code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ):
__UpperCamelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250'
__UpperCamelCase =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , 'html.parser' )
__UpperCamelCase =soup.find_all('td' , attrs='titleColumn' )
__UpperCamelCase =soup.find_all('td' , class_='ratingColumn imdbRating' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
}
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "IMDb_Top_250_Movies.csv" ):
__UpperCamelCase =get_imdb_top_aaa_movies()
with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='' ) as out_file:
__UpperCamelCase =csv.writer(SCREAMING_SNAKE_CASE__ )
writer.writerow(['Movie title', 'IMDb rating'] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 62
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
_a = None
_a = logging.get_logger(__name__)
_a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_a = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
_a = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
_a = "▁"
# Segments (not really needed)
_a = 0
_a = 1
_a = 2
_a = 3
_a = 4
class __A ( lowerCAmelCase ):
'''simple docstring'''
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ = """left"""
lowerCAmelCase_ = XLNetTokenizer
def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<sep>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<cls>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=["<eop>", "<eod>"] , **__lowerCAmelCase , ):
'''simple docstring'''
lowerCamelCase__ = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token
super().__init__(
vocab_file=__lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , **__lowerCAmelCase , )
lowerCamelCase__ = 3
lowerCamelCase__ = do_lower_case
lowerCamelCase__ = remove_space
lowerCamelCase__ = keep_accents
lowerCamelCase__ = vocab_file
lowerCamelCase__ = False if not self.vocab_file else True
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
'''simple docstring'''
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
'''simple docstring'''
lowerCamelCase__ = [self.sep_token_id]
lowerCamelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCamelCase__ = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ):
copyfile(self.vocab_file , __lowerCAmelCase )
return (out_vocab_file,)
| 209
| 0
|
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
lowerCAmelCase__ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu'
def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__=1_0_0 , lowerCAmelCase__=" " ):
lowerCAmelCase__ = text.split(lowerCAmelCase__ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )]
def __lowerCamelCase ( lowerCAmelCase__ ):
lowerCAmelCase__ , lowerCAmelCase__ = [], []
for title, text in zip(documents['title'] , documents['text'] ):
if text is not None:
for passage in split_text(lowerCAmelCase__ ):
titles.append(title if title is not None else '' )
texts.append(lowerCAmelCase__ )
return {"title": titles, "text": texts}
def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase__ = ctx_tokenizer(
documents['title'] , documents['text'] , truncation=lowerCAmelCase__ , padding='longest' , return_tensors='pt' )['input_ids']
lowerCAmelCase__ = ctx_encoder(input_ids.to(device=lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ):
######################################
logger.info('Step 1 - Create the dataset' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
lowerCAmelCase__ = load_dataset(
'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
lowerCAmelCase__ = dataset.map(lowerCAmelCase__ , batched=lowerCAmelCase__ , num_proc=processing_args.num_proc )
# And compute the embeddings
lowerCAmelCase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowerCAmelCase__ )
lowerCAmelCase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
lowerCAmelCase__ = Features(
{'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space
lowerCAmelCase__ = dataset.map(
partial(lowerCAmelCase__ , ctx_encoder=lowerCAmelCase__ , ctx_tokenizer=lowerCAmelCase__ ) , batched=lowerCAmelCase__ , batch_size=processing_args.batch_size , features=lowerCAmelCase__ , )
# And finally save your dataset
lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' )
dataset.save_to_disk(lowerCAmelCase__ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('Step 2 - Index the dataset' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
lowerCAmelCase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('embeddings' , custom_index=lowerCAmelCase__ )
# And save the index
lowerCAmelCase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' )
dataset.get_index('embeddings' ).save(lowerCAmelCase__ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class a_ :
'''simple docstring'''
UpperCAmelCase_ = field(
default=str(Path(SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , )
UpperCAmelCase_ = field(
default=SCREAMING_SNAKE_CASE , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , )
UpperCAmelCase_ = field(
default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , )
UpperCAmelCase_ = field(
default='facebook/dpr-ctx_encoder-multiset-base' , metadata={
'help': (
'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'
' \'facebook/dpr-ctx_encoder-multiset-base\''
)
} , )
UpperCAmelCase_ = field(
default=str(Path(SCREAMING_SNAKE_CASE ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , )
@dataclass
class a_ :
'''simple docstring'''
UpperCAmelCase_ = field(
default=SCREAMING_SNAKE_CASE , metadata={
'help': 'The number of processes to use to split the documents into passages. Default is single process.'
} , )
UpperCAmelCase_ = field(
default=16 , metadata={
'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.'
} , )
@dataclass
class a_ :
'''simple docstring'''
UpperCAmelCase_ = field(
default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , )
UpperCAmelCase_ = field(
default=128 , metadata={
'help': (
'The number of bi-directional links created for every new element during the HNSW index construction.'
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
lowerCAmelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 119
|
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class a_ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCAmelCase_ = 42
@flax_register_to_config
class a_ ( nn.Module , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCAmelCase_ = 32
UpperCAmelCase_ = 4
UpperCAmelCase_ = 4
UpperCAmelCase_ = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
UpperCAmelCase_ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
UpperCAmelCase_ = False
UpperCAmelCase_ = (320, 640, 1_280, 1_280)
UpperCAmelCase_ = 2
UpperCAmelCase_ = 8
UpperCAmelCase_ = None
UpperCAmelCase_ = 1_280
UpperCAmelCase_ = 0.0
UpperCAmelCase_ = False
UpperCAmelCase_ = jnp.floataa
UpperCAmelCase_ = True
UpperCAmelCase_ = 0
UpperCAmelCase_ = False
def __snake_case ( self : Optional[int] , lowercase__ : jax.random.KeyArray):
'''simple docstring'''
lowerCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size)
lowerCAmelCase__ = jnp.zeros(lowercase__ , dtype=jnp.floataa)
lowerCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa)
lowerCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa)
lowerCAmelCase__ , lowerCAmelCase__ = jax.random.split(lowercase__)
lowerCAmelCase__ = {'params': params_rng, 'dropout': dropout_rng}
return self.init(lowercase__ , lowercase__ , lowercase__ , lowercase__)["params"]
def __snake_case ( self : Union[str, Any]):
'''simple docstring'''
lowerCAmelCase__ = self.block_out_channels
lowerCAmelCase__ = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.')
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
lowerCAmelCase__ = self.num_attention_heads or self.attention_head_dim
# input
lowerCAmelCase__ = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
lowerCAmelCase__ = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift)
lowerCAmelCase__ = FlaxTimestepEmbedding(lowercase__ , dtype=self.dtype)
lowerCAmelCase__ = self.only_cross_attention
if isinstance(lowercase__ , lowercase__):
lowerCAmelCase__ = (only_cross_attention,) * len(self.down_block_types)
if isinstance(lowercase__ , lowercase__):
lowerCAmelCase__ = (num_attention_heads,) * len(self.down_block_types)
# down
lowerCAmelCase__ = []
lowerCAmelCase__ = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types):
lowerCAmelCase__ = output_channel
lowerCAmelCase__ = block_out_channels[i]
lowerCAmelCase__ = i == len(lowercase__) - 1
if down_block_type == "CrossAttnDownBlock2D":
lowerCAmelCase__ = FlaxCrossAttnDownBlockaD(
in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
lowerCAmelCase__ = FlaxDownBlockaD(
in_channels=lowercase__ , out_channels=lowercase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowercase__)
lowerCAmelCase__ = down_blocks
# mid
lowerCAmelCase__ = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
lowerCAmelCase__ = []
lowerCAmelCase__ = list(reversed(lowercase__))
lowerCAmelCase__ = list(reversed(lowercase__))
lowerCAmelCase__ = list(reversed(lowercase__))
lowerCAmelCase__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types):
lowerCAmelCase__ = output_channel
lowerCAmelCase__ = reversed_block_out_channels[i]
lowerCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(lowercase__) - 1)]
lowerCAmelCase__ = i == len(lowercase__) - 1
if up_block_type == "CrossAttnUpBlock2D":
lowerCAmelCase__ = FlaxCrossAttnUpBlockaD(
in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
lowerCAmelCase__ = FlaxUpBlockaD(
in_channels=lowercase__ , out_channels=lowercase__ , prev_output_channel=lowercase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowercase__)
lowerCAmelCase__ = output_channel
lowerCAmelCase__ = up_blocks
# out
lowerCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1e-5)
lowerCAmelCase__ = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , lowercase__ : bool = True , lowercase__ : bool = False , ):
'''simple docstring'''
if not isinstance(lowercase__ , jnp.ndarray):
lowerCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa)
elif isinstance(lowercase__ , jnp.ndarray) and len(timesteps.shape) == 0:
lowerCAmelCase__ = timesteps.astype(dtype=jnp.floataa)
lowerCAmelCase__ = jnp.expand_dims(lowercase__ , 0)
lowerCAmelCase__ = self.time_proj(lowercase__)
lowerCAmelCase__ = self.time_embedding(lowercase__)
# 2. pre-process
lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 2, 3, 1))
lowerCAmelCase__ = self.conv_in(lowercase__)
# 3. down
lowerCAmelCase__ = (sample,)
for down_block in self.down_blocks:
if isinstance(lowercase__ , lowercase__):
lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train)
else:
lowerCAmelCase__ , lowerCAmelCase__ = down_block(lowercase__ , lowercase__ , deterministic=not train)
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
lowerCAmelCase__ = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowercase__ , lowercase__):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
lowerCAmelCase__ = new_down_block_res_samples
# 4. mid
lowerCAmelCase__ = self.mid_block(lowercase__ , lowercase__ , lowercase__ , deterministic=not train)
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
lowerCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :]
lowerCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowercase__ , lowercase__):
lowerCAmelCase__ = up_block(
lowercase__ , temb=lowercase__ , encoder_hidden_states=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train , )
else:
lowerCAmelCase__ = up_block(lowercase__ , temb=lowercase__ , res_hidden_states_tuple=lowercase__ , deterministic=not train)
# 6. post-process
lowerCAmelCase__ = self.conv_norm_out(lowercase__)
lowerCAmelCase__ = nn.silu(lowercase__)
lowerCAmelCase__ = self.conv_out(lowercase__)
lowerCAmelCase__ = jnp.transpose(lowercase__ , (0, 3, 1, 2))
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowercase__)
| 119
| 1
|
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _A ( SCREAMING_SNAKE_CASE : int = 3 ):
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise TypeError("number of qubits must be a integer." )
if number_of_qubits <= 0:
raise ValueError("number of qubits must be > 0." )
if math.floor(SCREAMING_SNAKE_CASE ) != number_of_qubits:
raise ValueError("number of qubits must be exact integer." )
if number_of_qubits > 10:
raise ValueError("number of qubits too large to simulate(>10)." )
a__ : Optional[int] =QuantumRegister(SCREAMING_SNAKE_CASE , "qr" )
a__ : List[Any] =ClassicalRegister(SCREAMING_SNAKE_CASE , "cr" )
a__ : int =QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
a__ : Optional[Any] =number_of_qubits
for i in range(SCREAMING_SNAKE_CASE ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(SCREAMING_SNAKE_CASE ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(SCREAMING_SNAKE_CASE , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# simulate with 10000 shots
a__ : Optional[Any] =Aer.get_backend("qasm_simulator" )
a__ : List[str] =execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_000 )
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(
F"""Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"""
)
| 95
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __lowerCAmelCase ( unittest.TestCase):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , ) -> Optional[int]:
'''simple docstring'''
a__ : str =size if size is not None else {"shortest_edge": 2_0}
a__ : Union[str, Any] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8}
a__ : Tuple =parent
a__ : Optional[int] =batch_size
a__ : Any =num_channels
a__ : List[str] =image_size
a__ : Dict =min_resolution
a__ : List[Any] =max_resolution
a__ : Dict =do_resize
a__ : Union[str, Any] =size
a__ : str =do_center_crop
a__ : List[str] =crop_size
def _lowercase ( self ) -> str:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase):
_lowercase : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None
def _lowercase ( self ) -> Tuple:
'''simple docstring'''
a__ : Optional[int] =MobileNetVaImageProcessingTester(self )
@property
def _lowercase ( self ) -> List[str]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self ) -> Any:
'''simple docstring'''
a__ : List[str] =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "crop_size" ) )
def _lowercase ( self ) -> str:
'''simple docstring'''
a__ : Any =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 2_0} )
self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} )
a__ : Dict =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2} )
self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} )
def _lowercase ( self ) -> Any:
'''simple docstring'''
pass
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
a__ : Dict =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
a__ : List[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a__ : Dict =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _lowercase ( self ) -> int:
'''simple docstring'''
a__ : str =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a__ : Union[str, Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _lowercase ( self ) -> Optional[int]:
'''simple docstring'''
a__ : Any =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a__ : int =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
a__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
a__ : str =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 95
| 1
|
def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
def get_matched_characters(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> str:
UpperCamelCase__ : List[Any] = []
UpperCamelCase__ : Any = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
UpperCamelCase__ : str = int(max(0 , i - limit ) )
UpperCamelCase__ : Optional[Any] = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[str] = F"{_stra[0:_stra.index(SCREAMING_SNAKE_CASE )]} {_stra[_stra.index(SCREAMING_SNAKE_CASE ) + 1:]}"
return "".join(SCREAMING_SNAKE_CASE )
# matching characters
UpperCamelCase__ : List[Any] = get_matched_characters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = get_matched_characters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE )
# transposition
UpperCamelCase__ : List[str] = (
len([(ca, ca) for ca, ca in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if ca != ca] ) // 2
)
if not match_count:
UpperCamelCase__ : Optional[int] = 0.0
else:
UpperCamelCase__ : Tuple = (
1
/ 3
* (
match_count / len(SCREAMING_SNAKE_CASE )
+ match_count / len(SCREAMING_SNAKE_CASE )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
UpperCamelCase__ : Optional[Any] = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 51
|
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __magic_name__ ( __lowerCAmelCase , unittest.TestCase):
A: int = CTRLTokenizer
A: List[Any] = False
A: Dict = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase__ : Dict = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
UpperCamelCase__ : List[str] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) )
UpperCamelCase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
UpperCamelCase__ : int = {'''unk_token''': '''<unk>'''}
UpperCamelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCamelCase__ ) )
def UpperCAmelCase__ ( self : Tuple , **lowerCamelCase__ : str ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Tuple = '''adapt react readapt apt'''
UpperCamelCase__ : Optional[Any] = '''adapt react readapt apt'''
return input_text, output_text
def UpperCAmelCase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
UpperCamelCase__ : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase__ : Optional[Any] = '''adapt react readapt apt'''
UpperCamelCase__ : List[Any] = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
UpperCamelCase__ : Tuple = tokenizer.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase__ : Dict = tokens + [tokenizer.unk_token]
UpperCamelCase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
| 51
| 1
|
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
_UpperCAmelCase : Union[str, Any] = CycleDiffusionPipeline
_UpperCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''negative_prompt''',
'''height''',
'''width''',
'''negative_prompt_embeds''',
}
_UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - {'''latents'''}
_UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} )
_UpperCAmelCase : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
_UpperCAmelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def lowerCAmelCase ( self : Optional[int]):
torch.manual_seed(0)
__lowerCamelCase : Tuple = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=3_2 ,)
__lowerCamelCase : Optional[int] = DDIMScheduler(
beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,num_train_timesteps=1_0_0_0 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,)
torch.manual_seed(0)
__lowerCamelCase : str = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,)
torch.manual_seed(0)
__lowerCamelCase : List[Any] = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,)
__lowerCamelCase : int = CLIPTextModel(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip')
__lowerCamelCase : Tuple = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : List[str]=0):
__lowerCamelCase : str = floats_tensor((1, 3, 3_2, 3_2) ,rng=random.Random(SCREAMING_SNAKE_CASE__)).to(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Optional[int] = image / 2 + 0.5
if str(SCREAMING_SNAKE_CASE__).startswith('mps'):
__lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__)
else:
__lowerCamelCase : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = {
'prompt': 'An astronaut riding an elephant',
'source_prompt': 'An astronaut riding a horse',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'eta': 0.1,
'strength': 0.8,
'guidance_scale': 3,
'source_guidance_scale': 1,
'output_type': 'numpy',
}
return inputs
def lowerCAmelCase ( self : Optional[Any]):
__lowerCamelCase : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase : Dict = self.get_dummy_components()
__lowerCamelCase : Dict = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[str] = pipe.to(SCREAMING_SNAKE_CASE__)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Any = pipe(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : str = output.images
__lowerCamelCase : Tuple = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
__lowerCamelCase : Optional[int] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
@unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU')
def lowerCAmelCase ( self : str):
__lowerCamelCase : Any = self.get_dummy_components()
for name, module in components.items():
if hasattr(SCREAMING_SNAKE_CASE__ ,'half'):
__lowerCamelCase : Any = module.half()
__lowerCamelCase : Union[str, Any] = CycleDiffusionPipeline(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : int = pipe.to(SCREAMING_SNAKE_CASE__)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = pipe(**SCREAMING_SNAKE_CASE__)
__lowerCamelCase : int = output.images
__lowerCamelCase : Any = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
__lowerCamelCase : Optional[int] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
@skip_mps
def lowerCAmelCase ( self : Dict):
return super().test_save_load_local()
@unittest.skip('non-deterministic pipeline')
def lowerCAmelCase ( self : Optional[Any]):
return super().test_inference_batch_single_identical()
@skip_mps
def lowerCAmelCase ( self : Any):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def lowerCAmelCase ( self : Optional[Any]):
return super().test_save_load_optional_components()
@skip_mps
def lowerCAmelCase ( self : Tuple):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class A_ ( unittest.TestCase ):
def lowerCAmelCase ( self : List[Any]):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : Union[str, Any]):
__lowerCamelCase : Tuple = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/cycle-diffusion/black_colored_car.png')
__lowerCamelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy')
__lowerCamelCase : Optional[int] = init_image.resize((5_1_2, 5_1_2))
__lowerCamelCase : Optional[int] = 'CompVis/stable-diffusion-v1-4'
__lowerCamelCase : Tuple = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder='scheduler')
__lowerCamelCase : Optional[int] = CycleDiffusionPipeline.from_pretrained(
SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,torch_dtype=torch.floataa ,revision='fp16')
pipe.to(SCREAMING_SNAKE_CASE__)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
pipe.enable_attention_slicing()
__lowerCamelCase : Union[str, Any] = 'A black colored car'
__lowerCamelCase : Optional[int] = 'A blue colored car'
__lowerCamelCase : List[Any] = torch.manual_seed(0)
__lowerCamelCase : Union[str, Any] = pipe(
prompt=SCREAMING_SNAKE_CASE__ ,source_prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,eta=0.1 ,strength=0.85 ,guidance_scale=3 ,source_guidance_scale=1 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,)
__lowerCamelCase : List[Any] = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image).max() < 5E-1
def lowerCAmelCase ( self : Union[str, Any]):
__lowerCamelCase : int = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/cycle-diffusion/black_colored_car.png')
__lowerCamelCase : List[str] = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy')
__lowerCamelCase : List[str] = init_image.resize((5_1_2, 5_1_2))
__lowerCamelCase : int = 'CompVis/stable-diffusion-v1-4'
__lowerCamelCase : int = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE__ ,subfolder='scheduler')
__lowerCamelCase : Optional[Any] = CycleDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__)
pipe.to(SCREAMING_SNAKE_CASE__)
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__)
pipe.enable_attention_slicing()
__lowerCamelCase : str = 'A black colored car'
__lowerCamelCase : List[str] = 'A blue colored car'
__lowerCamelCase : int = torch.manual_seed(0)
__lowerCamelCase : Tuple = pipe(
prompt=SCREAMING_SNAKE_CASE__ ,source_prompt=SCREAMING_SNAKE_CASE__ ,image=SCREAMING_SNAKE_CASE__ ,num_inference_steps=1_0_0 ,eta=0.1 ,strength=0.85 ,guidance_scale=3 ,source_guidance_scale=1 ,generator=SCREAMING_SNAKE_CASE__ ,output_type='np' ,)
__lowerCamelCase : List[Any] = output.images
assert np.abs(image - expected_image).max() < 2E-2
| 73
|
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def UpperCAmelCase_( a__=32 , a__=10 , a__=100 , a__=1_026 , a__=True , a__="data/tokenized_stories_train_wikitext103.jbl" , a__="igf_context_pairs.jbl" , ):
"""simple docstring"""
set_seed(3 )
# generate train_data and objective_set
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = generate_datasets(
a__ , a__ , number=a__ , min_len=1_026 , trim=a__ )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# load pretrained model
SCREAMING_SNAKE_CASE : Dict = load_gpta('''gpt2''' ).to(a__ )
print('''computing perplexity on objective set''' )
SCREAMING_SNAKE_CASE : int = compute_perplexity(a__ , a__ , a__ ).item()
print('''perplexity on objective set:''' , a__ )
# collect igf pairs and save to file demo.jbl
collect_objective_set(a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def UpperCAmelCase_( a__ , a__=15 , a__=128 , a__=100 , a__="igf_model.pt" , ):
"""simple docstring"""
set_seed(42 )
# Load pre-trained model
SCREAMING_SNAKE_CASE : List[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' )
# Initialize secondary learner to use embedding weights of model
SCREAMING_SNAKE_CASE : str = SecondaryLearner(a__ )
# Train secondary learner
SCREAMING_SNAKE_CASE : Union[str, Any] = train_secondary_learner(
a__ , a__ , max_epochs=a__ , batch_size=a__ , eval_freq=100 , igf_model_path=a__ , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def UpperCAmelCase_( a__ , a__ , a__ , a__=32 , a__=1_000 , a__=16 , a__=1.0 , a__=recopy_gpta , a__=None , a__=10 , a__="gpt2_finetuned.pt" , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
SCREAMING_SNAKE_CASE : Optional[int] = RandomSampler(a__ )
SCREAMING_SNAKE_CASE : Dict = DataLoader(a__ , sampler=a__ )
SCREAMING_SNAKE_CASE : Tuple = max_steps // (len(a__ )) + 1
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros((1, context_len) , dtype=torch.long , device=a__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = recopy_model(a__ , a__ , a__ )
model.train()
if secondary_learner is not None:
secondary_learner.to(a__ )
secondary_learner.eval()
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Tuple = []
# Compute the performance of the transformer model at the beginning
SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ )
test_perps.append(a__ )
print('''Test perplexity, step''' , a__ , ''':''' , a__ )
for epoch in range(int(a__ ) ):
for step, example in enumerate(a__ ):
torch.cuda.empty_cache()
SCREAMING_SNAKE_CASE : Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 )
SCREAMING_SNAKE_CASE : Optional[int] = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , labels=a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = True
if secondary_learner is not None:
SCREAMING_SNAKE_CASE : List[str] = secondary_learner.forward(
torch.tensor(a__ , dtype=torch.long , device=a__ ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(a__ ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
SCREAMING_SNAKE_CASE : Dict = -1
if predicted_q < threshold:
SCREAMING_SNAKE_CASE : str = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
SCREAMING_SNAKE_CASE : List[str] = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
SCREAMING_SNAKE_CASE : Any = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
SCREAMING_SNAKE_CASE : str = compute_perplexity(a__ , a__ , a__ )
test_perps.append(a__ )
print('''Test perplexity, step''' , a__ , ''':''' , a__ )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , a__ )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' )
# Required parameters
parser.add_argument(
'''--data_dir''' , default=a__ , type=a__ , required=a__ , help='''The input data dir. Should contain data files for WikiText.''' , )
parser.add_argument(
'''--model_name_or_path''' , default=a__ , type=a__ , required=a__ , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--data_file''' , type=a__ , default=a__ , help=(
'''A jbl file containing tokenized data which can be split as objective dataset, '''
'''train_dataset and test_dataset.'''
