.dropout(_lowerCamelCase ) return layer_output class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" super().__init__() UpperCAmelCase__ : Tuple = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) UpperCAmelCase__ : Tuple = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) UpperCAmelCase__ : Tuple = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) UpperCAmelCase__ : str = nn.Dropout(_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase=None ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: UpperCAmelCase__ : Any = self.film(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Tuple = self.DenseReluDense(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" super().__init__() UpperCAmelCase__ : int = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) UpperCAmelCase__ : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) UpperCAmelCase__ : Dict = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = nn.Dropout(_lowerCamelCase ) UpperCAmelCase__ : Dict = NewGELUActivation() def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = self.act(self.wi_a(_lowerCamelCase ) ) UpperCAmelCase__ : Optional[Any] = self.wi_a(_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = hidden_gelu * hidden_linear UpperCAmelCase__ : Dict = self.dropout(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = self.wo(_lowerCamelCase ) return hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=1e-6 ): """simple docstring""" super().__init__() UpperCAmelCase__ : str = nn.Parameter(torch.ones(_lowerCamelCase ) ) UpperCAmelCase__ : List[str] = eps def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCamelCase ) UpperCAmelCase__ : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase__ : List[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCamelCase ( nn.Module ): '''simple docstring''' def _a (self , _lowerCamelCase ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(_lowerCamelCase , 3.0 )) )) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" super().__init__() UpperCAmelCase__ : int = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = self.scale_bias(_lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = torch.chunk(_lowerCamelCase , 2 , -1 ) UpperCAmelCase__ : int = x * (1 + scale) + shift return x
171
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : str = {} def _a (self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" """ `placeholder_token` that is not already in the tokenizer.""" ) def _a (self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : int = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) else: UpperCAmelCase__ : Any = [] for i in range(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = placeholder_token + F"""_{i}""" self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) UpperCAmelCase__ : Dict = output def _a (self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 ): """simple docstring""" if isinstance(_lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : str = [] for i in range(len(_lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: UpperCAmelCase__ : List[str] = self.token_map[placeholder_token] UpperCAmelCase__ : Any = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: UpperCAmelCase__ : Any = copy.copy(_lowerCamelCase ) random.shuffle(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = text.replace(_lowerCamelCase , """ """.join(_lowerCamelCase ) ) return text def __call__(self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , ) def _a (self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
171
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } _A = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } _A = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class _lowercase ( __UpperCAmelCase ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = RealmTokenizer def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True , UpperCAmelCase_="[UNK]" , UpperCAmelCase_="[SEP]" , UpperCAmelCase_="[PAD]" , UpperCAmelCase_="[CLS]" , UpperCAmelCase_="[MASK]" , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ) -> str: super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_ ) != tokenize_chinese_chars ): lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , normalizer_state.pop('type' ) ) lowerCamelCase : Tuple = do_lower_case lowerCamelCase : Dict = strip_accents lowerCamelCase : Dict = tokenize_chinese_chars lowerCamelCase : Union[str, Any] = normalizer_class(**UpperCAmelCase_ ) lowerCamelCase : str = do_lower_case def _UpperCamelCase ( self , UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]: lowerCamelCase : List[str] = PaddingStrategy.MAX_LENGTH lowerCamelCase : int = text lowerCamelCase : List[Any] = kwargs.pop('text_pair' , UpperCAmelCase_ ) lowerCamelCase : Optional[Any] = kwargs.pop('return_tensors' , UpperCAmelCase_ ) lowerCamelCase : Any = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(UpperCAmelCase_ ): if batch_text_pair is not None: lowerCamelCase : Any = batch_text_pair[idx] else: lowerCamelCase : Union[str, Any] = None lowerCamelCase : Any = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : str = encoded_candidates.get('input_ids' ) lowerCamelCase : List[str] = encoded_candidates.get('attention_mask' ) lowerCamelCase : Any = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(UpperCAmelCase_ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(UpperCAmelCase_ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(UpperCAmelCase_ ) lowerCamelCase : Dict = {key: item for key, item in output_data.items() if len(UpperCAmelCase_ ) != 0} return BatchEncoding(UpperCAmelCase_ , tensor_type=UpperCAmelCase_ ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> str: lowerCamelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]: lowerCamelCase : Dict = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
205
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class _lowercase : def __init__( self ) -> Tuple: lowerCamelCase : Dict = False def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Any: if not self.initialized: lowerCamelCase : Optional[int] = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , ) lowerCamelCase : Union[str, Any] = True def _UpperCamelCase ( self ) -> Union[str, Any]: self.retriever.index.init_index() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> str: lowerCamelCase , lowerCamelCase : int = self.retriever._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ ) return doc_ids, retrieved_doc_embeds class _lowercase ( __UpperCAmelCase ): def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Dict: if index is not None and index.is_initialized() and len(UpperCAmelCase_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , ) lowerCamelCase : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for worker in self.retrieval_workers ] ) def _UpperCamelCase ( self ) -> Dict: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowerCamelCase : Tuple = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowerCamelCase , lowerCamelCase : Tuple = ray.get(random_worker.retrieve.remote(UpperCAmelCase_ , UpperCAmelCase_ ) ) else: lowerCamelCase , lowerCamelCase : int = self._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase_ ) @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> Dict: return super(UpperCAmelCase_ , cls ).get_tokenizers(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> Dict: lowerCamelCase : str = kwargs.pop('config' , UpperCAmelCase_ ) or RagConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase : Any = RagTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) lowerCamelCase : Any = rag_tokenizer.question_encoder lowerCamelCase : Union[str, Any] = rag_tokenizer.generator if indexed_dataset is not None: lowerCamelCase : int = 'custom' lowerCamelCase : int = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ ) else: lowerCamelCase : Optional[Any] = cls._build_index(UpperCAmelCase_ ) return cls( UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , retrieval_workers=UpperCAmelCase_ , index=UpperCAmelCase_ , )
205
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class __UpperCAmelCase ( A_ , A_ ): UpperCamelCase = "focalnet" def __init__( self : Any, __A : Optional[int]=2_2_4, __A : Tuple=4, __A : Optional[Any]=3, __A : Optional[Any]=9_6, __A : List[Any]=False, __A : Optional[int]=[1_9_2, 3_8_4, 7_6_8, 7_6_8], __A : Optional[Any]=[2, 2, 6, 2], __A : Optional[int]=[2, 2, 2, 2], __A : List[str]=[3, 3, 3, 3], __A : List[str]="gelu", __A : Dict=4.0, __A : str=0.0, __A : Any=0.1, __A : Dict=False, __A : List[Any]=1E-4, __A : Dict=False, __A : Optional[int]=False, __A : Optional[Any]=False, __A : Dict=0.0_2, __A : Optional[int]=1E-5, __A : Optional[int]=3_2, __A : Any=None, __A : List[Any]=None, **__A : List[Any], ): super().__init__(**_snake_case ) UpperCAmelCase : Optional[Any] = image_size UpperCAmelCase : str = patch_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : Dict = embed_dim UpperCAmelCase : List[str] = use_conv_embed UpperCAmelCase : Optional[Any] = hidden_sizes UpperCAmelCase : Dict = depths UpperCAmelCase : List[Any] = focal_levels UpperCAmelCase : Tuple = focal_windows UpperCAmelCase : str = hidden_act UpperCAmelCase : Tuple = mlp_ratio UpperCAmelCase : Tuple = hidden_dropout_prob UpperCAmelCase : str = drop_path_rate UpperCAmelCase : str = use_layerscale UpperCAmelCase : List[Any] = layerscale_value UpperCAmelCase : Optional[Any] = use_post_layernorm UpperCAmelCase : str = use_post_layernorm_in_modulation UpperCAmelCase : Dict = normalize_modulator UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Union[str, Any] = layer_norm_eps UpperCAmelCase : Any = encoder_stride UpperCAmelCase : int = ['''stem'''] + [F'''stage{idx}''' for idx in range(1, len(self.depths ) + 1 )] UpperCAmelCase : Tuple = get_aligned_output_features_output_indices( out_features=_snake_case, out_indices=_snake_case, stage_names=self.stage_names )
336
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
0
import unittest import numpy as np def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ): '''simple docstring''' __UpperCamelCase :int = np.shape(SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = np.shape(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = np.shape(SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: __UpperCamelCase :Dict = ( '''Expected the same number of rows for A and B. ''' f"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: __UpperCamelCase :Union[str, Any] = ( '''Expected the same number of columns for B and C. ''' f"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = pseudo_inv if a_inv is None: try: __UpperCamelCase :Dict = np.linalg.inv(SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> None: __UpperCamelCase :str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) __UpperCamelCase :List[Any] = np.array([[0, 3], [3, 0], [2, 3]]) __UpperCamelCase :Tuple = np.array([[2, 1], [6, 3]]) __UpperCamelCase :Optional[int] = schur_complement(__lowercase , __lowercase , __lowercase) __UpperCamelCase :List[Any] = np.block([[a, b], [b.T, c]]) __UpperCamelCase :Any = np.linalg.det(__lowercase) __UpperCamelCase :int = np.linalg.det(__lowercase) __UpperCamelCase :Tuple = np.linalg.det(__lowercase) self.assertAlmostEqual(__lowercase , det_a * det_s) def UpperCamelCase__ ( self) -> None: __UpperCamelCase :List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) __UpperCamelCase :Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]]) __UpperCamelCase :Dict = np.array([[2, 1], [6, 3]]) with self.assertRaises(__lowercase): schur_complement(__lowercase , __lowercase , __lowercase) def UpperCamelCase__ ( self) -> None: __UpperCamelCase :Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]]) __UpperCamelCase :Tuple = np.array([[0, 3], [3, 0], [2, 3]]) __UpperCamelCase :List[Any] = np.array([[2, 1, 3], [6, 3, 5]]) with self.assertRaises(__lowercase): schur_complement(__lowercase , __lowercase , __lowercase) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
105
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __lowercase = logging.get_logger(__name__) # General docstring __lowercase = '''MobileNetV1Config''' # Base docstring __lowercase = '''google/mobilenet_v1_1.0_224''' __lowercase = [1, 1024, 7, 7] # Image classification docstring __lowercase = '''google/mobilenet_v1_1.0_224''' __lowercase = '''tabby, tabby cat''' __lowercase = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :Tuple = {} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Dict = model.mobilenet_va else: __UpperCamelCase :str = model __UpperCamelCase :int = '''MobilenetV1/Conv2d_0/''' __UpperCamelCase :str = backbone.conv_stem.convolution.weight __UpperCamelCase :int = backbone.conv_stem.normalization.bias __UpperCamelCase :Union[str, Any] = backbone.conv_stem.normalization.weight __UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_mean __UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCamelCase :Optional[Any] = i + 1 __UpperCamelCase :Optional[int] = i * 2 __UpperCamelCase :List[Any] = backbone.layer[pt_index] __UpperCamelCase :Tuple = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" __UpperCamelCase :Any = pointer.convolution.weight __UpperCamelCase :Dict = pointer.normalization.bias __UpperCamelCase :List[str] = pointer.normalization.weight __UpperCamelCase :Any = pointer.normalization.running_mean __UpperCamelCase :List[str] = pointer.normalization.running_var __UpperCamelCase :Union[str, Any] = backbone.layer[pt_index + 1] __UpperCamelCase :List[str] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" __UpperCamelCase :Optional[Any] = pointer.convolution.weight __UpperCamelCase :Dict = pointer.normalization.bias __UpperCamelCase :int = pointer.normalization.weight __UpperCamelCase :Optional[int] = pointer.normalization.running_mean __UpperCamelCase :Optional[int] = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' __UpperCamelCase :Union[str, Any] = model.classifier.weight __UpperCamelCase :int = model.classifier.bias return tf_to_pt_map def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model __UpperCamelCase :Any = tf.train.list_variables(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) __UpperCamelCase :str = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = array # Build TF to PyTorch weights loading map __UpperCamelCase :Optional[Any] = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue __UpperCamelCase :Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) __UpperCamelCase :Optional[int] = np.transpose(SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCamelCase :Tuple = array.squeeze().transpose() else: __UpperCamelCase :Union[str, Any] = np.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) __UpperCamelCase :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE ) tf_weights.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/RMSProp''' , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/RMSProp_1''' , SCREAMING_SNAKE_CASE ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , SCREAMING_SNAKE_CASE ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :str = features.shape[-2:] __UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.stride __UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCamelCase :Optional[int] = max(kernel_height - stride_height , 0 ) else: __UpperCamelCase :List[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __UpperCamelCase :List[str] = max(kernel_width - stride_width , 0 ) else: __UpperCamelCase :Tuple = max(kernel_width - (in_width % stride_width) , 0 ) __UpperCamelCase :Any = pad_along_width // 2 __UpperCamelCase :Tuple = pad_along_width - pad_left __UpperCamelCase :Union[str, Any] = pad_along_height // 2 __UpperCamelCase :str = pad_along_height - pad_top __UpperCamelCase :Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''constant''' , 0.0 ) class lowerCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = 1 , __lowercase = 1 , __lowercase = False , __lowercase = True , __lowercase = True , ) -> None: super().__init__() __UpperCamelCase :str = config if in_channels % groups != 0: raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""") if out_channels % groups != 0: raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""") __UpperCamelCase :Any = 0 if config.tf_padding else int((kernel_size - 1) / 2) __UpperCamelCase :List[Any] = nn.Convad( in_channels=__lowercase , out_channels=__lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase , groups=__lowercase , bias=__lowercase , padding_mode='''zeros''' , ) if use_normalization: __UpperCamelCase :str = nn.BatchNormad( num_features=__lowercase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowercase , track_running_stats=__lowercase , ) else: __UpperCamelCase :Tuple = None if use_activation: if isinstance(__lowercase , __lowercase): __UpperCamelCase :Union[str, Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowercase): __UpperCamelCase :Dict = ACTaFN[config.hidden_act] else: __UpperCamelCase :List[Any] = config.hidden_act else: __UpperCamelCase :Optional[Any] = None def UpperCamelCase__ ( self , __lowercase) -> torch.Tensor: if self.config.tf_padding: __UpperCamelCase :Any = apply_tf_padding(__lowercase , self.convolution) __UpperCamelCase :str = self.convolution(__lowercase) if self.normalization is not None: __UpperCamelCase :Any = self.normalization(__lowercase) if self.activation is not None: __UpperCamelCase :List[str] = self.activation(__lowercase) return features class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = MobileNetVaConfig a__ : Dict = load_tf_weights_in_mobilenet_va a__ : Tuple = """mobilenet_v1""" a__ : Optional[Any] = """pixel_values""" a__ : int = False def UpperCamelCase__ ( self , __lowercase) -> None: if isinstance(__lowercase , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowercase , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) __lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = True) -> Optional[Any]: super().__init__(__lowercase) __UpperCamelCase :List[str] = config __UpperCamelCase :Any = 32 __UpperCamelCase :List[str] = max(int(depth * config.depth_multiplier) , config.min_depth) __UpperCamelCase :Union[str, Any] = MobileNetVaConvLayer( __lowercase , in_channels=config.num_channels , out_channels=__lowercase , kernel_size=3 , stride=2 , ) __UpperCamelCase :str = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCamelCase :Any = nn.ModuleList() for i in range(13): __UpperCamelCase :str = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCamelCase :Tuple = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=3 , stride=strides[i] , groups=__lowercase , )) self.layer.append( MobileNetVaConvLayer( __lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=1 , )) __UpperCamelCase :str = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]: raise NotImplementedError @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __UpperCamelCase :Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase :str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''') __UpperCamelCase :int = self.conv_stem(__lowercase) __UpperCamelCase :List[str] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): __UpperCamelCase :Optional[Any] = layer_module(__lowercase) if output_hidden_states: __UpperCamelCase :int = all_hidden_states + (hidden_states,) __UpperCamelCase :Any = hidden_states if self.pooler is not None: __UpperCamelCase :str = torch.flatten(self.pooler(__lowercase) , start_dim=1) else: __UpperCamelCase :Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=__lowercase , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase_ , ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase) -> None: super().__init__(__lowercase) __UpperCamelCase :int = config.num_labels __UpperCamelCase :Optional[int] = MobileNetVaModel(__lowercase) __UpperCamelCase :Optional[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCamelCase :str = nn.Dropout(config.classifier_dropout_prob , inplace=__lowercase) __UpperCamelCase :Dict = nn.Linear(__lowercase , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowercase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __UpperCamelCase :List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase :Tuple = self.mobilenet_va(__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase) __UpperCamelCase :List[str] = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase :Union[str, Any] = self.classifier(self.dropout(__lowercase)) __UpperCamelCase :int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCamelCase :Tuple = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCamelCase :Union[str, Any] = '''single_label_classification''' else: __UpperCamelCase :Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": __UpperCamelCase :Any = MSELoss() if self.num_labels == 1: __UpperCamelCase :List[str] = loss_fct(logits.squeeze() , labels.squeeze()) else: __UpperCamelCase :Dict = loss_fct(__lowercase , __lowercase) elif self.config.problem_type == "single_label_classification": __UpperCamelCase :Optional[int] = CrossEntropyLoss() __UpperCamelCase :str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": __UpperCamelCase :Dict = BCEWithLogitsLoss() __UpperCamelCase :List[str] = loss_fct(__lowercase , __lowercase) if not return_dict: __UpperCamelCase :Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states , )
105
1
def _UpperCAmelCase (UpperCamelCase__ : str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _A : Any = "" while len(UpperCamelCase__ ) % 3 != 0: _A : Optional[Any] = "0" + bin_string _A : Union[str, Any] = [ bin_string[index : index + 3] for index in range(len(UpperCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _A : Tuple = 0 for index, val in enumerate(UpperCamelCase__ ): oct_val += int(2 ** (2 - index) * int(UpperCamelCase__ ) ) oct_string += str(UpperCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
11
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 4_0_0_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : int = [0, 1] __UpperCAmelCase : Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase : str = 0 for j in range(len(_UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
115