) , )
parser.add_argument(
'''--igf_data_file''' , type=a__ , default=a__ , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , )
parser.add_argument(
'''--output_dir''' , default=a__ , type=a__ , required=a__ , help='''The output directory where the final fine-tuned model is stored.''' , )
parser.add_argument(
'''--tokenizer_name''' , default=a__ , type=a__ , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument('''--seed''' , type=a__ , default=a__ , help='''A seed for reproducible training.''' )
parser.add_argument(
'''--context_len''' , default=32 , type=a__ , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--size_objective_set''' , default=100 , type=a__ , help='''number of articles that are long enough to be used as our objective set''' , )
parser.add_argument(
'''--eval_freq''' , default=100 , type=a__ , help='''secondary model evaluation is triggered at eval_freq''' )
parser.add_argument('''--max_steps''' , default=1_000 , type=a__ , help='''To calculate training epochs''' )
parser.add_argument(
'''--secondary_learner_batch_size''' , default=128 , type=a__ , help='''batch size of training data for secondary learner''' , )
parser.add_argument(
'''--batch_size''' , default=16 , type=a__ , help='''batch size of training data of language model(gpt2) ''' )
parser.add_argument(
'''--eval_interval''' , default=10 , type=a__ , help=(
'''decay the selectivity of our secondary learner filter from'''
'''1 standard deviation above average to 1 below average after 10 batches'''
) , )
parser.add_argument(
'''--number''' , default=100 , type=a__ , help='''The number of examples split to be used as objective_set/test_data''' )
parser.add_argument(
'''--min_len''' , default=1_026 , type=a__ , help='''The minimum length of the article to be used as objective set''' )
parser.add_argument(
'''--secondary_learner_max_epochs''' , default=15 , type=a__ , help='''number of epochs to train secondary learner''' )
parser.add_argument('''--trim''' , default=a__ , type=a__ , help='''truncate the example if it exceeds context length''' )
parser.add_argument(
'''--threshold''' , default=1.0 , type=a__ , help=(
'''The threshold value used by secondary learner to filter the train_data and allow only'''
''' informative data as input to the model'''
) , )
parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=a__ , help='''finetuned_model_name''' )
parser.add_argument(
'''--recopy_model''' , default=a__ , type=a__ , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=a__ , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , )
# Load train data for secondary learner
SCREAMING_SNAKE_CASE : List[Any] = joblib.load('''data/IGF_values.jbl''' )
# Train secondary learner
SCREAMING_SNAKE_CASE : Tuple = training_secondary_learner(
a__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='''igf_model.pt''' , )
# load pretrained gpt2 model
SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel.from_pretrained('''gpt2''' )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = generate_datasets(
context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=100 , min_len=1_026 , trim=a__ )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
a__ , a__ , a__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=a__ , secondary_learner=a__ , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , )
if __name__ == "__main__":
main()
| 313
| 0
|
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
_A = logging.get_logger(__name__)
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE__ ):
return [[videos]]
raise ValueError(F'Could not make batched video from {videos}' )
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : Dict = ["pixel_values"]
def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = True , A_ = None , A_ = None , **A_ , ) -> None:
super().__init__(**A_ )
__UpperCamelCase =size if size is not None else {'shortest_edge': 256}
__UpperCamelCase =get_size_dict(A_ , default_to_square=A_ )
__UpperCamelCase =crop_size if crop_size is not None else {'height': 224, 'width': 224}
__UpperCamelCase =get_size_dict(A_ , param_name='crop_size' )
__UpperCamelCase =do_resize
__UpperCamelCase =size
__UpperCamelCase =do_center_crop
__UpperCamelCase =crop_size
__UpperCamelCase =resample
__UpperCamelCase =do_rescale
__UpperCamelCase =rescale_factor
__UpperCamelCase =offset
__UpperCamelCase =do_normalize
__UpperCamelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCamelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD
def _a ( self , A_ , A_ , A_ = PILImageResampling.BILINEAR , A_ = None , **A_ , ) -> np.ndarray:
__UpperCamelCase =get_size_dict(A_ , default_to_square=A_ )
if "shortest_edge" in size:
__UpperCamelCase =get_resize_output_image_size(A_ , size['shortest_edge'] , default_to_square=A_ )
elif "height" in size and "width" in size:
__UpperCamelCase =(size['height'], size['width'])
else:
raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ )
def _a ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray:
__UpperCamelCase =get_size_dict(A_ )
if "height" not in size or "width" not in size:
raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ )
def _a ( self , A_ , A_ , A_ = True , A_ = None , **A_ , ) -> List[str]:
__UpperCamelCase =image.astype(np.floataa )
if offset:
__UpperCamelCase =image - (scale / 2)
return rescale(A_ , scale=A_ , data_format=A_ , **A_ )
def _a ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray:
return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ )
def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
if offset and not do_rescale:
raise ValueError('For offset, do_rescale must also be set to True.' )
# All transformations expect numpy arrays.
__UpperCamelCase =to_numpy_array(A_ )
if do_resize:
__UpperCamelCase =self.resize(image=A_ , size=A_ , resample=A_ )
if do_center_crop:
__UpperCamelCase =self.center_crop(A_ , size=A_ )
if do_rescale:
__UpperCamelCase =self.rescale(image=A_ , scale=A_ , offset=A_ )
if do_normalize:
__UpperCamelCase =self.normalize(image=A_ , mean=A_ , std=A_ )
__UpperCamelCase =to_channel_dimension_format(A_ , A_ )
return image
def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> PIL.Image.Image:
__UpperCamelCase =do_resize if do_resize is not None else self.do_resize
__UpperCamelCase =resample if resample is not None else self.resample
__UpperCamelCase =do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase =offset if offset is not None else self.offset
__UpperCamelCase =do_normalize if do_normalize is not None else self.do_normalize
__UpperCamelCase =image_mean if image_mean is not None else self.image_mean
__UpperCamelCase =image_std if image_std is not None else self.image_std
__UpperCamelCase =size if size is not None else self.size
__UpperCamelCase =get_size_dict(A_ , default_to_square=A_ )
__UpperCamelCase =crop_size if crop_size is not None else self.crop_size
__UpperCamelCase =get_size_dict(A_ , param_name='crop_size' )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
__UpperCamelCase =make_batched(A_ )
__UpperCamelCase =[
[
self._preprocess_image(
image=A_ , do_resize=A_ , size=A_ , resample=A_ , do_center_crop=A_ , crop_size=A_ , do_rescale=A_ , rescale_factor=A_ , offset=A_ , do_normalize=A_ , image_mean=A_ , image_std=A_ , data_format=A_ , )
for img in video
]
for video in videos
]
__UpperCamelCase ={'pixel_values': videos}
return BatchFeature(data=A_ , tensor_type=A_ )
| 117
|
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
_A = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt')
@dataclass
class UpperCAmelCase__ :
"""simple docstring"""
UpperCAmelCase__ : Optional[str] = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
UpperCAmelCase__ : Optional[str] = field(
default=A_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
UpperCAmelCase__ : Optional[str] = field(
default=A_ , metadata={"help": "The column name of the images in the files."} )
UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "A folder containing the training data."} )
UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "A folder containing the validation data."} )
UpperCAmelCase__ : Optional[float] = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
UpperCAmelCase__ : Optional[int] = field(
default=A_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
UpperCAmelCase__ : Optional[int] = field(
default=A_ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def _a ( self ) -> Optional[int]:
__UpperCamelCase ={}
if self.train_dir is not None:
__UpperCamelCase =self.train_dir
if self.validation_dir is not None:
__UpperCamelCase =self.validation_dir
__UpperCamelCase =data_files if data_files else None
@dataclass
class UpperCAmelCase__ :
"""simple docstring"""
UpperCAmelCase__ : str = field(
default=A_ , metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
} , )
UpperCAmelCase__ : Optional[str] = field(
default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} )
UpperCAmelCase__ : Optional[str] = field(
default=A_ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
UpperCAmelCase__ : Optional[str] = field(
default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
UpperCAmelCase__ : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
UpperCAmelCase__ : str = field(default=A_ , metadata={"help": "Name or path of preprocessor config."} )
UpperCAmelCase__ : bool = field(
default=A_ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
UpperCAmelCase__ : float = field(
default=0.75 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} )
UpperCAmelCase__ : bool = field(
default=A_ , metadata={"help": "Whether or not to train with normalized pixel values as target."} )
@dataclass
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : float = field(
default=1e-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ):
__UpperCamelCase =torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__UpperCamelCase =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__UpperCamelCase =training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__UpperCamelCase =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__UpperCamelCase =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
__UpperCamelCase =load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
__UpperCamelCase =None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0:
__UpperCamelCase =ds['train'].train_test_split(data_args.train_val_split )
__UpperCamelCase =split['train']
__UpperCamelCase =split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__UpperCamelCase ={
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
__UpperCamelCase =ViTMAEConfig.from_pretrained(model_args.config_name , **SCREAMING_SNAKE_CASE__ )
elif model_args.model_name_or_path:
__UpperCamelCase =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ )
else:
__UpperCamelCase =ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'Overriding config: {model_args.config_overrides}' )
config.update_from_string(model_args.config_overrides )
logger.info(F'New config: {config}' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
__UpperCamelCase =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE__ )
elif model_args.model_name_or_path:
__UpperCamelCase =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE__ )
else:
__UpperCamelCase =ViTImageProcessor()
# create model
if model_args.model_name_or_path:
__UpperCamelCase =ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
__UpperCamelCase =ViTMAEForPreTraining(SCREAMING_SNAKE_CASE__ )
if training_args.do_train:
__UpperCamelCase =ds['train'].column_names
else:
__UpperCamelCase =ds['validation'].column_names
if data_args.image_column_name is not None:
__UpperCamelCase =data_args.image_column_name
elif "image" in column_names:
__UpperCamelCase ='image'
elif "img" in column_names:
__UpperCamelCase ='img'
else:
__UpperCamelCase =column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
__UpperCamelCase =image_processor.size['shortest_edge']
else:
__UpperCamelCase =(image_processor.size['height'], image_processor.size['width'])
__UpperCamelCase =Compose(
[
Lambda(lambda SCREAMING_SNAKE_CASE__ : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(SCREAMING_SNAKE_CASE__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
__UpperCamelCase =[transforms(SCREAMING_SNAKE_CASE__ ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
__UpperCamelCase =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(SCREAMING_SNAKE_CASE__ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
__UpperCamelCase =(
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(SCREAMING_SNAKE_CASE__ )
# Compute absolute learning rate
__UpperCamelCase =(
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
__UpperCamelCase =training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
__UpperCamelCase =Trainer(
model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , )
# Training
if training_args.do_train:
__UpperCamelCase =None
if training_args.resume_from_checkpoint is not None:
__UpperCamelCase =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__UpperCamelCase =last_checkpoint
__UpperCamelCase =trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
__UpperCamelCase =trainer.evaluate()
trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE__ )
# Write model card and (optionally) push to hub
__UpperCamelCase ={
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE__ )
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 117
| 1
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( a__ , a__ , a__ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline
__SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__SCREAMING_SNAKE_CASE = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__SCREAMING_SNAKE_CASE = frozenset([] )
def UpperCamelCase ( self ):
torch.manual_seed(0 )
A__ = UNetaDConditionModel(
block_out_channels=(32, 64),layers_per_block=2,sample_size=32,in_channels=9,out_channels=4,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D'''),up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D'''),cross_attention_dim=32,attention_head_dim=(2, 4),use_linear_projection=_UpperCAmelCase,)
A__ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
torch.manual_seed(0 )
A__ = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],latent_channels=4,sample_size=128,)
torch.manual_seed(0 )
A__ = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1E-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=1000,hidden_act='''gelu''',projection_dim=512,)
A__ = CLIPTextModel(_UpperCAmelCase )
A__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
A__ = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=0 ):
A__ = floats_tensor((1, 3, 32, 32),rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
A__ = image.cpu().permute(0,2,3,1 )[0]
A__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) )
A__ = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_UpperCAmelCase ).startswith('''mps''' ):
A__ = torch.manual_seed(_UpperCAmelCase )
else:
A__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
A__ = {
'prompt': 'A painting of a squirrel eating a burger',
'image': init_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase ( self ):
A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator
A__ = self.get_dummy_components()
A__ = StableDiffusionInpaintPipeline(**_UpperCAmelCase )
A__ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
A__ = self.get_dummy_inputs(_UpperCAmelCase )
A__ = sd_pipe(**_UpperCAmelCase ).images
A__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def UpperCamelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def UpperCamelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self ):
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
A__ = 'stabilityai/stable-diffusion-2-inpainting'
A__ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase,safety_checker=_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
A__ = 'Face of a yellow cat, high resolution, sitting on a park bench'
A__ = torch.manual_seed(0 )
A__ = pipe(
prompt=_UpperCAmelCase,image=_UpperCAmelCase,mask_image=_UpperCAmelCase,generator=_UpperCAmelCase,output_type='''np''',)
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def UpperCamelCase ( self ):
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
A__ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
A__ = 'stabilityai/stable-diffusion-2-inpainting'
A__ = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCAmelCase,torch_dtype=torch.floataa,safety_checker=_UpperCAmelCase,)
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
A__ = 'Face of a yellow cat, high resolution, sitting on a park bench'
A__ = torch.manual_seed(0 )
A__ = pipe(
prompt=_UpperCAmelCase,image=_UpperCAmelCase,mask_image=_UpperCAmelCase,generator=_UpperCAmelCase,output_type='''np''',)
A__ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def UpperCamelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
A__ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
A__ = 'stabilityai/stable-diffusion-2-inpainting'
A__ = PNDMScheduler.from_pretrained(_UpperCAmelCase,subfolder='''scheduler''' )
A__ = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCAmelCase,safety_checker=_UpperCAmelCase,scheduler=_UpperCAmelCase,torch_dtype=torch.floataa,)
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
A__ = 'Face of a yellow cat, high resolution, sitting on a park bench'
A__ = torch.manual_seed(0 )
A__ = pipe(
prompt=_UpperCAmelCase,image=_UpperCAmelCase,mask_image=_UpperCAmelCase,generator=_UpperCAmelCase,num_inference_steps=2,output_type='''np''',)
A__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 193
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _lowerCAmelCase ( __snake_case : Tuple ) -> Dict:
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _lowerCAmelCase ( ) -> Tuple:
__A : int = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__snake_case )
__A : Optional[Any] = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(__snake_case )
EnvironmentCommand.register_subcommand(__snake_case )
TestCommand.register_subcommand(__snake_case )
RunBeamCommand.register_subcommand(__snake_case )
DummyDataCommand.register_subcommand(__snake_case )
# Parse args
__A ,__A : Optional[Any] = parser.parse_known_args()
if not hasattr(__snake_case , 'func' ):
parser.print_help()
exit(1 )
__A : Any = parse_unknown_args(__snake_case )
# Run
__A : List[Any] = args.func(__snake_case , **__snake_case )
service.run()
if __name__ == "__main__":
main()
| 190
| 0
|
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__A : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase__)
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__):
def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> Tuple:
super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def _snake_case ( self , _SCREAMING_SNAKE_CASE=None )-> Union[str, Any]:
lowerCamelCase_ ={}
if top_k is not None:
lowerCamelCase_ =top_k
return {}, {}, postprocess_params
def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> int:
return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[Any]:
lowerCamelCase_ =load_image(_SCREAMING_SNAKE_CASE )
lowerCamelCase_ =self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework )
return model_inputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE )-> Optional[int]:
lowerCamelCase_ =self.model(**_SCREAMING_SNAKE_CASE )
return model_outputs
def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 )-> Optional[Any]:
if top_k > self.model.config.num_labels:
lowerCamelCase_ =self.model.config.num_labels
if self.framework == "pt":
lowerCamelCase_ =model_outputs.logits.softmax(-1 )[0]
lowerCamelCase_ , lowerCamelCase_ =probs.topk(_SCREAMING_SNAKE_CASE )
elif self.framework == "tf":
lowerCamelCase_ =stable_softmax(model_outputs.logits , axis=-1 )[0]
lowerCamelCase_ =tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE )
lowerCamelCase_ , lowerCamelCase_ =topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'Unsupported framework: {self.framework}' )
lowerCamelCase_ =scores.tolist()
lowerCamelCase_ =ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
| 49
|
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]:
"""simple docstring"""
lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape
lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape
if rowsa != colsa:
lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(_A )
if colsa != 1:
lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(_A )
if rowsa != rowsa:
lowerCamelCase_ =(
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
f'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(_A )
if len(_A ) != rowsa:
lowerCamelCase_ =(
"""Number of initial values must be equal to number of rows in coefficient """
f'matrix but received {len(_A )} and {rowsa}'
)
raise ValueError(_A )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
lowerCamelCase_ =np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
lowerCamelCase_ , lowerCamelCase_ =table.shape
strictly_diagonally_dominant(_A )
# Iterates the whole matrix for given number of times
for _ in range(_A ):
lowerCamelCase_ =[]
for row in range(_A ):
lowerCamelCase_ =0
for col in range(_A ):
if col == row:
lowerCamelCase_ =table[row][col]
elif col == cols - 1:
lowerCamelCase_ =table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
lowerCamelCase_ =(temp + val) / denom
new_val.append(_A )
lowerCamelCase_ =new_val
return [float(_A ) for i in new_val]
def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool:
"""simple docstring"""
lowerCamelCase_ , lowerCamelCase_ =table.shape
lowerCamelCase_ =True
for i in range(0 , _A ):
lowerCamelCase_ =0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 49
| 1
|
"""simple docstring"""
def __magic_name__ ( lowercase = 200_0000 ):
SCREAMING_SNAKE_CASE_: str =[0 for i in range(n + 1 )]
SCREAMING_SNAKE_CASE_: Any =1
SCREAMING_SNAKE_CASE_: Tuple =1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , lowercase ):
SCREAMING_SNAKE_CASE_: List[str] =1
SCREAMING_SNAKE_CASE_: Optional[int] =0
for i in range(lowercase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f"""{solution() = }""")
| 173
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class a ( metaclass=UpperCAmelCase__ ):
UpperCamelCase : Optional[int] = ['torch', 'torchsde']
def __init__( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
requires_backends(self , ["""torch""", """torchsde"""] )
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple ) -> List[Any]:
'''simple docstring'''
requires_backends(cls , ["""torch""", """torchsde"""] )
@classmethod
def lowerCamelCase__ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Tuple:
'''simple docstring'''
requires_backends(cls , ["""torch""", """torchsde"""] )
| 173
| 1
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
lowerCAmelCase_ = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class lowerCamelCase ( __lowerCAmelCase ):
snake_case_ = '''ibert'''
def __init__( self, lowercase_=30522, lowercase_=768, lowercase_=12, lowercase_=12, lowercase_=3072, lowercase_="gelu", lowercase_=0.1, lowercase_=0.1, lowercase_=512, lowercase_=2, lowercase_=0.02, lowercase_=1E-12, lowercase_=1, lowercase_=0, lowercase_=2, lowercase_="absolute", lowercase_=False, lowercase_="none", **lowercase_, ) -> str:
super().__init__(pad_token_id=lowercase_, bos_token_id=lowercase_, eos_token_id=lowercase_, **lowercase_ )
snake_case = vocab_size
snake_case = hidden_size
snake_case = num_hidden_layers
snake_case = num_attention_heads
snake_case = hidden_act
snake_case = intermediate_size
snake_case = hidden_dropout_prob
snake_case = attention_probs_dropout_prob
snake_case = max_position_embeddings
snake_case = type_vocab_size
snake_case = initializer_range
snake_case = layer_norm_eps
snake_case = position_embedding_type
snake_case = quant_mode
snake_case = force_dequant
class lowerCamelCase ( __lowerCAmelCase ):
@property
def _lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 332
|
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def __magic_name__ ( A ) -> Tuple:
snake_case = []
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''',
F'''stage{idx}.patch_embed.proj.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''',
F'''stage{idx}.patch_embed.proj.bias''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''',
F'''stage{idx}.patch_embed.norm.weight''',
) )
embed.append(
(
F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''',
F'''stage{idx}.patch_embed.norm.bias''',
) )
return embed
def __magic_name__ ( A , A ) -> Optional[int]:
snake_case = []
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''',
F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''',
F'''stage{idx}.blocks.{cnt}.attn.proj.weight''',
) )
attention_weights.append(
(
F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''',
F'''stage{idx}.blocks.{cnt}.attn.proj.bias''',
) )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') )
attention_weights.append(
(F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') )
return attention_weights
def __magic_name__ ( A ) -> List[Any]:
snake_case = []
token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') )
return token
def __magic_name__ ( ) -> Dict:
snake_case = []
head.append(('layernorm.weight', 'norm.weight') )
head.append(('layernorm.bias', 'norm.bias') )
head.append(('classifier.weight', 'head.weight') )
head.append(('classifier.bias', 'head.bias') )
return head
def __magic_name__ ( A , A , A , A ) -> int:
snake_case = 'imagenet-1k-id2label.json'
snake_case = 1_0_0_0
snake_case = 'huggingface/label-files'
snake_case = num_labels
snake_case = json.load(open(cached_download(hf_hub_url(A , A , repo_type='dataset' ) ) , 'r' ) )
snake_case = {int(A ): v for k, v in idalabel.items()}
snake_case = idalabel
snake_case = {v: k for k, v in idalabel.items()}
snake_case = snake_case = CvtConfig(num_labels=A , idalabel=A , labelaid=A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13":
snake_case = [1, 2, 1_0]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21":
snake_case = [1, 4, 1_6]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
snake_case = [2, 2, 2_0]
snake_case = [3, 1_2, 1_6]
snake_case = [1_9_2, 7_6_8, 1_0_2_4]
snake_case = CvtForImageClassification(A )
snake_case = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
snake_case = image_size
snake_case = torch.load(A , map_location=torch.device('cpu' ) )
snake_case = OrderedDict()
snake_case = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
snake_case = list_of_state_dict + cls_token(A )
snake_case = list_of_state_dict + embeddings(A )
for cnt in range(config.depth[idx] ):
snake_case = list_of_state_dict + attention(A , A )
snake_case = list_of_state_dict + final()
for gg in list_of_state_dict:
print(A )
for i in range(len(A ) ):
snake_case = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(A )
model.save_pretrained(A )
image_processor.save_pretrained(A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=3_8_4,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
lowerCAmelCase_ = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 332
| 1
|
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class __A :
'''simple docstring'''
def __init__( self : Dict ,_snake_case : Dict ,_snake_case : str=None ,_snake_case : Optional[Any]=None ,_snake_case : Union[str, Any]=None ,_snake_case : Dict="resnet50" ,_snake_case : Dict=3 ,_snake_case : Union[str, Any]=32 ,_snake_case : int=3 ,_snake_case : List[Any]=True ,_snake_case : Optional[int]=True ,) -> Any:
"""simple docstring"""
lowercase__ : Optional[int] = parent
lowercase__ : List[str] = out_indices if out_indices is not None else [4]
lowercase__ : Optional[int] = stage_names
lowercase__ : Optional[int] = out_features
lowercase__ : int = backbone
lowercase__ : List[str] = batch_size
lowercase__ : List[str] = image_size
lowercase__ : int = num_channels
lowercase__ : Any = use_pretrained_backbone
lowercase__ : Any = is_training
def UpperCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
lowercase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__ : Union[str, Any] = self.get_config()
return config, pixel_values
def UpperCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
return TimmBackboneConfig(
image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,)
def UpperCAmelCase ( self : str ,_snake_case : Any ,_snake_case : List[str] ) -> Any:
"""simple docstring"""
lowercase__ : List[Any] = TimmBackbone(config=_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowercase__ : str = model(_snake_case )
self.parent.assertEqual(
result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,)
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : List[str] = self.prepare_config_and_inputs()
lowercase__ , lowercase__ : str = config_and_inputs
lowercase__ : str = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class __A ( A_ ,A_ ,A_ ,unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = (TimmBackbone,) if is_torch_available() else ()
lowerCAmelCase : List[Any] = {"feature-extraction": TimmBackbone} if is_torch_available() else {}
lowerCAmelCase : int = False
lowerCAmelCase : List[str] = False
lowerCAmelCase : Tuple = False
lowerCAmelCase : int = False
def UpperCAmelCase ( self : Any ) -> int:
"""simple docstring"""
lowercase__ : Optional[Any] = TimmBackboneModelTester(self )
lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ,has_text_modality=_snake_case )
def UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : str = '''resnet18'''
lowercase__ : List[Any] = '''microsoft/resnet-18'''
lowercase__ : str = AutoBackbone.from_pretrained(_snake_case ,use_timm_backbone=_snake_case )
lowercase__ : List[str] = AutoBackbone.from_pretrained(_snake_case )
self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) )
self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) )
self.assertEqual(timm_model.channels ,transformers_model.channels )
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices ,(-1,) )
self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] )
lowercase__ : Optional[Any] = AutoBackbone.from_pretrained(_snake_case ,use_timm_backbone=_snake_case ,out_indices=[1, 2, 3] )
lowercase__ : int = AutoBackbone.from_pretrained(_snake_case ,out_indices=[1, 2, 3] )
self.assertEqual(timm_model.out_indices ,transformers_model.out_indices )
self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) )
self.assertEqual(timm_model.channels ,transformers_model.channels )
@unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' )
def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' )
def UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone initialization is managed on the timm side''' )
def UpperCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' )
def UpperCAmelCase ( self : int ) -> Any:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' )
def UpperCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' )
def UpperCAmelCase ( self : str ) -> int:
"""simple docstring"""
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def UpperCAmelCase ( self : Tuple ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip('''model weights aren\'t tied in TimmBackbone.''' )
def UpperCAmelCase ( self : Any ) -> int:
"""simple docstring"""
pass
@unittest.skip('''model weights aren\'t tied in TimmBackbone.''' )
def UpperCAmelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def UpperCAmelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' )
def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' )
def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip('''Safetensors is not supported by timm.''' )
def UpperCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
pass
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : str = model_class(_snake_case )
lowercase__ : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__ : Optional[int] = [*signature.parameters.keys()]
lowercase__ : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,_snake_case )
def UpperCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : int = True
lowercase__ : List[Any] = self.has_attentions
# no need to test all models as different heads yield the same functionality
lowercase__ : Union[str, Any] = self.all_model_classes[0]
lowercase__ : Optional[int] = model_class(_snake_case )
model.to(_snake_case )
lowercase__ : List[str] = self._prepare_for_class(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = model(**_snake_case )
lowercase__ : Optional[int] = outputs[0][-1]
# Encoder-/Decoder-only models
lowercase__ : Optional[Any] = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
lowercase__ : str = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=_snake_case )
self.assertIsNotNone(hidden_states.grad )
if self.has_attentions:
self.assertIsNotNone(attentions.grad )
def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__ : Tuple = model_class(_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : Optional[Any] = model(**_snake_case )
self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) )
self.assertEqual(len(model.channels ) ,len(config.out_indices ) )
# Check output of last stage is taken if out_features=None, out_indices=None
lowercase__ : Optional[int] = copy.deepcopy(_snake_case )
lowercase__ : Union[str, Any] = None
lowercase__ : Optional[int] = model_class(_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : Any = model(**_snake_case )
self.assertEqual(len(result.feature_maps ) ,1 )
self.assertEqual(len(model.channels ) ,1 )
# Check backbone can be initialized with fresh weights
lowercase__ : List[Any] = copy.deepcopy(_snake_case )
lowercase__ : List[Any] = False
lowercase__ : Dict = model_class(_snake_case )
model.to(_snake_case )
model.eval()
lowercase__ : List[str] = model(**_snake_case )
| 16
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
lowerCAmelCase_ = {
'configuration_speecht5': [
'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP',
'SpeechT5Config',
'SpeechT5HifiGanConfig',
],
'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'],
'processing_speecht5': ['SpeechT5Processor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = ['SpeechT5Tokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'SpeechT5ForSpeechToText',
'SpeechT5ForSpeechToSpeech',
'SpeechT5ForTextToSpeech',
'SpeechT5Model',
'SpeechT5PreTrainedModel',
'SpeechT5HifiGan',
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 16
| 1
|
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class a ( __lowercase , unittest.TestCase ):
snake_case__ = XGLMTokenizer
snake_case__ = XGLMTokenizerFast
snake_case__ = True
snake_case__ = True
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = '<pad>'
lowerCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ) , UpperCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ) , UpperCAmelCase__ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(len(UpperCAmelCase__ ) , 10_08 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = XGLMTokenizer(UpperCAmelCase__ , keep_accents=UpperCAmelCase__ )
lowerCAmelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(UpperCAmelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
lowerCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ )
self.assertListEqual(
UpperCAmelCase__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return XGLMTokenizer.from_pretrained('facebook/xglm-564M' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(UpperCAmelCase__ , f.name )
lowerCAmelCase = XGLMTokenizer(f.name , keep_accents=UpperCAmelCase__ )
lowerCAmelCase = pickle.dumps(UpperCAmelCase__ )
pickle.loads(UpperCAmelCase__ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowerCAmelCase = self.get_tokenizer()
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = 'I was born in 92000, and this is falsé.'
lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase__ )
lowerCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCAmelCase = self.get_rust_tokenizer()
lowerCAmelCase = tokenizer.encode(UpperCAmelCase__ )
lowerCAmelCase = rust_tokenizer.encode(UpperCAmelCase__ )
self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'Hello World!'