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Tuple = logging.get_logger(__name__) lowercase : int = {"vocab_file": "vocab.txt"} lowercase : str = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } lowercase : List[Any] = { "openbmb/cpm-ant-10b": 1024, } def UpperCAmelCase_ (_lowerCAmelCase : Any ): __UpperCamelCase : str = collections.OrderedDict() with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as reader: __UpperCamelCase : str = reader.readlines() for index, token in enumerate(_lowerCAmelCase ): __UpperCamelCase : Optional[int] = token.rstrip("\n" ) __UpperCamelCase : Dict = index return vocab class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase="<unk>" , __UpperCamelCase=2_00 ) -> int: '''simple docstring''' __UpperCamelCase : str = vocab __UpperCamelCase : Tuple = unk_token __UpperCamelCase : Tuple = max_input_chars_per_word def __lowerCamelCase ( self , __UpperCamelCase ) -> List[Any]: '''simple docstring''' __UpperCamelCase : List[str] = list(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word: return [self.unk_token] __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : str = [] while start < len(_SCREAMING_SNAKE_CASE ): __UpperCamelCase : str = len(_SCREAMING_SNAKE_CASE ) __UpperCamelCase : Tuple = None while start < end: __UpperCamelCase : Dict = ''''''.join(chars[start:end] ) if substr in self.vocab: __UpperCamelCase : Optional[Any] = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_SCREAMING_SNAKE_CASE ) __UpperCamelCase : int = end return sub_tokens class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : str = VOCAB_FILES_NAMES lowercase : int = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Tuple = ['input_ids', 'attention_mask'] lowercase : Union[str, Any] = False def __init__( self , __UpperCamelCase , __UpperCamelCase="<d>" , __UpperCamelCase="</d>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<unk>" , __UpperCamelCase="</n>" , __UpperCamelCase="</_>" , __UpperCamelCase="left" , **__UpperCamelCase , ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["jieba"] ) super().__init__( bod_token=_SCREAMING_SNAKE_CASE , eod_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , line_token=_SCREAMING_SNAKE_CASE , space_token=_SCREAMING_SNAKE_CASE , padding_side=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __UpperCamelCase : List[Any] = bod_token __UpperCamelCase : Optional[Any] = eod_token __UpperCamelCase : List[Any] = load_vocab(_SCREAMING_SNAKE_CASE ) __UpperCamelCase : Tuple = self.encoder[space_token] __UpperCamelCase : Tuple = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __UpperCamelCase : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) __UpperCamelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCamelCase : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return self.encoder[self.bod_token] @property def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return self.encoder[self.eod_token] @property def __lowerCamelCase ( self ) -> Any: '''simple docstring''' return self.encoder["\n"] @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return len(self.encoder ) def __lowerCamelCase ( self ) -> Any: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = [] for x in jieba.cut(_SCREAMING_SNAKE_CASE , cut_all=_SCREAMING_SNAKE_CASE ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) ) return output_tokens def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ) -> str: '''simple docstring''' __UpperCamelCase : Dict = [i for i in token_ids if i >= 0] __UpperCamelCase : List[str] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]: '''simple docstring''' return token in self.encoder def __lowerCamelCase ( self , __UpperCamelCase ) -> str: '''simple docstring''' return "".join(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Tuple: '''simple docstring''' return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __lowerCamelCase ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' if os.path.isdir(_SCREAMING_SNAKE_CASE ): __UpperCamelCase : Any = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __UpperCamelCase : Tuple = 0 if " " in self.encoder: __UpperCamelCase : List[str] = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __UpperCamelCase : Any = self.encoder['''\n'''] del self.encoder["\n"] __UpperCamelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) __UpperCamelCase : List[Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
371
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase : Optional[int] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ): # Initialise PyTorch model __UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase ) else: __UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowercase : Dict = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
171
0
import math from datetime import datetime, timedelta def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = year % 19 snake_case_ = year % 4 snake_case_ = year % 7 snake_case_ = math.floor(year / 100 ) snake_case_ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case_ = leap_day_inhibits / 4 snake_case_ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case_ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase__ , 4 , 18 ) else: return datetime(UpperCamelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _UpperCAmelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
285
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: snake_case_ = max( mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) snake_case_ = len(UpperCamelCase__ ) if num_items != len(UpperCamelCase__ ): snake_case_ = ( 'The number of weights must be the same as the number of values.\n' F'''But got {num_items} weights and {len(UpperCamelCase__ )} values''' ) raise ValueError(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): if not isinstance(wt[i] , UpperCamelCase__ ): snake_case_ = ( 'All weights must be integers but got weight of ' F'''type {type(wt[i] )} at index {i}''' ) raise TypeError(UpperCamelCase__ ) snake_case_ , snake_case_ = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = set() _construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return optimal_val, example_optional_set def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: optimal_set.add(UpperCamelCase__ ) _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : Tuple = [3, 2, 4, 4] _UpperCAmelCase : Optional[Any] = [4, 3, 2, 3] _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : str = 6 _UpperCAmelCase : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _UpperCAmelCase , _UpperCAmelCase : List[Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _UpperCAmelCase , _UpperCAmelCase : Any = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
285
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor snake_case_ : List[str] = logging.get_logger(__name__) class __snake_case ( a ): def __init__( self : Optional[int] , *_snake_case : Union[str, Any] , **_snake_case : Optional[int]): """simple docstring""" warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case)
7
import sys def A (__A : int ) -> Dict: """simple docstring""" UpperCAmelCase_ = len(__A ) UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )] for chain_length in range(2 , __A ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ = a + chain_length - 1 UpperCAmelCase_ = sys.maxsize for c in range(__A , __A ): UpperCAmelCase_ = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ = cost UpperCAmelCase_ = c return matrix, sol def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]: """simple docstring""" if i == j: print('''A''' + str(__A ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(__A , __A , optimal_solution[i][j] ) print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A ) print(''')''' , end=''' ''' ) def A () -> List[str]: """simple docstring""" UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ = len(__A ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__A , 1 , n - 1 ) if __name__ == "__main__": main()
7
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase_ ( lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] =VideoToVideoSDPipeline UpperCamelCase_ : Dict =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} UpperCamelCase_ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} UpperCamelCase_ : str =PipelineTesterMixin.required_optional_params - {'latents'} UpperCamelCase_ : List[str] =False # No `output_type`. UpperCamelCase_ : List[str] =frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) UpperCamelCase :Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase :str = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase :int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase :List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCamelCase :Union[str, Any] = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase :int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Tuple: # 3 frames UpperCamelCase :Union[str, Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): UpperCamelCase :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase :List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase :List[str] = self.get_dummy_components() UpperCamelCase :Any = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = '''np''' UpperCamelCase :Optional[int] = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames UpperCamelCase :Optional[Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCamelCase :List[str] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase ( self ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=5e-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def UpperCAmelCase ( self ) -> Any: pass def UpperCAmelCase ( self ) -> Tuple: return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Union[str, Any] = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase :str = torch.randn((1, 10, 3, 1024, 576) , generator=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = video.to('''cuda''' ) UpperCamelCase :int = '''Spiderman is surfing''' UpperCamelCase :Optional[int] = pipe(SCREAMING_SNAKE_CASE_ , video=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=3 , output_type='''pt''' ).frames UpperCamelCase :Tuple = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
259
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = """https://openaipublic.azureedge.net/jukebox/models/""" __snake_case = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ): if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :int = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Union[str, Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: UpperCamelCase :Optional[int] = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: UpperCamelCase :Any = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: UpperCamelCase :int = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase :Any = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: UpperCamelCase :str = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Optional[int] = {} import re UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :str = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[int] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Optional[Any] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase :int = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase :Tuple = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[Any] = regex_match.groups() UpperCamelCase :Any = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase :Any = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' UpperCamelCase :List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = prefix + resnet_block UpperCamelCase :str = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :int = regex_match.groups() UpperCamelCase :int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' UpperCamelCase :str = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :Union[str, Any] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase :Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' UpperCamelCase :Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Optional[int] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = regex_match.groups() UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Optional[Any] = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = regex_match.groups() UpperCamelCase :str = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' UpperCamelCase :int = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = regex_match.groups() UpperCamelCase :Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase :int = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' UpperCamelCase :List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' UpperCamelCase :Any = prefix + resnet_block UpperCamelCase :Dict = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :List[str] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = regex_match.groups() UpperCamelCase :Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' UpperCamelCase :Any = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # keep original key else: UpperCamelCase :List[str] = original_key UpperCamelCase :Any = replace_key(SCREAMING_SNAKE_CASE__ ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: UpperCamelCase :Union[str, Any] = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) UpperCamelCase :List[Any] = original_key UpperCamelCase :Any = original_key UpperCamelCase :Optional[int] = value return new_dict @torch.no_grad() def _A ( SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=None ): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ): UpperCamelCase :Dict = requests.get(F'''{PREFIX}{file}''' , allow_redirects=SCREAMING_SNAKE_CASE__ ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=SCREAMING_SNAKE_CASE__ ) open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content ) UpperCamelCase :Optional[int] = MODEL_MAPPING[model_name.split('''/''' )[-1]] UpperCamelCase :Any = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = JukeboxModel(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Dict = [] UpperCamelCase :List[Any] = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :int = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model'''] UpperCamelCase :Tuple = {} for k in old_dic.keys(): if k.endswith('''.b''' ): UpperCamelCase :Optional[int] = old_dic[k] elif k.endswith('''.w''' ): UpperCamelCase :Optional[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase :Optional[Any] = old_dic[k] else: UpperCamelCase :Any = old_dic[k] UpperCamelCase :Any = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' UpperCamelCase :Dict = fix_jukebox_keys(SCREAMING_SNAKE_CASE__ , model.state_dict() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) weight_dict.append(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) return weight_dict if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) __snake_case = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
259
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
231
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Union[str, Any] = """▁""" _lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""} _lowerCamelCase : str = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } _lowerCamelCase : List[str] = { """google/pegasus-xsum""": 512, } _lowerCamelCase : int = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__): raise TypeError( f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is""" f""" {type(UpperCAmelCase__)}""") A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1) ] if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""") A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)] A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) A__ = mask_token_sent A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCAmelCase__) # add special tokens to encoder dict A__ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, }) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)}) A__ = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int: '''simple docstring''' return len(self.sp_model) + self.offset def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) ->Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]: '''simple docstring''' return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ = self.sp_model.piece_to_id(UpperCAmelCase__) return sp_id + self.offset def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ = self.sp_model.IdToPiece(index - self.offset) return token def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' A__ = [] A__ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCAmelCase__) + token A__ = [] else: current_sub_tokens.append(UpperCAmelCase__) out_string += self.sp_model.decode(UpperCAmelCase__) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase__) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase__) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a) + [1] def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCAmelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCAmelCase__ , '''wb''') as fi: A__ = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__) return (out_vocab_file,)
231
1
def A ( _SCREAMING_SNAKE_CASE ) -> int: assert ( isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 lowerCamelCase , lowerCamelCase : Dict = 1, 1 for _ in range(number_of_steps - 1 ): lowerCamelCase , lowerCamelCase : Optional[Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
48
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE__ : int = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE__ : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) SCREAMING_SNAKE_CASE__ : Dict = 0 SCREAMING_SNAKE_CASE__ : Tuple = 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 2 SCREAMING_SNAKE_CASE__ : List[str] = 3 SCREAMING_SNAKE_CASE__ : Optional[int] = 4 class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Dict = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = """left""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<eop>", "<eod>"] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCamelCase : Any = 3 lowerCamelCase : Optional[Any] = do_lower_case lowerCamelCase : List[Any] = remove_space lowerCamelCase : str = keep_accents lowerCamelCase : List[Any] = vocab_file lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def _lowercase ( self ) -> Optional[Any]: return len(self.sp_model ) def _lowercase ( self ) -> Optional[int]: lowerCamelCase : int = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowerCamelCase : Optional[int] = self.__dict__.copy() lowerCamelCase : Union[str, Any] = None return state def __setstate__( self , UpperCamelCase__ ) -> int: lowerCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : Any = {} lowerCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , UpperCamelCase__ ) -> Any: if self.remove_space: lowerCamelCase : Dict = " ".join(inputs.strip().split() ) else: lowerCamelCase : Union[str, Any] = inputs lowerCamelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase : Optional[int] = unicodedata.normalize("NFKD" , UpperCamelCase__ ) lowerCamelCase : List[Any] = "".join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: lowerCamelCase : List[str] = outputs.lower() return outputs def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Optional[Any] = self.preprocess_text(UpperCamelCase__ ) lowerCamelCase : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) lowerCamelCase : Dict = [] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase : Union[str, Any] = cur_pieces[1:] else: lowerCamelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def _lowercase ( self , UpperCamelCase__ ) -> int: return self.sp_model.PieceToId(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> Tuple: return self.sp_model.IdToPiece(UpperCamelCase__ ) def _lowercase ( self , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip() return out_string def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> str: lowerCamelCase : Optional[int] = kwargs.pop("use_source_tokenizer" , UpperCamelCase__ ) lowerCamelCase : Optional[int] = self.convert_ids_to_tokens(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase : Any = [] lowerCamelCase : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) lowerCamelCase : int = [] sub_texts.append(UpperCamelCase__ ) else: current_sub_text.append(UpperCamelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ) lowerCamelCase : Tuple = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase : int = self.clean_up_tokenization(UpperCamelCase__ ) return clean_text else: return text def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : str = [self.sep_token_id] lowerCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] return ([0] * len(UpperCamelCase__ )) + [1, 1] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : Any = [self.sep_token_id] lowerCamelCase : List[str] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
48
1
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = (UnCLIPScheduler,) def _SCREAMING_SNAKE_CASE ( self: List[str] , **_SCREAMING_SNAKE_CASE: Dict) -> Tuple: """simple docstring""" __lowerCAmelCase : Tuple = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**_SCREAMING_SNAKE_CASE) return config def _SCREAMING_SNAKE_CASE ( self: str) -> str: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any) -> Any: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config(variance_type="fixed_small_log") __lowerCAmelCase : str = scheduler_class(**_SCREAMING_SNAKE_CASE) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.054_9625)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.999_4987)) < 1e-5 def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = self.scheduler_classes[0] __lowerCAmelCase : Optional[Any] = self.get_scheduler_config(variance_type="learned_range") __lowerCAmelCase : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=_SCREAMING_SNAKE_CASE) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_SCREAMING_SNAKE_CASE) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_SCREAMING_SNAKE_CASE) - -0.001_0011 < 1e-5 def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.scheduler_classes[0] __lowerCAmelCase : Tuple = self.get_scheduler_config() __lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = scheduler.timesteps __lowerCAmelCase : Dict = self.dummy_model() __lowerCAmelCase : str = self.dummy_sample_deter __lowerCAmelCase : str = torch.manual_seed(0) for i, t in enumerate(_SCREAMING_SNAKE_CASE): # 1. predict noise residual __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : str = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE).prev_sample __lowerCAmelCase : List[Any] = pred_prev_sample __lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 252.268_2495) < 1e-2 assert abs(result_mean.item() - 0.328_4743) < 1e-3 def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[int]: """simple docstring""" __lowerCAmelCase : str = self.scheduler_classes[0] __lowerCAmelCase : str = self.get_scheduler_config() __lowerCAmelCase : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE) scheduler.set_timesteps(25) __lowerCAmelCase : Optional[Any] = scheduler.timesteps __lowerCAmelCase : int = self.dummy_model() __lowerCAmelCase : Dict = self.dummy_sample_deter __lowerCAmelCase : int = torch.manual_seed(0) for i, t in enumerate(_SCREAMING_SNAKE_CASE): # 1. predict noise residual __lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) if i + 1 == timesteps.shape[0]: __lowerCAmelCase : List[Any] = None else: __lowerCAmelCase : Dict = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCAmelCase : str = scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE).prev_sample __lowerCAmelCase : List[Any] = pred_prev_sample __lowerCAmelCase : str = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE)) __lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 258.204_4983) < 1e-2 assert abs(result_mean.item() - 0.336_2038) < 1e-3 def _SCREAMING_SNAKE_CASE ( self: Dict) -> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]: """simple docstring""" pass
58
"""simple docstring""" from math import pi def _lowercase ( __snake_case ,__snake_case ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
58
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase_ = random.Random() def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: int=1.0 , __UpperCAmelCase: Dict=None , __UpperCAmelCase: int=None ) -> Any: if rng is None: UpperCamelCase__ : Optional[int] = global_rng UpperCamelCase__ : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=7, __magic_name__=400, __magic_name__=2000, __magic_name__=1, __magic_name__=0.0, __magic_name__=16000, __magic_name__=True, __magic_name__=True, ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : Any = min_seq_length UpperCamelCase__ : Union[str, Any] = max_seq_length UpperCamelCase__ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ : Union[str, Any] = feature_size UpperCamelCase__ : Optional[int] = padding_value UpperCamelCase__ : str = sampling_rate UpperCamelCase__ : Tuple = return_attention_mask UpperCamelCase__ : Tuple = do_normalize def UpperCamelCase__ ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self, __magic_name__=False, __magic_name__=False ) -> str: """simple docstring""" def _flatten(__magic_name__ ): return list(itertools.chain(*__magic_name__ ) ) if equal_length: UpperCamelCase__ : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase__ : str = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ : List[Any] = [np.asarray(__magic_name__ ) for x in speech_inputs] return speech_inputs class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : List[str] = WavaVecaFeatureExtractor def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase__ ( self, __magic_name__ ) -> int: """simple docstring""" self.assertTrue(np.all(np.mean(__magic_name__, axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__magic_name__, axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase__ : int = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values UpperCamelCase__ : Dict = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__magic_name__, __magic_name__, atol=1E-3 ) ) # Test batched UpperCamelCase__ : Dict = feat_extract(__magic_name__, return_tensors='''np''' ).input_values UpperCamelCase__ : List[Any] = feat_extract(__magic_name__, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__magic_name__, __magic_name__ ): self.assertTrue(np.allclose(__magic_name__, __magic_name__, atol=1E-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ : Optional[Any] = np.asarray(__magic_name__ ) UpperCamelCase__ : List[str] = feat_extract(__magic_name__, return_tensors='''np''' ).input_values UpperCamelCase__ : List[Any] = feat_extract(__magic_name__, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__magic_name__, __magic_name__ ): self.assertTrue(np.allclose(__magic_name__, __magic_name__, atol=1E-3 ) ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : Dict = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCamelCase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(__magic_name__, __magic_name__ ): UpperCamelCase__ : List[Any] = feat_extract(__magic_name__, padding=__magic_name__, max_length=__magic_name__, return_tensors='''np''' ) UpperCamelCase__ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ : List[str] = range(800, 1400, 200 ) UpperCamelCase__ : List[Any] = [floats_list((1, x) )[0] for x in lengths] UpperCamelCase__ : Optional[int] = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCamelCase__ : str = [None, 1600, None] for max_length, padding in zip(__magic_name__, __magic_name__ ): UpperCamelCase__ : Tuple = feat_extract(__magic_name__, max_length=__magic_name__, padding=__magic_name__ ) UpperCamelCase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : Any = feat_extract( __magic_name__, truncation=__magic_name__, max_length=1000, padding='''max_length''', return_tensors='''np''' ) UpperCamelCase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : int = feat_extract( __magic_name__, truncation=__magic_name__, max_length=1000, padding='''longest''', return_tensors='''np''' ) UpperCamelCase__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ : Tuple = feat_extract( __magic_name__, truncation=__magic_name__, max_length=2000, padding='''longest''', return_tensors='''np''' ) UpperCamelCase__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" import torch UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ : List[Any] = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase__ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ : Union[str, Any] = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase__ : List[str] = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase__ ( self ) -> str: """simple docstring""" # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: UpperCamelCase__ : int = WavaVecaConfig.from_pretrained(__magic_name__ ) UpperCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == '''layer''' )
201
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: List[Any]=0.999 , __UpperCAmelCase: Tuple="cosine" , ) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase: List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase: List[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) UpperCamelCase__ : Dict = [] for i in range(__UpperCAmelCase ): UpperCamelCase__ : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase__ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class lowercase__ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' a : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers] a : Union[str, Any] = 2 @register_to_config def __init__( self, __magic_name__ = 1000, __magic_name__ = 0.0_0085, __magic_name__ = 0.012, __magic_name__ = "linear", __magic_name__ = None, __magic_name__ = "epsilon", __magic_name__ = "linspace", __magic_name__ = 0, ) -> Tuple: """simple docstring""" if trained_betas is not None: UpperCamelCase__ : int = torch.tensor(__magic_name__, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase__ : Dict = torch.linspace(__magic_name__, __magic_name__, __magic_name__, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase__ : List[str] = ( torch.linspace(beta_start**0.5, beta_end**0.5, __magic_name__, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase__ : str = betas_for_alpha_bar(__magic_name__ ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) UpperCamelCase__ : Optional[int] = 1.0 - self.betas UpperCamelCase__ : List[Any] = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(__magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None ) -> str: """simple docstring""" if schedule_timesteps is None: UpperCamelCase__ : Dict = self.timesteps UpperCamelCase__ : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase__ : List[str] = 1 if len(__magic_name__ ) > 1 else 0 else: UpperCamelCase__ : List[Any] = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep UpperCamelCase__ : int = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase__ ( self, __magic_name__, __magic_name__, ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase__ : Tuple = self.index_for_timestep(__magic_name__ ) if self.state_in_first_order: UpperCamelCase__ : str = self.sigmas[step_index] else: UpperCamelCase__ : Optional[int] = self.sigmas_interpol[step_index] UpperCamelCase__ : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, ) -> str: """simple docstring""" UpperCamelCase__ : Dict = num_inference_steps UpperCamelCase__ : Tuple = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase__ : Union[str, Any] = np.linspace(0, num_train_timesteps - 1, __magic_name__, dtype=__magic_name__ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase__ : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ : List[str] = (np.arange(0, __magic_name__ ) * step_ratio).round()[::-1].copy().astype(__magic_name__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase__ : Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase__ : List[str] = (np.arange(__magic_name__, 0, -step_ratio )).round().copy().astype(__magic_name__ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) UpperCamelCase__ : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase__ : Optional[Any] = torch.from_numpy(np.log(__magic_name__ ) ).to(__magic_name__ ) UpperCamelCase__ : Any = np.interp(__magic_name__, np.arange(0, len(__magic_name__ ) ), __magic_name__ ) UpperCamelCase__ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase__ : Any = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ ) # interpolate sigmas UpperCamelCase__ : int = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase__ : List[str] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase__ : str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__magic_name__ ).startswith('''mps''' ): # mps does not support float64 UpperCamelCase__ : Optional[Any] = torch.from_numpy(__magic_name__ ).to(__magic_name__, dtype=torch.floataa ) else: UpperCamelCase__ : List[Any] = torch.from_numpy(__magic_name__ ).to(__magic_name__ ) # interpolate timesteps UpperCamelCase__ : str = self.sigma_to_t(__magic_name__ ).to(__magic_name__, dtype=timesteps.dtype ) UpperCamelCase__ : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase__ : Optional[int] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase__ : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase__ : Dict = defaultdict(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[Any]: """simple docstring""" # get log sigma UpperCamelCase__ : Any = sigma.log() # get distribution UpperCamelCase__ : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase__ : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase__ : Optional[Any] = low_idx + 1 UpperCamelCase__ : str = self.log_sigmas[low_idx] UpperCamelCase__ : int = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase__ : List[Any] = (low - log_sigma) / (low - high) UpperCamelCase__ : str = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase__ : Tuple = (1 - w) * low_idx + w * high_idx UpperCamelCase__ : int = t.view(sigma.shape ) return t @property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return self.sample is None def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = True, ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" UpperCamelCase__ : List[str] = self.index_for_timestep(__magic_name__ ) # advance index counter by 1 UpperCamelCase__ : int = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase__ : Optional[Any] = self.sigmas[step_index] UpperCamelCase__ : Union[str, Any] = self.sigmas_interpol[step_index + 1] UpperCamelCase__ : List[Any] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase__ : Tuple = self.sigmas[step_index - 1] UpperCamelCase__ : Tuple = self.sigmas_interpol[step_index] UpperCamelCase__ : Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase__ : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase__ : List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase__ : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase__ : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase__ : List[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase__ : List[str] = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase__ : Dict = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase__ : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase__ : Union[str, Any] = sigma_next - sigma_hat UpperCamelCase__ : Union[str, Any] = self.sample UpperCamelCase__ : Dict = None UpperCamelCase__ : Optional[int] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, ) -> torch.FloatTensor: """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase__ : List[str] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__magic_name__ ): # mps does not support float64 UpperCamelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase__ : Tuple = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase__ : str = self.timesteps.to(original_samples.device ) UpperCamelCase__ : int = timesteps.to(original_samples.device ) UpperCamelCase__ : Any = [self.index_for_timestep(__magic_name__, __magic_name__ ) for t in timesteps] UpperCamelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase__ : int = sigma.unsqueeze(-1 ) UpperCamelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Any: """simple docstring""" return self.config.num_train_timesteps
201
1
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''BridgeTowerImageProcessor''' __UpperCamelCase = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self :int , snake_case :Dict , snake_case :List[Any] ): '''simple docstring''' super().__init__(_a , _a ) def __call__( self :Dict , snake_case :Optional[int] , snake_case :str = None , snake_case :Tuple = True , snake_case :Tuple = False , snake_case :Union[str, Any] = None , snake_case :Union[str, Any] = None , snake_case :List[Any] = 0 , snake_case :List[str] = None , snake_case :Any = None , snake_case :Tuple = None , snake_case :int = False , snake_case :Union[str, Any] = False , snake_case :Union[str, Any] = False , snake_case :Dict = False , snake_case :List[str] = True , snake_case :Optional[int] = None , **snake_case :Optional[Any] , ): '''simple docstring''' A_ : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel_values + pixel_mask A_ : List[str] = self.image_processor( _a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a ) encoding.update(_a ) return encoding def SCREAMING_SNAKE_CASE ( self :int , *snake_case :Optional[int] , **snake_case :Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*_a , **_a ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , *snake_case :Optional[Any] , **snake_case :Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*_a , **_a ) @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Dict = self.tokenizer.model_input_names A_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
369
from math import pi, sqrt def __snake_case ( _lowerCAmelCase : float ) -> float: if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(_lowerCAmelCase ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(_lowerCAmelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __snake_case ( ) -> None: assert gamma(0.5 ) == sqrt(_lowerCAmelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase : List[str] = 1.0 while num: _lowerCAmelCase : List[str] = float(input('''Gamma of: ''')) print(F'''gamma({num}) = {gamma(num)}''') print('''\nEnter 0 to exit...''')
70
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase_ : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowercase_ : Optional[int]): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : List[str] = torchvision.models.resnetaaa(pretrained=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = list(model.children())[:-2] SCREAMING_SNAKE_CASE_ : List[Any] = nn.Sequential(*lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.pool(self.model(lowercase_)) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.flatten(lowercase_ , start_dim=2) SCREAMING_SNAKE_CASE_ : Dict = out.transpose(1 , 2).contiguous() return out # BxNx2048 class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [json.loads(lowercase_) for l in open(lowercase_)] SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.dirname(lowercase_) SCREAMING_SNAKE_CASE_ : int = tokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels SCREAMING_SNAKE_CASE_ : List[str] = len(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = max_seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = transforms def __len__( self : List[Any]): '''simple docstring''' return len(self.data) def __getitem__( self : Optional[Any] , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowercase_)) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE_ : Any = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros(self.n_classes) SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''])).convert('''RGB''') SCREAMING_SNAKE_CASE_ : Tuple = self.transforms(lowercase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = Counter() for row in self.data: label_freqs.update(row['''label''']) return label_freqs def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [len(row['''sentence'''] ) for row in batch] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = len(__a ), max(__a ) SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros(__a , __a , dtype=torch.long ) SCREAMING_SNAKE_CASE_ : Dict = torch.zeros(__a , __a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__a , __a ) ): SCREAMING_SNAKE_CASE_ : Any = input_row['''sentence'''] SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : Dict = torch.stack([row['''image'''] for row in batch] ) SCREAMING_SNAKE_CASE_ : Dict = torch.stack([row['''label'''] for row in batch] ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.stack([row['''image_start_token'''] for row in batch] ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _A () -> Tuple: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _A () -> List[str]: """simple docstring""" return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
91
"""simple docstring""" def lowercase__( __SCREAMING_SNAKE_CASE : list ): if len(__SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(__SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool: lowercase_ : Any = False if low == high: return swapped lowercase_ : str = low lowercase_ : int = high while left < right: if collection[left] > collection[right]: lowercase_ , lowercase_ : Optional[Any] = ( collection[right], collection[left], ) lowercase_ : Tuple = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowercase_ , lowercase_ : Dict = ( collection[right + 1], collection[left], ) lowercase_ : str = True lowercase_ : Optional[Any] = low + int((high - low) / 2 ) lowercase_ : str = circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = circle_sort_util(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap lowercase_ : Dict = True while is_not_sorted is True: lowercase_ : Optional[Any] = circle_sort_util(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": __SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip() __SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
213
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase : Any = logging.getLogger() def snake_case_ ( ): __lowercase : str = argparse.ArgumentParser() parser.add_argument("""-f""" ) __lowercase : Optional[Any] = parser.parse_args() return args.f class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> None: """simple docstring""" __lowercase : Union[str, Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) def lowerCAmelCase ( self : List[Any] , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(__a , """argv""" , __a ): __lowercase : Dict = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__a , 0.666 ) @slow @require_torch_non_multi_gpu def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : int = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(__a ) __lowercase : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(__a ) __lowercase : str = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(__a )
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowercase : List[Any] = logging.get_logger(__name__) __lowercase : str = '''▁''' __lowercase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowercase : List[Any] = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __lowercase : Any = { '''facebook/xglm-564M''': 2048, } class __lowercase ( _lowercase ): lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = ["input_ids", "attention_mask"] def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A = None , **A , ): lowerCamelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowerCamelCase_ : List[Any] = 7 lowerCamelCase_ : Union[str, Any] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowerCamelCase_ : Union[str, Any] = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowerCamelCase_ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ : str = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowerCamelCase_ : Union[str, Any] = len(self.sp_model ) lowerCamelCase_ : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(A ) lowerCamelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): lowerCamelCase_ : str = self.__dict__.copy() lowerCamelCase_ : List[Any] = None lowerCamelCase_ : int = self.sp_model.serialized_model_proto() return state def __setstate__(self , A ): lowerCamelCase_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ : List[Any] = {} lowerCamelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ (self , A , A = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowerCamelCase_ : List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase__ (self ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ (self , A ): return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase__ (self , A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : List[str] = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ (self , A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[Any] = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowerCamelCase_ : Dict = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
318
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : list[int] ) -> int: '''simple docstring''' if not nums: return 0 _UpperCAmelCase = nums[0] _UpperCAmelCase = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase = ( max_excluding + num, max(__lowercase , __lowercase ), ) return max(__lowercase , __lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
156
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A_ : def __init__( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=1_3 , snake_case_ : List[Any]=1_0 , snake_case_ : Tuple=3 , snake_case_ : Tuple=2 , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=2 , snake_case_ : Optional[Any]=True , snake_case_ : Union[str, Any]=True , snake_case_ : List[Any]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=4 , snake_case_ : int=3_7 , snake_case_ : str="gelu" , snake_case_ : str=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[Any]=1_0 , snake_case_ : List[str]=0.0_2 , snake_case_ : int=0.9 , snake_case_ : List[Any]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = tubelet_size _UpperCAmelCase = num_frames _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = mask_ratio _UpperCAmelCase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _UpperCAmelCase = int(mask_ratio * self.seq_length ) def lowercase ( self : Tuple ): _UpperCAmelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Optional[int] ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowercase ( self : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : str ): _UpperCAmelCase = VideoMAEModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Tuple ): _UpperCAmelCase = VideoMAEForPreTraining(snake_case_ ) model.to(snake_case_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.batch_size , -1 ).bool() _UpperCAmelCase = model(snake_case_ , snake_case_ ) # model only returns predictions for masked patches _UpperCAmelCase = mask.sum().item() _UpperCAmelCase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowercase ( self : Dict ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : Any = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _lowerCamelCase : List[Any] = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Any = False _lowerCamelCase : str = False _lowerCamelCase : str = False def lowercase ( self : List[str] ): _UpperCAmelCase = VideoMAEModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def lowercase ( self : Any , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any]=False ): _UpperCAmelCase = copy.deepcopy(snake_case_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _UpperCAmelCase = torch.ones((self.model_tester.num_masks,) ) _UpperCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _UpperCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool() _UpperCAmelCase = bool_masked_pos.to(snake_case_ ) if return_labels: if model_class in [ *get_values(snake_case_ ), ]: _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(snake_case_ ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) @slow def lowercase ( self : List[Any] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = VideoMAEModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase ( self : Tuple ): if not self.has_attentions: pass else: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True for model_class in self.all_model_classes: _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _UpperCAmelCase = len(snake_case_ ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 1 , len(snake_case_ ) ) _UpperCAmelCase = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowercase ( self : Tuple ): def check_hidden_states_output(snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict ): _UpperCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case_ ) , snake_case_ ) _UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks _UpperCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self : int ): pass def UpperCAmelCase_ ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) _UpperCAmelCase = np.load(__lowercase ) return list(__lowercase ) @require_torch @require_vision class A_ ( unittest.TestCase ): @cached_property def lowercase ( self : List[str] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowercase ( self : Tuple ): _UpperCAmelCase = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # verify the logits _UpperCAmelCase = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) _UpperCAmelCase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @slow def lowercase ( self : List[Any] ): _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(snake_case_ ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_video() _UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ ) # add boolean mask, indicating which patches to mask _UpperCAmelCase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) _UpperCAmelCase = torch.load(snake_case_ ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) # verify the logits _UpperCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) _UpperCAmelCase = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=snake_case_ ) self.assertEqual(outputs.logits.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _UpperCAmelCase = torch.tensor([0.5_1_4_2] , device=snake_case_ ) self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=snake_case_ ).to( snake_case_ ) with torch.no_grad(): _UpperCAmelCase = model(**snake_case_ ) _UpperCAmelCase = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=snake_case_ ) self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4 ) )