lowerCAmelCase = [2, 3_12_27, 44_47, 35]
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'
)
# fmt: off
lowerCAmelCase = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(UpperCAmelCase__ , self.big_tokenizer.encode(UpperCAmelCase__ ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = {
'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase__ , model_name='facebook/xglm-564M' , padding=UpperCAmelCase__ , )
| 361
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Any = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : List[str] = "data2vec-text"
def __init__( self, SCREAMING_SNAKE_CASE_=3_0522, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=0, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_="absolute", SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_, bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = vocab_size
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : Optional[int] = num_hidden_layers
UpperCamelCase : List[str] = num_attention_heads
UpperCamelCase : Any = hidden_act
UpperCamelCase : str = intermediate_size
UpperCamelCase : Any = hidden_dropout_prob
UpperCamelCase : Dict = attention_probs_dropout_prob
UpperCamelCase : Union[str, Any] = max_position_embeddings
UpperCamelCase : Any = type_vocab_size
UpperCamelCase : List[str] = initializer_range
UpperCamelCase : Optional[Any] = layer_norm_eps
UpperCamelCase : List[Any] = position_embedding_type
UpperCamelCase : Tuple = use_cache
UpperCamelCase : List[str] = classifier_dropout
class lowerCAmelCase_ ( a__ ):
@property
def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
UpperCamelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase : int = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 119
|
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''',
}
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : Tuple = "bloom"
UpperCAmelCase__ : List[Any] = ["past_key_values"]
UpperCAmelCase__ : str = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__( self, SCREAMING_SNAKE_CASE_=25_0880, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, **SCREAMING_SNAKE_CASE_, ) -> Tuple:
UpperCamelCase : str = vocab_size
# Backward compatibility with n_embed kwarg
UpperCamelCase : Optional[Any] = kwargs.pop('n_embed', SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = hidden_size if n_embed is None else n_embed
UpperCamelCase : Tuple = n_layer
UpperCamelCase : Dict = n_head
UpperCamelCase : List[Any] = layer_norm_epsilon
UpperCamelCase : Optional[int] = initializer_range
UpperCamelCase : int = use_cache
UpperCamelCase : int = pretraining_tp
UpperCamelCase : Optional[int] = apply_residual_connection_post_layernorm
UpperCamelCase : str = hidden_dropout
UpperCamelCase : str = attention_dropout
UpperCamelCase : List[Any] = bos_token_id
UpperCamelCase : Tuple = eos_token_id
UpperCamelCase : Union[str, Any] = slow_but_exact
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
class lowerCAmelCase_ ( a__ ):
UpperCAmelCase__ : Any = version.parse("1.12" )
def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = "default", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False, ) -> Any:
super().__init__(SCREAMING_SNAKE_CASE_, task=SCREAMING_SNAKE_CASE_, patching_specs=SCREAMING_SNAKE_CASE_, use_past=SCREAMING_SNAKE_CASE_ )
if not getattr(self._config, 'pad_token_id', SCREAMING_SNAKE_CASE_ ):
# TODO: how to do that better?
UpperCamelCase : Tuple = 0
@property
def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]:
UpperCamelCase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_, direction='inputs', inverted_values_shape=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'}
else:
UpperCamelCase : Optional[int] = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def snake_case_ ( self ) -> int:
return self._config.n_layer
@property
def snake_case_ ( self ) -> int:
return self._config.n_head
@property
def snake_case_ ( self ) -> float:
return 1e-3
def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = -1, SCREAMING_SNAKE_CASE_ = False, SCREAMING_SNAKE_CASE_ = None, ) -> Mapping[str, Any]:
UpperCamelCase : Dict = super(SCREAMING_SNAKE_CASE_, self ).generate_dummy_inputs(
SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_, seq_length=SCREAMING_SNAKE_CASE_, is_pair=SCREAMING_SNAKE_CASE_, framework=SCREAMING_SNAKE_CASE_ )
# We need to order the input in the way they appears in the forward()
UpperCamelCase : Any = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
UpperCamelCase , UpperCamelCase : int = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
UpperCamelCase : Any = seqlen + 2
UpperCamelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads
UpperCamelCase : Any = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
UpperCamelCase : Optional[Any] = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
UpperCamelCase : List[str] = [
(torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers )
]
UpperCamelCase : str = common_inputs['attention_mask']
if self.use_past:
UpperCamelCase : int = ordered_inputs['attention_mask'].dtype
UpperCamelCase : List[Any] = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )], dim=1 )
return ordered_inputs
@property
def snake_case_ ( self ) -> int:
return 13
| 119
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class _A ( __SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE : int = """megatron-bert"""
def __init__( self , __UpperCAmelCase=29_056 , __UpperCAmelCase=1_024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4_096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> str:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ )
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : List[Any] = intermediate_size
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : List[Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : int = initializer_range
__UpperCAmelCase : int = layer_norm_eps
__UpperCAmelCase : Tuple = position_embedding_type
__UpperCAmelCase : List[Any] = use_cache
| 366
|
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _A :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : Tuple = seq_length
__UpperCAmelCase : str = is_training
__UpperCAmelCase : Union[str, Any] = use_input_mask
__UpperCAmelCase : List[Any] = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : str = num_attention_heads
__UpperCAmelCase : Optional[Any] = intermediate_size
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Tuple = max_position_embeddings
__UpperCAmelCase : Dict = type_vocab_size
__UpperCAmelCase : List[Any] = type_sequence_label_size
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : List[str] = num_labels
__UpperCAmelCase : str = num_choices
__UpperCAmelCase : List[Any] = scope
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
__UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : List[str] = True
__UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCAmelCase : Tuple = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
'''simple docstring'''
__UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = True
__UpperCAmelCase : Any = True
__UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCAmelCase : Optional[int] = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCAmelCase : Union[str, Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCAmelCase : int = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
__UpperCAmelCase : Dict = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0]
# select random slice
__UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Any = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Any = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE : List[str] = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE : Optional[int] = False
_SCREAMING_SNAKE_CASE : List[str] = False
def __A ( self ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase : Tuple = LlamaModelTester(self )
__UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def __A ( self ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : str = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def __A ( self ) -> List[str]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Any = 3
__UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> List[Any]:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Optional[Any] = """single_label_classification"""
__UpperCAmelCase : int = input_dict["""input_ids"""]
__UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = 3
__UpperCAmelCase : str = """multi_label_classification"""
__UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""]
__UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCAmelCase : str = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" )
def __A ( self ) -> Dict:
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __A ( self , __UpperCAmelCase ) -> Tuple:
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size )
__UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0}
__UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class _A ( unittest.TestCase ):
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Any:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" )
__UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Optional[Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" )
__UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" )
@slow
def __A ( self ) -> Dict:
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" )
__UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
"""Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" )
@slow
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
__UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338]
__UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" )
__UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) )
__UpperCAmelCase : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip("""Model is curently gated""" )
@slow
def __A ( self ) -> Optional[int]:
'''simple docstring'''
__UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"""
__UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """
__UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" )
__UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" )
__UpperCAmelCase : int = LlamaForCausalLM.from_pretrained(
"""meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 16
| 0
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json',
'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json',
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class _a ( __a ):
__a : Optional[int] = """xlm-roberta-xl"""
def __init__( self : Union[str, Any] , lowercase : str=250_880 , lowercase : Dict=2_560 , lowercase : str=36 , lowercase : Optional[Any]=32 , lowercase : List[str]=10_240 , lowercase : List[Any]="gelu" , lowercase : Optional[int]=0.1 , lowercase : Dict=0.1 , lowercase : List[str]=514 , lowercase : Dict=1 , lowercase : Optional[int]=0.02 , lowercase : Optional[int]=1E-05 , lowercase : Optional[Any]=1 , lowercase : str=0 , lowercase : int=2 , lowercase : int="absolute" , lowercase : Optional[int]=True , lowercase : List[str]=None , **lowercase : int , ):
'''simple docstring'''
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = position_embedding_type
UpperCAmelCase = use_cache
UpperCAmelCase = classifier_dropout
class _a ( __a ):
@property
def A ( self : int ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCAmelCase = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 34
|
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
A =logging.getLogger(__name__)
A ='Hello world! cécé herlolip'
A =namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def snake_case_ (_a : List[Any] , _a : Any ):
UpperCAmelCase = BertAbsConfig(
temp_dir='''.''' , finetune_bert=_a , large=_a , share_emb=_a , use_bert_emb=_a , encoder='''bert''' , max_pos=5_1_2 , enc_layers=6 , enc_hidden_size=5_1_2 , enc_heads=8 , enc_ff_size=5_1_2 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=7_6_8 , dec_heads=8 , dec_ff_size=2_0_4_8 , dec_dropout=0.2 , )
UpperCAmelCase = torch.load(_a , lambda _a , _a : storage )
UpperCAmelCase = AbsSummarizer(_a , torch.device('''cpu''' ) , _a )
original.eval()
UpperCAmelCase = BertAbsSummarizer(_a , torch.device('''cpu''' ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info('''convert the model''' )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info('''Make sure that the models\' outputs are identical''' )
UpperCAmelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' )
# prepare the model inputs
UpperCAmelCase = tokenizer.encode('''This is sample éàalj\'-.''' )
encoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
UpperCAmelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' )
decoder_input_ids.extend([tokenizer.pad_token_id] * (5_1_2 - len(_a )) )
UpperCAmelCase = torch.tensor(_a ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
UpperCAmelCase = encoder_input_ids
UpperCAmelCase = decoder_input_ids
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = UpperCAmelCase = None
UpperCAmelCase = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
UpperCAmelCase = original(_a , _a , _a , _a , _a , _a , _a )[0]
UpperCAmelCase = original.generator(_a )
UpperCAmelCase = new_model(
_a , _a , _a , _a , _a )[0]
UpperCAmelCase = new_model.generator(_a )
UpperCAmelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print('''Maximum absolute difference beween weights: {:.2f}'''.format(_a ) )
UpperCAmelCase = torch.allclose(_a , _a , atol=1E-3 )
if are_identical:
logging.info('''all weights are equal up to 1e-3''' )
else:
raise ValueError('''the weights are different. The new model is likely different from the original one.''' )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info('''saving the model\'s state dictionary''' )
torch.save(
new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' )
if __name__ == "__main__":
A =argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
A =parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 34
| 1
|
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowerCamelCase_ = logging.get_logger(__name__)
class __lowerCamelCase ( __A ):
lowerCamelCase_ : List[str] = ['input_features', 'is_longer']
def __init__( self , lowerCamelCase=64 , lowerCamelCase=48000 , lowerCamelCase=480 , lowerCamelCase=10 , lowerCamelCase=1024 , lowerCamelCase=0.0 , lowerCamelCase=False , lowerCamelCase = 0 , lowerCamelCase = 14000 , lowerCamelCase = None , lowerCamelCase = "fusion" , lowerCamelCase = "repeatpad" , **lowerCamelCase , ) -> Union[str, Any]:
super().__init__(
feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , return_attention_mask=__lowercase , **__lowercase , )
snake_case_ = top_db
snake_case_ = truncation
snake_case_ = padding
snake_case_ = fft_window_size
snake_case_ = (fft_window_size >> 1) + 1
snake_case_ = hop_length
snake_case_ = max_length_s
snake_case_ = max_length_s * sampling_rate
snake_case_ = sampling_rate
snake_case_ = frequency_min
snake_case_ = frequency_max
snake_case_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm=__lowercase , mel_scale="""htk""" , )
snake_case_ = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__lowercase , min_frequency=__lowercase , max_frequency=__lowercase , sampling_rate=__lowercase , norm="""slaney""" , mel_scale="""slaney""" , )
def lowerCAmelCase_ ( self ) -> int:
snake_case_ = copy.deepcopy(self.__dict__ )
snake_case_ = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[str]:
snake_case_ = spectrogram(
__lowercase , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__lowercase , log_mel="""dB""" , )
return log_mel_spectrogram.T
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict:
snake_case_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
snake_case_ = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
snake_case_ = [0]
# randomly choose index for each part
snake_case_ = np.random.choice(ranges[0] )
snake_case_ = np.random.choice(ranges[1] )
snake_case_ = np.random.choice(ranges[2] )
snake_case_ = mel[idx_front : idx_front + chunk_frames, :]
snake_case_ = mel[idx_middle : idx_middle + chunk_frames, :]
snake_case_ = mel[idx_back : idx_back + chunk_frames, :]
snake_case_ = torch.tensor(mel[None, None, :] )
snake_case_ = torch.nn.functional.interpolate(
__lowercase , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__lowercase )
snake_case_ = mel_shrink[0][0].numpy()
snake_case_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple:
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
snake_case_ = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
snake_case_ = len(__lowercase ) - max_length
snake_case_ = np.random.randint(0 , overflow + 1 )
snake_case_ = waveform[idx : idx + max_length]
snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters )
snake_case_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
snake_case_ = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
snake_case_ = np.stack([mel, mel, mel, mel] , axis=0 )
snake_case_ = False
else:
snake_case_ = self._random_mel_fusion(__lowercase , __lowercase , __lowercase )
snake_case_ = True
else:
raise NotImplementedError(f'''data_truncating {truncation} not implemented''' )
else:
snake_case_ = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
snake_case_ = int(max_length / len(__lowercase ) )
snake_case_ = np.stack(np.tile(__lowercase , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
snake_case_ = int(max_length / len(__lowercase ) )
snake_case_ = np.stack(np.tile(__lowercase , __lowercase ) )
snake_case_ = np.pad(__lowercase , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 )
if truncation == "fusion":
snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters )
snake_case_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
snake_case_ = self._np_extract_fbank_features(__lowercase , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> str:
snake_case_ = truncation if truncation is not None else self.truncation
snake_case_ = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
snake_case_ = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
snake_case_ = is_batched_numpy or (
isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
snake_case_ = [np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__lowercase , np.ndarray ):
snake_case_ = np.asarray(__lowercase , dtype=np.floataa )
elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
snake_case_ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ = [np.asarray(__lowercase )]
# convert to mel spectrogram, truncate and pad if needed.
snake_case_ = [
self._get_input_mel(__lowercase , max_length if max_length else self.nb_max_samples , __lowercase , __lowercase )
for waveform in raw_speech
]
snake_case_ = []
snake_case_ = []
for mel, longer in padded_inputs:
input_mel.append(__lowercase )
is_longer.append(__lowercase )
if truncation == "fusion" and sum(__lowercase ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
snake_case_ = np.random.randint(0 , len(__lowercase ) )
snake_case_ = True
if isinstance(input_mel[0] , __lowercase ):
snake_case_ = [np.asarray(__lowercase , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
snake_case_ = [[longer] for longer in is_longer]
snake_case_ = {"""input_features""": input_mel, """is_longer""": is_longer}
snake_case_ = BatchFeature(__lowercase )
if return_tensors is not None:
snake_case_ = input_features.convert_to_tensors(__lowercase )
return input_features
| 359
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
lowerCamelCase_ = {
'''vocab_file''': {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
lowerCamelCase_ = {
'''yjernite/retribert-base-uncased''': 512,
}
lowerCamelCase_ = {
'''yjernite/retribert-base-uncased''': {'''do_lower_case''': True},
}
class __lowerCamelCase ( __snake_case ):
lowerCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION
lowerCamelCase_ : Union[str, Any] = RetriBertTokenizer
lowerCamelCase_ : str = ['input_ids', 'attention_mask']
def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[Any]:
super().__init__(
lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , )
snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars
):
snake_case_ = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) )
snake_case_ = do_lower_case
snake_case_ = strip_accents
snake_case_ = tokenize_chinese_chars
snake_case_ = normalizer_class(**lowerCamelCase )
snake_case_ = do_lower_case
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase=None ) -> str:
snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]:
snake_case_ = [self.sep_token_id]
snake_case_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]:
snake_case_ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase )
return tuple(lowerCamelCase )
| 34
| 0
|
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model'''}
__snake_case = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
}
}
__snake_case = {
'''google/bigbird-roberta-base''': 4096,
'''google/bigbird-roberta-large''': 4096,
'''google/bigbird-base-trivia-itc''': 4096,
}
class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A_ : int = VOCAB_FILES_NAMES
A_ : int = PRETRAINED_VOCAB_FILES_MAP
A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : Tuple = ["""input_ids""", """attention_mask"""]
A_ : List[int] = []
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_a = vocab_file
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return self.sp_model.get_piece_size()
def _UpperCAmelCase ( self ) -> Tuple:
_a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> str:
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self , __UpperCAmelCase ) -> Dict:
_a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_a = {}
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
return self.sp_model.piece_to_id(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any:
_a = self.sp_model.IdToPiece(__UpperCAmelCase )
return token
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = []
_a = """"""
_a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__UpperCAmelCase ) + token
_a = True
_a = []
else:
current_sub_tokens.append(__UpperCAmelCase )
_a = False
out_string += self.sp_model.decode(__UpperCAmelCase )
return out_string.strip()
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> Dict:
_a = kwargs.pop('''use_source_tokenizer''' , __UpperCAmelCase )
_a = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_a = []
_a = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_a = []
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_a = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__UpperCAmelCase ) )
else:
_a = """""".join(__UpperCAmelCase )
_a = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_a = self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Dict:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , '''wb''' ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[Any]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a = [self.cls_token_id]
_a = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> Optional[Any]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 320
|
from scipy.stats import pearsonr
import datasets
_lowerCamelCase ="""
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
_lowerCamelCase ="""
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
_lowerCamelCase ="""
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class A__ ( datasets.Metric):
def UpperCamelCase__ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__=False ):
if return_pvalue:
lowerCamelCase : Optional[Any] = pearsonr(__magic_name__ , __magic_name__ )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(__magic_name__ , __magic_name__ )[0] )}
| 287
| 0
|
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
a_ = logging.get_logger(__name__)
def __lowercase ( lowerCamelCase : np.ndarray , lowerCamelCase : Union[int, Iterable[int]] , lowerCamelCase : bool , lowerCamelCase : int ):
def constraint_to_multiple_of(lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=0 , lowerCamelCase : Dict=None ):
UpperCamelCase_ : Optional[Any] = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
UpperCamelCase_ : Tuple = math.floor(val / multiple ) * multiple
if x < min_val:
UpperCamelCase_ : Any = math.ceil(val / multiple ) * multiple
return x
UpperCamelCase_ : List[Any] = (output_size, output_size) if isinstance(lowerCamelCase , lowerCamelCase ) else output_size
UpperCamelCase_, UpperCamelCase_ : int = get_image_size(lowerCamelCase )
UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = output_size
# determine new height and width
UpperCamelCase_ : List[Any] = output_height / input_height
UpperCamelCase_ : Tuple = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
UpperCamelCase_ : List[str] = scale_width
else:
# fit height
UpperCamelCase_ : Optional[int] = scale_height
UpperCamelCase_ : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCamelCase )
UpperCamelCase_ : Tuple = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCamelCase )
return (new_height, new_width)
class _lowercase ( snake_case_ ):
lowercase = ['pixel_values']
def __init__( self : List[Any] , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = False , snake_case : int = 1 , snake_case : bool = True , snake_case : Union[int, float] = 1 / 2_5_5 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , **snake_case : List[str] , ) -> None:
"""simple docstring"""
super().__init__(**snake_case )
UpperCamelCase_ : Dict = size if size is not None else {'height': 3_8_4, 'width': 3_8_4}
UpperCamelCase_ : str = get_size_dict(snake_case )
UpperCamelCase_ : List[Any] = do_resize
UpperCamelCase_ : List[str] = size
UpperCamelCase_ : Optional[Any] = keep_aspect_ratio
UpperCamelCase_ : Optional[Any] = ensure_multiple_of
UpperCamelCase_ : List[Any] = resample
UpperCamelCase_ : Optional[int] = do_rescale
UpperCamelCase_ : Union[str, Any] = rescale_factor
UpperCamelCase_ : Optional[Any] = do_normalize
UpperCamelCase_ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase_ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : bool = False , snake_case : int = 1 , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : str , ) -> np.ndarray:
"""simple docstring"""
UpperCamelCase_ : str = get_size_dict(snake_case )
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" )
UpperCamelCase_ : Union[str, Any] = get_resize_output_image_size(
snake_case , output_size=(size['height'], size['width']) , keep_aspect_ratio=snake_case , multiple=snake_case , )
return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ) -> List[Any]:
"""simple docstring"""
return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : ImageInput , snake_case : bool = None , snake_case : int = None , snake_case : bool = None , snake_case : int = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : List[str] , ) -> PIL.Image.Image:
"""simple docstring"""
UpperCamelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ : List[str] = size if size is not None else self.size
UpperCamelCase_ : Union[str, Any] = get_size_dict(snake_case )
UpperCamelCase_ : List[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
UpperCamelCase_ : int = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
UpperCamelCase_ : Union[str, Any] = resample if resample is not None else self.resample
UpperCamelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ : str = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ : Any = image_std if image_std is not None else self.image_std
UpperCamelCase_ : List[str] = make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase_ : str = [to_numpy_array(snake_case ) for image in images]
if do_resize:
UpperCamelCase_ : List[Any] = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images]
if do_rescale:
UpperCamelCase_ : Tuple = [self.rescale(image=snake_case , scale=snake_case ) for image in images]
if do_normalize:
UpperCamelCase_ : Union[str, Any] = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images]
UpperCamelCase_ : Dict = [to_channel_dimension_format(snake_case , snake_case ) for image in images]
UpperCamelCase_ : Optional[int] = {'pixel_values': images}
return BatchFeature(data=snake_case , tensor_type=snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : Optional[int] , snake_case : List[Tuple] = None ) -> List[str]:
"""simple docstring"""
UpperCamelCase_ : Any = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(snake_case ) != len(snake_case ):
raise ValueError(
'Make sure that you pass in as many target sizes as the batch dimension of the logits' )
if is_torch_tensor(snake_case ):
UpperCamelCase_ : int = target_sizes.numpy()
UpperCamelCase_ : Tuple = []
for idx in range(len(snake_case ) ):
UpperCamelCase_ : Dict = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=snake_case )
UpperCamelCase_ : Union[str, Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(snake_case )
else:
UpperCamelCase_ : int = logits.argmax(dim=1 )
UpperCamelCase_ : List[str] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 50
|
from manim import *
class _lowercase ( snake_case_ ):
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCamelCase_ : str = Rectangle(height=0.5 , width=0.5 )
UpperCamelCase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCamelCase_ : int = [mem.copy() for i in range(6 )]
UpperCamelCase_ : List[Any] = [mem.copy() for i in range(6 )]
UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 )
UpperCamelCase_ : List[str] = VGroup(*snake_case ).arrange(snake_case , buff=0 )
UpperCamelCase_ : int = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 )
UpperCamelCase_ : int = Text('CPU' , font_size=2_4 )
UpperCamelCase_ : List[str] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(snake_case )
UpperCamelCase_ : Union[str, Any] = [mem.copy() for i in range(1 )]
UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 )
UpperCamelCase_ : Union[str, Any] = Text('GPU' , font_size=2_4 )
UpperCamelCase_ : Optional[Any] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case )
gpu.align_to(snake_case , snake_case )
gpu.set_x(gpu.get_x() - 1 )
self.add(snake_case )
UpperCamelCase_ : int = [mem.copy() for i in range(6 )]
UpperCamelCase_ : int = VGroup(*snake_case ).arrange(snake_case , buff=0 )
UpperCamelCase_ : Tuple = Text('Model' , font_size=2_4 )
UpperCamelCase_ : Dict = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case )
model.move_to([3, -1.0, 0] )
self.play(
Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , )
UpperCamelCase_ : Union[str, Any] = MarkupText(
f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , )
UpperCamelCase_ : Tuple = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCamelCase_ : Dict = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case , run_time=2.5 ) , Write(snake_case ) , Write(snake_case ) )
self.add(snake_case )
UpperCamelCase_ : Tuple = []
UpperCamelCase_ : List[str] = []
UpperCamelCase_ : Tuple = []
for i, rect in enumerate(snake_case ):
UpperCamelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 )
cpu_target.move_to(snake_case )
cpu_target.generate_target()
UpperCamelCase_ : int = 0.46 / 4
UpperCamelCase_ : Tuple = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case , buff=0.0 )
cpu_targs.append(snake_case )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case ) )
second_animations.append(MoveToTarget(snake_case , run_time=1.5 ) )
self.play(*snake_case )
self.play(*snake_case )
self.wait()
| 50
| 1
|
'''simple docstring'''
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class A__ ( unittest.TestCase ):
def __UpperCAmelCase ( self :List[str] ) -> List[Any]:
'''simple docstring'''
_a : Optional[int] =0
@slow
def __UpperCAmelCase ( self :Union[str, Any] ) -> List[str]:
'''simple docstring'''
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
_a : List[str] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(SCREAMING_SNAKE_CASE ) , 0 )
def __UpperCAmelCase ( self :int ) -> Optional[int]:
'''simple docstring'''
_a : Union[str, Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def __UpperCAmelCase ( self :List[str] ) -> Optional[int]:
'''simple docstring'''
_a : Dict =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 2_0 )
def __UpperCAmelCase ( self :List[Any] ) -> List[str]:
'''simple docstring'''
_a : Any =AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Check that tokenizer_type ≠ model_type
_a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 1_2 )
def __UpperCAmelCase ( self :Tuple ) -> Dict:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.txt""" ) )
_a : List[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" , use_fast=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """merges.txt""" ) )
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" , use_fast=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@require_tokenizers
def __UpperCAmelCase ( self :List[Any] ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.txt""" ) )
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""bert""" )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(SCREAMING_SNAKE_CASE , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(SCREAMING_SNAKE_CASE , """merges.txt""" ) )
_a : Optional[int] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , tokenizer_type="""gpt2""" )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] ) -> Any:
'''simple docstring'''
with pytest.raises(SCREAMING_SNAKE_CASE ):
AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" )
@require_tokenizers
def __UpperCAmelCase ( self :Any ) -> str:
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
_a : Optional[int] =tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE )
else:
self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
@require_tokenizers
def __UpperCAmelCase ( self :Optional[Any] ) -> int:
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ):
_a : Any =tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" )
def __UpperCAmelCase ( self :List[Any] ) -> List[Any]:
'''simple docstring'''
# tests: https://github.com/huggingface/transformers/pull/13251
# 1. models with `-`, e.g. xlm-roberta -> xlm_roberta
# 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai
_a : Dict =TOKENIZER_MAPPING.values()
_a : Tuple =[]
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(SCREAMING_SNAKE_CASE )
@require_tokenizers
def __UpperCAmelCase ( self :int ) -> List[str]:
'''simple docstring'''
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , SCREAMING_SNAKE_CASE )
@require_tokenizers
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
_a : List[str] =AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=SCREAMING_SNAKE_CASE )
_a : List[Any] ="""Hello, world. How are you?"""
_a : Optional[int] =tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertEqual("""[UNK]""" , tokens[0] )
_a : Optional[int] =AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=SCREAMING_SNAKE_CASE )
_a : int =tokenizer.tokenize(SCREAMING_SNAKE_CASE )
self.assertEqual("""[UNK]""" , tokens[0] )
@require_tokenizers
def __UpperCAmelCase ( self :Tuple ) -> Optional[Any]:
'''simple docstring'''
_a : Optional[int] =AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" )
self.assertEqual(type(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.model_max_length , 5_1_2 )
self.assertEqual(tokenizer.vocab_size , 3_0_0_0_0 )
self.assertEqual(tokenizer.unk_token , """[UNK]""" )
self.assertEqual(tokenizer.padding_side , """right""" )
self.assertEqual(tokenizer.truncation_side , """right""" )
def __UpperCAmelCase ( self :Optional[int] ) -> Any:
'''simple docstring'''
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Optional[Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 1_2 )
def __UpperCAmelCase ( self :Optional[Any] ) -> List[Any]:
'''simple docstring'''
_a : str =AutoTokenizer.from_pretrained("""ctrl""" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :List[str] ) -> Union[str, Any]:
'''simple docstring'''
# Check we can load the tokenizer config of an online model.
_a : Optional[int] =get_tokenizer_config("""bert-base-cased""" )
_a : Any =config.pop("""_commit_hash""" , SCREAMING_SNAKE_CASE )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(SCREAMING_SNAKE_CASE , {"""do_lower_case""": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
_a : List[str] =get_tokenizer_config(SCREAMING_SNAKE_CASE )
self.assertDictEqual(SCREAMING_SNAKE_CASE , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
_a : str =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =get_tokenizer_config(SCREAMING_SNAKE_CASE )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" )
def __UpperCAmelCase ( self :Optional[Any] ) -> Any:
'''simple docstring'''
try:
AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
_a : List[str] =CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def __UpperCAmelCase ( self :List[str] ) -> Optional[Any]:
'''simple docstring'''
try:
AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE )
# Can register in two steps
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE ):
AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
_a : int =BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE )
bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : int =CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Tuple =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
_a : Any =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertIsInstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def __UpperCAmelCase ( self :int ) -> Tuple:
'''simple docstring'''
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
_a : Dict =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE ):
_a : Optional[Any] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
_a : Any =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
_a : List[Any] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
_a : Tuple =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
@require_tokenizers
def __UpperCAmelCase ( self :List[str] ) -> Tuple:
'''simple docstring'''
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : str = False
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[str] = NewTokenizer
__UpperCamelCase : Tuple = False
try:
AutoConfig.register("""custom""" , SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , slow_tokenizer_class=SCREAMING_SNAKE_CASE )
AutoTokenizer.register(SCREAMING_SNAKE_CASE , fast_tokenizer_class=SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local
_a : str =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
_a : Optional[int] =AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
_a : Tuple =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
_a : List[str] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
_a : Optional[int] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertTrue(tokenizer.special_attribute_present )
_a : Dict =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def __UpperCAmelCase ( self :List[str] ) -> Dict:
'''simple docstring'''
_a : List[str] =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
_a : str =AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def __UpperCAmelCase ( self :int ) -> int:
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ):
_a : Dict =AutoTokenizer.from_pretrained("""bert-base""" )
def __UpperCAmelCase ( self :Optional[int] ) -> Dict:
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
_a : int =AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE , revision="""aaaaaa""" )
def __UpperCAmelCase ( self :Union[str, Any] ) -> Tuple:
'''simple docstring'''
# Make sure we have cached the tokenizer.
_a : int =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
_a : Optional[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 276
|
'''simple docstring'''
from __future__ import annotations
import requests
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> dict:
_a : Any =F"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty"
return requests.get(_UpperCAmelCase ).json()
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> list[dict]:
_a : Union[str, Any] ="""https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty"""
_a : int =requests.get(_UpperCAmelCase ).json()[:max_stories]
return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids]
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 10 ) -> str:
_a : Union[str, Any] =hackernews_top_stories(_UpperCAmelCase )
return "\n".join("""* [{title}]({url})""".format(**_UpperCAmelCase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 276
| 1
|
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class lowercase ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SMALL_MODEL_IDENTIFIER
UpperCAmelCase__ = 'pt'
UpperCAmelCase__ = 'tf'
def UpperCamelCase__ (self , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def UpperCamelCase__ (self , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = 'mock_framework'
# Framework provided - return whatever the user provides
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(snake_case__ )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
UpperCAmelCase__ = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
UpperCAmelCase__ = FeaturesManager.determine_framework(self.test_model )
| 353
|
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
'''simple docstring'''
def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ) -> str:
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = embed_dim
UpperCAmelCase__ = depths
UpperCAmelCase__ = num_heads
UpperCAmelCase__ = window_size
UpperCAmelCase__ = mlp_ratio
UpperCAmelCase__ = qkv_bias
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = use_absolute_embeddings
UpperCAmelCase__ = patch_norm
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = is_training
UpperCAmelCase__ = scope
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = encoder_stride
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase__ (self , __a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModel(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
UpperCAmelCase__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForMaskedImageModeling(config=__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase__ = 1
UpperCAmelCase__ = SwinvaForMaskedImageModeling(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase__ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase__ (self , __a , __a , __a ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = SwinvaForImageClassification(__a )
model.to(__a )
model.eval()
UpperCAmelCase__ = model(__a , labels=__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__SCREAMING_SNAKE_CASE = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = SwinvaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=__a , embed_dim=37 )
def UpperCamelCase__ (self ) -> Any:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
@unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='Swinv2 does not use inputs_embeds' )
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__a , nn.Linear ) )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(__a )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __a )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
UpperCAmelCase__ = len(self.model_tester.depths )
self.assertEqual(len(__a ) , __a )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase__ = True
UpperCAmelCase__ = config.window_size**2
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
UpperCAmelCase__ = len(__a )
# Check attention is always last and order is fine
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
if hasattr(self.model_tester , 'num_hidden_states_types' ):
UpperCAmelCase__ = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase__ = 2
self.assertEqual(out_len + added_hidden_states , len(__a ) )
UpperCAmelCase__ = outputs.attentions
self.assertEqual(len(__a ) , __a )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def UpperCamelCase__ (self , __a , __a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase__ = model_class(__a )
model.to(__a )
model.eval()
with torch.no_grad():
UpperCAmelCase__ = model(**self._prepare_for_class(__a , __a ) )
UpperCAmelCase__ = outputs.hidden_states
UpperCAmelCase__ = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__a ) , __a )
# Swinv2 has a different seq_length
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
UpperCAmelCase__ = outputs.reshaped_hidden_states
self.assertEqual(len(__a ) , __a )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = reshaped_hidden_states[0].shape
UpperCAmelCase__ = (
reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ (self ) -> int:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , __a )
def UpperCamelCase__ (self ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = 3
UpperCAmelCase__ = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase__ = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase__ = True
self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) )
def UpperCamelCase__ (self ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__a )
def UpperCamelCase__ (self ) -> str:
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
@slow
def UpperCamelCase__ (self ) -> Dict:
"""simple docstring"""
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = SwinvaModel.from_pretrained(__a )
self.assertIsNotNone(__a )
def UpperCamelCase__ (self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(__a )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=__a )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class lowercase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def UpperCamelCase__ (self ) -> Union[str, Any]:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase__ (self ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase__ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to(
__a )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
UpperCAmelCase__ = image_processor(images=__a , return_tensors='pt' ).to(__a )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**__a )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __a )
UpperCAmelCase__ = torch.tensor([-0.39_47, -0.43_06, 0.00_26] ).to(__a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
| 335
| 0
|
import functools
def a ( snake_case__: list[int] , snake_case__: list[int] ):
'''simple docstring'''
# Validation
if not isinstance(snake_case__ , snake_case__ ) or not all(isinstance(snake_case__ , snake_case__ ) for day in days ):
raise ValueError('''The parameter days should be a list of integers''' )
if len(snake_case__ ) != 3 or not all(isinstance(snake_case__ , snake_case__ ) for cost in costs ):
raise ValueError('''The parameter costs should be a list of three integers''' )
if len(snake_case__ ) == 0:
return 0
if min(snake_case__ ) <= 0:
raise ValueError('''All days elements should be greater than 0''' )
if max(snake_case__ ) >= 366:
raise ValueError('''All days elements should be less than 366''' )
lowercase_ = set(snake_case__ )
@functools.cache
def dynamic_programming(snake_case__: int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 30
|
"""simple docstring"""
from graphs.minimum_spanning_tree_kruskal import kruskal
def lowerCamelCase__ ( ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = 9
_UpperCamelCase = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
_UpperCamelCase = kruskal(__snake_case, __snake_case )
_UpperCamelCase = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(__snake_case ) == sorted(__snake_case )
| 194
| 0
|
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: Optional[int] , **__A: Optional[int] ) -> Optional[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[int] , *__A: Tuple , **__A: List[str] ) -> List[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Tuple , *__A: Optional[int] , **__A: Union[str, Any] ) -> List[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: Tuple , **__A: Tuple ) -> Tuple:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[Any] , *__A: Union[str, Any] , **__A: Union[str, Any] ) -> Optional[int]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[Any] , *__A: List[Any] , **__A: List[str] ) -> Optional[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[int] , *__A: Tuple , **__A: Dict ) -> Union[str, Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: str , **__A: Optional[Any] ) -> Dict:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__A: Optional[Any] , **__A: Optional[int] ) -> Union[str, Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[int] , *__A: List[str] , **__A: List[Any] ) -> Any:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: Any , **__A: str ) -> List[str]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: Union[str, Any] , **__A: Optional[int] ) -> Dict:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Dict , *__A: List[Any] , **__A: Tuple ) -> Optional[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: str , *__A: List[Any] , **__A: Union[str, Any] ) -> List[str]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: int , *__A: List[str] , **__A: List[Any] ) -> Tuple:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: int , *__A: List[str] , **__A: List[str] ) -> int:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Any , *__A: Optional[int] , **__A: List[Any] ) -> Dict:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Any , *__A: List[str] , **__A: str ) -> str:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Dict , *__A: str , **__A: str ) -> List[str]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[Any] , *__A: List[str] , **__A: Optional[Any] ) -> List[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[Any] , *__A: str , **__A: Optional[int] ) -> Tuple:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Dict , *__A: Optional[int] , **__A: List[str] ) -> str:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: List[str] , **__A: Dict ) -> Dict:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[int] , *__A: List[Any] , **__A: str ) -> Tuple:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Any , *__A: List[Any] , **__A: Tuple ) -> int:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[int] , *__A: Union[str, Any] , **__A: Optional[int] ) -> Optional[int]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: Tuple , **__A: List[Any] ) -> int:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: int , *__A: List[str] , **__A: Any ) -> str:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Optional[Any] , *__A: List[Any] , **__A: Any ) -> List[Any]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: List[Any] , *__A: Dict , **__A: Tuple ) -> Optional[int]:
requires_backends(self , ['''sentencepiece'''] )
class SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase__ ):
"""simple docstring"""
A_ = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__A: Optional[Any] , **__A: Optional[Any] ) -> Optional[Any]:
requires_backends(self , ['''sentencepiece'''] )
| 367
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class SCREAMING_SNAKE_CASE ( snake_case ):
"""simple docstring"""
A_ = "facebook/bart-large-mnli"
A_ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
A_ = "text_classifier"
A_ = AutoTokenizer
A_ = AutoModelForSequenceClassification
A_ = ["text", ["text"]]
A_ = ["text"]
def __A ( self: int ) -> str:
super().setup()
_A = self.model.config
_A = -1
for idx, label in config.idalabel.items():
if label.lower().startswith('''entail''' ):
_A = int(__A )
if self.entailment_id == -1:
raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' )
def __A ( self: Union[str, Any] , __A: Union[str, Any] , __A: List[str] ) -> int:
_A = labels
return self.pre_processor(
[text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , )
def __A ( self: str , __A: List[Any] ) -> Union[str, Any]:
_A = outputs.logits
_A = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 75
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase = {
"""configuration_rag""": ["""RagConfig"""],
"""retrieval_rag""": ["""RagRetriever"""],
"""tokenization_rag""": ["""RagTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase = [
"""RagModel""",
"""RagPreTrainedModel""",
"""RagSequenceForGeneration""",
"""RagTokenForGeneration""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase = [
"""TFRagModel""",
"""TFRagPreTrainedModel""",
"""TFRagSequenceForGeneration""",
"""TFRagTokenForGeneration""",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 256
|
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowercase ( a__ : str , a__ : bool = True , a__ : float = math.inf , a__ : float = -math.inf , a__ : float = math.inf , a__ : float = -math.inf , a__ : bool = False , a__ : float = 100 , a__ : float = 0.01 , a__ : float = 1 , ) -> Any:
_UpperCamelCase = False
_UpperCamelCase = search_prob
_UpperCamelCase = start_temperate
_UpperCamelCase = []
_UpperCamelCase = 0
_UpperCamelCase = None
while not search_end:
_UpperCamelCase = current_state.score()
if best_state is None or current_score > best_state.score():
_UpperCamelCase = current_state
scores.append(a__ )
iterations += 1
_UpperCamelCase = None
_UpperCamelCase = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
_UpperCamelCase = random.randint(0 , len(a__ ) - 1 ) # picking a random neighbor
_UpperCamelCase = neighbors.pop(a__ )
_UpperCamelCase = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
_UpperCamelCase = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
_UpperCamelCase = picked_neighbor
else:
_UpperCamelCase = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
_UpperCamelCase = picked_neighbor
_UpperCamelCase = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
_UpperCamelCase = True
else:
_UpperCamelCase = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(a__ ) , a__ )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def lowercase ( a__ : str , a__ : List[Any] ) -> Tuple:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
UpperCAmelCase = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowercase ( a__ : str , a__ : Optional[Any] ) -> Union[str, Any]:
return (3 * x**2) - (6 * y)
UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 256
| 1
|
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
a = logging.get_logger(__name__)
def _snake_case ( _snake_case : bool , _snake_case : bool ) -> Tuple:
'''simple docstring'''
def run_func(_snake_case : Any ):
@wraps(_snake_case )
def run_in_eager_mode(*_snake_case : List[str] , **_snake_case : Tuple ):
return func(*_snake_case , **_snake_case )
@wraps(_snake_case )
@tf.function(experimental_compile=_snake_case )
def run_in_graph_mode(*_snake_case : Dict , **_snake_case : Tuple ):
return func(*_snake_case , **_snake_case )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ) -> ["tf.Tensor"]:
'''simple docstring'''
_A = random.Random()
_A = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(_snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : TensorFlowBenchmarkArguments
UpperCAmelCase : PretrainedConfig
UpperCAmelCase : str = "TensorFlow"
@property
def lowerCAmelCase_ ( self : str ):
return tf.__version__
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
# initialize GPU on separate process
_A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
_A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return self._measure_speed(_inference )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
_A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return self._measure_speed(_train )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase )
_A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
_A = self._prepare_inference_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return self._measure_memory(_inference )
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _UpperCAmelCase )
_A = self.args.strategy
if strategy is None:
raise ValueError('A device strategy has to be initialized before using TensorFlow.' )
_A = self._prepare_train_func(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return self._measure_memory(_train )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('Mixed precision is currently not supported.' )
_A = (
hasattr(_UpperCAmelCase , 'architectures' )
and isinstance(config.architectures , _UpperCAmelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model
_A = __import__('transformers' , fromlist=[model_class] )
_A = getattr(_UpperCAmelCase , _UpperCAmelCase )
_A = model_cls(_UpperCAmelCase )
except ImportError:
raise ImportError(
F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' )
else:
_A = TF_MODEL_MAPPING[config.__class__](_UpperCAmelCase )
# encoder-decoder has vocab size saved differently
_A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size
_A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , training=_UpperCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(_UpperCAmelCase , training=_UpperCAmelCase )
_A = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' )
if self.args.fpaa:
raise NotImplementedError('Mixed precision is currently not supported.' )
_A = (
hasattr(_UpperCAmelCase , 'architectures' )
and isinstance(config.architectures , _UpperCAmelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_A = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model
_A = __import__('transformers' , fromlist=[model_class] )
_A = getattr(_UpperCAmelCase , _UpperCAmelCase )
_A = model_cls(_UpperCAmelCase )
except ImportError:
raise ImportError(
F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' )
else:
_A = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_UpperCAmelCase )
# encoder-decoder has vocab size saved differently
_A = config.vocab_size if hasattr(_UpperCAmelCase , 'vocab_size' ) else config.encoder.vocab_size
_A = random_input_ids(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
_A = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0]
_A = tf.gradients(_UpperCAmelCase , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
_A = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )[0]
_A = tf.gradients(_UpperCAmelCase , model.trainable_variables )
return gradients
_A = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : int ):
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' )
timeit.repeat(_UpperCAmelCase , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_A = timeit.repeat(
_UpperCAmelCase , repeat=self.args.repeat , number=10 , )
return min(_UpperCAmelCase ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(F'''Doesn\'t fit on GPU. {e}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Callable[[], None] ):
logger.info(
'Note that TensorFlow allocates more memory than '
'it might need to speed up computation. '
'The memory reported here corresponds to the memory '
'reported by `nvidia-smi`, which can vary depending '
'on total available memory on the GPU that is used.' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'
' consumption line by line.' )
_A = start_memory_tracing('transformers' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'
' with `args.memory=False`' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'py3nvml not installed, we won\'t log GPU memory usage. '
'Install py3nvml (pip install py3nvml) to log information about GPU.' )
_A = 'N/A'
else:
logger.info(
'Measuring total GPU usage on GPU device. Make sure to not have additional processes'
' running on the same GPU.' )
# init nvml
nvml.nvmlInit()
func()
_A = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_A = nvml.nvmlDeviceGetMemoryInfo(_UpperCAmelCase )
_A = meminfo.used
_A = Memory(_UpperCAmelCase )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'When enabling line by line tracing, the max peak memory for CPU is inaccurate in'
' TensorFlow.' )
_A = None
else:
_A = measure_peak_memory_cpu(_UpperCAmelCase )
_A = Memory(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else memory_bytes
if self.args.trace_memory_line_by_line:
_A = stop_memory_tracing(_UpperCAmelCase )
if memory is None:
_A = summary.total
else:
_A = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(F'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None
| 360
|
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = (IPNDMScheduler,)
UpperCAmelCase : Optional[Any] = (('''num_inference_steps''', 50),)
def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : List[Any] ):
_A = {'num_train_timesteps': 1_000}
config.update(**_UpperCAmelCase )
return config
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[:]
if time_step is None:
_A = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
_A = dummy_past_residuals[:]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : str ):
pass
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Any=0 , **_UpperCAmelCase : Any ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
_A = dummy_past_residuals[:]
if time_step is None:
_A = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
_A = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
_A = dummy_past_residuals[:]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = new_scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self : List[str] , **_UpperCAmelCase : Optional[int] ):
_A = self.scheduler_classes[0]
_A = self.get_scheduler_config(**_UpperCAmelCase )
_A = scheduler_class(**_UpperCAmelCase )
_A = 10
_A = self.dummy_model()
_A = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
_A = model(_UpperCAmelCase , _UpperCAmelCase )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = dict(self.forward_default_kwargs )
_A = kwargs.pop('num_inference_steps' , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
_A = self.get_scheduler_config()
_A = scheduler_class(**_UpperCAmelCase )
_A = self.dummy_sample
_A = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ):
_A = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_A = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_A = dummy_past_residuals[:]
_A = scheduler.timesteps[5]
_A = scheduler.timesteps[6]
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
_A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ ( self : Tuple ):
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase , time_step=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase , time_step=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = self.full_loop()
_A = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 271
| 0
|
"""simple docstring"""
def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool:
'''simple docstring'''
if number < 0:
raise ValueError('number must not be negative' )
return number & (number - 1) == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 172
|
"""simple docstring"""
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
_a : int= datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCamelCase ( datasets.BuilderConfig ):
UpperCAmelCase : Optional[datasets.Features] = None
UpperCAmelCase : str = "utf-8"
UpperCAmelCase : Optional[str] = None
UpperCAmelCase : Optional[str] = None
UpperCAmelCase : bool = True # deprecated
UpperCAmelCase : Optional[int] = None # deprecated
UpperCAmelCase : int = 10 << 20 # 10MB
UpperCAmelCase : Optional[bool] = None
class UpperCamelCase ( datasets.ArrowBasedBuilder ):
UpperCAmelCase : int = JsonConfig
def _lowercase (self : int) -> List[str]:
if self.config.block_size is not None:
logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead')
__snake_case : Any = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.')
if self.config.newlines_in_values is not None:
raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported')
return datasets.DatasetInfo(features=self.config.features)
def _lowercase (self : Dict , _A : Any) -> Optional[Any]:
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
__snake_case : Dict = dl_manager.download_and_extract(self.config.data_files)
if isinstance(_A , (str, list, tuple)):
__snake_case : str = data_files
if isinstance(_A , _A):
__snake_case : int = [files]
__snake_case : Tuple = [dl_manager.iter_files(_A) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})]
__snake_case : str = []
for split_name, files in data_files.items():
if isinstance(_A , _A):
__snake_case : Optional[int] = [files]
__snake_case : int = [dl_manager.iter_files(_A) for file in files]
splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'files': files}))
return splits
def _lowercase (self : Optional[Any] , _A : pa.Table) -> pa.Table:
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features) - set(pa_table.column_names):
__snake_case : List[Any] = self.config.features.arrow_schema.field(_A).type
__snake_case : Any = pa_table.append_column(_A , pa.array([None] * len(_A) , type=_A))
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
__snake_case : List[str] = table_cast(_A , self.config.features.arrow_schema)
return pa_table
def _lowercase (self : Dict , _A : Any) -> Union[str, Any]:
for file_idx, file in enumerate(itertools.chain.from_iterable(_A)):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
__snake_case : Tuple = json.load(_A)
# We keep only the field we are interested in
__snake_case : List[str] = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_A , (list, tuple)):
__snake_case : Optional[int] = set().union(*[row.keys() for row in dataset])
__snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys}
else:
__snake_case : Optional[int] = dataset
__snake_case : Tuple = pa.Table.from_pydict(_A)
yield file_idx, self._cast_table(_A)
# If the file has one json object per line
else:
with open(_A , 'rb') as f:
__snake_case : int = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
__snake_case : Tuple = max(self.config.chunksize // 32 , 16 << 10)
__snake_case : str = (
self.config.encoding_errors if self.config.encoding_errors is not None else 'strict'
)
while True:
__snake_case : Union[str, Any] = f.read(self.config.chunksize)
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_A)
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
__snake_case : int = batch.decode(self.config.encoding , errors=_A).encode('utf-8')
try:
while True:
try:
__snake_case : Tuple = paj.read_json(
io.BytesIO(_A) , read_options=paj.ReadOptions(block_size=_A))
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_A , pa.ArrowInvalid)
and "straddling" not in str(_A)
or block_size > len(_A)
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f"Batch of {len(_A)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.")
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_A , encoding=self.config.encoding , errors=self.config.encoding_errors) as f:
__snake_case : List[Any] = json.load(_A)
except json.JSONDecodeError:
logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}")
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_A , _A): # list is the only sequence type supported in JSON
try:
__snake_case : List[str] = set().union(*[row.keys() for row in dataset])
__snake_case : List[str] = {col: [row.get(_A) for row in dataset] for col in keys}
__snake_case : List[str] = pa.Table.from_pydict(_A)
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}")
raise ValueError(f"Not able to read records in the JSON file at {file}.") from None
yield file_idx, self._cast_table(_A)
break
else:
logger.error(f"Failed to read file '{file}' with error {type(_A)}: {e}")
raise ValueError(
f"Not able to read records in the JSON file at {file}. "
f"You should probably indicate the field of the JSON file containing your records. "
f"This JSON file contain the following fields: {str(list(dataset.keys()))}. "
f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_A)
batch_idx += 1
| 172
| 1
|
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __magic_name__( lowerCamelCase):
__lowerCAmelCase = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2]
__lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False
__lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False
__lowerCAmelCase = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowerCAmelCase = [3, 3, 3, 3]
__lowerCAmelCase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowerCAmelCase = [4, 4, 4, 4]
__lowerCAmelCase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowerCAmelCase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowerCAmelCase = [3, 3, 3, 3]
else:
__lowerCAmelCase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowerCAmelCase = 9_6
elif "small" in model_name:
__lowerCAmelCase = 9_6
elif "base" in model_name:
__lowerCAmelCase = 1_2_8
elif "large" in model_name:
__lowerCAmelCase = 1_9_2
elif "xlarge" in model_name:
__lowerCAmelCase = 2_5_6
elif "huge" in model_name:
__lowerCAmelCase = 3_5_2
# set label information
__lowerCAmelCase = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
__lowerCAmelCase = '''imagenet-22k-id2label.json'''
else:
__lowerCAmelCase = '''imagenet-1k-id2label.json'''
__lowerCAmelCase = json.load(open(hf_hub_download(lowerCamelCase, lowerCamelCase, repo_type='''dataset'''), '''r'''))
__lowerCAmelCase = {int(lowerCamelCase): v for k, v in idalabel.items()}
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
__lowerCAmelCase = FocalNetConfig(
embed_dim=lowerCamelCase, depths=lowerCamelCase, focal_levels=lowerCamelCase, focal_windows=lowerCamelCase, use_conv_embed=lowerCamelCase, idalabel=lowerCamelCase, labelaid=lowerCamelCase, use_post_layernorm=lowerCamelCase, use_layerscale=lowerCamelCase, )
return config
def __magic_name__( lowerCamelCase):
if "patch_embed.proj" in name:
__lowerCAmelCase = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''')
if "patch_embed.norm" in name:
__lowerCAmelCase = name.replace('''patch_embed.norm''', '''embeddings.norm''')
if "layers" in name:
__lowerCAmelCase = '''encoder.''' + name
if "encoder.layers" in name:
__lowerCAmelCase = name.replace('''encoder.layers''', '''encoder.stages''')
if "downsample.proj" in name:
__lowerCAmelCase = name.replace('''downsample.proj''', '''downsample.projection''')
if "blocks" in name:
__lowerCAmelCase = name.replace('''blocks''', '''layers''')
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowerCAmelCase = name.replace('''modulation.f''', '''modulation.projection_in''')
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowerCAmelCase = name.replace('''modulation.h''', '''modulation.projection_context''')
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowerCAmelCase = name.replace('''modulation.proj''', '''modulation.projection_out''')
if name == "norm.weight":
__lowerCAmelCase = '''layernorm.weight'''
if name == "norm.bias":
__lowerCAmelCase = '''layernorm.bias'''
if "head" in name:
__lowerCAmelCase = name.replace('''head''', '''classifier''')
else:
__lowerCAmelCase = '''focalnet.''' + name
return name
def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase=False):
# fmt: off
__lowerCAmelCase = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
__lowerCAmelCase = model_name_to_url[model_name]
print('''Checkpoint URL: ''', lowerCamelCase)
__lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase, map_location='''cpu''')['''model''']
# rename keys
for key in state_dict.copy().keys():
__lowerCAmelCase = state_dict.pop(lowerCamelCase)
__lowerCAmelCase = val
__lowerCAmelCase = get_focalnet_config(lowerCamelCase)
__lowerCAmelCase = FocalNetForImageClassification(lowerCamelCase)
model.eval()
# load state dict
model.load_state_dict(lowerCamelCase)
# verify conversion
__lowerCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__lowerCAmelCase = BitImageProcessor(
do_resize=lowerCamelCase, size={'''shortest_edge''': 2_5_6}, resample=PILImageResampling.BILINEAR, do_center_crop=lowerCamelCase, crop_size=2_2_4, do_normalize=lowerCamelCase, image_mean=lowerCamelCase, image_std=lowerCamelCase, )
__lowerCAmelCase = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase).raw)
__lowerCAmelCase = processor(images=lowerCamelCase, return_tensors='''pt''')
__lowerCAmelCase = transforms.Compose(
[
transforms.Resize(2_5_6),
transforms.CenterCrop(2_2_4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25]),
])
__lowerCAmelCase = image_transforms(lowerCamelCase).unsqueeze(0)
# verify pixel_values
assert torch.allclose(inputs.pixel_values, lowerCamelCase, atol=1E-4)
__lowerCAmelCase = model(**lowerCamelCase)
__lowerCAmelCase = outputs.logits.argmax(-1).item()
print('''Predicted class:''', model.config.idalabel[predicted_class_idx])
print('''First values of logits:''', outputs.logits[0, :3])
if model_name == "focalnet-tiny":
__lowerCAmelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91])
elif model_name == "focalnet-tiny-lrf":
__lowerCAmelCase = torch.tensor([1.16_69, 0.01_25, -0.16_95])
elif model_name == "focalnet-small":
__lowerCAmelCase = torch.tensor([0.49_17, -0.04_30, 0.13_41])
elif model_name == "focalnet-small-lrf":
__lowerCAmelCase = torch.tensor([-0.25_88, -0.53_42, -0.23_31])
elif model_name == "focalnet-base":
__lowerCAmelCase = torch.tensor([-0.16_55, -0.40_90, -0.17_30])
elif model_name == "focalnet-base-lrf":
__lowerCAmelCase = torch.tensor([0.53_06, -0.04_83, -0.39_28])
assert torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)
print('''Looks ok!''')