156
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase__ = TypeVar("""T""") class SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self : List[str] , __lowercase : T ): '''simple docstring''' __a = data __a = None def __str__( self : List[str] ): '''simple docstring''' return F"{self.data}" class SCREAMING_SNAKE_CASE ( Generic[T] ): def __init__( self : Union[str, Any] ): '''simple docstring''' __a = None def __iter__( self : List[str] ): '''simple docstring''' __a = self.top while node: yield node.data __a = node.next def __str__( self : Optional[Any] ): '''simple docstring''' return "->".join([str(__lowercase ) for item in self] ) def __len__( self : Any ): '''simple docstring''' return len(tuple(iter(self ) ) ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' return self.top is None def UpperCamelCase_ ( self : Tuple , __lowercase : T ): '''simple docstring''' __a = Node(__lowercase ) if not self.is_empty(): __a = self.top __a = node def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , __lowercase ) __a = self.top __a = self.top.next return pop_node.data def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = None if __name__ == "__main__": from doctest import testmod testmod()
302
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
1
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def _a ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
364
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : str = min_resolution UpperCamelCase__ : str = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20} UpperCamelCase__ : Optional[Any] = do_thumbnail UpperCamelCase__ : int = do_align_axis UpperCamelCase__ : List[Any] = do_pad UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Dict = image_mean UpperCamelCase__ : List[Any] = image_std def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __magic_name__ ( __lowerCAmelCase , unittest.TestCase): A: Tuple = DonutImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : str ) -> int: '''simple docstring''' UpperCamelCase__ : int = DonutImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' pass @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def UpperCAmelCase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
51
0
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = inspect.getfile(accelerate.test_utils ) lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] ) lowerCamelCase__ = ["""accelerate""", """launch"""] lowerCamelCase__ = Path.home() / """.cache/huggingface/accelerate""" lowerCamelCase__ = """default_config.yaml""" lowerCamelCase__ = config_folder / config_file lowerCamelCase__ = config_folder / """_default_config.yaml""" lowerCamelCase__ = Path("""tests/test_configs""" ) @classmethod def A ( cls : int ) -> Any: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def A ( cls : Dict ) -> Optional[int]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : Tuple = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def A ( self : Any ) -> Tuple: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def A ( self : str ) -> Optional[int]: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" lowerCamelCase__ = """test-tpu""" lowerCamelCase__ = """us-central1-a""" lowerCamelCase__ = """ls""" lowerCamelCase__ = ["""accelerate""", """tpu-config"""] lowerCamelCase__ = """cd /usr/share""" lowerCamelCase__ = """tests/test_samples/test_command_file.sh""" lowerCamelCase__ = """Running gcloud compute tpus tpu-vm ssh""" def A ( self : List[Any] ) -> Tuple: UpperCAmelCase : int = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def A ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def A ( self : str ) -> Optional[Any]: UpperCAmelCase : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : str ) -> Optional[int]: UpperCAmelCase : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , ) def A ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , __snake_case , ) def A ( self : Union[str, Any] ) -> Tuple: UpperCAmelCase : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : Tuple ) -> Any: UpperCAmelCase : int = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : int ) -> Any: UpperCAmelCase : Tuple = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__snake_case , ) self.assertIn( F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
23
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
301
0
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path __A : Dict = 'src/transformers' # Matches is_xxx_available() __A : int = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Optional[int] = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : Union[str, Any] = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : Dict = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : int = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : Optional[int] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Any = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : Optional[int] = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : Any = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : Optional[Any] = re.compile(r'^\s*try:') # Catches a line with else: __A : Union[str, Any] = re.compile(r'^\s*else:') def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' if _re_test_backend.search(a__ ) is None: return None snake_case_ : Tuple = [b[0] for b in _re_backend.findall(a__ )] backends.sort() return "_and_".join(a__ ) def UpperCAmelCase ( lowerCamelCase_ :List[Any] ): '''simple docstring''' with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case_ : List[str] = f.readlines() snake_case_ : Optional[Any] = 0 while line_index < len(a__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a__ ): return None # First grab the objects without a specific backend in _import_structure snake_case_ : str = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case_ : Union[str, Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a__ ): snake_case_ : Dict = _re_one_line_import_struct.search(a__ ).groups()[0] snake_case_ : str = re.findall("""\[([^\]]+)\]""" , a__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case_ : Optional[int] = _re_import_struct_key_value.search(a__ ) if single_line_import_search is not None: snake_case_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(a__ ) > 0] objects.extend(a__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case_ : Any = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case_ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case_ : Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(a__ ) is not None: objects.append(_re_import_struct_add_one.search(a__ ).groups()[0] ) elif _re_import_struct_add_many.search(a__ ) is not None: snake_case_ : Any = _re_import_struct_add_many.search(a__ ).groups()[0].split(""", """ ) snake_case_ : Any = [obj[1:-1] for obj in imports if len(a__ ) > 0] objects.extend(a__ ) elif _re_between_brackets.search(a__ ) is not None: snake_case_ : List[Any] = _re_between_brackets.search(a__ ).groups()[0].split(""", """ ) snake_case_ : Optional[int] = [obj[1:-1] for obj in imports if len(a__ ) > 0] objects.extend(a__ ) elif _re_quote_object.search(a__ ) is not None: objects.append(_re_quote_object.search(a__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case_ : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case_ : Optional[int] = [] while ( line_index < len(a__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case_ : str = lines[line_index] snake_case_ : str = _re_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case_ : Tuple = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(a__ ): # If the line is an if is_backend_available, we grab all objects associated. snake_case_ : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case_ : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case_ : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case_ : Optional[Any] = lines[line_index] snake_case_ : Union[str, Any] = _re_import.search(a__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case_ : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :str ): '''simple docstring''' def find_duplicates(lowerCamelCase_ :Any ): return [k for k, v in collections.Counter(a__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case_ : Tuple = [] for key in import_dict_objects.keys(): snake_case_ : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) snake_case_ : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case_ : Union[str, Any] = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : Any = [] for root, _, files in os.walk(a__ ): if "__init__.py" in files: snake_case_ : List[str] = os.path.join(a__ , """__init__.py""" ) snake_case_ : int = parse_init(a__ ) if objects is not None: snake_case_ : Optional[int] = analyze_results(*a__ ) if len(a__ ) > 0: snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(a__ ) ) if len(a__ ) > 0: raise ValueError("""\n\n""".join(a__ ) ) def UpperCAmelCase ( ): '''simple docstring''' snake_case_ : str = [] for path, directories, files in os.walk(a__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(a__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a__ ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case_ : Any = str((Path(a__ ) / folder).relative_to(a__ ) ) snake_case_ : Any = short_path.replace(os.path.sep , """.""" ) submodules.append(a__ ) for fname in files: if fname == "__init__.py": continue snake_case_ : int = str((Path(a__ ) / fname).relative_to(a__ ) ) snake_case_ : Optional[int] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(a__ ) return submodules __A : Union[str, Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def UpperCAmelCase ( ): '''simple docstring''' # This is to make sure the transformers module imported is the one in the repo. snake_case_ : Union[str, Any] = importlib.util.spec_from_file_location( """transformers""" , os.path.join(a__ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) snake_case_ : Optional[int] = spec.loader.load_module() snake_case_ : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a__ ) > 0: snake_case_ : Any = """\n""".join(F'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : str = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class __UpperCamelCase ( lowercase__ ): lowercase : List[Any] = 'canine' def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : Optional[int] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : str = hidden_act snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Optional[Any] = initializer_range snake_case_ : Optional[int] = type_vocab_size snake_case_ : List[str] = layer_norm_eps # Character config: snake_case_ : Any = downsampling_rate snake_case_ : List[str] = upsampling_kernel_size snake_case_ : int = num_hash_functions snake_case_ : Tuple = num_hash_buckets snake_case_ : Tuple = local_transformer_stride
8
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowercase_ = logging.get_logger(__name__) class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str,*lowercase_ : Union[str, Any],**lowercase_ : Union[str, Any] )-> None: '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.',lowercase_,) super().__init__(*lowercase_,**lowercase_ )
7
class A : """simple docstring""" def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]: '''simple docstring''' A__ = name A__ = value A__ = weight def __repr__( self : int )-> Tuple: '''simple docstring''' return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})' def snake_case__ ( self : Any )-> str: '''simple docstring''' return self.value def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' return self.name def snake_case__ ( self : Any )-> Dict: '''simple docstring''' return self.weight def snake_case__ ( self : Union[str, Any] )-> Optional[Any]: '''simple docstring''' return self.value / self.weight def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any: '''simple docstring''' A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ) A__ = [] A__ , A__ = 0.0, 0.0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def _snake_case( ) -> Any: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
7
1
"""simple docstring""" def _snake_case ( lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(lowercase__ , x % y ) def _snake_case ( lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(lowercase__ , lowercase__ ) def _snake_case ( lowercase__ : int = 2_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :Tuple = 1 for i in range(1 , n + 1 ): lowerCAmelCase_ :Dict = lcm(lowercase__ , lowercase__ ) return g if __name__ == "__main__": print(F"""{solution() = }""")
1
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ :str = values[index] + knapsack( lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : int = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ["PoolFormerFeatureExtractor"] A : List[str] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
57
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a=None , __a=True , __a=None , **__a ): __lowerCAmelCase = parent __lowerCAmelCase = config_class __lowerCAmelCase = has_text_modality __lowerCAmelCase = kwargs __lowerCAmelCase = common_properties def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(__a , __a ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(__a ): try: setattr(__a , __a , __a ) self.parent.assertEqual( getattr(__a , __a ) , __a , msg=f"`{name} value {idx} expected, but was {getattr(__a , __a )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(__a ): try: __lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(__a , __a ) , __a , msg=f"`{name} value {idx} expected, but was {getattr(__a , __a )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , __a ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__a , "config.json" ) config_first.to_json_file(__a ) __lowerCAmelCase = self.config_class.from_json_file(__a ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(__a ) __lowerCAmelCase = self.config_class.from_pretrained(__a ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = "test" with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(__a , __a ) config_first.save_pretrained(__a ) __lowerCAmelCase = self.config_class.from_pretrained(__a , subfolder=__a ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def snake_case ( self ): __lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def snake_case ( self ): if self.config_class.is_composition: return __lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(__a ) def snake_case ( self ): __lowerCAmelCase = copy.deepcopy(__a ) __lowerCAmelCase = self.config_class(**__a ) __lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(__a , __a ) != value: wrong_values.append((key, getattr(__a , __a ), value) ) if len(__a ) > 0: __lowerCAmelCase = "\n".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def snake_case ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
57
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=10 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[1, 1, 2, 1] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=3 , lowerCAmelCase__=None , ) -> List[str]: '''simple docstring''' lowercase__: List[Any] = parent lowercase__: Dict = batch_size lowercase__: Dict = image_size lowercase__: Optional[Any] = num_channels lowercase__: List[Any] = embeddings_size lowercase__: Any = hidden_sizes lowercase__: Any = depths lowercase__: int = is_training lowercase__: Union[str, Any] = use_labels lowercase__: Dict = hidden_act lowercase__: Optional[Any] = num_labels lowercase__: Optional[Any] = scope lowercase__: int = len(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: Optional[int] = None if self.use_labels: lowercase__: Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase__: str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: Dict = TFResNetModel(config=lowerCAmelCase__ ) lowercase__: Optional[Any] = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: int = self.num_labels lowercase__: Dict = TFResNetForImageClassification(lowerCAmelCase__ ) lowercase__: Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__: Optional[Any] = config_and_inputs lowercase__: Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __a ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): __lowercase : Dict = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowercase : Optional[Any] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __lowercase : Any = False __lowercase : Optional[Any] = False __lowercase : Optional[Any] = False __lowercase : Tuple = False __lowercase : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: int = TFResNetModelTester(self ) lowercase__: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__ , lowercase__: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Optional[Any] = model_class(lowerCAmelCase__ ) lowercase__: Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: Any = [*signature.parameters.keys()] lowercase__: Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Dict = model_class(lowerCAmelCase__ ) lowercase__: Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase__: Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__: Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: List[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__: Optional[Any] = layer_type lowercase__: Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__: Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__: Any = TFResNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def snake_case_ ( ) -> List[Any]: lowercase__: List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__: int = self.default_image_processor lowercase__: Any = prepare_img() lowercase__: List[str] = image_processor(images=lowerCAmelCase__ , return_tensors='tf' ) # forward pass lowercase__: List[Any] = model(**lowerCAmelCase__ ) # verify the logits lowercase__: Optional[int] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase__: str = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1E-4 ) )
288
def snake_case_ ( snake_case ) -> list[int]: lowercase__: Dict = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer lowercase__ , lowercase__: Union[str, Any] = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: lowercase__: List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowercase__: List[str] = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowercase__ , lowercase__: List[Any] = i, i + z_result[i] - 1 return z_result def snake_case_ ( snake_case , snake_case , snake_case ) -> bool: return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowercase__: Any = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
288
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __a , unittest.TestCase ): _lowercase =DanceDiffusionPipeline _lowercase =UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowercase =PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } _lowercase =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowercase =False _lowercase =False def __a ( self ) -> str: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) lowerCAmelCase_ = IPNDMScheduler() lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, } return components def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Optional[int]: if str(_UpperCamelCase ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase_ = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def __a ( self ) -> Tuple: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = DanceDiffusionPipeline(**_UpperCamelCase ) lowerCAmelCase_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase_ = self.get_dummy_inputs(_UpperCamelCase ) lowerCAmelCase_ = pipe(**_UpperCamelCase ) lowerCAmelCase_ = output.audios lowerCAmelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase_ = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __a ( self ) -> List[str]: return super().test_save_load_local() @skip_mps def __a ( self ) -> Union[str, Any]: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __a ( self ) -> str: return super().test_save_load_optional_components() @skip_mps def __a ( self ) -> Dict: return super().test_attention_slicing_forward_pass() def __a ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Tuple: lowerCAmelCase_ = torch_device lowerCAmelCase_ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowerCAmelCase_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) lowerCAmelCase_ = output.audios lowerCAmelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase_ = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self ) -> List[str]: lowerCAmelCase_ = torch_device lowerCAmelCase_ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 ) lowerCAmelCase_ = output.audios lowerCAmelCase_ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase_ = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
231