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""")
model.save_pretrained(lowerCamelCase)
processor.save_pretrained(lowerCamelCase)
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""")
model.push_to_hub(F"""{model_name}""")
processor.push_to_hub(F"""{model_name}""")
if __name__ == "__main__":
_UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
_UpperCAmelCase : Optional[int] = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 9
|
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def __magic_name__( ):
__lowerCAmelCase = [randint(-1_0_0_0, 1_0_0_0) for i in range(1_0)]
__lowerCAmelCase = randint(-5_0_0_0, 5_0_0_0)
return (arr, r)
_UpperCAmelCase : Dict = make_dataset()
def __magic_name__( lowerCamelCase, lowerCamelCase):
for triplet in permutations(lowerCamelCase, 3):
if sum(lowerCamelCase) == target:
return tuple(sorted(lowerCamelCase))
return (0, 0, 0)
def __magic_name__( lowerCamelCase, lowerCamelCase):
arr.sort()
__lowerCAmelCase = len(lowerCamelCase)
for i in range(n - 1):
__lowerCAmelCase , __lowerCAmelCase = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def __magic_name__( ):
__lowerCAmelCase = '''
from __main__ import dataset, triplet_sum1, triplet_sum2
'''
__lowerCAmelCase = '''
triplet_sum1(*dataset)
'''
__lowerCAmelCase = '''
triplet_sum2(*dataset)
'''
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
__lowerCAmelCase = repeat(setup=lowerCamelCase, stmt=lowerCamelCase, repeat=5, number=1_0_0_0_0)
return (min(lowerCamelCase), min(lowerCamelCase))
if __name__ == "__main__":
from doctest import testmod
testmod()
_UpperCAmelCase : Union[str, Any] = solution_times()
print(f"""The time for naive implementation is {times[0]}.""")
print(f"""The time for optimized implementation is {times[1]}.""")
| 9
| 1
|
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : Tuple = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __UpperCamelCase :
lowerCamelCase : Any =PegasusConfig
lowerCamelCase : Optional[Any] ={}
lowerCamelCase : Dict ="""gelu"""
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , ) -> List[Any]:
a : str = parent
a : Optional[Any] = batch_size
a : Optional[Any] = seq_length
a : int = is_training
a : Any = use_labels
a : Tuple = vocab_size
a : List[str] = hidden_size
a : Union[str, Any] = num_hidden_layers
a : List[str] = num_attention_heads
a : List[str] = intermediate_size
a : List[Any] = hidden_dropout_prob
a : Union[str, Any] = attention_probs_dropout_prob
a : str = max_position_embeddings
a : Dict = eos_token_id
a : List[str] = pad_token_id
a : Dict = bos_token_id
def __a ( self ) -> List[Any]:
a : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
a : List[str] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
a : List[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 )
a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a : Tuple = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
a : Dict = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, inputs_dict
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
a : List[str] = 20
a : Dict = model_class_name(lowerCAmelCase__ )
a : Union[str, Any] = model.encode(inputs_dict["input_ids"] )
a, a : str = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
a : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ )
a : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
a : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
a : Any = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
a : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
a : List[str] = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , )
a : int = model.decode(lowerCAmelCase__ , lowerCAmelCase__ )
a : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
a : Any = 20
a : List[Any] = model_class_name(lowerCAmelCase__ )
a : str = model.encode(inputs_dict["input_ids"] )
a, a : Union[str, Any] = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
a : Tuple = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
a : str = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ )
a : Tuple = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
a : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
a : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
a : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
a : Optional[int] = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ )
a : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Any , _lowercase : Tuple , _lowercase : List[Any]=None , _lowercase : str=None , ) ->List[Any]:
'''simple docstring'''
if attention_mask is None:
a : Union[str, Any] = np.not_equal(_lowercase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
a : Optional[int] = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __UpperCamelCase ( a__ , unittest.TestCase ):
lowerCamelCase : List[str] =(
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowerCamelCase : str =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowerCamelCase : List[Any] =True
lowerCamelCase : Tuple =False
lowerCamelCase : Any =False
lowerCamelCase : Optional[Any] =False
def __a ( self ) -> List[Any]:
a : Tuple = FlaxPegasusModelTester(self )
a : Dict = ConfigTester(self , config_class=lowerCAmelCase__ )
def __a ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def __a ( self ) -> int:
a, a : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self ) -> str:
a, a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __a ( self ) -> Optional[int]:
a, a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
a : Any = model_class(lowerCAmelCase__ )
@jax.jit
def encode_jitted(lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__ ):
return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
with self.subTest("JIT Enabled" ):
a : Optional[Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
a : Optional[Any] = encode_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def __a ( self ) -> int:
a, a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a : str = model_class(lowerCAmelCase__ )
a : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
a : str = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
return model.decode(
decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , )
with self.subTest("JIT Enabled" ):
a : Dict = decode_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
a : Any = decode_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __a ( self ) -> Any:
for model_class_name in self.all_model_classes:
a : List[Any] = model_class_name.from_pretrained("google/pegasus-large" , from_pt=lowerCAmelCase__ )
a : Any = np.ones((1, 1) )
a : Dict = model(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@slow
def __a ( self ) -> Optional[int]:
a : Tuple = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
a : List[str] = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
a : Tuple = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
a : Any = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
a : Tuple = tokenizer(lowerCAmelCase__ , return_tensors="np" , truncation=lowerCAmelCase__ , max_length=512 , padding=lowerCAmelCase__ )
a : str = model.generate(**lowerCAmelCase__ , num_beams=2 ).sequences
a : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
assert tgt_text == decoded
| 105
|
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Dict =str(bin(__lowerCAmelCase ) )
binary_number += "0" * shift_amount
return binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number < 0 or shift_amount < 0:
raise ValueError('''both inputs must be positive integers''' )
UpperCAmelCase : Any =str(bin(__lowerCAmelCase ) )[2:]
if shift_amount >= len(__lowerCAmelCase ):
return "0b0"
UpperCAmelCase : Optional[Any] =binary_number[: len(__lowerCAmelCase ) - shift_amount]
return "0b" + shifted_binary_number
def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str:
'''simple docstring'''
if number >= 0: # Get binary representation of positive number
UpperCAmelCase : Optional[Any] ='''0''' + str(bin(__lowerCAmelCase ) ).strip('''-''' )[2:]
else: # Get binary (2's complement) representation of negative number
UpperCAmelCase : int =len(bin(__lowerCAmelCase )[3:] ) # Find 2's complement of number
UpperCAmelCase : Any =bin(abs(__lowerCAmelCase ) - (1 << binary_number_length) )[3:]
UpperCAmelCase : Optional[Any] =(
'''1''' + '''0''' * (binary_number_length - len(__lowerCAmelCase )) + binary_number
)
if shift_amount >= len(__lowerCAmelCase ):
return "0b" + binary_number[0] * len(__lowerCAmelCase )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(__lowerCAmelCase ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 348
| 0
|
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
__UpperCAmelCase = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 1_28,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def _UpperCamelCase ( cls ) -> str:
SCREAMING_SNAKE_CASE_ = TOKEN
HfFolder.save_token(_A )
@classmethod
def _UpperCamelCase ( cls ) -> str:
try:
delete_repo(token=cls._token , repo_id='''test-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''' )
except HTTPError:
pass
def _UpperCamelCase ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('''test-config''' , use_auth_token=self._token )
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained(F'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_A , getattr(_A , _A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_A , repo_id='''test-config''' , push_to_hub=_A , use_auth_token=self._token )
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained(F'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_A , getattr(_A , _A ) )
def _UpperCamelCase ( self ) -> Tuple:
SCREAMING_SNAKE_CASE_ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token )
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_A , getattr(_A , _A ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_A , repo_id='''valid_org/test-config-org''' , push_to_hub=_A , use_auth_token=self._token )
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_A , getattr(_A , _A ) )
def _UpperCamelCase ( self ) -> int:
CustomConfig.register_for_auto_class()
SCREAMING_SNAKE_CASE_ = CustomConfig(attribute=42 )
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} )
SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=_A )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' )
self.assertEqual(new_config.attribute , 42 )
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _UpperCamelCase ( self ) -> Any:
SCREAMING_SNAKE_CASE_ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
SCREAMING_SNAKE_CASE_ = c.n_embd + 1 # int
SCREAMING_SNAKE_CASE_ = c.resid_pdrop + 1.0 # float
SCREAMING_SNAKE_CASE_ = not c.scale_attn_weights # bool
SCREAMING_SNAKE_CASE_ = c.summary_type + '''foo''' # str
c.update_from_string(
F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' )
self.assertEqual(_A , c.n_embd , '''mismatch for key: n_embd''' )
self.assertEqual(_A , c.resid_pdrop , '''mismatch for key: resid_pdrop''' )
self.assertEqual(_A , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' )
self.assertEqual(_A , c.summary_type , '''mismatch for key: summary_type''' )
def _UpperCamelCase ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE_ = PretrainedConfig()
SCREAMING_SNAKE_CASE_ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_A , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] )
SCREAMING_SNAKE_CASE_ = [key for key, value in config_common_kwargs.items() if value == getattr(_A , _A )]
if len(_A ) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
F''' {", ".join(_A )}.''' )
def _UpperCamelCase ( self ) -> str:
with self.assertRaises(_A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' )
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' )
self.assertIsNotNone(_A )
def _UpperCamelCase ( self ) -> Any:
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE_ = mock.Mock()
SCREAMING_SNAKE_CASE_ = 500
SCREAMING_SNAKE_CASE_ = {}
SCREAMING_SNAKE_CASE_ = HTTPError
SCREAMING_SNAKE_CASE_ = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=_A ) as mock_head:
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# This check we did call the fake head request
mock_head.assert_called()
def _UpperCamelCase ( self ) -> Optional[Any]:
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' )
def _UpperCamelCase ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained('''bert-base-cased''' )
SCREAMING_SNAKE_CASE_ = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_A )
SCREAMING_SNAKE_CASE_ = 2
json.dump(configuration.to_dict() , open(os.path.join(_A , '''config.4.0.0.json''' ) , '''w''' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
SCREAMING_SNAKE_CASE_ = ['''config.42.0.0.json''']
SCREAMING_SNAKE_CASE_ = 768
configuration.save_pretrained(_A )
shutil.move(os.path.join(_A , '''config.4.0.0.json''' ) , os.path.join(_A , '''config.42.0.0.json''' ) )
SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(_A )
self.assertEqual(new_configuration.hidden_size , 768 )
def _UpperCamelCase ( self ) -> List[Any]:
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
SCREAMING_SNAKE_CASE_ = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
SCREAMING_SNAKE_CASE_ = '''v4.0.0'''
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = new_transformers.models.auto.AutoConfig.from_pretrained(
_A , return_unused_kwargs=_A )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_A , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
SCREAMING_SNAKE_CASE_ = '''v3.0.0'''
SCREAMING_SNAKE_CASE_ = old_transformers.models.auto.AutoConfig.from_pretrained(_A )
self.assertEqual(old_configuration.hidden_size , 768 )
| 257
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ) -> Optional[Any]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
SCREAMING_SNAKE_CASE_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = min_resolution
SCREAMING_SNAKE_CASE_ = max_resolution
SCREAMING_SNAKE_CASE_ = do_resize
SCREAMING_SNAKE_CASE_ = size
SCREAMING_SNAKE_CASE_ = do_normalize
SCREAMING_SNAKE_CASE_ = image_mean
SCREAMING_SNAKE_CASE_ = image_std
SCREAMING_SNAKE_CASE_ = do_rescale
SCREAMING_SNAKE_CASE_ = rescale_factor
SCREAMING_SNAKE_CASE_ = do_pad
def _UpperCamelCase ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _UpperCamelCase ( self , _A , _A=False ) -> str:
if not batched:
SCREAMING_SNAKE_CASE_ = image_inputs[0]
if isinstance(_A , Image.Image ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size
else:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * h / w )
SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge''']
elif w > h:
SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge''']
SCREAMING_SNAKE_CASE_ = int(self.size['''shortest_edge'''] * w / h )
else:
SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge''']
SCREAMING_SNAKE_CASE_ = self.size['''shortest_edge''']
else:
SCREAMING_SNAKE_CASE_ = []
for image in image_inputs:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[0] )[0]
SCREAMING_SNAKE_CASE_ = max(_A , key=lambda _A : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ =ConditionalDetrImageProcessor if is_vision_available() else None
def _UpperCamelCase ( self ) -> Any:
SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessingTester(self )
@property
def _UpperCamelCase ( self ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCamelCase ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_A , '''image_mean''' ) )
self.assertTrue(hasattr(_A , '''image_std''' ) )
self.assertTrue(hasattr(_A , '''do_normalize''' ) )
self.assertTrue(hasattr(_A , '''do_resize''' ) )
self.assertTrue(hasattr(_A , '''size''' ) )
def _UpperCamelCase ( self ) -> str:
SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , _A )
SCREAMING_SNAKE_CASE_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , _A )
def _UpperCamelCase ( self ) -> Any:
pass
def _UpperCamelCase ( self ) -> int:
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A )
for image in image_inputs:
self.assertIsInstance(_A , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A )
SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCamelCase ( self ) -> List[Any]:
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A )
for image in image_inputs:
self.assertIsInstance(_A , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCamelCase ( self ) -> Union[str, Any]:
# Initialize image_processing
SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A )
for image in image_inputs:
self.assertIsInstance(_A , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE_ = image_processing(_A , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.image_processor_tester.get_expected_values(_A , batched=_A )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _UpperCamelCase ( self ) -> str:
# prepare image and target
SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ = json.loads(f.read() )
SCREAMING_SNAKE_CASE_ = {'''image_id''': 39769, '''annotations''': target}
# encode them
SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' )
SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , return_tensors='''pt''' )
# verify pixel values
SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , _A )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE_ = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) )
# verify boxes
SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE_ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) )
# verify class_labels
SCREAMING_SNAKE_CASE_ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) )
# verify orig_size
SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) )
# verify size
SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
@slow
def _UpperCamelCase ( self ) -> Tuple:
# prepare image, target and masks_path
SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
SCREAMING_SNAKE_CASE_ = json.loads(f.read() )
SCREAMING_SNAKE_CASE_ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
SCREAMING_SNAKE_CASE_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
SCREAMING_SNAKE_CASE_ = ConditionalDetrImageProcessor(format='''coco_panoptic''' )
SCREAMING_SNAKE_CASE_ = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' )
# verify pixel values
SCREAMING_SNAKE_CASE_ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , _A )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1E-4 ) )
# verify area
SCREAMING_SNAKE_CASE_ = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) )
# verify boxes
SCREAMING_SNAKE_CASE_ = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A )
SCREAMING_SNAKE_CASE_ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1E-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE_ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) )
# verify is_crowd
SCREAMING_SNAKE_CASE_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) )
# verify class_labels
SCREAMING_SNAKE_CASE_ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) )
# verify masks
SCREAMING_SNAKE_CASE_ = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A )
# verify orig_size
SCREAMING_SNAKE_CASE_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) )
# verify size
SCREAMING_SNAKE_CASE_ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
| 257
| 1
|
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
snake_case_ : Dict = logging.get_logger(__name__)
snake_case_ : Dict = OrderedDict(
[
('align', 'EfficientNetImageProcessor'),
('beit', 'BeitImageProcessor'),
('bit', 'BitImageProcessor'),
('blip', 'BlipImageProcessor'),
('blip-2', 'BlipImageProcessor'),
('bridgetower', 'BridgeTowerImageProcessor'),
('chinese_clip', 'ChineseCLIPImageProcessor'),
('clip', 'CLIPImageProcessor'),
('clipseg', 'ViTImageProcessor'),
('conditional_detr', 'ConditionalDetrImageProcessor'),
('convnext', 'ConvNextImageProcessor'),
('convnextv2', 'ConvNextImageProcessor'),
('cvt', 'ConvNextImageProcessor'),
('data2vec-vision', 'BeitImageProcessor'),
('deformable_detr', 'DeformableDetrImageProcessor'),
('deit', 'DeiTImageProcessor'),
('deta', 'DetaImageProcessor'),
('detr', 'DetrImageProcessor'),
('dinat', 'ViTImageProcessor'),
('donut-swin', 'DonutImageProcessor'),
('dpt', 'DPTImageProcessor'),
('efficientformer', 'EfficientFormerImageProcessor'),
('efficientnet', 'EfficientNetImageProcessor'),
('flava', 'FlavaImageProcessor'),
('focalnet', 'BitImageProcessor'),
('git', 'CLIPImageProcessor'),
('glpn', 'GLPNImageProcessor'),
('groupvit', 'CLIPImageProcessor'),
('imagegpt', 'ImageGPTImageProcessor'),
('instructblip', 'BlipImageProcessor'),
('layoutlmv2', 'LayoutLMv2ImageProcessor'),
('layoutlmv3', 'LayoutLMv3ImageProcessor'),
('levit', 'LevitImageProcessor'),
('mask2former', 'Mask2FormerImageProcessor'),
('maskformer', 'MaskFormerImageProcessor'),
('mgp-str', 'ViTImageProcessor'),
('mobilenet_v1', 'MobileNetV1ImageProcessor'),
('mobilenet_v2', 'MobileNetV2ImageProcessor'),
('mobilevit', 'MobileViTImageProcessor'),
('mobilevit', 'MobileViTImageProcessor'),
('mobilevitv2', 'MobileViTImageProcessor'),
('nat', 'ViTImageProcessor'),
('oneformer', 'OneFormerImageProcessor'),
('owlvit', 'OwlViTImageProcessor'),
('perceiver', 'PerceiverImageProcessor'),
('pix2struct', 'Pix2StructImageProcessor'),
('poolformer', 'PoolFormerImageProcessor'),
('regnet', 'ConvNextImageProcessor'),
('resnet', 'ConvNextImageProcessor'),
('sam', 'SamImageProcessor'),
('segformer', 'SegformerImageProcessor'),
('swiftformer', 'ViTImageProcessor'),
('swin', 'ViTImageProcessor'),
('swin2sr', 'Swin2SRImageProcessor'),
('swinv2', 'ViTImageProcessor'),
('table-transformer', 'DetrImageProcessor'),
('timesformer', 'VideoMAEImageProcessor'),
('tvlt', 'TvltImageProcessor'),
('upernet', 'SegformerImageProcessor'),
('van', 'ConvNextImageProcessor'),
('videomae', 'VideoMAEImageProcessor'),
('vilt', 'ViltImageProcessor'),
('vit', 'ViTImageProcessor'),
('vit_hybrid', 'ViTHybridImageProcessor'),
('vit_mae', 'ViTImageProcessor'),
('vit_msn', 'ViTImageProcessor'),
('xclip', 'CLIPImageProcessor'),
('yolos', 'YolosImageProcessor'),
]
)
snake_case_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def A__ ( UpperCAmelCase_ ):
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
_UpperCamelCase : Any = model_type_to_module_name(UpperCAmelCase_ )
_UpperCamelCase : List[str] = importlib.import_module(f'.{module_name}' , 'transformers.models' )
try:
return getattr(UpperCAmelCase_ , UpperCAmelCase_ )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(UpperCAmelCase_ , '__name__' , UpperCAmelCase_ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_UpperCamelCase : List[Any] = importlib.import_module('transformers' )
if hasattr(UpperCAmelCase_ , UpperCAmelCase_ ):
return getattr(UpperCAmelCase_ , UpperCAmelCase_ )
return None
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , **UpperCAmelCase_ , ):
_UpperCamelCase : Optional[Any] = get_file_from_repo(
UpperCAmelCase_ , UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , force_download=UpperCAmelCase_ , resume_download=UpperCAmelCase_ , proxies=UpperCAmelCase_ , use_auth_token=UpperCAmelCase_ , revision=UpperCAmelCase_ , local_files_only=UpperCAmelCase_ , )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(UpperCAmelCase_ , encoding='utf-8' ) as reader:
return json.load(UpperCAmelCase_ )
class lowercase__ :
def __init__( self : Tuple ):
'''simple docstring'''
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(lowerCamelCase__ )
def UpperCamelCase_ ( cls : Tuple ,lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Tuple ):
'''simple docstring'''
_UpperCamelCase : int = kwargs.pop('config' ,lowerCamelCase__ )
_UpperCamelCase : List[Any] = kwargs.pop('trust_remote_code' ,lowerCamelCase__ )
_UpperCamelCase : Tuple = True
_UpperCamelCase , _UpperCamelCase : Dict = ImageProcessingMixin.get_image_processor_dict(lowerCamelCase__ ,**lowerCamelCase__ )
_UpperCamelCase : List[Any] = config_dict.get('image_processor_type' ,lowerCamelCase__ )
_UpperCamelCase : Tuple = None
if "AutoImageProcessor" in config_dict.get('auto_map' ,{} ):
_UpperCamelCase : Optional[int] = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
_UpperCamelCase : Optional[Any] = config_dict.pop('feature_extractor_type' ,lowerCamelCase__ )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
_UpperCamelCase : int = feature_extractor_class.replace('FeatureExtractor' ,'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' ,{} ):
_UpperCamelCase : List[Any] = config_dict['auto_map']['AutoFeatureExtractor']
_UpperCamelCase : List[str] = feature_extractor_auto_map.replace('FeatureExtractor' ,'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
_UpperCamelCase : int = AutoConfig.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ )
# It could be in `config.image_processor_type``
_UpperCamelCase : List[Any] = getattr(lowerCamelCase__ ,'image_processor_type' ,lowerCamelCase__ )
if hasattr(lowerCamelCase__ ,'auto_map' ) and "AutoImageProcessor" in config.auto_map:
_UpperCamelCase : List[str] = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
_UpperCamelCase : Union[str, Any] = image_processor_class_from_name(lowerCamelCase__ )
_UpperCamelCase : str = image_processor_auto_map is not None
_UpperCamelCase : Any = image_processor_class is not None or type(lowerCamelCase__ ) in IMAGE_PROCESSOR_MAPPING
_UpperCamelCase : Any = resolve_trust_remote_code(
lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ )
if has_remote_code and trust_remote_code:
_UpperCamelCase : str = get_class_from_dynamic_module(
lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ )
_UpperCamelCase : Optional[Any] = kwargs.pop('code_revision' ,lowerCamelCase__ )
if os.path.isdir(lowerCamelCase__ ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ )
elif image_processor_class is not None:
return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(lowerCamelCase__ ) in IMAGE_PROCESSOR_MAPPING:
_UpperCamelCase : int = IMAGE_PROCESSOR_MAPPING[type(lowerCamelCase__ )]
return image_processor_class.from_dict(lowerCamelCase__ ,**lowerCamelCase__ )
raise ValueError(
F'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '
F'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' )
@staticmethod
def UpperCamelCase_ ( lowerCamelCase__ : List[str] ,lowerCamelCase__ : Union[str, Any] ):
'''simple docstring'''
IMAGE_PROCESSOR_MAPPING.register(lowerCamelCase__ ,lowerCamelCase__ )
| 83
|
"""simple docstring"""
import os
def __UpperCAmelCase ( ) -> int:
with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file:
lowercase__ : List[Any] = str(file.readlines()[0] )
lowercase__ : Dict = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
lowercase__ : int = 0
lowercase__ : Optional[Any] = 0
for i, name in enumerate(__lowerCamelCase ):
for letter in name:
name_score += ord(__lowerCamelCase ) - 64
total_score += (i + 1) * name_score
lowercase__ : List[str] = 0
return total_score
if __name__ == "__main__":
print(solution())
| 16
| 0
|
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __UpperCAmelCase ( A__ ):
'''simple docstring'''
__lowerCAmelCase = (DDIMParallelScheduler,)
__lowerCAmelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50))
def A (self : Dict , **_lowerCAmelCase : str ):
A = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**_lowerCAmelCase )
return config
def A (self : List[Any] , **_lowerCAmelCase : Dict ):
A = self.scheduler_classes[0]
A = self.get_scheduler_config(**_lowerCAmelCase )
A = scheduler_class(**_lowerCAmelCase )
A , A = 10, 0.0
A = self.dummy_model()
A = self.dummy_sample_deter
scheduler.set_timesteps(_lowerCAmelCase )
for t in scheduler.timesteps:
A = model(_lowerCAmelCase , _lowerCAmelCase )
A = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
return sample
def A (self : Optional[int] ):
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=_lowerCAmelCase )
def A (self : str ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowerCAmelCase )
A = self.scheduler_classes[0]
A = self.get_scheduler_config(steps_offset=1 )
A = scheduler_class(**_lowerCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def A (self : Dict ):
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_lowerCAmelCase , beta_end=_lowerCAmelCase )
def A (self : List[Any] ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowerCAmelCase )
def A (self : List[Any] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowerCAmelCase )
def A (self : Optional[Any] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_lowerCAmelCase )
def A (self : Any ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_lowerCAmelCase )
def A (self : Optional[int] ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase )
def A (self : Optional[Any] ):
self.check_over_configs(thresholding=_lowerCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_lowerCAmelCase , prediction_type=_lowerCAmelCase , sample_max_value=_lowerCAmelCase , )
def A (self : Optional[Any] ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=_lowerCAmelCase )
def A (self : Any ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=_lowerCAmelCase , num_inference_steps=_lowerCAmelCase )
def A (self : Union[str, Any] ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_lowerCAmelCase , eta=_lowerCAmelCase )
def A (self : Tuple ):
A = self.scheduler_classes[0]
A = self.get_scheduler_config()
A = scheduler_class(**_lowerCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5
def A (self : Union[str, Any] ):
A = self.scheduler_classes[0]
A = self.get_scheduler_config()
A = scheduler_class(**_lowerCAmelCase )
A , A = 10, 0.0
scheduler.set_timesteps(_lowerCAmelCase )
A = self.dummy_model()
A = self.dummy_sample_deter
A = self.dummy_sample_deter + 0.1
A = self.dummy_sample_deter - 0.1
A = samplea.shape[0]
A = torch.stack([samplea, samplea, samplea] , dim=0 )
A = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 , _lowerCAmelCase )
A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
A = scheduler.batch_step_no_noise(_lowerCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowerCAmelCase )
A = torch.sum(torch.abs(_lowerCAmelCase ) )
A = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4_982 ) < 1e-3
def A (self : Union[str, Any] ):
A = self.full_loop()
A = torch.sum(torch.abs(_lowerCAmelCase ) )
A = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 172.0_067 ) < 1e-2
assert abs(result_mean.item() - 0.223_967 ) < 1e-3
def A (self : Any ):
A = self.full_loop(prediction_type="""v_prediction""" )
A = torch.sum(torch.abs(_lowerCAmelCase ) )
A = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 52.5_302 ) < 1e-2
assert abs(result_mean.item() - 0.0_684 ) < 1e-3
def A (self : int ):
# We specify different beta, so that the first alpha is 0.99
A = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 )
A = torch.sum(torch.abs(_lowerCAmelCase ) )
A = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 149.8_295 ) < 1e-2
assert abs(result_mean.item() - 0.1_951 ) < 1e-3
def A (self : int ):
# We specify different beta, so that the first alpha is 0.99
A = self.full_loop(set_alpha_to_one=_lowerCAmelCase , beta_start=0.01 )
A = torch.sum(torch.abs(_lowerCAmelCase ) )
A = torch.mean(torch.abs(_lowerCAmelCase ) )
assert abs(result_sum.item() - 149.0_784 ) < 1e-2
assert abs(result_mean.item() - 0.1_941 ) < 1e-3
| 364
|
'''simple docstring'''
def __a ( UpperCAmelCase ) ->bool:
"""simple docstring"""
return credit_card_number.startswith(("""34""", """35""", """37""", """4""", """5""", """6""") )
def __a ( UpperCAmelCase ) ->bool:
"""simple docstring"""
A = credit_card_number
A = 0
A = len(UpperCAmelCase ) - 2
for i in range(UpperCAmelCase , -1 , -2 ):
# double the value of every second digit
A = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
A = cc_number[:i] + str(UpperCAmelCase ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(UpperCAmelCase ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def __a ( UpperCAmelCase ) ->bool:
"""simple docstring"""
A = f"""{credit_card_number} is an invalid credit card number because"""
if not credit_card_number.isdigit():
print(f"""{error_message} it has nonnumerical characters.""" )
return False
if not 13 <= len(UpperCAmelCase ) <= 16:
print(f"""{error_message} of its length.""" )
return False
if not validate_initial_digits(UpperCAmelCase ):
print(f"""{error_message} of its first two digits.""" )
return False
if not luhn_validation(UpperCAmelCase ):
print(f"""{error_message} it fails the Luhn check.""" )
return False
print(f"""{credit_card_number} is a valid credit card number.""" )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('4111111111111111')
validate_credit_card_number('32323')
| 337
| 0
|
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not numbers:
return 0
if not isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) or not all(
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for number in numbers ):
raise ValueError('''numbers must be an iterable of integers''' )
snake_case_ = snake_case_ = snake_case_ = numbers[0]
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# update the maximum and minimum subarray products
snake_case_ = numbers[i]
if number < 0:
snake_case_, snake_case_ = min_till_now, max_till_now
snake_case_ = max(SCREAMING_SNAKE_CASE__ , max_till_now * number )
snake_case_ = min(SCREAMING_SNAKE_CASE__ , min_till_now * number )
# update the maximum product found till now
snake_case_ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return max_prod
| 8
|
'''simple docstring'''
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def snake_case_ (_a : Tuple ):
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def snake_case_ ():
UpperCAmelCase = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a )
UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(_a )
EnvironmentCommand.register_subcommand(_a )
TestCommand.register_subcommand(_a )
RunBeamCommand.register_subcommand(_a )
DummyDataCommand.register_subcommand(_a )
# Parse args
UpperCAmelCase , UpperCAmelCase = parser.parse_known_args()
if not hasattr(_a , '''func''' ):
parser.print_help()
exit(1 )
UpperCAmelCase = parse_unknown_args(_a )
# Run
UpperCAmelCase = args.func(_a , **_a )
service.run()
if __name__ == "__main__":
main()
| 34
| 0
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
_lowerCamelCase : Dict = logging.getLogger(__name__)
@dataclass(frozen=lowerCamelCase__ )
class __UpperCAmelCase :
'''simple docstring'''
__lowerCAmelCase = 42
__lowerCAmelCase = 42
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
@dataclass(frozen=lowerCamelCase__ )
class __UpperCAmelCase :
'''simple docstring'''
__lowerCAmelCase = 42
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
__lowerCAmelCase = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class __UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
__lowerCAmelCase = 42
def __init__(self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Any=False , _lowerCAmelCase : bool = False , ):
A = hans_processors[task]()
A = os.path.join(
_lowerCAmelCase , """cached_{}_{}_{}_{}""".format(
"""dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(_lowerCAmelCase ) , _lowerCAmelCase , ) , )
A = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
A = label_list[2], label_list[1]
A = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
A = cached_features_file + ".lock"
with FileLock(_lowerCAmelCase ):
if os.path.exists(_lowerCAmelCase ) and not overwrite_cache:
logger.info(F"""Loading features from cached file {cached_features_file}""" )
A = torch.load(_lowerCAmelCase )
else:
logger.info(F"""Creating features from dataset file at {data_dir}""" )
A = (
processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase )
)
logger.info("""Training examples: %s""" , len(_lowerCAmelCase ) )
A = hans_convert_examples_to_features(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
logger.info("""Saving features into cached file %s""" , _lowerCAmelCase )
torch.save(self.features , _lowerCAmelCase )
def __len__(self : str ):
return len(self.features )
def __getitem__(self : List[str] , _lowerCAmelCase : Optional[Any] ):
return self.features[i]
def A (self : Optional[int] ):
return self.label_list
if is_tf_available():
import tensorflow as tf
class __UpperCAmelCase :
'''simple docstring'''
__lowerCAmelCase = 42
def __init__(self : int , _lowerCAmelCase : str , _lowerCAmelCase : PreTrainedTokenizer , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] = 128 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : bool = False , ):
A = hans_processors[task]()
A = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
A = label_list[2], label_list[1]
A = label_list
A = processor.get_dev_examples(_lowerCAmelCase ) if evaluate else processor.get_train_examples(_lowerCAmelCase )
A = hans_convert_examples_to_features(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ):
if ex_index % 1_0000 == 0:
logger.info("""Writing example %d of %d""" % (ex_index, len(_lowerCAmelCase )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
A = tf.data.Dataset.from_generator(
_lowerCAmelCase , (
{
"""example_id""": tf.intaa,
"""input_ids""": tf.intaa,
"""attention_mask""": tf.intaa,
"""token_type_ids""": tf.intaa,
},
tf.intaa,
) , (
{
"""example_id""": tf.TensorShape([] ),
"""input_ids""": tf.TensorShape([None, None] ),
"""attention_mask""": tf.TensorShape([None, None] ),
"""token_type_ids""": tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def A (self : Optional[Any] ):
return self.dataset
def __len__(self : int ):
return len(self.features )
def __getitem__(self : Optional[Any] , _lowerCAmelCase : List[Any] ):
return self.features[i]
def A (self : Any ):
return self.label_list
class __UpperCAmelCase ( lowerCamelCase__ ):
'''simple docstring'''
def A (self : Any , _lowerCAmelCase : Dict ):
return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase , """heuristics_train_set.txt""" ) ) , """train""" )
def A (self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ):
return self._create_examples(self._read_tsv(os.path.join(_lowerCAmelCase , """heuristics_evaluation_set.txt""" ) ) , """dev""" )
def A (self : Union[str, Any] ):
return ["contradiction", "entailment", "neutral"]
def A (self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ):
A = []
for i, line in enumerate(_lowerCAmelCase ):
if i == 0:
continue
A = "%s-%s" % (set_type, line[0])
A = line[5]
A = line[6]
A = line[7][2:] if line[7].startswith("""ex""" ) else line[7]
A = line[0]
examples.append(InputExample(guid=_lowerCAmelCase , text_a=_lowerCAmelCase , text_b=_lowerCAmelCase , label=_lowerCAmelCase , pairID=_lowerCAmelCase ) )
return examples
def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->Optional[int]:
"""simple docstring"""
A = {label: i for i, label in enumerate(_lowerCAmelCase )}
A = []
for ex_index, example in tqdm.tqdm(enumerate(_lowerCAmelCase ) , desc="""convert examples to features""" ):
if ex_index % 10000 == 0:
logger.info("""Writing example %d""" % (ex_index) )
A = tokenizer(
example.text_a , example.text_b , add_special_tokens=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="""max_length""" , truncation=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , )
A = label_map[example.label] if example.label in label_map else 0
A = int(example.pairID )
features.append(InputFeatures(**_lowerCAmelCase , label=_lowerCAmelCase , pairID=_lowerCAmelCase ) )
for i, example in enumerate(examples[:5] ):
logger.info("""*** Example ***""" )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
_lowerCamelCase : Any = {
'''hans''': 3,
}
_lowerCamelCase : int = {
'''hans''': HansProcessor,
}
| 354
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase : List[Any] = logging.get_logger(__name__)
_lowerCamelCase : List[Any] = {
'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json',
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class __UpperCAmelCase ( A__ ):
'''simple docstring'''
__lowerCAmelCase = '''yolos'''
def __init__(self : Tuple , _lowerCAmelCase : List[Any]=768 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Optional[Any]=[512, 864] , _lowerCAmelCase : Union[str, Any]=16 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Any=True , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : Optional[Any]=2 , _lowerCAmelCase : Any=0.1 , **_lowerCAmelCase : Union[str, Any] , ):
super().__init__(**_lowerCAmelCase )
A = hidden_size
A = num_hidden_layers
A = num_attention_heads
A = intermediate_size
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = initializer_range
A = layer_norm_eps
A = image_size
A = patch_size
A = num_channels
A = qkv_bias
A = num_detection_tokens
A = use_mid_position_embeddings
A = auxiliary_loss
# Hungarian matcher
A = class_cost
A = bbox_cost
A = giou_cost
# Loss coefficients
A = bbox_loss_coefficient
A = giou_loss_coefficient
A = eos_coefficient
class __UpperCAmelCase ( A__ ):
'''simple docstring'''
__lowerCAmelCase = version.parse('''1.11''' )
@property
def A (self : int ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A (self : Any ):
return 1e-4
@property
def A (self : int ):
return 12
| 337
| 0
|
from __future__ import annotations
from math import pow, sqrt
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> dict[str, float]:
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance == 0:
return {"resistance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(_UpperCAmelCase , 2 ) - pow(_UpperCAmelCase , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(_UpperCAmelCase , 2 ) + pow(_UpperCAmelCase , 2 ) )}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 50
|
import flax.linen as nn
import jax
import jax.numpy as jnp
class lowerCAmelCase ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = jnp.floataa
def A_ ( self : Any ) -> Any:
lowerCamelCase__ : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape
lowerCamelCase__ : Union[str, Any] = jax.image.resize(
UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase )
return hidden_states
class lowerCAmelCase ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = jnp.floataa
def A_ ( self : List[str] ) -> int:
lowerCamelCase__ : Tuple = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase )
return hidden_states
class lowerCAmelCase ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = None
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = None
UpperCAmelCase__ = jnp.floataa
def A_ ( self : List[str] ) -> Union[str, Any]:
lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
lowerCamelCase__ : int = nn.Conv(
UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype )
lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob )
lowerCamelCase__ : Tuple = nn.Conv(
UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
lowerCamelCase__ : Union[str, Any] = None
if use_nin_shortcut:
lowerCamelCase__ : Dict = nn.Conv(
UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]:
lowerCamelCase__ : Union[str, Any] = hidden_states
lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase )
lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase )
lowerCamelCase__ : Any = self.conva(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) )
lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 )
lowerCamelCase__ : List[str] = hidden_states + temb
lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase )
lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase )
lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : str = self.conva(UpperCAmelCase )
if self.conv_shortcut is not None:
lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase )
return hidden_states + residual
| 50
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a_ : Union[str, Any] = {
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : str = [
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTBigCodeForSequenceClassification",
"GPTBigCodeForTokenClassification",
"GPTBigCodeForCausalLM",
"GPTBigCodeModel",
"GPTBigCodePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_bigcode import (
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTBigCodeForCausalLM,
GPTBigCodeForSequenceClassification,
GPTBigCodeForTokenClassification,
GPTBigCodeModel,
GPTBigCodePreTrainedModel,
)
else:
import sys
a_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 365
|
'''simple docstring'''
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def _A () -> Optional[Any]:
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(lowerCAmelCase__ ):
requests.request('GET' , 'https://huggingface.co' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('GET' , 'https://huggingface.co' , timeout=1.0 )
@pytest.mark.integration
def _A () -> Any:
'''simple docstring'''
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('GET' , 'https://huggingface.co' )
def _A () -> Dict:
'''simple docstring'''
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(lowerCAmelCase__ ):
http_head('https://huggingface.co' )
| 104
| 0
|
'''simple docstring'''
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument('''--user''', type=str, default='''ubuntu''')
parser.add_argument('''--host''', type=str, default='''localhost''')
parser.add_argument('''--key_path''', type=str, default=None)
parser.add_argument('''--instance''', type=str, default='''V100:1''')
parser.add_argument('''--provider''', type=str, default='''cheapest''')
parser.add_argument('''--use_spot''', type=bool, default=False)
parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''')
lowerCamelCase_ , lowerCamelCase_ = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError('''Cannot specify both BYO and on-demand cluster args''')
lowerCamelCase_ = rh.cluster(
name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path}
)
else:
lowerCamelCase_ = rh.cluster(
name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
lowerCamelCase_ = args.example.rsplit('''/''', 1)[0]
# Set up remote environment
cluster.install_packages(['''pip:./''']) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""])
cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117'''])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 79
|
'''simple docstring'''
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class _UpperCAmelCase ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Union[str, Any] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None ):
'''simple docstring'''
super().__init__()
_A = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
_A = torch.zeros(__UpperCAmelCase , __UpperCAmelCase )
else:
_A = None
_A = torch.nn.Parameter(__UpperCAmelCase )
class _UpperCAmelCase ( snake_case_ ):
"""simple docstring"""
snake_case = 42
snake_case = 42
snake_case = 42
snake_case = 42
snake_case = 42
snake_case = 42
def __init__( self : Any , __UpperCAmelCase : VQModel , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : TransformeraDModel , __UpperCAmelCase : VQDiffusionScheduler , __UpperCAmelCase : LearnedClassifierFreeSamplingEmbeddings , ):
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , )
def lowerCAmelCase ( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ):
'''simple docstring'''
_A = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1
# get prompt text embeddings
_A = self.tokenizer(
__UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
_A = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
_A = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
_A = text_input_ids[:, : self.tokenizer.model_max_length]
_A = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
_A = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase )
# duplicate text embeddings for each generation per prompt
_A = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
_A = self.learned_classifier_free_sampling_embeddings.embeddings
_A = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 )
else:
_A = [""] * batch_size
_A = text_input_ids.shape[-1]
_A = self.tokenizer(
__UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , )
_A = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
_A = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
_A = negative_prompt_embeds.shape[1]
_A = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 )
_A = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self : Optional[Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 100 , __UpperCAmelCase : float = 5.0 , __UpperCAmelCase : float = 1.0 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , ):
'''simple docstring'''
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_A = 1
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_A = len(__UpperCAmelCase )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}''' )
_A = batch_size * num_images_per_prompt
_A = guidance_scale > 1.0
_A = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(__UpperCAmelCase )}.''' )
# get the initial completely masked latents unless the user supplied it
_A = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
_A = self.transformer.num_vector_embeds - 1
_A = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
"Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,"
f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' )
_A = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device )
_A = self.scheduler.timesteps.to(self.device )
_A = latents
for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ):
# expand the sample if we are doing classifier free guidance
_A = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
_A = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample
if do_classifier_free_guidance:
_A , _A = model_output.chunk(2 )
_A = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase )
_A = self.truncate(__UpperCAmelCase , __UpperCAmelCase )
# remove `log(0)`'s (`-inf`s)
_A = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
_A = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_A = self.vqvae.config.vq_embed_dim
_A = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
_A = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase )
_A = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample
_A = (image / 2 + 0.5).clamp(0 , 1 )
_A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCAmelCase )
def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : float ):
'''simple docstring'''
_A , _A = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase )
_A = torch.exp(__UpperCAmelCase )
_A = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
_A = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase )
_A = torch.cat((all_true, keep_mask) , dim=1 )
_A = keep_mask[:, :-1, :]
_A = keep_mask.gather(1 , indices.argsort(1 ) )
_A = log_p_x_0.clone()
_A = -torch.inf # -inf = log(0)
return rv
| 79
| 1
|
"""simple docstring"""
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _A ( ) -> int:
'''simple docstring'''
__lowercase = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
__lowercase = parser.add_subparsers(help="diffusers-cli command helpers")
# Register commands
EnvironmentCommand.register_subcommand(UpperCamelCase_)
# Let's go
__lowercase = parser.parse_args()
if not hasattr(UpperCamelCase_, "func"):
parser.print_help()
exit(1)
# Run
__lowercase = args.func(UpperCamelCase_)
service.run()
if __name__ == "__main__":
main()
| 353
|
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 144
| 0
|
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
__lowerCAmelCase : str = re.compile(r'^(?P<major>\d+)' r'\.(?P<minor>\d+)' r'\.(?P<patch>\d+)$')
@total_ordering
@dataclass
class snake_case__ :
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str
SCREAMING_SNAKE_CASE_ : Optional[str] = None
SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None
SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None
SCREAMING_SNAKE_CASE_ : Optional[Union[str, int]] = None
def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
a , a , a = _str_to_version_tuple(self.version_str )
def __repr__( self : List[str] ) -> Dict:
return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"""
@property
def __UpperCAmelCase ( self : Tuple ) -> Any:
return self.major, self.minor, self.patch
def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] ) -> Optional[Any]:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
return Version(__lowerCamelCase )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
return other
raise TypeError(f"""{other} (type {type(__lowerCamelCase )}) cannot be compared to version.""" )
def __eq__( self : int , __lowerCamelCase : Any ) -> Optional[int]:
try:
a = self._validate_operand(__lowerCamelCase )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] ) -> Dict:
a = self._validate_operand(__lowerCamelCase )
return self.tuple < other.tuple
def __hash__( self : Any ) -> Optional[Any]:
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def __UpperCAmelCase ( cls : Optional[Any] , __lowerCamelCase : Dict ) -> Any:
a = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def __UpperCAmelCase ( self : List[Any] ) -> str:
return self.version_str
def __magic_name__ ( A : Optional[int] ):
'''simple docstring'''
a = _VERSION_REG.match(A )
if not res:
raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" )
return tuple(int(A ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] )
def __magic_name__ ( A : Optional[Any] ):
'''simple docstring'''
return ".".join(str(A ) for v in version_tuple )
| 107
|
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def __magic_name__ ( A : NDArray[floataa], A : NDArray[floataa], A : list[int], A : int, ):
'''simple docstring'''
a , a = coefficient_matrix.shape
a , a = constant_matrix.shape
if rowsa != colsa:
a = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(A )
if colsa != 1:
a = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(A )
if rowsa != rowsa:
a = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
F"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(A )
if len(A ) != rowsa:
a = (
"Number of initial values must be equal to number of rows in coefficient "
F"""matrix but received {len(A )} and {rowsa}"""
)
raise ValueError(A )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
a = np.concatenate(
(coefficient_matrix, constant_matrix), axis=1 )
a , a = table.shape
strictly_diagonally_dominant(A )
# Iterates the whole matrix for given number of times
for _ in range(A ):
a = []
for row in range(A ):
a = 0
for col in range(A ):
if col == row:
a = table[row][col]
elif col == cols - 1:
a = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
a = (temp + val) / denom
new_val.append(A )
a = new_val
return [float(A ) for i in new_val]
def __magic_name__ ( A : NDArray[floataa] ):
'''simple docstring'''
a , a = table.shape
a = True
for i in range(0, A ):
a = 0
for j in range(0, cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 107
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCAmelCase : Tuple = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : List[str] = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
_lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 368
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ =XLMTokenizer
SCREAMING_SNAKE_CASE_ =False
def __a ( self : Dict ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
"<unk>",
]
UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" ) as fp:
fp.write(json.dumps(snake_case__ ) )
with open(self.merges_file , "w" ) as fp:
fp.write("\n".join(snake_case__ ) )
def __a ( self : Union[str, Any] , snake_case__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ : str = "lower newer"
UpperCAmelCase__ : Optional[Any] = "lower newer"
return input_text, output_text
def __a ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file )
UpperCAmelCase__ : List[Any] = "lower"
UpperCAmelCase__ : Any = ["low", "er</w>"]
UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"]
UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@slow
def __a ( self : Any ):
'''simple docstring'''
UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" )
UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ )
UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ )
UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 298
| 0
|
from __future__ import annotations
def lowerCamelCase__ ( _a , _a):
print(f"Vertex\tShortest Distance from vertex {src}")
for i, d in enumerate(_a):
print(f"{i}\t\t{d}")
def lowerCamelCase__ ( _a , _a , _a):
for j in range(_a):
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf") and distance[u] + w < distance[v]:
return True
return False
def lowerCamelCase__ ( _a , _a , _a , _a):
SCREAMING_SNAKE_CASE : Union[str, Any] = [float("inf")] * vertex_count
SCREAMING_SNAKE_CASE : Optional[Any] = 0.0
for _ in range(vertex_count - 1):
for j in range(_a):
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = (graph[j][k] for k in ["src", "dst", "weight"])
if distance[u] != float("inf") and distance[u] + w < distance[v]:
SCREAMING_SNAKE_CASE : Any = distance[u] + w
SCREAMING_SNAKE_CASE : List[str] = check_negative_cycle(_a , _a , _a)
if negative_cycle_exists:
raise Exception("Negative cycle found")
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ = int(input('Enter number of vertices: ').strip())
a_ = int(input('Enter number of edges: ').strip())
a_ = [{} for _ in range(E)]
for i in range(E):
print('Edge ', i + 1)
a_ , a_ , a_ = (
int(x)
for x in input('Enter source, destination, weight: ').strip().split(' ')
)
a_ = {'src': src, 'dst': dest, 'weight': weight}
a_ = int(input('\nEnter shortest path source:').strip())
a_ = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 76
|
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowercase__ : Optional[int] = []
for part_id in partition_order:
lowercase__ : str = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect()
for row_idx, row in enumerate(lowerCamelCase__ ):
expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
lowercase__ : Tuple = spark.range(100 ).repartition(1 )
lowercase__ : Tuple = Spark(lowerCamelCase__ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
lowercase__ : Tuple = spark.range(10 ).repartition(2 )
lowercase__ : Any = [1, 0]
lowercase__ : Optional[int] = _generate_iterable_examples(lowerCamelCase__ , lowerCamelCase__ ) # Reverse the partitions.
lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , lowerCamelCase__ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
lowercase__ , lowercase__ : List[Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
lowercase__ : int = spark.range(10 ).repartition(1 )
lowercase__ : Optional[int] = SparkExamplesIterable(lowerCamelCase__ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ):
assert row_id == F"""0_{i}"""
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
lowercase__ : Optional[Any] = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("numpy.random.Generator" ) as generator_mock:
lowercase__ : int = lambda lowerCamelCase__ : x.reverse()
lowercase__ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [2, 1, 0] )
lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shuffle_data_sources(lowerCamelCase__ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ):
lowercase__ , lowercase__ : Tuple = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
lowercase__ : Optional[Any] = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
lowercase__ : Optional[Any] = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowercase__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [0, 2] )
for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ):
lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
lowercase__ : int = SparkExamplesIterable(lowerCamelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowercase__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCamelCase__ , [1, 3] )
for i, (row_id, row_dict) in enumerate(lowerCamelCase__ ):
lowercase__ , lowercase__ : Optional[int] = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ):
"""simple docstring"""
lowercase__ : int = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate()
lowercase__ : int = spark.range(100 ).repartition(1 )
lowercase__ : Tuple = Spark(lowerCamelCase__ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 130
| 0
|
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class _A ( __SCREAMING_SNAKE_CASE ):
@staticmethod
@abstractmethod
def __A ( __UpperCAmelCase ) -> str:
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def __A ( self ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError()
| 354
|
'''simple docstring'''
from collections.abc import Sequence
def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
__UpperCAmelCase : Any = nums[0]
for i in range(1 , len(lowerCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = nums[i]
__UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_UpperCamelCase = int(input('''Enter number of elements : ''').strip())
_UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 16
| 0
|
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def _UpperCamelCase ( lowercase__ ):
__SCREAMING_SNAKE_CASE : Dict = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2]
__SCREAMING_SNAKE_CASE : Tuple = True if '''large''' in model_name or '''huge''' in model_name else False
__SCREAMING_SNAKE_CASE : str = True if '''large''' in model_name or '''huge''' in model_name else False
__SCREAMING_SNAKE_CASE : Any = True if '''large''' in model_name or '''huge''' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__SCREAMING_SNAKE_CASE : Any = [3, 3, 3, 3]
__SCREAMING_SNAKE_CASE : Optional[Any] = [5, 5, 5, 5]
elif "fl4" in model_name:
__SCREAMING_SNAKE_CASE : Optional[Any] = [4, 4, 4, 4]
__SCREAMING_SNAKE_CASE : str = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__SCREAMING_SNAKE_CASE : List[Any] = [3, 3, 3, 3]
if "lrf" in model_name:
__SCREAMING_SNAKE_CASE : List[str] = [3, 3, 3, 3]
else:
__SCREAMING_SNAKE_CASE : str = [2, 2, 2, 2]
if "tiny" in model_name:
__SCREAMING_SNAKE_CASE : Union[str, Any] = 96
elif "small" in model_name:
__SCREAMING_SNAKE_CASE : List[str] = 96
elif "base" in model_name:
__SCREAMING_SNAKE_CASE : List[str] = 128
elif "large" in model_name:
__SCREAMING_SNAKE_CASE : List[str] = 192
elif "xlarge" in model_name:
__SCREAMING_SNAKE_CASE : List[str] = 256
elif "huge" in model_name:
__SCREAMING_SNAKE_CASE : Tuple = 352
# set label information
__SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files'''
if "large" in model_name or "huge" in model_name:
__SCREAMING_SNAKE_CASE : int = '''imagenet-22k-id2label.json'''
else:
__SCREAMING_SNAKE_CASE : Dict = '''imagenet-1k-id2label.json'''
__SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) )
__SCREAMING_SNAKE_CASE : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()}
__SCREAMING_SNAKE_CASE : Union[str, Any] = FocalNetConfig(
embed_dim=lowercase__ , depths=lowercase__ , focal_levels=lowercase__ , focal_windows=lowercase__ , use_conv_embed=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ , use_post_layernorm=lowercase__ , use_layerscale=lowercase__ , )
return config
def _UpperCamelCase ( lowercase__ ):
if "patch_embed.proj" in name:
__SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
__SCREAMING_SNAKE_CASE : str = name.replace('''patch_embed.norm''' , '''embeddings.norm''' )
if "layers" in name:
__SCREAMING_SNAKE_CASE : Optional[Any] = '''encoder.''' + name
if "encoder.layers" in name:
__SCREAMING_SNAKE_CASE : Dict = name.replace('''encoder.layers''' , '''encoder.stages''' )
if "downsample.proj" in name:
__SCREAMING_SNAKE_CASE : int = name.replace('''downsample.proj''' , '''downsample.projection''' )
if "blocks" in name:
__SCREAMING_SNAKE_CASE : Tuple = name.replace('''blocks''' , '''layers''' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__SCREAMING_SNAKE_CASE : List[Any] = name.replace('''modulation.f''' , '''modulation.projection_in''' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__SCREAMING_SNAKE_CASE : Any = name.replace('''modulation.h''' , '''modulation.projection_context''' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__SCREAMING_SNAKE_CASE : str = name.replace('''modulation.proj''' , '''modulation.projection_out''' )
if name == "norm.weight":
__SCREAMING_SNAKE_CASE : Optional[int] = '''layernorm.weight'''
if name == "norm.bias":
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''layernorm.bias'''
if "head" in name:
__SCREAMING_SNAKE_CASE : Tuple = name.replace('''head''' , '''classifier''' )
else:
__SCREAMING_SNAKE_CASE : List[str] = '''focalnet.''' + name
return name
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ):
# fmt: off
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''',
'''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''',
'''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''',
'''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''',
'''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''',
'''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''',
'''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''',
'''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''',
'''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''',
'''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''',
}
# fmt: on
__SCREAMING_SNAKE_CASE : Union[str, Any] = model_name_to_url[model_name]
print('''Checkpoint URL: ''' , lowercase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load_state_dict_from_url(lowercase__ , map_location='''cpu''' )['''model''']
# rename keys
for key in state_dict.copy().keys():
__SCREAMING_SNAKE_CASE : str = state_dict.pop(lowercase__ )
__SCREAMING_SNAKE_CASE : List[Any] = val
__SCREAMING_SNAKE_CASE : List[str] = get_focalnet_config(lowercase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = FocalNetForImageClassification(lowercase__ )
model.eval()
# load state dict
model.load_state_dict(lowercase__ )
# verify conversion
__SCREAMING_SNAKE_CASE : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
__SCREAMING_SNAKE_CASE : str = BitImageProcessor(
do_resize=lowercase__ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase__ , crop_size=224 , do_normalize=lowercase__ , image_mean=lowercase__ , image_std=lowercase__ , )
__SCREAMING_SNAKE_CASE : Optional[int] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
__SCREAMING_SNAKE_CASE : Tuple = processor(images=lowercase__ , return_tensors='''pt''' )
__SCREAMING_SNAKE_CASE : List[Any] = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__SCREAMING_SNAKE_CASE : int = image_transforms(lowercase__ ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , lowercase__ , atol=1e-4 )
__SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowercase__ )
__SCREAMING_SNAKE_CASE : Any = outputs.logits.argmax(-1 ).item()
print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] )
print('''First values of logits:''' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__SCREAMING_SNAKE_CASE : int = torch.tensor([0.2166, -0.4368, 0.2191] )
elif model_name == "focalnet-tiny-lrf":
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([1.1669, 0.0125, -0.1695] )
elif model_name == "focalnet-small":
__SCREAMING_SNAKE_CASE : Any = torch.tensor([0.4917, -0.0430, 0.1341] )
elif model_name == "focalnet-small-lrf":
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.2588, -0.5342, -0.2331] )
elif model_name == "focalnet-base":
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-0.1655, -0.4090, -0.1730] )
elif model_name == "focalnet-base-lrf":
__SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.5306, -0.0483, -0.3928] )
assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(F'''Pushing model and processor of {model_name} to the hub...''' )
model.push_to_hub(F'''{model_name}''' )
processor.push_to_hub(F'''{model_name}''' )
if __name__ == "__main__":
__lowerCAmelCase : Optional[int] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='focalnet-tiny',
type=str,
help='Name of the FocalNet model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub.',
)
__lowerCAmelCase : Tuple =parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 9
|
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
'''simple docstring'''
def __init__( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[Any]=99 , lowerCAmelCase__ :List[str]=32 , lowerCAmelCase__ :Any=5 , lowerCAmelCase__ :List[str]=4 , lowerCAmelCase__ :int=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[Any]=512 , lowerCAmelCase__ :Union[str, Any]=16 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :Tuple=4 , lowerCAmelCase__ :int=None , ) -> int:
__SCREAMING_SNAKE_CASE : Dict = parent
__SCREAMING_SNAKE_CASE : Any = batch_size
__SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length
__SCREAMING_SNAKE_CASE : Optional[Any] = is_training
__SCREAMING_SNAKE_CASE : int = use_token_type_ids
__SCREAMING_SNAKE_CASE : Any = use_labels
__SCREAMING_SNAKE_CASE : Any = vocab_size
__SCREAMING_SNAKE_CASE : List[Any] = hidden_size
__SCREAMING_SNAKE_CASE : int = num_hidden_layers
__SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads
__SCREAMING_SNAKE_CASE : str = intermediate_size
__SCREAMING_SNAKE_CASE : Tuple = hidden_act
__SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings
__SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size
__SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size
__SCREAMING_SNAKE_CASE : List[str] = initializer_range
__SCREAMING_SNAKE_CASE : Tuple = num_labels
__SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices
__SCREAMING_SNAKE_CASE : Union[str, Any] = scope
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.vocab_size - 1
def __magic_name__( self :Optional[Any] ) -> List[Any]:
__SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_token_type_ids:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__SCREAMING_SNAKE_CASE : Dict = None
__SCREAMING_SNAKE_CASE : Optional[int] = None
__SCREAMING_SNAKE_CASE : Union[str, Any] = None
if self.use_labels:
__SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
__SCREAMING_SNAKE_CASE : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , *lowerCAmelCase__ :Union[str, Any] ) -> Any:
__SCREAMING_SNAKE_CASE : Any = OpenAIGPTModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , *lowerCAmelCase__ :List[Any] ) -> Dict:
__SCREAMING_SNAKE_CASE : Optional[Any] = OpenAIGPTLMHeadModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[str] , *lowerCAmelCase__ :Optional[Any] ) -> Any:
__SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__( self :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , *lowerCAmelCase__ :Optional[int] ) -> Dict:
__SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels
__SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__( self :Optional[Any] ) -> str:
__SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) : List[str] = config_and_inputs
__SCREAMING_SNAKE_CASE : List[str] = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( A__ , A__ , A__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : str = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
SCREAMING_SNAKE_CASE__ : str = (
{
'''feature-extraction''': OpenAIGPTModel,
'''text-classification''': OpenAIGPTForSequenceClassification,
'''text-generation''': OpenAIGPTLMHeadModel,
'''zero-shot''': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Tuple:
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int=False ) -> Dict:
__SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
__SCREAMING_SNAKE_CASE : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ , )
__SCREAMING_SNAKE_CASE : Tuple = inputs_dict['''labels''']
__SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels''']
__SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase__ , )
__SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__( self :Optional[int] ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self )
__SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 )
def __magic_name__( self :Any ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __magic_name__( self :List[str] ) -> Union[str, Any]:
__SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase__ )
def __magic_name__( self :int ) -> int:
__SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase__ )
def __magic_name__( self :List[str] ) -> Dict:
__SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase__ )
def __magic_name__( self :List[str] ) -> str:
__SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase__ )
@slow
def __magic_name__( self :Any ) -> List[Any]:
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__SCREAMING_SNAKE_CASE : Dict = OpenAIGPTModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@require_torch
class _lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __magic_name__( self :Union[str, Any] ) -> Optional[int]:
__SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=lowerCAmelCase__ ) # the president is
__SCREAMING_SNAKE_CASE : Dict = [
481,
4_735,
544,
246,
963,
870,
762,
239,
244,
40_477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
__SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ )
self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase__ )
| 9
| 1
|
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = torch.device('cpu')
def __magic_name__ ( ):
'''simple docstring'''
UpperCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCamelCase__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw )
return im
def __magic_name__ ( __a : Tuple ):
'''simple docstring'''
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] )
def __magic_name__ ( __a : Tuple , __a : int , __a : Optional[int] ):
'''simple docstring'''
UpperCamelCase__ = dct.pop(snake_case_ )
UpperCamelCase__ = val
def __magic_name__ ( __a : Union[str, Any] ):
'''simple docstring'''
UpperCamelCase__ = []
for k in state_dict.keys():
UpperCamelCase__ = k
if ".pwconv" in k:
UpperCamelCase__ = k_new.replace(""".pwconv""" , """.point_wise_conv""" )
if ".dwconv" in k:
UpperCamelCase__ = k_new.replace(""".dwconv""" , """.depth_wise_conv""" )
if ".Proj." in k:
UpperCamelCase__ = k_new.replace(""".Proj.""" , """.proj.""" )
if "patch_embed" in k_new:
UpperCamelCase__ = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" )
if "network" in k_new:
UpperCamelCase__ = k_new.split(""".""" )
if ls[2].isdigit():
UpperCamelCase__ = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
UpperCamelCase__ = k_new.replace("""network""" , """swiftformer.encoder.network""" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def __magic_name__ ( __a : int , __a : List[str] , __a : Any ):
'''simple docstring'''
UpperCamelCase__ = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
UpperCamelCase__ = 1_000
UpperCamelCase__ = """huggingface/label-files"""
UpperCamelCase__ = """imagenet-1k-id2label.json"""
UpperCamelCase__ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) )
UpperCamelCase__ = {int(snake_case_ ): v for k, v in idalabel.items()}
UpperCamelCase__ = idalabel
UpperCamelCase__ = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
UpperCamelCase__ = [3, 3, 6, 4]
UpperCamelCase__ = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
UpperCamelCase__ = [3, 3, 9, 6]
UpperCamelCase__ = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
UpperCamelCase__ = [4, 3, 10, 5]
UpperCamelCase__ = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
UpperCamelCase__ = [4, 4, 12, 6]
UpperCamelCase__ = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("""https""" ):
UpperCamelCase__ = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" , check_hash=snake_case_ )
else:
UpperCamelCase__ = torch.load(snake_case_ , map_location="""cpu""" )
UpperCamelCase__ = checkpoint
UpperCamelCase__ = create_rename_keys(snake_case_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(snake_case_ , snake_case_ , snake_case_ )
# load HuggingFace model
UpperCamelCase__ = SwiftFormerForImageClassification(snake_case_ ).eval()
hf_model.load_state_dict(snake_case_ )
# prepare test inputs
UpperCamelCase__ = prepare_img()
UpperCamelCase__ = ViTImageProcessor.from_pretrained("""preprocessor_config""" )
UpperCamelCase__ = processor(images=snake_case_ , return_tensors="""pt""" )
# compare outputs from both models
UpperCamelCase__ = get_expected_output(snake_case_ )
UpperCamelCase__ = hf_model(inputs["""pixel_values"""] ).logits
assert hf_logits.shape == torch.Size([1, 1_000] )
assert torch.allclose(hf_logits[0, 0:5] , snake_case_ , atol=1E-3 )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" )
hf_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swiftformer_name',
default='swiftformer_xs',
choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'],
type=str,
help='Name of the SwiftFormer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='./converted_outputs/',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.')
lowerCamelCase_ = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 370
|
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __magic_name__ ( __a : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def __magic_name__ ( __a : np.ndarray , __a : np.ndarray , __a : np.ndarray ):
'''simple docstring'''
UpperCamelCase__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(__a , __a )
# Predict target for test data
UpperCamelCase__ = xgb.predict(__a )
UpperCamelCase__ = predictions.reshape(len(__a ) , 1 )
return predictions
def __magic_name__ ( ):
'''simple docstring'''
UpperCamelCase__ = fetch_california_housing()
UpperCamelCase__ , UpperCamelCase__ = data_handling(__a )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = train_test_split(
__a , __a , test_size=0.25 , random_state=1 )
UpperCamelCase__ = xgboost(__a , __a , __a )
# Error printing
print(f"Mean Absolute Error : {mean_absolute_error(__a , __a )}" )
print(f"Mean Square Error : {mean_squared_error(__a , __a )}" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 178
| 0
|
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__snake_case : int =logging.get_logger(__name__)
class lowerCamelCase__ ( enum.Enum):
'''simple docstring'''
snake_case_ =0
snake_case_ =1
@add_end_docstrings(lowerCamelCase__)
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
snake_case_ ="""generated"""
def __init__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == '''tf'''
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = {}
if truncation is not None:
lowerCAmelCase__ : str = truncation
lowerCAmelCase__ : int = generate_kwargs
lowerCAmelCase__ : str = {}
if return_tensors is not None and return_type is None:
lowerCAmelCase__ : List[Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
lowerCAmelCase__ : Tuple = return_type
if clean_up_tokenization_spaces is not None:
lowerCAmelCase__ : str = clean_up_tokenization_spaces
if stop_sequence is not None:
lowerCAmelCase__ : List[str] = self.tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
if len(__lowerCamelCase ) > 1:
warnings.warn(
'''Stopping on a multiple token sequence is not yet supported on transformers. The first token of'''
''' the stop sequence will be used as the stop sequence string in the interim.''' )
lowerCAmelCase__ : str = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> List[Any]:
"""simple docstring"""
return True
def lowerCAmelCase__ (self ,*__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Dict = self.model.config.prefix if self.model.config.prefix is not None else ''''''
if isinstance(args[0] ,__lowerCamelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' )
lowerCAmelCase__ : Optional[Any] = ([prefix + arg for arg in args[0]],)
lowerCAmelCase__ : Optional[int] = True
elif isinstance(args[0] ,__lowerCamelCase ):
lowerCAmelCase__ : int = (prefix + args[0],)
lowerCAmelCase__ : int = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
lowerCAmelCase__ : str = self.tokenizer(*__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = super().__call__(*__lowerCamelCase ,**__lowerCamelCase )
if (
isinstance(args[0] ,__lowerCamelCase )
and all(isinstance(__lowerCamelCase ,__lowerCamelCase ) for el in args[0] )
and all(len(__lowerCamelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**__lowerCamelCase ) -> str:
"""simple docstring"""
lowerCAmelCase__ : List[str] = self._parse_and_tokenize(__lowerCamelCase ,truncation=__lowerCamelCase ,**__lowerCamelCase )
return inputs
def lowerCAmelCase__ (self ,__lowerCamelCase ,**__lowerCamelCase ) -> str:
"""simple docstring"""
if self.framework == "pt":
lowerCAmelCase__ , lowerCAmelCase__ : int = model_inputs['''input_ids'''].shape
elif self.framework == "tf":
lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = tf.shape(model_inputs['''input_ids'''] ).numpy()
lowerCAmelCase__ : str = generate_kwargs.get('''min_length''' ,self.model.config.min_length )
lowerCAmelCase__ : Optional[Any] = generate_kwargs.get('''max_length''' ,self.model.config.max_length )
self.check_inputs(__lowerCamelCase ,generate_kwargs['''min_length'''] ,generate_kwargs['''max_length'''] )
lowerCAmelCase__ : Optional[int] = self.model.generate(**__lowerCamelCase ,**__lowerCamelCase )
lowerCAmelCase__ : Optional[int] = output_ids.shape[0]
if self.framework == "pt":
lowerCAmelCase__ : Dict = output_ids.reshape(__lowerCamelCase ,out_b // in_b ,*output_ids.shape[1:] )
elif self.framework == "tf":
lowerCAmelCase__ : Any = tf.reshape(__lowerCamelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=ReturnType.TEXT ,__lowerCamelCase=False ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Tuple = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
lowerCAmelCase__ : Tuple = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
lowerCAmelCase__ : List[str] = {
f"""{self.return_name}_text""": self.tokenizer.decode(
__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ,)
}
records.append(__lowerCamelCase )
return records
@add_end_docstrings(lowerCamelCase__)
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
snake_case_ ="""summary"""
def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]:
"""simple docstring"""
return super().__call__(*__lowerCamelCase ,**__lowerCamelCase )
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> bool:
"""simple docstring"""
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
'''a summarization task, where outputs shorter than the input are typically wanted, you might '''
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(lowerCamelCase__)
class lowerCamelCase__ ( lowerCamelCase__):
'''simple docstring'''
snake_case_ ="""translation"""
def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
'''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' )
return True
def lowerCAmelCase__ (self ,*__lowerCamelCase ,__lowerCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,__lowerCamelCase=None ,__lowerCamelCase=None ) -> Optional[Any]:
"""simple docstring"""
if getattr(self.tokenizer ,'''_build_translation_inputs''' ,__lowerCamelCase ):
return self.tokenizer._build_translation_inputs(
*__lowerCamelCase ,return_tensors=self.framework ,truncation=__lowerCamelCase ,src_lang=__lowerCamelCase ,tgt_lang=__lowerCamelCase )
else:
return super()._parse_and_tokenize(*__lowerCamelCase ,truncation=__lowerCamelCase )
def lowerCAmelCase__ (self ,__lowerCamelCase=None ,__lowerCamelCase=None ,**__lowerCamelCase ) -> int:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = super()._sanitize_parameters(**__lowerCamelCase )
if src_lang is not None:
lowerCAmelCase__ : str = src_lang
if tgt_lang is not None:
lowerCAmelCase__ : Optional[int] = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
lowerCAmelCase__ : str = kwargs.get('''task''' ,self.task )
lowerCAmelCase__ : Union[str, Any] = task.split('''_''' )
if task and len(__lowerCamelCase ) == 4:
# translation, XX, to YY
lowerCAmelCase__ : Union[str, Any] = items[1]
lowerCAmelCase__ : List[Any] = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Optional[int]:
"""simple docstring"""
return super().__call__(*__lowerCamelCase ,**__lowerCamelCase )
| 129
|
def lowerCAmelCase__ ( lowerCamelCase_ : str):
'''simple docstring'''
lowerCAmelCase__ : Any = [0] * len(lowerCamelCase_)
for i in range(1 ,len(lowerCamelCase_)):
# use last results for better performance - dynamic programming
lowerCAmelCase__ : Optional[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
lowerCAmelCase__ : Optional[int] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
lowerCAmelCase__ : Union[str, Any] = j
return prefix_result
def lowerCAmelCase__ ( lowerCamelCase_ : str):
'''simple docstring'''
return max(prefix_function(lowerCamelCase_))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 129
| 1
|
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCamelCase_ ( ) -> int:
"""simple docstring"""
lowerCAmelCase_ : List[Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=lowerCAmelCase__ )
lowerCAmelCase_ : Dict = parser.add_subparsers(help='accelerate command helpers' )
# Register commands
get_config_parser(subparsers=lowerCAmelCase__ )
env_command_parser(subparsers=lowerCAmelCase__ )
launch_command_parser(subparsers=lowerCAmelCase__ )
tpu_command_parser(subparsers=lowerCAmelCase__ )
test_command_parser(subparsers=lowerCAmelCase__ )
# Let's go
lowerCAmelCase_ : Union[str, Any] = parser.parse_args()
if not hasattr(lowerCAmelCase__ , 'func' ):
parser.print_help()
exit(1 )
# Run
args.func(lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 289
|
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import List, Optional
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : int ):
# test for the above condition
self.test()
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[Any] = False
while not completed:
if counter == 1:
self.reset()
lowerCAmelCase_ : Any = self.advance()
if not self.does_advance(SCREAMING_SNAKE_CASE_ ):
raise Exception(
'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' )
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = self.update(SCREAMING_SNAKE_CASE_ )
counter += 1
if counter > 1_0_0_0_0:
raise Exception('update() does not fulfill the constraint.' )
if self.remaining() != 0:
raise Exception('Custom Constraint is not defined correctly.' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : str ):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ):
raise NotImplementedError(
F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." )
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0:
raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." )
if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." )
lowerCAmelCase_ : Union[str, Any] = token_ids
lowerCAmelCase_ : Union[str, Any] = len(self.token_ids )
lowerCAmelCase_ : Union[str, Any] = -1 # the index of the currently fulfilled step
lowerCAmelCase_ : Dict = False
def SCREAMING_SNAKE_CASE__ ( self : int ):
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : int ):
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ):
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" )
lowerCAmelCase_ : List[Any] = False
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : Union[str, Any] = False
if self.does_advance(SCREAMING_SNAKE_CASE_ ):
self.fulfilled_idx += 1
lowerCAmelCase_ : Optional[int] = True
if self.fulfilled_idx == (self.seqlen - 1):
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ : List[str] = completed
else:
# failed to make progress.
lowerCAmelCase_ : Optional[Any] = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : int = 0
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple=False ):
lowerCAmelCase_ : Any = PhrasalConstraint(self.token_ids )
if stateful:
lowerCAmelCase_ : int = self.seqlen
lowerCAmelCase_ : Dict = self.fulfilled_idx
lowerCAmelCase_ : Optional[Any] = self.completed
return new_constraint
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ):
lowerCAmelCase_ : Tuple = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] )
lowerCAmelCase_ : Optional[Any] = {}
for token_ids in nested_token_ids:
lowerCAmelCase_ : Union[str, Any] = root
for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ):
if token_id not in level:
lowerCAmelCase_ : Dict = {}
lowerCAmelCase_ : Tuple = level[token_id]
if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'
F" {nested_token_ids}." )
lowerCAmelCase_ : Union[str, Any] = root
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ):
lowerCAmelCase_ : str = self.trie
for current_token in current_seq:
lowerCAmelCase_ : Optional[int] = start[current_token]
lowerCAmelCase_ : Dict = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Any ):
lowerCAmelCase_ : Any = self.next_tokens(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) == 0
def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ):
lowerCAmelCase_ : Tuple = list(root.values() )
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return 1
else:
return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
lowerCAmelCase_ : Any = self.count_leaves(SCREAMING_SNAKE_CASE_ )
return len(SCREAMING_SNAKE_CASE_ ) != leaf_count
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] ):
super(SCREAMING_SNAKE_CASE_ , self ).__init__()
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0:
raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." )
if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ):
raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." )
if any(
any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." )
lowerCAmelCase_ : Dict = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Optional[int] = nested_token_ids
lowerCAmelCase_ : Tuple = self.trie.max_height
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : Optional[Any] = False
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
lowerCAmelCase_ : int = self.trie.next_tokens(self.current_seq )
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ):
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" )
lowerCAmelCase_ : Optional[int] = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int ):
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" )
lowerCAmelCase_ : int = False
lowerCAmelCase_ : Dict = False
lowerCAmelCase_ : Optional[Any] = False
if self.does_advance(SCREAMING_SNAKE_CASE_ ):
self.current_seq.append(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[Any] = True
else:
lowerCAmelCase_ : List[str] = True
self.reset()
lowerCAmelCase_ : Dict = self.trie.reached_leaf(self.current_seq )
lowerCAmelCase_ : List[str] = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : int = False
lowerCAmelCase_ : Optional[Any] = []
def SCREAMING_SNAKE_CASE__ ( self : str ):
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict=False ):
lowerCAmelCase_ : Dict = DisjunctiveConstraint(self.token_ids )
if stateful:
lowerCAmelCase_ : Dict = self.seqlen
lowerCAmelCase_ : Optional[Any] = self.current_seq
lowerCAmelCase_ : List[Any] = self.completed
return new_constraint
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Constraint] ):
lowerCAmelCase_ : Optional[int] = constraints
# max # of steps required to fulfill a given constraint
lowerCAmelCase_ : Optional[int] = max([c.seqlen for c in constraints] )
lowerCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[str] = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
lowerCAmelCase_ : Tuple = []
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Optional[int] = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : int ):
lowerCAmelCase_ : Optional[Any] = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
lowerCAmelCase_ : List[str] = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
lowerCAmelCase_ : List[Any] = constraint.advance()
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
token_list.append(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
token_list.extend(SCREAMING_SNAKE_CASE_ )
else:
lowerCAmelCase_ : Dict = self.inprogress_constraint.advance()
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
token_list.append(SCREAMING_SNAKE_CASE_ )
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
token_list.extend(SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] ):
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = self.add(SCREAMING_SNAKE_CASE_ )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ):
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." )
lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = False, False
if self.completed:
lowerCAmelCase_ : Any = True
lowerCAmelCase_ : Dict = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Any = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) )
lowerCAmelCase_ : Optional[int] = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
lowerCAmelCase_ : str = None
if len(self.pending_constraints ) == 0:
# we're done!
lowerCAmelCase_ : Union[str, Any] = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ):
lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : str = pending_constraint.update(SCREAMING_SNAKE_CASE_ )
if not stepped:
raise Exception(
'`constraint.update(token_id)` is not yielding incremental progress, '
'even though `constraint.does_advance(token_id)` is true.' )
if complete:
self.complete_constraints.append(SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : Any = None
if not complete and stepped:
lowerCAmelCase_ : Optional[Any] = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
lowerCAmelCase_ : Optional[int] = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
lowerCAmelCase_ : Optional[Any] = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=True ):
lowerCAmelCase_ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
lowerCAmelCase_ : Any = [
constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
lowerCAmelCase_ : List[str] = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ : List[Any] = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 289
| 1
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
_UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Union[str, Any] = ["pixel_values"]
def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ) -> None:
"""simple docstring"""
super().__init__(**A_ )
UpperCamelCase = size if size is not None else {'shortest_edge': 256}
UpperCamelCase = get_size_dict(A_ , default_to_square=A_ )
UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224}
UpperCamelCase = get_size_dict(A_ )
UpperCamelCase = do_resize
UpperCamelCase = size
UpperCamelCase = resample
UpperCamelCase = do_center_crop
UpperCamelCase = crop_size
UpperCamelCase = do_rescale
UpperCamelCase = rescale_factor
UpperCamelCase = do_normalize
UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __UpperCamelCase ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> np.ndarray:
"""simple docstring"""
UpperCamelCase = get_size_dict(A_ , default_to_square=A_ )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
UpperCamelCase = get_resize_output_image_size(A_ , size=size['shortest_edge'] , default_to_square=A_ )
return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ )
def __UpperCamelCase ( self , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray:
"""simple docstring"""
UpperCamelCase = get_size_dict(A_ )
return center_crop(A_ , size=(size['height'], size['width']) , data_format=A_ , **A_ )
def __UpperCamelCase ( self , A_ , A_ , A_ = None , **A_ ) -> np.ndarray:
"""simple docstring"""
return rescale(A_ , scale=A_ , data_format=A_ , **A_ )
def __UpperCamelCase ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> np.ndarray:
"""simple docstring"""
return normalize(A_ , mean=A_ , std=A_ , data_format=A_ , **A_ )
def __UpperCamelCase ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = do_resize if do_resize is not None else self.do_resize
UpperCamelCase = size if size is not None else self.size
UpperCamelCase = get_size_dict(A_ , default_to_square=A_ )
UpperCamelCase = resample if resample is not None else self.resample
UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase = crop_size if crop_size is not None else self.crop_size
UpperCamelCase = get_size_dict(A_ )
UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase = image_mean if image_mean is not None else self.image_mean
UpperCamelCase = image_std if image_std is not None else self.image_std
UpperCamelCase = make_list_of_images(A_ )
if not valid_images(A_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
UpperCamelCase = [to_numpy_array(A_ ) for image in images]
if do_resize:
UpperCamelCase = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images]
if do_center_crop:
UpperCamelCase = [self.center_crop(image=A_ , size=A_ ) for image in images]
if do_rescale:
UpperCamelCase = [self.rescale(image=A_ , scale=A_ ) for image in images]
if do_normalize:
UpperCamelCase = [self.normalize(image=A_ , mean=A_ , std=A_ ) for image in images]
UpperCamelCase = [to_channel_dimension_format(A_ , A_ ) for image in images]
UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=A_ , tensor_type=A_ )
| 222
|
def A ( lowercase ) -> str:
'''simple docstring'''
return " ".join(
''.join(word[::-1] ) if len(lowercase ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 222
| 1
|
"""simple docstring"""
from __future__ import annotations
from typing import Generic, TypeVar
A : Any = TypeVar("T")
class _UpperCamelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self , __a ):
__lowerCAmelCase = data
__lowerCAmelCase = self
__lowerCAmelCase = 0
class _UpperCamelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ):
# map from node name to the node object
__lowerCAmelCase = {}
def snake_case ( self , __a ):
# create a new set with x as its member
__lowerCAmelCase = DisjointSetTreeNode(__a )
def snake_case ( self , __a ):
# find the set x belongs to (with path-compression)
__lowerCAmelCase = self.map[data]
if elem_ref != elem_ref.parent:
__lowerCAmelCase = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def snake_case ( self , __a , __a ):
# helper function for union operation
if nodea.rank > nodea.rank:
__lowerCAmelCase = nodea
else:
__lowerCAmelCase = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def snake_case ( self , __a , __a ):
# merge 2 disjoint sets
self.link(self.find_set(__a ) , self.find_set(__a ) )
class _UpperCamelCase ( Generic[T] ):
'''simple docstring'''
def __init__( self ):
# connections: map from the node to the neighbouring nodes (with weights)
__lowerCAmelCase = {}
def snake_case ( self , __a ):
# add a node ONLY if its not present in the graph
if node not in self.connections:
__lowerCAmelCase = {}
def snake_case ( self , __a , __a , __a ):
# add an edge with the given weight
self.add_node(__a )
self.add_node(__a )
__lowerCAmelCase = weight
__lowerCAmelCase = weight
def snake_case ( self ):
__lowerCAmelCase = []
__lowerCAmelCase = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __a : x[2] )
# creating the disjoint set
__lowerCAmelCase = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__a )
# MST generation
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edges[index]
index += 1
__lowerCAmelCase = disjoint_set.find_set(__a )
__lowerCAmelCase = disjoint_set.find_set(__a )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__a , __a , __a )
disjoint_set.union(__a , __a )
return graph
| 259
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : str = {
"configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Any = [
"TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimesformerModel",
"TimesformerForVideoClassification",
"TimesformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 259
| 1
|
import math
def __UpperCamelCase ( _lowerCAmelCase ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __UpperCamelCase ( _lowerCAmelCase = 1_0001 ) -> int:
"""simple docstring"""
try:
A : Any = int(_lowerCAmelCase )
except (TypeError, ValueError):
raise TypeError("""Parameter nth must be int or castable to int.""" ) from None
if nth <= 0:
raise ValueError("""Parameter nth must be greater than or equal to one.""" )
A : list[int] = []
A : List[Any] = 2
while len(_lowerCAmelCase ) < nth:
if is_prime(_lowerCAmelCase ):
primes.append(_lowerCAmelCase )
num += 1
else:
num += 1
return primes[len(_lowerCAmelCase ) - 1]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 116
|
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE_:Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ):
'''simple docstring'''
__lowerCamelCase : Union[str, Any] = ["input_features", "is_longer"]
def __init__( self, lowerCamelCase__=64, lowerCamelCase__=4_8000, lowerCamelCase__=480, lowerCamelCase__=10, lowerCamelCase__=1024, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__ = 0, lowerCamelCase__ = 1_4000, lowerCamelCase__ = None, lowerCamelCase__ = "fusion", lowerCamelCase__ = "repeatpad", **lowerCamelCase__, ):
super().__init__(
feature_size=lowerCamelCase__, sampling_rate=lowerCamelCase__, padding_value=lowerCamelCase__, return_attention_mask=lowerCamelCase__, **lowerCamelCase__, )
A : Tuple = top_db
A : Dict = truncation
A : int = padding
A : Optional[Any] = fft_window_size
A : Optional[Any] = (fft_window_size >> 1) + 1
A : List[Any] = hop_length
A : Tuple = max_length_s
A : str = max_length_s * sampling_rate
A : List[str] = sampling_rate
A : Dict = frequency_min
A : str = frequency_max
A : Union[str, Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm=lowerCamelCase__, mel_scale="""htk""", )
A : Union[str, Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm="""slaney""", mel_scale="""slaney""", )
def _lowerCAmelCase ( self ):
A : Any = copy.deepcopy(self.__dict__ )
A : Tuple = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ):
A : Optional[Any] = spectrogram(
lowerCamelCase__, window_function(self.fft_window_size, """hann""" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase__, log_mel="""dB""", )
return log_mel_spectrogram.T
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
A : Any = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
A : Any = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
A : Union[str, Any] = [0]
# randomly choose index for each part
A : str = np.random.choice(ranges[0] )
A : str = np.random.choice(ranges[1] )
A : Tuple = np.random.choice(ranges[2] )
A : List[str] = mel[idx_front : idx_front + chunk_frames, :]
A : Union[str, Any] = mel[idx_middle : idx_middle + chunk_frames, :]
A : Any = mel[idx_back : idx_back + chunk_frames, :]
A : Any = torch.tensor(mel[None, None, :] )
A : Union[str, Any] = torch.nn.functional.interpolate(
lowerCamelCase__, size=[chunk_frames, 64], mode="""bilinear""", align_corners=lowerCamelCase__ )
A : List[Any] = mel_shrink[0][0].numpy()
A : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 )
return mel_fusion
def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ):
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
A : List[Any] = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
A : int = len(lowerCamelCase__ ) - max_length
A : Optional[int] = np.random.randint(0, overflow + 1 )
A : List[Any] = waveform[idx : idx + max_length]
A : Optional[Any] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters )
A : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
A : Optional[Any] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
A : str = np.stack([mel, mel, mel, mel], axis=0 )
A : Union[str, Any] = False
else:
A : Dict = self._random_mel_fusion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ )
A : Tuple = True
else:
raise NotImplementedError(f'''data_truncating {truncation} not implemented''' )
else:
A : int = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
A : Optional[int] = int(max_length / len(lowerCamelCase__ ) )
A : Union[str, Any] = np.stack(np.tile(lowerCamelCase__, n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
A : Dict = int(max_length / len(lowerCamelCase__ ) )
A : Dict = np.stack(np.tile(lowerCamelCase__, lowerCamelCase__ ) )
A : Any = np.pad(lowerCamelCase__, (0, max_length - waveform.shape[0]), mode="""constant""", constant_values=0 )
if truncation == "fusion":
A : Union[str, Any] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters )
A : Tuple = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 )
else:
A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ):
A : Any = truncation if truncation is not None else self.truncation
A : Union[str, Any] = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
A : str = isinstance(lowerCamelCase__, np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
A : Any = is_batched_numpy or (
isinstance(lowerCamelCase__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) ))
)
if is_batched:
A : Optional[int] = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase__, np.ndarray ):
A : int = np.asarray(lowerCamelCase__, dtype=np.floataa )
elif isinstance(lowerCamelCase__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A : int = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A : List[Any] = [np.asarray(lowerCamelCase__ )]