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ) -> Union[str, Any]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_stages lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = depths lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = num_labels lowerCAmelCase_ = initializer_range lowerCAmelCase_ = out_features lowerCAmelCase_ = out_indices lowerCAmelCase_ = scope def __a ( self ) -> Optional[int]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[str]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: lowerCAmelCase_ = ConvNextVaModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: lowerCAmelCase_ = ConvNextVaForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase_ = None lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase_ = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __a ( self ) -> Any: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict def __a ( self ) -> str: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _lowerCAmelCase ( __a , __a , unittest.TestCase ): _lowercase =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowercase =( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowercase =False _lowercase =False _lowercase =False _lowercase =False _lowercase =False def __a ( self ) -> Tuple: lowerCAmelCase_ = ConvNextVaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __a ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self ) -> Any: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def __a ( self ) -> List[Any]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def __a ( self ) -> int: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def __a ( self ) -> str: pass def __a ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase_ = True if model_class.__name__ in [ *get_values(_UpperCamelCase ), *get_values(_UpperCamelCase ), ]: continue lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.train() lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowerCAmelCase_ = model(**_UpperCamelCase ).loss loss.backward() def __a ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels() lowerCAmelCase_ = False lowerCAmelCase_ = True if ( model_class.__name__ in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.gradient_checkpointing_enable() model.train() lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) lowerCAmelCase_ = model(**_UpperCamelCase ).loss loss.backward() def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_UpperCamelCase ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __a ( self ) -> List[Any]: def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def __a ( self ) -> Optional[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = ConvNextVaModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def __a ( self ) -> int: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_UpperCamelCase ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = preprocessor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**_UpperCamelCase ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) lowerCAmelCase_ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
231
1
from math import ceil def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] = 1001 ) -> Dict: UpperCAmelCase_ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ = 2 * i + 1 UpperCAmelCase_ = 2 * i UpperCAmelCase_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _lowerCamelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
359
from __future__ import annotations _lowerCamelCase = list[list[int]] # assigning initial values to the grid _lowerCamelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution _lowerCamelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None: if location := find_empty_location(__UpperCamelCase ): UpperCAmelCase_ , UpperCAmelCase_ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCAmelCase_ = digit if sudoku(__UpperCamelCase ) is not None: return grid UpperCAmelCase_ = 0 return None def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None: for row in grid: for cell in row: print(__UpperCamelCase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') _lowerCamelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
177
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __UpperCamelCase =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =do_normalize __UpperCamelCase =image_mean __UpperCamelCase =image_std __UpperCamelCase =do_rescale __UpperCamelCase =rescale_factor __UpperCamelCase =do_pad def _a ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a ( self , A_ , A_=False ) -> Optional[int]: if not batched: __UpperCamelCase =image_inputs[0] if isinstance(A_ , Image.Image ): __UpperCamelCase , __UpperCamelCase =image.size else: __UpperCamelCase , __UpperCamelCase =image.shape[1], image.shape[2] if w < h: __UpperCamelCase =int(self.size['shortest_edge'] * h / w ) __UpperCamelCase =self.size['shortest_edge'] elif w > h: __UpperCamelCase =self.size['shortest_edge'] __UpperCamelCase =int(self.size['shortest_edge'] * w / h ) else: __UpperCamelCase =self.size['shortest_edge'] __UpperCamelCase =self.size['shortest_edge'] else: __UpperCamelCase =[] for image in image_inputs: __UpperCamelCase , __UpperCamelCase =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCamelCase =max(A_ , key=lambda A_ : item[0] )[0] __UpperCamelCase =max(A_ , key=lambda A_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = DeformableDetrImageProcessor if is_vision_available() else None def _a ( self ) -> str: __UpperCamelCase =DeformableDetrImageProcessingTester(self ) @property def _a ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> int: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'do_rescale' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) def _a ( self ) -> str: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , A_ ) __UpperCamelCase =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , A_ ) def _a ( self ) -> Optional[int]: pass def _a ( self ) -> Tuple: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ , batched=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> Dict: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a ( self ) -> List[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values __UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _a ( self ) -> Optional[Any]: # prepare image and target __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __UpperCamelCase =json.loads(f.read() ) __UpperCamelCase ={'image_id': 39769, 'annotations': target} # encode them __UpperCamelCase =DeformableDetrImageProcessor() __UpperCamelCase =image_processing(images=A_ , annotations=A_ , return_tensors='pt' ) # verify pixel values __UpperCamelCase =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) __UpperCamelCase =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __UpperCamelCase =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes __UpperCamelCase =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) __UpperCamelCase =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1E-3 ) ) # verify image_id __UpperCamelCase =torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd __UpperCamelCase =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels __UpperCamelCase =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify orig_size __UpperCamelCase =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size __UpperCamelCase =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) ) @slow def _a ( self ) -> List[Any]: # prepare image, target and masks_path __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __UpperCamelCase =json.loads(f.read() ) __UpperCamelCase ={'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __UpperCamelCase =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __UpperCamelCase =DeformableDetrImageProcessor(format='coco_panoptic' ) __UpperCamelCase =image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='pt' ) # verify pixel values __UpperCamelCase =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , A_ ) __UpperCamelCase =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1E-4 ) ) # verify area __UpperCamelCase =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) ) # verify boxes __UpperCamelCase =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ ) __UpperCamelCase =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1E-3 ) ) # verify image_id __UpperCamelCase =torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) ) # verify is_crowd __UpperCamelCase =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) ) # verify class_labels __UpperCamelCase =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) ) # verify masks __UpperCamelCase =822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A_ ) # verify orig_size __UpperCamelCase =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) ) # verify size __UpperCamelCase =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
62
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] =logging.get_logger(__name__) A__ : Any =torch.device('''cpu''') def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = dct.pop(lowerCAmelCase ) _lowerCAmelCase = val def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for k in state_dict.keys(): _lowerCAmelCase = k if ".pwconv" in k: _lowerCAmelCase = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: _lowerCAmelCase = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: _lowerCAmelCase = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: _lowerCAmelCase = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: _lowerCAmelCase = k_new.split(""".""" ) if ls[2].isdigit(): _lowerCAmelCase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: _lowerCAmelCase = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _lowerCAmelCase = 10_00 _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _lowerCAmelCase = [3, 3, 6, 4] _lowerCAmelCase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": _lowerCAmelCase = [3, 3, 9, 6] _lowerCAmelCase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": _lowerCAmelCase = [4, 3, 10, 5] _lowerCAmelCase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": _lowerCAmelCase = [4, 4, 12, 6] _lowerCAmelCase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" , check_hash=lowerCAmelCase ) else: _lowerCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" ) _lowerCAmelCase = checkpoint _lowerCAmelCase = create_rename_keys(lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model _lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase ).eval() hf_model.load_state_dict(lowerCAmelCase ) # prepare test inputs _lowerCAmelCase = prepare_img() _lowerCAmelCase = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) _lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""pt""" ) # compare outputs from both models _lowerCAmelCase = get_expected_output(lowerCAmelCase ) _lowerCAmelCase = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , lowerCAmelCase , atol=1e-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') A__ : Tuple =parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
70
0
'''simple docstring''' snake_case__ : str = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
367
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase_ :int lowerCamelCase_ :int class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : list[list[Edge]] = [[] for _ in range(snake_case_ )] UpperCAmelCase_ : Any = size def __getitem__( self , snake_case_ ): '''simple docstring''' return iter(self._graph[vertex] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return self._size def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = deque([start_vertex] ) UpperCAmelCase_ : list[int | None] = [None] * self.size UpperCAmelCase_ : str = 0 while queue: UpperCAmelCase_ : Optional[int] = queue.popleft() UpperCAmelCase_ : List[str] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase_ : Union[str, Any] = current_distance + edge.weight UpperCAmelCase_ : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(snake_case_ , snake_case_ ) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase_ : Optional[Any] = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
274
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : int ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Optional[int] ) -> int: '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
296
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): @slow def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCamelCase : Any = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""] lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice. lowerCamelCase : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
287
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: snake_case_ = None snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } snake_case_ = { 'camembert-base': 512, } snake_case_ = '▁' class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Any = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = ['input_ids', 'attention_mask'] A_ : Dict = CamembertTokenizer def __init__(self : int , a__ : Tuple=None , a__ : Dict=None , a__ : Tuple="<s>" , a__ : Optional[int]="</s>" , a__ : Tuple="</s>" , a__ : Optional[Any]="<s>" , a__ : Dict="<unk>" , a__ : Optional[Any]="<pad>" , a__ : str="<mask>" , a__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **a__ : Optional[int] , ): """simple docstring""" __snake_case = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def a (self : str , a__ : Optional[Any] , a__ : str = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a (self : Optional[int] , a__ : int , a__ : Tuple = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a (self : List[str] , a__ : Optional[Any] , a__ : Optional[Any] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
371
import math def lowerCamelCase__ ( snake_case_ : int ) -> list[int]: __snake_case = [] __snake_case = 2 __snake_case = int(math.sqrt(snake_case_ ) ) # Size of every segment __snake_case = [True] * (end + 1) __snake_case = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): __snake_case = False start += 1 prime += in_prime __snake_case = end + 1 __snake_case = min(2 * end , snake_case_ ) while low <= n: __snake_case = [True] * (high - low + 1) for each in in_prime: __snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): __snake_case = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) __snake_case = high + 1 __snake_case = min(high + end , snake_case_ ) return prime print(sieve(10**6))
238
0
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : int ): snake_case_ : Dict = params snake_case_ : Union[str, Any] = np.array(lowercase_ ) snake_case_ : str = np.array([len(lowercase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Dict , lowercase_ : Union[str, Any] ): return (self.token_ids[index], self.lengths[index]) def __len__( self : List[Any] ): return len(self.lengths ) def _snake_case ( self : Tuple ): assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _snake_case ( self : Tuple ): snake_case_ : str = self.params.max_model_input_size snake_case_ : Dict = self.lengths > max_len logger.info(f"Splitting {sum(lowercase_ )} too long sequences." ) def divide_chunks(lowercase_ : Tuple , lowercase_ : Optional[Any] ): return [l[i : i + n] for i in range(0 , len(lowercase_ ) , lowercase_ )] snake_case_ : Tuple = [] snake_case_ : Any = [] if self.params.mlm: snake_case_, snake_case_ : Union[str, Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: snake_case_, snake_case_ : Dict = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Dict = np.insert(lowercase_ , 0 , lowercase_ ) if sub_s[-1] != sep_id: snake_case_ : Tuple = np.insert(lowercase_ , len(lowercase_ ) , lowercase_ ) assert len(lowercase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase_ ) new_tok_ids.extend(lowercase_ ) new_lengths.extend([len(lowercase_ ) for l in sub_seqs] ) snake_case_ : List[str] = np.array(lowercase_ ) snake_case_ : Optional[Any] = np.array(lowercase_ ) def _snake_case ( self : Optional[int] ): snake_case_ : List[Any] = len(self ) snake_case_ : List[str] = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : Dict = self.lengths[indices] snake_case_ : str = len(self ) logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def _snake_case ( self : Tuple ): if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : str = self.params.special_tok_ids['''unk_token'''] snake_case_ : str = len(self ) snake_case_ : int = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : str = (unk_occs / self.lengths) < 0.5 snake_case_ : Optional[Any] = self.token_ids[indices] snake_case_ : Optional[int] = self.lengths[indices] snake_case_ : Dict = len(self ) logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def _snake_case ( self : Dict ): if not self.params.is_master: return logger.info(f"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _snake_case ( self : List[str] , lowercase_ : Dict ): snake_case_ : Optional[int] = [t[0] for t in batch] snake_case_ : str = [t[1] for t in batch] assert len(lowercase_ ) == len(lowercase_ ) # Max for paddings snake_case_ : str = max(lowercase_ ) # Pad token ids if self.params.mlm: snake_case_ : Tuple = self.params.special_tok_ids['''pad_token'''] else: snake_case_ : Dict = self.params.special_tok_ids['''unk_token'''] snake_case_ : Any = [list(t.astype(lowercase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase_ )) for t in token_ids] assert len(tk_ ) == len(lowercase_ ) assert all(len(lowercase_ ) == max_seq_len_ for t in tk_ ) snake_case_ : str = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[int] = torch.tensor(lowercase_ ) # (bs) return tk_t, lg_t
264
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase): _lowerCAmelCase : str = XLMRobertaTokenizer _lowerCAmelCase : int = XLMRobertaTokenizerFast _lowerCAmelCase : str = True _lowerCAmelCase : Dict = True def _snake_case ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing snake_case_ : List[str] = XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : str ): snake_case_ : List[Any] = '''<pad>''' snake_case_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def _snake_case ( self : Union[str, Any] ): snake_case_ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowercase_ ) , 1002 ) def _snake_case ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def _snake_case ( self : Dict ): snake_case_ : Optional[Any] = XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) snake_case_ : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _snake_case ( self : List[str] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case_ : int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : Tuple = tokenizer_r.save_pretrained(lowercase_ ) snake_case_ : List[str] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case_ : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ : Union[str, Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ : List[str] = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way snake_case_ : List[Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : List[str] = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False snake_case_ : Optional[Any] = tempfile.mkdtemp() snake_case_ : List[Any] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) snake_case_ : Tuple = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case_ : Optional[Any] = tokenizer_r.from_pretrained(lowercase_ ) snake_case_ : Dict = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @cached_property def _snake_case ( self : List[str] ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def _snake_case ( self : Optional[Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ , f.name ) snake_case_ : Any = XLMRobertaTokenizer(f.name , keep_accents=lowercase_ ) snake_case_ : List[Any] = pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def _snake_case ( self : Tuple ): if not self.test_rust_tokenizer: return snake_case_ : List[str] = self.get_tokenizer() snake_case_ : Optional[int] = self.get_rust_tokenizer() snake_case_ : Dict = '''I was born in 92000, and this is falsé.''' snake_case_ : Optional[int] = tokenizer.tokenize(lowercase_ ) snake_case_ : Tuple = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) snake_case_ : str = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) snake_case_ : int = self.get_rust_tokenizer() snake_case_ : Any = tokenizer.encode(lowercase_ ) snake_case_ : int = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def _snake_case ( self : Tuple ): snake_case_ : int = '''Hello World!''' snake_case_ : int = [0, 35378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def _snake_case ( self : List[Any] ): snake_case_ : Any = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case_ : Optional[int] = [ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 179459, 124850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 10114, 711, 152, 20, 6, 5, 22376, 642, 1221, 15190, 34153, 450, 5608, 959, 1119, 57702, 136, 186, 47, 1098, 29367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 50901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def _snake_case ( self : Dict ): # fmt: off snake_case_ : int = {'''input_ids''': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
264
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case__ : """simple docstring""" lowerCamelCase = field( metadata={"""help""": """The output directory where the model will be written."""} , ) lowerCamelCase = field( metadata={ """help""": ( """The encoder model checkpoint for weights initialization.""" """Don't set if you want to train an encoder model from scratch.""" ) } , ) lowerCamelCase = field( metadata={ """help""": ( """The decoder model checkpoint for weights initialization.""" """Don't set if you want to train a decoder model from scratch.""" ) } , ) lowerCamelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} ) lowerCamelCase = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} ) def _UpperCamelCase ( ) -> List[Any]: '''simple docstring''' snake_case : List[str] = HfArgumentParser((ModelArguments,) ) ((snake_case) ,) : str = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: snake_case : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: snake_case : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: snake_case : Tuple = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed snake_case : Tuple = True snake_case : Dict = True snake_case : Optional[int] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=SCREAMING_SNAKE_CASE__ , decoder_config=SCREAMING_SNAKE_CASE__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens snake_case : Any = decoder_config.decoder_start_token_id snake_case : int = decoder_config.pad_token_id if decoder_start_token_id is None: snake_case : Union[str, Any] = decoder_config.bos_token_id if pad_token_id is None: snake_case : Tuple = decoder_config.eos_token_id # This is necessary to make Flax's generate() work snake_case : Dict = decoder_config.eos_token_id snake_case : Any = decoder_start_token_id snake_case : Any = pad_token_id snake_case : str = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) snake_case : List[str] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) snake_case : int = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
83
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( "--original_config_file", default=None, type=str, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--scheduler_type", default="pndm", type=str, help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", ) parser.add_argument( "--pipeline_type", default=None, type=str, help=( "The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'" ". If `None` pipeline will be automatically inferred." ), ) parser.add_argument( "--image_size", default=None, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--prediction_type", default=None, type=str, help=( "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" " Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") parser.add_argument( "--stable_unclip", type=str, default=None, required=False, help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.", ) parser.add_argument( "--stable_unclip_prior", type=str, default=None, required=False, help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.", ) parser.add_argument( "--clip_stats_path", type=str, help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.", required=False, ) parser.add_argument( "--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint." ) parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--vae_path", type=str, default=None, required=False, help="Set to a path, hub id to an already converted vae to not convert it again.", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
83
1
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __snake_case =logging.get_logger(__name__) set_seed(770) __snake_case ={ """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __snake_case ={ """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __snake_case =os.path.dirname(os.path.abspath(__file__)) __snake_case =os.path.join(os.path.expanduser("""~"""), """.cache""") __snake_case =os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=False ): lowerCAmelCase = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]['file_name'] ) def a_ ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase ) def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]="text" ): if model_type == "text": lowerCAmelCase = BarkSemanticModel lowerCAmelCase = BarkSemanticConfig lowerCAmelCase = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase = BarkCoarseModel lowerCAmelCase = BarkCoarseConfig lowerCAmelCase = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase = BarkFineModel lowerCAmelCase = BarkFineConfig lowerCAmelCase = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase = f'''{model_type}_small''' if use_small else model_type lowerCAmelCase = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase = torch.load(lowerCamelCase , map_location=lowerCamelCase ) # this is a hack lowerCAmelCase = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase = model_args['vocab_size'] lowerCAmelCase = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase = model_args.pop('n_head' ) lowerCAmelCase = model_args.pop('n_embd' ) lowerCAmelCase = model_args.pop('n_layer' ) lowerCAmelCase = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase = ModelClass(config=lowerCamelCase ) lowerCAmelCase = GenerationConfigClass() lowerCAmelCase = model_generation_config lowerCAmelCase = checkpoint['model'] # fixup checkpoint lowerCAmelCase = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(lowerCamelCase ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase = k[len(lowerCamelCase ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] ) lowerCAmelCase = state_dict.pop(lowerCamelCase ) lowerCAmelCase = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(lowerCamelCase ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(lowerCamelCase ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) lowerCAmelCase = model.num_parameters(exclude_embeddings=lowerCamelCase ) lowerCAmelCase = checkpoint['best_val_loss'].item() logger.info(f'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' ) model.eval() model.to(lowerCamelCase ) del checkpoint, state_dict return model def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[str]=False , lowerCamelCase : Union[str, Any]="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase = 'cpu' # do conversion on cpu lowerCAmelCase = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase ) lowerCAmelCase = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase ) # load bark initial model lowerCAmelCase = _bark_load_model(lowerCamelCase , 'cpu' , model_type=lowerCamelCase , use_small=lowerCamelCase ) if model_type == "text": lowerCAmelCase = bark_model['model'] if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase = 5 lowerCAmelCase = 10 if model_type in ["text", "coarse"]: lowerCAmelCase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase = bark_model(lowerCamelCase )[0] lowerCAmelCase = model(lowerCamelCase ) # take last logits lowerCAmelCase = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase = 3 lowerCAmelCase = 8 lowerCAmelCase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = bark_model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) def a_ ( lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : str , ): lowerCAmelCase = os.path.join(lowerCamelCase , lowerCamelCase ) lowerCAmelCase = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) ) lowerCAmelCase = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) ) lowerCAmelCase = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) ) lowerCAmelCase = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase = BarkSemanticModel.from_pretrained(lowerCamelCase ) lowerCAmelCase = BarkCoarseModel.from_pretrained(lowerCamelCase ) lowerCAmelCase = BarkFineModel.from_pretrained(lowerCamelCase ) lowerCAmelCase = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase = BarkConfig.from_sub_model_configs( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) lowerCAmelCase = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase = BarkModel(lowerCamelCase ) lowerCAmelCase = semantic lowerCAmelCase = coarseAcoustic lowerCAmelCase = fineAcoustic lowerCAmelCase = codec lowerCAmelCase = bark_generation_config Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __snake_case =parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
4
"""simple docstring""" import os def lowercase_ ( _UpperCAmelCase = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: A_ : List[Any] = [ [int(_UpperCAmelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] A_ : Dict = len(_UpperCAmelCase ) A_ : Union[str, Any] = len(matrix[0] ) A_ : Optional[Any] = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): A_ : str = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): A_ : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): A_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): A_ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
167
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : int =KandinskyVaaPriorPipeline lowercase : Tuple =['prompt'] lowercase : int =['prompt', 'negative_prompt'] lowercase : Optional[Any] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowercase : Optional[Any] =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, ) return CLIPTextModelWithProjection(lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ ={ '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } lowerCamelCase_ =PriorTransformer(**lowerCAmelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowerCamelCase_ =nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) lowerCamelCase_ =CLIPVisionModelWithProjection(lowerCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =CLIPImageProcessor( crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, ) return image_processor def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.dummy_prior lowerCamelCase_ =self.dummy_image_encoder lowerCamelCase_ =self.dummy_text_encoder lowerCamelCase_ =self.dummy_tokenizer lowerCamelCase_ =self.dummy_image_processor lowerCamelCase_ =UnCLIPScheduler( variance_type='''fixed_small_log''', prediction_type='''sample''', num_train_timesteps=1_000, clip_sample=lowerCAmelCase, clip_sample_range=1_0.0, ) lowerCamelCase_ ={ '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ): """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): lowerCamelCase_ =torch.manual_seed(lowerCAmelCase ) else: lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowerCamelCase_ ={ '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''cpu''' lowerCamelCase_ =self.get_dummy_components() lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase ) lowerCamelCase_ =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) ) lowerCamelCase_ =output.image_embeds lowerCamelCase_ =pipe( **self.get_dummy_inputs(lowerCAmelCase ), return_dict=lowerCAmelCase, )[0] lowerCamelCase_ =image[0, -10:] lowerCamelCase_ =image_from_tuple[0, -10:] assert image.shape == (1, 32) lowerCamelCase_ =np.array( [-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =True lowerCamelCase_ =False self._test_inference_batch_single_identical( test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, test_mean_pixel_difference=lowerCAmelCase, ) @skip_mps def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =torch_device == '''cpu''' lowerCamelCase_ =False self._test_attention_slicing_forward_pass( test_max_difference=lowerCAmelCase, test_mean_pixel_difference=lowerCAmelCase, )
6
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def a_ ( __snake_case : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F'''{test_file} instead.''' ) lowerCamelCase_ =components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )] lowerCamelCase_ ='''.'''.join(__snake_case ) return test_module_path def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ =get_module_path(__snake_case ) lowerCamelCase_ =importlib.import_module(__snake_case ) return test_module def a_ ( __snake_case : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(__snake_case , __snake_case ) ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =[] lowerCamelCase_ =get_test_module(__snake_case ) for attr in dir(__snake_case ): lowerCamelCase_ =getattr(__snake_case , __snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] ) if len(__snake_case ) > 0: test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : str ) -> str: """simple docstring""" lowerCamelCase_ =test_class() if hasattr(__snake_case , '''setUp''' ): test.setUp() lowerCamelCase_ =None if hasattr(__snake_case , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: lowerCamelCase_ =test.model_tester.__class__ return model_tester def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case ) lowerCamelCase_ =[] for test_class in test_classes: lowerCamelCase_ =get_model_tester_from_test_class(__snake_case ) if tester_class is not None: tester_classes.append(__snake_case ) # sort with class names return sorted(__snake_case , key=lambda __snake_case : x.__name__ ) def a_ ( __snake_case : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ =get_test_classes(__snake_case ) lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes} return test_tester_mapping def a_ ( __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_test_mapping def a_ ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ =get_model_classes(__snake_case ) lowerCamelCase_ ={ model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes } return model_to_tester_mapping def a_ ( __snake_case : List[str] ) -> List[Any]: """simple docstring""" if isinstance(__snake_case , __snake_case ): return o elif isinstance(__snake_case , __snake_case ): return o.__name__ elif isinstance(__snake_case , (list, tuple) ): return [to_json(__snake_case ) for x in o] elif isinstance(__snake_case , __snake_case ): return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()} else: return o
6
1
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCAmelCase : def __init__( self : Any , A : int , A : Optional[Any]=2 , A : int=3 , A : Optional[Any]=4 , A : Union[str, Any]=2 , A : Dict=7 , A : Any=True , A : List[Any]=True , A : Any=True , A : str=True , A : Union[str, Any]=99 , A : Tuple=36 , A : Optional[int]=2 , A : Union[str, Any]=4 , A : Any=37 , A : Tuple="gelu" , A : Dict=0.1 , A : Optional[Any]=0.1 , A : List[Any]=5_12 , A : List[str]=16 , A : Optional[Any]=2 , A : Any=0.02 , A : Optional[int]=6 , A : int=6 , A : Optional[int]=3 , A : str=4 , A : Tuple=None , A : int=10_00 , ) -> Optional[Any]: lowercase_ : Dict = parent lowercase_ : Dict = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : List[str] = image_size lowercase_ : str = patch_size lowercase_ : Optional[int] = is_training lowercase_ : str = use_input_mask lowercase_ : Dict = use_token_type_ids lowercase_ : int = use_labels lowercase_ : Tuple = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : str = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Dict = coordinate_size lowercase_ : List[str] = shape_size lowercase_ : int = num_labels lowercase_ : Union[str, Any] = num_choices lowercase_ : Union[str, Any] = scope lowercase_ : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase_ : Union[str, Any] = text_seq_length lowercase_ : Tuple = (image_size // patch_size) ** 2 + 1 lowercase_ : Dict = self.text_seq_length + self.image_seq_length def A ( self : Optional[Any] ) -> Optional[Any]: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowercase_ : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase_ : List[str] = bbox[i, j, 3] lowercase_ : List[str] = bbox[i, j, 1] lowercase_ : List[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowercase_ : Dict = bbox[i, j, 2] lowercase_ : int = bbox[i, j, 0] lowercase_ : int = tmp_coordinate lowercase_ : Any = tf.constant(A ) lowercase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_input_mask: lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowercase_ : Union[str, Any] = None if self.use_token_type_ids: lowercase_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowercase_ : Optional[Any] = None lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowercase_ : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A ( self : Optional[Any] , A : Optional[int] , A : Optional[Any] , A : Tuple , A : str , A : Optional[int] , A : str ) -> Any: lowercase_ : Tuple = TFLayoutLMvaModel(config=A ) # text + image lowercase_ : Optional[Any] = model(A , pixel_values=A , training=A ) lowercase_ : Optional[Any] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , training=A , ) lowercase_ : Any = model(A , bbox=A , pixel_values=A , training=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowercase_ : Tuple = model(A , training=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowercase_ : Union[str, Any] = model({'''pixel_values''': pixel_values} , training=A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , A : str , A : Optional[int] , A : Optional[Any] , A : str , A : List[str] , A : List[str] , A : Tuple ) -> Dict: lowercase_ : int = self.num_labels lowercase_ : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=A ) lowercase_ : Any = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , training=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict , A : int , A : int , A : Union[str, Any] , A : Any , A : Optional[int] , A : int , A : int ) -> List[Any]: lowercase_ : Any = self.num_labels lowercase_ : str = TFLayoutLMvaForTokenClassification(config=A ) lowercase_ : Tuple = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , training=A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def A ( self : Optional[Any] , A : Dict , A : List[Any] , A : Dict , A : Tuple , A : Union[str, Any] , A : Union[str, Any] , A : int ) -> Tuple: lowercase_ : Union[str, Any] = 2 lowercase_ : Dict = TFLayoutLMvaForQuestionAnswering(config=A ) lowercase_ : Optional[Any] = model( A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , training=A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Any ) -> Any: lowercase_ : Optional[int] = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : List[Any] = config_and_inputs lowercase_ : List[str] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : str = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : int = False SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False def A ( self : List[Any] , A : Tuple , A : Optional[int] , A : Dict , A : Tuple , A : List[str] ) -> List[Any]: return True def A ( self : Tuple , A : List[str] , A : Any , A : List[Any]=False ) -> dict: lowercase_ : int = copy.deepcopy(A ) if model_class in get_values(A ): lowercase_ : List[str] = { k: tf.tile(tf.expand_dims(A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): lowercase_ : int = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A ): lowercase_ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowercase_ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A ): lowercase_ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A ): lowercase_ : Optional[int] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def A ( self : Optional[int] ) -> List[str]: lowercase_ : Union[str, Any] = TFLayoutLMvaModelTester(self ) lowercase_ : List[Any] = ConfigTester(self , config_class=A , hidden_size=37 ) def A ( self : str ) -> Any: self.config_tester.run_common_tests() def A ( self : Dict ) -> Optional[int]: lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(A ) if getattr(A , '''hf_compute_loss''' , A ): # The number of elements in the loss should be the same as the number of elements in the label lowercase_ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : int = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=A )[0] ] lowercase_ : Any = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowercase_ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : Any = prepared_for_class.pop('''input_ids''' ) lowercase_ : Optional[Any] = model(A , **A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowercase_ : str = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : Union[str, Any] = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: lowercase_ : List[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowercase_ : Dict = -1_00 lowercase_ : Tuple = tf.convert_to_tensor(A ) lowercase_ : Union[str, Any] = model(A , **A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowercase_ : List[str] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) lowercase_ : Tuple = model(A )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowercase_ : str = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A ) # Get keys that were added with the _prepare_for_class function lowercase_ : List[str] = prepared_for_class.keys() - inputs_dict.keys() lowercase_ : Any = inspect.signature(model.call ).parameters lowercase_ : int = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowercase_ : Union[str, Any] = {0: '''input_ids'''} for label_key in label_keys: lowercase_ : Optional[int] = signature_names.index(A ) lowercase_ : Any = label_key lowercase_ : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowercase_ : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowercase_ : int = prepared_for_class[value] lowercase_ : Optional[int] = tuple(A ) # Send to model lowercase_ : List[str] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A ( self : Tuple ) -> Any: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A , A , A , A , A , A ) def A ( self : str ) -> Optional[int]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ : Optional[int] = type self.model_tester.create_and_check_model(A , A , A , A , A , A ) def A ( self : Tuple ) -> int: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A , A , A , A , A , A , A ) def A ( self : Tuple ) -> Union[str, Any]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A , A , A , A , A , A , A ) def A ( self : List[Any] ) -> Optional[Any]: ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A , A , A , A , A , A , A ) @slow def A ( self : Union[str, Any] ) -> str: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = TFLayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def lowercase ( ): lowercase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class _UpperCAmelCase ( unittest.TestCase ): @cached_property def A ( self : Dict ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def A ( self : Union[str, Any] ) -> Union[str, Any]: lowercase_ : List[str] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Optional[Any] = prepare_img() lowercase_ : Dict = image_processor(images=A , return_tensors='''tf''' ).pixel_values lowercase_ : List[str] = tf.constant([[1, 2]] ) lowercase_ : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowercase_ : List[Any] = model(input_ids=A , bbox=A , pixel_values=A , training=A ) # verify the logits lowercase_ : List[Any] = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape , A ) lowercase_ : List[Any] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) )
33
from __future__ import annotations from math import pi, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class A_ (unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = JukeboxTokenizer SCREAMING_SNAKE_CASE__ : List[Any] = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) UpperCAmelCase_ : str = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ : Any = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch UpperCAmelCase_ : Dict = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) UpperCAmelCase_ : Any = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCAmelCase_ : Tuple = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
354
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """detr""" SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = backbone_config.get("model_type" ) UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : int = num_queries UpperCAmelCase_ : Union[str, Any] = d_model UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : List[Any] = encoder_attention_heads UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim UpperCAmelCase_ : Optional[Any] = decoder_layers UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads UpperCAmelCase_ : Optional[int] = dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Any = activation_dropout UpperCAmelCase_ : str = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Optional[Any] = init_xavier_std UpperCAmelCase_ : Optional[Any] = encoder_layerdrop UpperCAmelCase_ : Optional[int] = decoder_layerdrop UpperCAmelCase_ : Tuple = encoder_layers UpperCAmelCase_ : int = auxiliary_loss UpperCAmelCase_ : Optional[Any] = position_embedding_type UpperCAmelCase_ : Tuple = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Dict = dilation # Hungarian matcher UpperCAmelCase_ : Union[str, Any] = class_cost UpperCAmelCase_ : Any = bbox_cost UpperCAmelCase_ : int = giou_cost # Loss coefficients UpperCAmelCase_ : str = mask_loss_coefficient UpperCAmelCase_ : Any = dice_loss_coefficient UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient UpperCAmelCase_ : List[str] = giou_loss_coefficient UpperCAmelCase_ : List[Any] = eos_coefficient super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase__ ( self ): """simple docstring""" return self.d_model @classmethod def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ): """simple docstring""" return cls(backbone_config=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict() UpperCAmelCase_ : str = self.__class__.model_type return output class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-5 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
23
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
1
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase__ = logging.get_logger(__name__) def _UpperCAmelCase ( __lowerCamelCase : bool , __lowerCamelCase : bool ) -> Any: def run_func(__lowerCamelCase : List[str] ): @wraps(__lowerCamelCase ) def run_in_eager_mode(*__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : List[str] ): return func(*__lowerCamelCase , **__lowerCamelCase ) @wraps(__lowerCamelCase ) @tf.function(experimental_compile=__lowerCamelCase ) def run_in_graph_mode(*__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[Any] ): return func(*__lowerCamelCase , **__lowerCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> ["tf.Tensor"]: _snake_case = random.Random() _snake_case = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCAmelCase__ ( A_ ): __a = 42 __a = 42 __a = "TensorFlow" @property def lowercase ( self : Dict ): return tf.__version__ def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ): # initialize GPU on separate process _snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case = self._prepare_inference_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_speed(_inference ) def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ): _snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case = self._prepare_train_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_speed(_train ) def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCamelCase ) _snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case = self._prepare_inference_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_memory(_inference ) def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCamelCase ) _snake_case = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case = self._prepare_train_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return self._measure_memory(_train ) def lowercase ( self : int , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ): _snake_case = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _snake_case = ( hasattr(_lowerCamelCase , '''architectures''' ) and isinstance(config.architectures , _lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case = __import__('''transformers''' , fromlist=[model_class] ) _snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) _snake_case = model_cls(_lowerCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _snake_case = TF_MODEL_MAPPING[config.__class__](_lowerCamelCase ) # encoder-decoder has vocab size saved differently _snake_case = config.vocab_size if hasattr(_lowerCamelCase , '''vocab_size''' ) else config.encoder.vocab_size _snake_case = random_input_ids(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase , training=_lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_lowerCamelCase , training=_lowerCamelCase ) _snake_case = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ): _snake_case = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _snake_case = ( hasattr(_lowerCamelCase , '''architectures''' ) and isinstance(config.architectures , _lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case = __import__('''transformers''' , fromlist=[model_class] ) _snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) _snake_case = model_cls(_lowerCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _snake_case = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_lowerCamelCase ) # encoder-decoder has vocab size saved differently _snake_case = config.vocab_size if hasattr(_lowerCamelCase , '''vocab_size''' ) else config.encoder.vocab_size _snake_case = random_input_ids(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _snake_case = model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )[0] _snake_case = tf.gradients(_lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _snake_case = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )[0] _snake_case = tf.gradients(_lowerCamelCase , model.trainable_variables ) return gradients _snake_case = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def lowercase ( self : int , _lowerCamelCase : List[Any] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(_lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case = timeit.repeat( _lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(_lowerCamelCase ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def lowercase ( self : int , _lowerCamelCase : Callable[[], None] ): logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) _snake_case = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) _snake_case = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() _snake_case = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case = nvml.nvmlDeviceGetMemoryInfo(_lowerCamelCase ) _snake_case = meminfo.used _snake_case = Memory(_lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) _snake_case = None else: _snake_case = measure_peak_memory_cpu(_lowerCamelCase ) _snake_case = Memory(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case = stop_memory_tracing(_lowerCamelCase ) if memory is None: _snake_case = summary.total else: _snake_case = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
40
"""simple docstring""" import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCAmelCase__ ( A_ ): __a = 42 __a = jnp.floataa __a = True def lowercase ( self : Tuple ): super().setup() _snake_case = nn.Dense(5 , dtype=self.dtype ) def __call__( self : str , *_lowerCamelCase : int , **_lowerCamelCase : Any ): _snake_case = super().__call__(*_lowerCamelCase , **_lowerCamelCase ) _snake_case = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCAmelCase__ ( A_ ): __a = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Any: def cross_entropy(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None ): _snake_case = logits.shape[-1] _snake_case = (labels[..., None] == jnp.arange(__lowerCamelCase )[None]).astype('''f4''' ) _snake_case = jax.nn.log_softmax(__lowerCamelCase , axis=-1 ) _snake_case = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: _snake_case = reduction(__lowerCamelCase ) return loss _snake_case = partial(__lowerCamelCase , reduction=jnp.mean ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) _snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCAmelCase__ : __a = "google/bigbird-roberta-base" __a = 3000 __a = 10500 __a = 128 __a = 3 __a = 1 __a = 5 # tx_args __a = 3e-5 __a = 0.0 __a = 20000 __a = 0.0095 __a = "bigbird-roberta-natural-questions" __a = "training-expt" __a = "data/nq-training.jsonl" __a = "data/nq-validation.jsonl" def lowercase ( self : Optional[Any] ): os.makedirs(self.base_dir , exist_ok=_lowerCamelCase ) _snake_case = os.path.join(self.base_dir , self.save_dir ) _snake_case = self.batch_size_per_device * jax.device_count() @dataclass class lowerCAmelCase__ : __a = 42 __a = 4096 # no dynamic padding on TPUs def __call__( self : Dict , _lowerCamelCase : Any ): _snake_case = self.collate_fn(_lowerCamelCase ) _snake_case = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase ) return batch def lowercase ( self : Dict , _lowerCamelCase : str ): _snake_case , _snake_case = self.fetch_inputs(features['''input_ids'''] ) _snake_case = { '''input_ids''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), '''attention_mask''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def lowercase ( self : List[Any] , _lowerCamelCase : list ): _snake_case = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids] return zip(*_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : list ): _snake_case = [1 for _ in range(len(_lowerCamelCase ) )] while len(_lowerCamelCase ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ) -> str: if seed is not None: _snake_case = dataset.shuffle(seed=__lowerCamelCase ) for i in range(len(__lowerCamelCase ) // batch_size ): _snake_case = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__lowerCamelCase ) @partial(jax.pmap , axis_name='''batch''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: def loss_fn(__lowerCamelCase : Union[str, Any] ): _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**__lowerCamelCase , params=__lowerCamelCase , dropout_rng=__lowerCamelCase , train=__lowerCamelCase ) _snake_case , _snake_case , _snake_case = outputs return state.loss_fn( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) _snake_case , _snake_case = jax.random.split(__lowerCamelCase ) _snake_case = jax.value_and_grad(__lowerCamelCase ) _snake_case , _snake_case = grad_fn(state.params ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) _snake_case = jax.lax.pmean(__lowerCamelCase , '''batch''' ) _snake_case = state.apply_gradients(grads=__lowerCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='''batch''' ) def _UpperCAmelCase ( __lowerCamelCase : str , **__lowerCamelCase : List[str] ) -> Any: _snake_case = model_inputs.pop('''start_labels''' ) _snake_case = model_inputs.pop('''end_labels''' ) _snake_case = model_inputs.pop('''pooled_labels''' ) _snake_case = state.apply_fn(**__lowerCamelCase , params=state.params , train=__lowerCamelCase ) _snake_case , _snake_case , _snake_case = outputs _snake_case = state.loss_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' ) return metrics class lowerCAmelCase__ ( train_state.TrainState ): __a = struct.field(pytree_node=A_ ) @dataclass class lowerCAmelCase__ : __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = 42 __a = None def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict=None ): _snake_case = model.params _snake_case = TrainState.create( apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , ) if ckpt_dir is not None: _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = restore_checkpoint(_lowerCamelCase , _lowerCamelCase ) _snake_case = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } _snake_case , _snake_case = build_tx(**_lowerCamelCase ) _snake_case = train_state.TrainState( step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , ) _snake_case = args _snake_case = data_collator _snake_case = lr _snake_case = params _snake_case = jax_utils.replicate(_lowerCamelCase ) return state def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str ): _snake_case = self.args _snake_case = len(_lowerCamelCase ) // args.batch_size _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(_lowerCamelCase , jax.device_count() ) for epoch in range(args.max_epochs ): _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase ) _snake_case = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=f'''Running EPOCH-{epoch}''' ): _snake_case = self.data_collator(_lowerCamelCase ) _snake_case , _snake_case , _snake_case = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: _snake_case = jax_utils.unreplicate(state.step ) _snake_case = running_loss.item() / i _snake_case = self.scheduler_fn(state_step - 1 ) _snake_case = self.evaluate(_lowerCamelCase , _lowerCamelCase ) _snake_case = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_lowerCamelCase ) ) self.logger.log(_lowerCamelCase , commit=_lowerCamelCase ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=_lowerCamelCase ) def lowercase ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ): _snake_case = get_batched_dataset(_lowerCamelCase , self.args.batch_size ) _snake_case = len(_lowerCamelCase ) // self.args.batch_size _snake_case = jnp.array(0 , dtype=jnp.floataa ) _snake_case = 0 for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='''Evaluating ... ''' ): _snake_case = self.data_collator(_lowerCamelCase ) _snake_case = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def lowercase ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict ): _snake_case = jax_utils.unreplicate(_lowerCamelCase ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(_lowerCamelCase , params=state.params ) with open(os.path.join(_lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_lowerCamelCase , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(_lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , _lowerCamelCase ) print('''DONE''' ) def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Tuple: print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' ) with open(os.path.join(__lowerCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.params , f.read() ) with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f: _snake_case = from_bytes(state.opt_state , f.read() ) _snake_case = joblib.load(os.path.join(__lowerCamelCase , '''args.joblib''' ) ) _snake_case = joblib.load(os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) ) with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''r''' ) as f: _snake_case = json.load(__lowerCamelCase ) _snake_case = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> List[Any]: _snake_case = num_train_steps - warmup_steps _snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=__lowerCamelCase , transition_steps=__lowerCamelCase ) _snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=1E-7 , transition_steps=__lowerCamelCase ) _snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) -> List[str]: def weight_decay_mask(__lowerCamelCase : List[Any] ): _snake_case = traverse_util.flatten_dict(__lowerCamelCase ) _snake_case = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(__lowerCamelCase ) _snake_case = scheduler_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = optax.adamw(learning_rate=__lowerCamelCase , weight_decay=__lowerCamelCase , mask=__lowerCamelCase ) return tx, lr
40
1
from jiwer import compute_measures import datasets lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]: if concatenate_texts: return compute_measures(A , A )["wer"] else: snake_case : Any = 0 snake_case : Any = 0 for prediction, reference in zip(A , A ): snake_case : Tuple = compute_measures(A , A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
124
from jiwer import compute_measures import datasets lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]: if concatenate_texts: return compute_measures(A , A )["wer"] else: snake_case : Any = 0 snake_case : Any = 0 for prediction, reference in zip(A , A ): snake_case : Tuple = compute_measures(A , A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
124
1
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _a ( __lowercase ): A = '''openai/whisper-base''' A = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) A = '''transcriber''' A = WhisperProcessor A = WhisperForConditionalGeneration A = ['''audio'''] A = ['''text'''] def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return self.pre_processor(UpperCAmelCase__, return_tensors="""pt""" ).input_features def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self.model.generate(inputs=UpperCAmelCase__ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
361
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> int: UpperCAmelCase_: List[Any] = parent UpperCAmelCase_: int = batch_size UpperCAmelCase_: Any = seq_length UpperCAmelCase_: Optional[int] = is_training UpperCAmelCase_: Dict = use_input_mask UpperCAmelCase_: Optional[int] = use_token_type_ids UpperCAmelCase_: Dict = use_labels UpperCAmelCase_: List[str] = vocab_size UpperCAmelCase_: Union[str, Any] = hidden_size UpperCAmelCase_: List[Any] = num_hidden_layers UpperCAmelCase_: Tuple = num_attention_heads UpperCAmelCase_: Optional[int] = intermediate_size UpperCAmelCase_: Tuple = hidden_act UpperCAmelCase_: Tuple = hidden_dropout_prob UpperCAmelCase_: List[str] = attention_probs_dropout_prob UpperCAmelCase_: Any = max_position_embeddings UpperCAmelCase_: List[Any] = type_vocab_size UpperCAmelCase_: List[str] = type_sequence_label_size UpperCAmelCase_: Tuple = initializer_range UpperCAmelCase_: Optional[int] = num_labels UpperCAmelCase_: Union[str, Any] = num_choices UpperCAmelCase_: Any = scope def __snake_case (self ) -> Tuple: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: str = None if self.use_input_mask: UpperCAmelCase_: Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: int = None if self.use_token_type_ids: UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: Dict = None UpperCAmelCase_: List[str] = None UpperCAmelCase_: Any = None if self.use_labels: UpperCAmelCase_: Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> List[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, use_stable_embedding=SCREAMING_SNAKE_CASE_, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: List[Any] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Optional[Any]: UpperCAmelCase_: Tuple = True UpperCAmelCase_: List[Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Optional[int] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[Any]: UpperCAmelCase_: Any = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Any: UpperCAmelCase_: Tuple = True UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: Dict = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() # first forward pass UpperCAmelCase_: str = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, use_cache=SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_: Tuple = ids_tensor((self.batch_size, 3), config.vocab_size ) UpperCAmelCase_: Optional[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and UpperCAmelCase_: str = torch.cat([input_ids, next_tokens], dim=-1 ) UpperCAmelCase_: str = torch.cat([input_mask, next_mask], dim=-1 ) UpperCAmelCase_: Dict = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0] UpperCAmelCase_: Tuple = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0] # select random slice UpperCAmelCase_: str = ids_tensor((1,), output_from_past.shape[-1] ).item() UpperCAmelCase_: str = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_: Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-3 ) ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): List[Any] = config_and_inputs UpperCAmelCase_: List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A = (OpenLlamaForCausalLM,) if is_torch_available() else () A = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A = False A = False def __snake_case (self ) -> int: UpperCAmelCase_: str = OpenLlamaModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> Optional[int]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_: Dict = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_ , UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: int = 3 UpperCAmelCase_: Tuple = input_dict["""input_ids"""] UpperCAmelCase_: Optional[int] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCAmelCase_: Optional[int] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case (self ) -> int: UpperCAmelCase_ , UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Dict = 3 UpperCAmelCase_: Optional[Any] = """single_label_classification""" UpperCAmelCase_: Optional[int] = input_dict["""input_ids"""] UpperCAmelCase_: str = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size ) UpperCAmelCase_: List[str] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Optional[int] = 3 UpperCAmelCase_: int = """multi_label_classification""" UpperCAmelCase_: Tuple = input_dict["""input_ids"""] UpperCAmelCase_: int = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase_: Optional[Any] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def __snake_case (self ) -> int: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_: Dict = ids_tensor([1, 10], config.vocab_size ) UpperCAmelCase_: Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_: Any = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) original_model.to(SCREAMING_SNAKE_CASE_ ) original_model.eval() UpperCAmelCase_: Any = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCAmelCase_: Tuple = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase_: Optional[Any] = {"""type""": scaling_type, """factor""": 1_0.0} UpperCAmelCase_: int = OpenLlamaModel(SCREAMING_SNAKE_CASE_ ) scaled_model.to(SCREAMING_SNAKE_CASE_ ) scaled_model.eval() UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) ) else: self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) )
82
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') a__ : List[str] = logging.getLogger(__name__) @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) __SCREAMING_SNAKE_CASE : int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=a__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=a__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'A csv or a json file containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=a__ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __lowerCAmelCase ( self ) ->Union[str, Any]: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: SCREAMING_SNAKE_CASE : Dict = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE : Tuple = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( default=a__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=a__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : bool = field( default=a__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a__ ) datasets.utils.logging.set_verbosity(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE : Optional[int] = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : int = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE : Optional[Any] = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE : Dict = load_dataset('''csv''' , data_files=a__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE : List[Any] = load_dataset('''json''' , data_files=a__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE : Dict = raw_datasets['''train'''].features['''label'''].names SCREAMING_SNAKE_CASE : int = len(a__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE : Tuple = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a__ , ) SCREAMING_SNAKE_CASE : Dict = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : str = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE : Any = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE : Optional[int] = {'''Refused''': 0, '''Entailed''': 1} SCREAMING_SNAKE_CASE : str = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) SCREAMING_SNAKE_CASE : Tuple = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a__ ): # Tokenize the texts def _convert_table_text_to_pandas(a__ ): SCREAMING_SNAKE_CASE : int = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] SCREAMING_SNAKE_CASE : Optional[int] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE : str = examples['''statement'''] SCREAMING_SNAKE_CASE : Tuple = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) SCREAMING_SNAKE_CASE : int = tokenizer(a__ , a__ , padding=a__ , max_length=a__ , truncation=a__ ) SCREAMING_SNAKE_CASE : int = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Optional[int] = raw_datasets.map( a__ , batched=a__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) SCREAMING_SNAKE_CASE : Any = raw_datasets['''test'''] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a__ ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a__ ): SCREAMING_SNAKE_CASE : Dict = p.predictions[0] if isinstance(p.predictions , a__ ) else p.predictions SCREAMING_SNAKE_CASE : Dict = np.argmax(a__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : List[str] = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE : List[Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[int] = Trainer( model=a__ , args=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a__ , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : List[str] = last_checkpoint SCREAMING_SNAKE_CASE : Dict = trainer.train(resume_from_checkpoint=a__ ) SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics SCREAMING_SNAKE_CASE : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ ) ) SCREAMING_SNAKE_CASE : Dict = min(a__ , len(a__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a__ ) trainer.save_metrics('''train''' , a__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Any = trainer.evaluate(eval_dataset=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = min(a__ , len(a__ ) ) trainer.log_metrics('''eval''' , a__ ) trainer.save_metrics('''eval''' , a__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE : List[str] = predict_dataset.remove_columns('''label''' ) SCREAMING_SNAKE_CASE : Optional[int] = trainer.predict(a__ , metric_key_prefix='''predict''' ).predictions SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a__ , axis=1 ) SCREAMING_SNAKE_CASE : Any = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a__ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a__ ): SCREAMING_SNAKE_CASE : Tuple = label_list[item] writer.write(F"""{index}\t{item}\n""" ) SCREAMING_SNAKE_CASE : Any = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" main() if __name__ == "__main__": main()
313
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : str = ord(a__ ) if not _is_chinese_char(a__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = set() for token in tokens: SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ ) if chinese_word: word_set.add(a__ ) SCREAMING_SNAKE_CASE : str = list(a__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Tuple = bert_tokens SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ ) while start < end: SCREAMING_SNAKE_CASE : Dict = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ ) for i in range(a__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : List[str] = start + i SCREAMING_SNAKE_CASE : Optional[Any] = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res] ltp_res.extend(a__ ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : Any = [] for i in range(0 , len(a__ ) , 100 ): SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(a__ ) == len(a__ ) SCREAMING_SNAKE_CASE : int = [] for input_ids, chinese_word in zip(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ ) input_tokens.append(a__ ) SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(a__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Optional[int] = token[2:] # save chinese tokens' pos if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ): ref_id.append(a__ ) ref_ids.append(a__ ) assert len(a__ ) == len(a__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids] f.writelines(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : int = parser.parse_args() main(args)
313
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase :Any = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _UpperCAmelCase ( a ,a ): '''simple docstring''' a__ ='''swin''' a__ ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , A=2_2_4 , A=4 , A=3 , A=9_6 , A=[2, 2, 6, 2] , A=[3, 6, 1_2, 2_4] , A=7 , A=4.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.02 , A=1E-5 , A=3_2 , A=None , A=None , **A , ) -> Tuple: super().__init__(**A ) _UpperCAmelCase : Optional[int] = image_size _UpperCAmelCase : Tuple = patch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Tuple = embed_dim _UpperCAmelCase : List[Any] = depths _UpperCAmelCase : Any = len(A ) _UpperCAmelCase : str = num_heads _UpperCAmelCase : str = window_size _UpperCAmelCase : Tuple = mlp_ratio _UpperCAmelCase : str = qkv_bias _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = drop_path_rate _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = use_absolute_embeddings _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase : int = int(embed_dim * 2 ** (len(A ) - 1) ) _UpperCAmelCase : Union[str, Any] = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(A ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : List[Any] = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class _UpperCAmelCase ( a ): '''simple docstring''' a__ =version.parse('''1.11''' ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
68
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Tuple: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> Optional[Any]: if self.graph.get(A ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Optional[int] = [[w, v]] if not self.graph.get(A ): _UpperCAmelCase : List[str] = [] def __lowerCAmelCase ( self ) -> Optional[int]: return list(self.graph ) def __lowerCAmelCase ( self , A , A ) -> int: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Optional[int]: if s == d: return [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[Any]: if c == -1: _UpperCAmelCase : Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Optional[Any]: _UpperCAmelCase : int = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> Optional[int]: _UpperCAmelCase : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __lowerCAmelCase ( self , A ) -> int: return len(self.graph[u] ) def __lowerCAmelCase ( self , A=-2 ) -> str: _UpperCAmelCase : int = [] _UpperCAmelCase : Union[str, Any] = [] if s == -2: _UpperCAmelCase : Any = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : str = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = ss # check if se have reached the starting point if len(A ) == 0: return sorted_nodes def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Union[str, Any] = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(A ) != 0: _UpperCAmelCase : Union[str, Any] = stack[len(A ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(A ) _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : List[str] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = -2 _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[Any] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : int = stack[len(A ) - 1] else: _UpperCAmelCase : List[str] = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Dict: _UpperCAmelCase : Tuple = time() self.dfs(A , A ) _UpperCAmelCase : Optional[int] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Dict: _UpperCAmelCase : int = time() self.bfs(A ) _UpperCAmelCase : str = time() return end - begin class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _UpperCAmelCase : str = {} def __lowerCAmelCase ( self , A , A , A=1 ) -> str: # check if the u exists if self.graph.get(A ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : int = [[w, v]] # add the other way if self.graph.get(A ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : List[Any] = [[w, u]] def __lowerCAmelCase ( self , A , A ) -> List[str]: if self.graph.get(A ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A ) # the other way round if self.graph.get(A ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Any: if s == d: return [] _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : Tuple = ss # check if se have reached the starting point if len(A ) == 0: return visited def __lowerCAmelCase ( self , A=-1 ) -> List[str]: if c == -1: _UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(A ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _UpperCAmelCase : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(A , A , 1 ) def __lowerCAmelCase ( self , A=-2 ) -> Tuple: _UpperCAmelCase : List[str] = deque() _UpperCAmelCase : Optional[int] = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] d.append(A ) visited.append(A ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __lowerCAmelCase ( self , A ) -> List[str]: return len(self.graph[u] ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [] _UpperCAmelCase : Optional[Any] = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Any = -2 _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Optional[int] = len(A ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(A ) != 0: _UpperCAmelCase : List[str] = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : Tuple = s _UpperCAmelCase : int = ss # check if se have reached the starting point if len(A ) == 0: return list(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = list(self.graph )[0] stack.append(A ) visited.append(A ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = s _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[str] = len(A ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : List[Any] = True if len(A ) != 0: _UpperCAmelCase : Dict = stack[len(A ) - 1] else: _UpperCAmelCase : str = False indirect_parents.append(A ) _UpperCAmelCase : List[Any] = s _UpperCAmelCase : Optional[int] = ss # check if se have reached the starting point if len(A ) == 0: return False def __lowerCAmelCase ( self ) -> int: return list(self.graph ) def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> str: _UpperCAmelCase : List[Any] = time() self.dfs(A , A ) _UpperCAmelCase : Union[str, Any] = time() return end - begin def __lowerCAmelCase ( self , A=-2 ) -> Optional[int]: _UpperCAmelCase : List[Any] = time() self.bfs(A ) _UpperCAmelCase : Optional[int] = time() return end - begin
68
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' lowerCAmelCase = nn.Parameter(_UpperCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' lowerCAmelCase = nn.Parameter(_UpperCAmelCase ) def lowercase (snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str ) -> List[Any]: '''simple docstring''' lowerCAmelCase = np.asarray(weights[0] ) lowerCAmelCase = np.asarray(weights[1] ) lowerCAmelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase (snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = np.asarray(weights[0] ) lowerCAmelCase = np.asarray(weights[1] ) lowerCAmelCase = np.asarray(weights[2] ) lowerCAmelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , ) def lowercase (snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase = weights[0][0][0] lowerCAmelCase = np.asarray(layer_norm_a[0] ) lowerCAmelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # lsh weights + output lowerCAmelCase = weights[0][1] if len(_UpperCAmelCase ) < 4: set_layer_weights_in_torch_lsh(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) else: set_layer_weights_in_torch_local(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase ) # intermediate weighs lowerCAmelCase = weights[2][0][1][2] # Chunked Feed Forward if len(_UpperCAmelCase ) == 4: lowerCAmelCase = intermediate_weights[2] # layernorm 2 lowerCAmelCase = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # intermediate dense lowerCAmelCase = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) # intermediate out lowerCAmelCase = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase (snake_case__ : Any , snake_case__ : Dict , snake_case__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase = torch_model.reformer # word embeds lowerCAmelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_UpperCAmelCase ) , ) if isinstance(weights[3] , _UpperCAmelCase ): lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' lowerCAmelCase = nn.Parameter(torch.tensor(_UpperCAmelCase ) ) lowerCAmelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _UpperCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # output layer norm lowerCAmelCase = np.asarray(weights[7][0] ) lowerCAmelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , ) # output embeddings lowerCAmelCase = np.asarray(weights[9][0] ) lowerCAmelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , ) def lowercase (snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = ReformerConfig.from_json_file(_UpperCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) lowerCAmelCase = ReformerModelWithLMHead(_UpperCAmelCase ) with open(_UpperCAmelCase , """rb""" ) as f: lowerCAmelCase = pickle.load(_UpperCAmelCase )["""weights"""] set_model_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
155
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Any: '''simple docstring''' _UpperCAmelCase = multiprocessing.Manager() _UpperCAmelCase = manager.list() _UpperCAmelCase = multiprocessing.Process(target=_UpperCAmelCase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[int]: '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _UpperCAmelCase = shutil.rmtree _UpperCAmelCase = os.rmdir _UpperCAmelCase = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _UpperCAmelCase = {} with swallow_io(): with time_limit(_UpperCAmelCase ): exec(_UpperCAmelCase , _UpperCAmelCase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. _UpperCAmelCase = rmtree _UpperCAmelCase = rmdir _UpperCAmelCase = chdir @contextlib.contextmanager def A ( _UpperCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' def signal_handler(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , _UpperCAmelCase ) signal.signal(signal.SIGALRM , _UpperCAmelCase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def A ( ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = WriteOnlyStringIO() with contextlib.redirect_stdout(_UpperCAmelCase ): with contextlib.redirect_stderr(_UpperCAmelCase ): with redirect_stdin(_UpperCAmelCase ): yield @contextlib.contextmanager def A ( ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(_UpperCAmelCase ): yield dirname class __lowerCAmelCase ( A ): pass class __lowerCAmelCase ( io.StringIO ): def _lowerCamelCase ( self : Tuple , *A : str , **A : Any) -> Any: """simple docstring""" raise OSError def _lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Optional[Any]) -> Optional[int]: """simple docstring""" raise OSError def _lowerCamelCase ( self : str , *A : List[str] , **A : List[Any]) -> Union[str, Any]: """simple docstring""" raise OSError def _lowerCamelCase ( self : Union[str, Any] , *A : Optional[Any] , **A : List[str]) -> Optional[int]: """simple docstring""" return False class __lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore UpperCamelCase = '''stdin''' @contextlib.contextmanager def A ( _UpperCAmelCase : List[Any] ) -> Dict: '''simple docstring''' if root == ".": yield return _UpperCAmelCase = os.getcwd() os.chdir(_UpperCAmelCase ) try: yield except BaseException as exc: raise exc finally: os.chdir(_UpperCAmelCase ) def A ( _UpperCAmelCase : List[str]=None ) -> Any: '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _UpperCAmelCase = None _UpperCAmelCase = None import os _UpperCAmelCase = '1' _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None import shutil _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None import subprocess _UpperCAmelCase = None # type: ignore _UpperCAmelCase = None import sys _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None
339
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Tuple = ["""image_processor""", """tokenizer"""] A : str = """FlavaImageProcessor""" A : Dict = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[Any] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] ): __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _lowercase , ) __snake_case : str = kwargs.pop("""feature_extractor""" ) __snake_case : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_lowercase , _lowercase ) __snake_case : List[Any] = self.image_processor def __call__( self : int , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : Any = None , _lowerCAmelCase : Tuple = True , _lowerCAmelCase : Optional[int] = False , _lowerCAmelCase : Union[str, Any] = False , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : Union[str, Any] = 0 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : List[Any] = False , _lowerCAmelCase : int = False , _lowerCAmelCase : str = False , _lowerCAmelCase : List[str] = False , _lowerCAmelCase : int = True , _lowerCAmelCase : Union[str, Any] = None , **_lowerCAmelCase : Optional[Any] , ): if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __snake_case : Any = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) if images is not None: __snake_case : Optional[Any] = self.image_processor( _lowercase , return_image_mask=_lowercase , return_codebook_pixels=_lowercase , return_tensors=_lowercase , **_lowercase , ) if text is not None and images is not None: encoding.update(_lowercase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def snake_case__ ( self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any] ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def snake_case__ ( self : str , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def snake_case__ ( self : List[str] ): __snake_case : Any = self.tokenizer.model_input_names __snake_case : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case__ ( self : Any ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowercase , ) return self.image_processor_class @property def snake_case__ ( self : List[Any] ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowercase , ) return self.image_processor
365
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} lowercase_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } lowercase_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } lowercase_ = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } lowercase_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[str] = ["input_ids"] A : Tuple = VOCAB_FILES_NAMES A : List[Any] = PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = RESOURCE_FILES_NAMES def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) __snake_case : List[Any] = do_lower_case __snake_case : Any = sentencepiece_model_ckpt __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __snake_case : int = self.load_vocab(filepath=_lowerCAmelCase ) else: __snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} __snake_case : str = {v: k for k, v in self.vocab.items()} def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ): if text is None: return None __snake_case : List[Any] = self.tokenize(_lowerCAmelCase ) __snake_case , __snake_case : Optional[Any] = """""", [] for i, ch in enumerate(_lowerCAmelCase ): if ch in self.SP_CHAR_MAPPING: __snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase ) else: __snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase ) if self.is_whitespace(_lowerCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(_lowerCAmelCase ) ) __snake_case , __snake_case , __snake_case : str = normalized_text, [], 0 if self.do_lower_case: __snake_case : int = text.lower() for token in split_tokens: if token[:1] == "▁": __snake_case : int = token[1:] __snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset __snake_case : int = start + len(_lowerCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __snake_case : str = end return token_mapping @property def snake_case__ ( self : Tuple ): return len(self.vocab ) def snake_case__ ( self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : int ): __snake_case : str = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ): __snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __snake_case : Optional[Any] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ): return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) ) def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ): if self.sp_model_kwargs.get("""enable_sampling""" ) is True: __snake_case : List[str] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: __snake_case : Dict = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: __snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: __snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase ) else: __snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case : Union[str, Any] = [] for pi, piece in enumerate(_lowerCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0: new_pieces.append(_lowerCAmelCase ) continue else: continue __snake_case : Optional[int] = 0 for i, chunk in enumerate(_lowerCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_lowerCAmelCase ) __snake_case : Tuple = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __snake_case : Tuple = i if len(_lowerCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): __snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): __snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase ) __snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip() return out_string def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ): return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ): return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token ) def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] __snake_case : Optional[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1] return [1] + ([0] * len(_lowerCAmelCase )) + [1] def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_lowerCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3) def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ): if "\u4e00" <= char <= "\u9fff": return True return False def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ): if char in ",;:.?!~,;:。?!《》【】": return True return False def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_lowerCAmelCase ) == 1: __snake_case : Dict = unicodedata.category(_lowerCAmelCase ) if cat == "Zs": return True return False def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ): __snake_case : Dict = {} with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(_lowerCAmelCase ): __snake_case : Tuple = line.rstrip("""\n""" ) __snake_case : List[str] = int(_lowerCAmelCase ) return token_to_idx def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): __snake_case : Optional[int] = 0 if os.path.isdir(_lowerCAmelCase ): __snake_case : int = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __snake_case : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 __snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" ) with open(_lowerCAmelCase , """wb""" ) as fi: __snake_case : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (vocab_file,)
20
0
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): if index == number_of_items: return 0 __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) if weights[index] <= max_weight: __UpperCamelCase =values[index] + knapsack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_weight - weights[index] , index + 1 ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
62
'''simple docstring''' from itertools import count def __lowerCamelCase ( _lowercase = 5_0 ) -> int: UpperCAmelCase : Any = [1] * min_block_length for n in count(_lowercase ): fill_count_functions.append(1 ) for block_length in range(_lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(F'''{solution() = }''')
265
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def a__ ( a__ , a__ , a__ , a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = coefficient_matrix.shape __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = constant_matrix.shape if rowsa != colsa: __SCREAMING_SNAKE_CASE = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(a__ ) if colsa != 1: __SCREAMING_SNAKE_CASE = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(a__ ) if rowsa != rowsa: __SCREAMING_SNAKE_CASE = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(a__ ) if len(a__ ) != rowsa: __SCREAMING_SNAKE_CASE = ( """Number of initial values must be equal to number of rows in coefficient """ F'matrix but received {len(a__ )} and {rowsa}' ) raise ValueError(a__ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) __SCREAMING_SNAKE_CASE = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = table.shape strictly_diagonally_dominant(a__ ) # Iterates the whole matrix for given number of times for _ in range(a__ ): __SCREAMING_SNAKE_CASE = [] for row in range(a__ ): __SCREAMING_SNAKE_CASE = 0 for col in range(a__ ): if col == row: __SCREAMING_SNAKE_CASE = table[row][col] elif col == cols - 1: __SCREAMING_SNAKE_CASE = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __SCREAMING_SNAKE_CASE = (temp + val) / denom new_val.append(a__ ) __SCREAMING_SNAKE_CASE = new_val return [float(a__ ) for i in new_val] def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = table.shape __SCREAMING_SNAKE_CASE = True for i in range(0 , a__ ): __SCREAMING_SNAKE_CASE = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
0