# convert to mel spectrogram, truncate and pad if needed.
A : Tuple = [
self._get_input_mel(lowerCamelCase__, max_length if max_length else self.nb_max_samples, lowerCamelCase__, lowerCamelCase__ )
for waveform in raw_speech
]
A : Optional[Any] = []
A : Optional[Any] = []
for mel, longer in padded_inputs:
input_mel.append(lowerCamelCase__ )
is_longer.append(lowerCamelCase__ )
if truncation == "fusion" and sum(lowerCamelCase__ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
A : Tuple = np.random.randint(0, len(lowerCamelCase__ ) )
A : str = True
if isinstance(input_mel[0], lowerCamelCase__ ):
A : int = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
A : Optional[int] = [[longer] for longer in is_longer]
A : Union[str, Any] = {"""input_features""": input_mel, """is_longer""": is_longer}
A : Tuple = BatchFeature(lowerCamelCase__ )
if return_tensors is not None:
A : List[str] = input_features.convert_to_tensors(lowerCamelCase__ )
return input_features
| 116
| 1
|
"""simple docstring"""
def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple ) -> str: # noqa: E741
'''simple docstring'''
_UpperCAmelCase : str = len(SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : Optional[Any] = [0] * n
_UpperCAmelCase : str = [False] * n
_UpperCAmelCase : Dict = [False] * n
def dfs(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ):
if parent == root:
out_edge_count += 1
_UpperCAmelCase : int = True
_UpperCAmelCase : Dict = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
_UpperCAmelCase : str = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Tuple = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
_UpperCAmelCase : List[Any] = True
# AP found via cycle
if at == low[to]:
_UpperCAmelCase : Union[str, Any] = True
else:
_UpperCAmelCase : Union[str, Any] = min(low[at] , SCREAMING_SNAKE_CASE__ )
return out_edge_count
for i in range(SCREAMING_SNAKE_CASE__ ):
if not visited[i]:
_UpperCAmelCase : str = 0
_UpperCAmelCase : List[Any] = dfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 , SCREAMING_SNAKE_CASE__ )
_UpperCAmelCase : Dict = out_edge_count > 1
for x in range(len(SCREAMING_SNAKE_CASE__ ) ):
if is_art[x] is True:
print(SCREAMING_SNAKE_CASE__ )
# Adjacency list of graph
_lowerCAmelCase : Optional[int] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 202
|
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
_lowerCAmelCase : Any = logging.getLogger(__name__)
@dataclass
class UpperCAmelCase_ :
__SCREAMING_SNAKE_CASE : str
__SCREAMING_SNAKE_CASE : List[str]
__SCREAMING_SNAKE_CASE : Optional[List[str]]
@dataclass
class UpperCAmelCase_ :
__SCREAMING_SNAKE_CASE : List[int]
__SCREAMING_SNAKE_CASE : List[int]
__SCREAMING_SNAKE_CASE : Optional[List[int]] = None
__SCREAMING_SNAKE_CASE : Optional[List[int]] = None
class UpperCAmelCase_ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE : Union[str, Any] = 'train'
__SCREAMING_SNAKE_CASE : Tuple = 'dev'
__SCREAMING_SNAKE_CASE : Optional[int] = 'test'
class UpperCAmelCase_ :
@staticmethod
def snake_case_ ( A : Union[str, Any] , A : Union[Split, str] ):
raise NotImplementedError
@staticmethod
def snake_case_ ( A : str ):
raise NotImplementedError
@staticmethod
def snake_case_ ( A : List[InputExample] , A : List[str] , A : int , A : PreTrainedTokenizer , A : Optional[int]=False , A : List[str]="[CLS]" , A : List[Any]=1 , A : str="[SEP]" , A : int=False , A : int=False , A : Any=0 , A : List[str]=0 , A : Dict=-1_0_0 , A : str=0 , A : Optional[Any]=True , ):
_UpperCAmelCase : Dict = {label: i for i, label in enumerate(A )}
_UpperCAmelCase : str = []
for ex_index, example in enumerate(A ):
if ex_index % 1_0_0_0_0 == 0:
logger.info("Writing example %d of %d" , A , len(A ) )
_UpperCAmelCase : int = []
_UpperCAmelCase : List[str] = []
for word, label in zip(example.words , example.labels ):
_UpperCAmelCase : str = tokenizer.tokenize(A )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(A ) > 0:
tokens.extend(A )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(A ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
_UpperCAmelCase : List[str] = tokenizer.num_special_tokens_to_add()
if len(A ) > max_seq_length - special_tokens_count:
_UpperCAmelCase : List[Any] = tokens[: (max_seq_length - special_tokens_count)]
_UpperCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
_UpperCAmelCase : Dict = [sequence_a_segment_id] * len(A )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
_UpperCAmelCase : str = [cls_token] + tokens
_UpperCAmelCase : Dict = [pad_token_label_id] + label_ids
_UpperCAmelCase : Any = [cls_token_segment_id] + segment_ids
_UpperCAmelCase : int = tokenizer.convert_tokens_to_ids(A )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
_UpperCAmelCase : List[Any] = [1 if mask_padding_with_zero else 0] * len(A )
# Zero-pad up to the sequence length.
_UpperCAmelCase : List[str] = max_seq_length - len(A )
if pad_on_left:
_UpperCAmelCase : str = ([pad_token] * padding_length) + input_ids
_UpperCAmelCase : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
_UpperCAmelCase : Any = ([pad_token_segment_id] * padding_length) + segment_ids
_UpperCAmelCase : Dict = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(A ) == max_seq_length
assert len(A ) == max_seq_length
assert len(A ) == max_seq_length
assert len(A ) == max_seq_length
if ex_index < 5:
logger.info("*** Example ***" )
logger.info("guid: %s" , example.guid )
logger.info("tokens: %s" , " ".join([str(A ) for x in tokens] ) )
logger.info("input_ids: %s" , " ".join([str(A ) for x in input_ids] ) )
logger.info("input_mask: %s" , " ".join([str(A ) for x in input_mask] ) )
logger.info("segment_ids: %s" , " ".join([str(A ) for x in segment_ids] ) )
logger.info("label_ids: %s" , " ".join([str(A ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
_UpperCAmelCase : Dict = None
features.append(
InputFeatures(
input_ids=A , attention_mask=A , token_type_ids=A , label_ids=A ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class UpperCAmelCase_ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE : List[InputFeatures]
__SCREAMING_SNAKE_CASE : int = nn.CrossEntropyLoss().ignore_index
def __init__( self : Dict , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : List[str]=False , A : Split = Split.train , ):
# Load data features from cache or dataset file
_UpperCAmelCase : int = os.path.join(
A , "cached_{}_{}_{}".format(mode.value , tokenizer.__class__.__name__ , str(A ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_UpperCAmelCase : List[str] = cached_features_file + ".lock"
with FileLock(A ):
if os.path.exists(A ) and not overwrite_cache:
logger.info(f'Loading features from cached file {cached_features_file}' )
_UpperCAmelCase : Tuple = torch.load(A )
else:
logger.info(f'Creating features from dataset file at {data_dir}' )
_UpperCAmelCase : List[str] = token_classification_task.read_examples_from_file(A , A )
# TODO clean up all this to leverage built-in features of tokenizers
_UpperCAmelCase : List[Any] = token_classification_task.convert_examples_to_features(
A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(f'Saving features into cached file {cached_features_file}' )
torch.save(self.features , A )
def __len__( self : Dict ):
return len(self.features )
def __getitem__( self : List[str] , A : Optional[Any] ):
return self.features[i]
if is_tf_available():
import tensorflow as tf
class UpperCAmelCase_ :
__SCREAMING_SNAKE_CASE : List[InputFeatures]
__SCREAMING_SNAKE_CASE : int = -1_0_0
def __init__( self : Tuple , A : TokenClassificationTask , A : str , A : PreTrainedTokenizer , A : List[str] , A : str , A : Optional[int] = None , A : Optional[Any]=False , A : Split = Split.train , ):
_UpperCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(A , A )
# TODO clean up all this to leverage built-in features of tokenizers
_UpperCAmelCase : List[str] = token_classification_task.convert_examples_to_features(
A , A , A , A , cls_token_at_end=bool(model_type in ["xlnet"] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ["xlnet"] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=A , pad_on_left=bool(tokenizer.padding_side == "left" ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
_UpperCAmelCase : List[str] = tf.data.Dataset.from_generator(
A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa}, tf.intaa) , (
{"input_ids": tf.TensorShape([None] ), "attention_mask": tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
_UpperCAmelCase : List[Any] = tf.data.Dataset.from_generator(
A , ({"input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa}, tf.intaa) , (
{
"input_ids": tf.TensorShape([None] ),
"attention_mask": tf.TensorShape([None] ),
"token_type_ids": tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def snake_case_ ( self : str ):
_UpperCAmelCase : Dict = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self : List[Any] ):
return len(self.features )
def __getitem__( self : int , A : int ):
return self.features[i]
| 202
| 1
|
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def a_ ( lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = BeautifulSoup(requests.get(lowerCamelCase , params=lowerCamelCase ).content , 'html.parser' )
UpperCAmelCase__ = soup.find('div' , attrs={'class': 'gs_ri'} )
UpperCAmelCase__ = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' )
return anchors[2].get_text()
if __name__ == "__main__":
lowerCAmelCase__ : Optional[int] = {
'title': (
'Precisely geometry controlled microsupercapacitors for ultrahigh areal '
'capacitance, volumetric capacitance, and energy density'
),
'journal': 'Chem. Mater.',
'volume': 30,
'pages': '3979-3990',
'year': 2_018,
'hl': 'en',
}
print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
| 98
|
"""simple docstring"""
from __future__ import annotations
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool:
snake_case_ = get_failure_array(_SCREAMING_SNAKE_CASE )
# 2) Step through text searching for pattern
snake_case_ , snake_case_ = 0, 0 # index into text, pattern
while i < len(_SCREAMING_SNAKE_CASE ):
if pattern[j] == text[i]:
if j == (len(_SCREAMING_SNAKE_CASE ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
snake_case_ = failure[j - 1]
continue
i += 1
return False
def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]:
snake_case_ = [0]
snake_case_ = 0
snake_case_ = 1
while j < len(_SCREAMING_SNAKE_CASE ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
snake_case_ = failure[i - 1]
continue
j += 1
failure.append(_SCREAMING_SNAKE_CASE )
return failure
if __name__ == "__main__":
# Test 1)
__SCREAMING_SNAKE_CASE : Optional[int] = 'abc1abc12'
__SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
__SCREAMING_SNAKE_CASE : List[str] = 'alskfjaldsk23adsfabcabc'
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
__SCREAMING_SNAKE_CASE : int = 'ABABX'
__SCREAMING_SNAKE_CASE : Optional[Any] = 'ABABZABABYABABX'
assert kmp(pattern, text)
# Test 3)
__SCREAMING_SNAKE_CASE : Any = 'AAAB'
__SCREAMING_SNAKE_CASE : List[Any] = 'ABAAAAAB'
assert kmp(pattern, text)
# Test 4)
__SCREAMING_SNAKE_CASE : Optional[int] = 'abcdabcy'
__SCREAMING_SNAKE_CASE : str = 'abcxabcdabxabcdabcdabcy'
assert kmp(pattern, text)
# Test 5)
__SCREAMING_SNAKE_CASE : Any = 'aabaabaaa'
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 347
| 0
|
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Tuple:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[Any]:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[int]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Union[str, Any]:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Dict:
requires_backends(cls , ['flax'] )
class _lowercase ( metaclass=lowerCAmelCase_ ):
lowercase_ = ['flax']
def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Tuple:
requires_backends(self , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> Any:
requires_backends(cls , ['flax'] )
@classmethod
def _UpperCamelCase ( cls , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> int:
requires_backends(cls , ['flax'] )
| 358
|
"""simple docstring"""
def UpperCAmelCase ( a_ ):
'''simple docstring'''
lowerCamelCase : List[Any] = 1
for i in range(1, num + 1 ):
fact *= i
return fact
def UpperCAmelCase ( a_ ):
'''simple docstring'''
lowerCamelCase : Optional[Any] = 0
while number > 0:
lowerCamelCase : str = number % 10
sum_of_digits += last_digit
lowerCamelCase : Tuple = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def UpperCAmelCase ( a_ = 100 ):
'''simple docstring'''
lowerCamelCase : Optional[Any] = factorial(a_ )
lowerCamelCase : int = split_and_add(a_ )
return result
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 205
| 0
|
import math
import sys
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = """"""
try:
with open(_lowerCAmelCase , """rb""" ) as binary_file:
lowerCamelCase = binary_file.read()
for dat in data:
lowerCamelCase = f'{dat:08b}'
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = {"""0""": """0""", """1""": """1"""}
lowerCamelCase = """""", """"""
lowerCamelCase = len(_lowerCAmelCase )
for i in range(len(_lowerCAmelCase ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
lowerCamelCase = lexicon[curr_string]
result += last_match_id
lowerCamelCase = last_match_id + """0"""
if math.loga(_lowerCAmelCase ).is_integer():
lowerCamelCase = {}
for curr_key in list(_lowerCAmelCase ):
lowerCamelCase = lexicon.pop(_lowerCAmelCase )
lowerCamelCase = new_lex
lowerCamelCase = last_match_id + """1"""
index += 1
lowerCamelCase = """"""
return result
def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = 8
try:
with open(_lowerCAmelCase , """wb""" ) as opened_file:
lowerCamelCase = [
to_write[i : i + byte_length]
for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_lowerCAmelCase , 2 ).to_bytes(1 , byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def __lowerCamelCase ( lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
lowerCamelCase = data_bits[counter:]
lowerCamelCase = data_bits[counter + 1 :]
return data_bits
def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ):
'''simple docstring'''
lowerCamelCase = read_file_binary(_lowerCAmelCase )
lowerCamelCase = remove_prefix(_lowerCAmelCase )
lowerCamelCase = decompress_data(_lowerCAmelCase )
write_file_binary(_lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 252
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class _UpperCAmelCase ( __a):
__a : Optional[torch.FloatTensor] = None
__a : torch.FloatTensor = None
__a : Optional[Tuple[torch.FloatTensor]] = None
__a : Optional[Tuple[torch.FloatTensor]] = None
class _UpperCAmelCase ( __a):
def __init__( self , _A=1 , _A=0 , _A=2 , _A=5_12 , _A="cls" , _A=False , _A=True , **_A , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A )
_UpperCAmelCase : int = project_dim
_UpperCAmelCase : str = pooler_fn
_UpperCAmelCase : Union[str, Any] = learn_encoder
_UpperCAmelCase : Tuple = use_attention_mask
class _UpperCAmelCase ( __a):
__a : str = [R"""pooler""", R"""logit_scale"""]
__a : str = [R"""position_ids""", R"""predictions.decoder.bias"""]
__a : int = """roberta"""
__a : Optional[int] = RobertaSeriesConfig
def __init__( self , _A ) -> List[Any]:
'''simple docstring'''
super().__init__(_A )
_UpperCAmelCase : Dict = XLMRobertaModel(_A )
_UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim )
_UpperCAmelCase : Optional[int] = getattr(_A , """has_pre_transformation""" , _A )
if self.has_pre_transformation:
_UpperCAmelCase : Optional[int] = nn.Linear(config.hidden_size , config.project_dim )
_UpperCAmelCase : Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def __snake_case ( self , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , _A = None , ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCAmelCase : Any = self.base_model(
input_ids=_A , attention_mask=_A , token_type_ids=_A , position_ids=_A , head_mask=_A , inputs_embeds=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_attentions=_A , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_A , )
if self.has_pre_transformation:
_UpperCAmelCase : Optional[int] = outputs["""hidden_states"""][-2]
_UpperCAmelCase : str = self.pre_LN(_A )
_UpperCAmelCase : str = self.transformation_pre(_A )
return TransformationModelOutput(
projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
_UpperCAmelCase : Union[str, Any] = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=_A , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 246
| 0
|
import os
from math import logaa
def lowerCAmelCase_ (lowerCAmelCase__: str = "base_exp.txt" ):
"""simple docstring"""
UpperCAmelCase_: float = 0
UpperCAmelCase_: Tuple = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ):
UpperCAmelCase_ , UpperCAmelCase_: Any = list(map(lowerCAmelCase__ , line.split(""",""" ) ) )
if x * logaa(lowerCAmelCase__ ) > largest:
UpperCAmelCase_: Optional[Any] = x * logaa(lowerCAmelCase__ )
UpperCAmelCase_: List[Any] = i + 1
return result
if __name__ == "__main__":
print(solution())
| 82
|
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
a : str = {
'cola': 2,
'mnli': 3,
'mrpc': 2,
'sst-2': 2,
'sts-b': 1,
'qqp': 2,
'qnli': 2,
'rte': 2,
'wnli': 2,
}
logging.set_verbosity_info()
def lowerCAmelCase_ (lowerCAmelCase__: List[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Dict=None ):
"""simple docstring"""
UpperCAmelCase_: Any = XLNetConfig.from_json_file(lowerCAmelCase__ )
UpperCAmelCase_: int = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' )
UpperCAmelCase_: Optional[int] = finetuning_task
UpperCAmelCase_: int = GLUE_TASKS_NUM_LABELS[finetuning_task]
UpperCAmelCase_: Optional[Any] = XLNetForSequenceClassification(lowerCAmelCase__ )
elif "squad" in finetuning_task:
UpperCAmelCase_: List[Any] = finetuning_task
UpperCAmelCase_: Optional[Any] = XLNetForQuestionAnswering(lowerCAmelCase__ )
else:
UpperCAmelCase_: Tuple = XLNetLMHeadModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
UpperCAmelCase_: Tuple = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
print(F'Save PyTorch model to {os.path.abspath(lowerCAmelCase__ )}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
print(F'Save configuration file to {os.path.abspath(lowerCAmelCase__ )}' )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--xlnet_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained XLNet model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--finetuning_task',
default=None,
type=str,
help='Name of a task on which the XLNet TensorFlow model was fine-tuned',
)
a : List[str] = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 82
| 1
|
"""simple docstring"""
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
@register_to_config
def __init__(self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2_000.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : Any = nn.Sequential(
nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , )
UpperCAmelCase__ : List[str] = nn.Embedding(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ : str = False
UpperCAmelCase__ : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
UpperCAmelCase__ : List[str] = nn.Dropout(p=_lowerCamelCase )
UpperCAmelCase__ : List[Any] = nn.ModuleList()
for lyr_num in range(_lowerCamelCase ):
# FiLM conditional T5 decoder
UpperCAmelCase__ : Dict = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase )
self.decoders.append(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = TaLayerNorm(_lowerCamelCase )
UpperCAmelCase__ : List[Any] = nn.Dropout(p=_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
def _a (self , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
UpperCAmelCase__ : str = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
UpperCAmelCase__ : List[str] = self.conditioning_emb(_lowerCamelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
UpperCAmelCase__ : Any = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
UpperCAmelCase__ : List[Any] = torch.broadcast_to(
torch.arange(_lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
UpperCAmelCase__ : Optional[Any] = self.position_encoding(_lowerCamelCase )
UpperCAmelCase__ : List[Any] = self.continuous_inputs_projection(_lowerCamelCase )
inputs += position_encodings
UpperCAmelCase__ : List[Any] = self.dropout(_lowerCamelCase )
# decoder: No padding present.
UpperCAmelCase__ : Optional[int] = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
UpperCAmelCase__ : Any = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
UpperCAmelCase__ : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
UpperCAmelCase__ : List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
UpperCAmelCase__ : Optional[Any] = lyr(
_lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0]
UpperCAmelCase__ : str = self.decoder_norm(_lowerCamelCase )
UpperCAmelCase__ : Any = self.post_dropout(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = self.spec_out(_lowerCamelCase )
return spec_out
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : str = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase ) )
def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = self.layer[0](
_lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , )
if encoder_hidden_states is not None:
UpperCAmelCase__ : Dict = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to(
encoder_hidden_states.dtype )
UpperCAmelCase__ : Any = self.layer[1](
_lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , )
# Apply Film Conditional Feed Forward layer
UpperCAmelCase__ : Optional[Any] = self.layer[-1](_lowerCamelCase , _lowerCamelCase )
return (hidden_states,)
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : Union[str, Any] = TaLayerNorm(_lowerCamelCase )
UpperCAmelCase__ : Dict = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase )
UpperCAmelCase__ : List[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase )
UpperCAmelCase__ : List[Any] = nn.Dropout(_lowerCamelCase )
def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ):
"""simple docstring"""
UpperCAmelCase__ : Dict = self.layer_norm(_lowerCamelCase )
if conditioning_emb is not None:
UpperCAmelCase__ : List[Any] = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase )
# Self-attention block
UpperCAmelCase__ : Tuple = self.attention(_lowerCamelCase )
UpperCAmelCase__ : List[str] = hidden_states + self.dropout(_lowerCamelCase )
return hidden_states
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : Dict = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase )
UpperCAmelCase__ : Dict = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase )
UpperCAmelCase__ : List[Any] = nn.Dropout(_lowerCamelCase )
def _a (self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ):
"""simple docstring"""
UpperCAmelCase__ : List[str] = self.layer_norm(_lowerCamelCase )
UpperCAmelCase__ : Union[str, Any] = self.attention(
_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , )
UpperCAmelCase__ : Optional[int] = hidden_states + self.dropout(_lowerCamelCase )
return layer_output
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : Tuple = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase )
UpperCAmelCase__ : Tuple = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase )
UpperCAmelCase__ : Tuple = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase )
UpperCAmelCase__ : str = nn.Dropout(_lowerCamelCase )
def _a (self , _lowerCamelCase , _lowerCamelCase=None ):
"""simple docstring"""
UpperCAmelCase__ : List[Any] = self.layer_norm(_lowerCamelCase )
if conditioning_emb is not None:
UpperCAmelCase__ : Any = self.film(_lowerCamelCase , _lowerCamelCase )
UpperCAmelCase__ : Tuple = self.DenseReluDense(_lowerCamelCase )
UpperCAmelCase__ : List[Any] = hidden_states + self.dropout(_lowerCamelCase )
return hidden_states
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : int = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
UpperCAmelCase__ : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
UpperCAmelCase__ : Dict = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = nn.Dropout(_lowerCamelCase )
UpperCAmelCase__ : Dict = NewGELUActivation()
def _a (self , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Any = self.act(self.wi_a(_lowerCamelCase ) )
UpperCAmelCase__ : Optional[Any] = self.wi_a(_lowerCamelCase )
UpperCAmelCase__ : Optional[int] = hidden_gelu * hidden_linear
UpperCAmelCase__ : Dict = self.dropout(_lowerCamelCase )
UpperCAmelCase__ : List[Any] = self.wo(_lowerCamelCase )
return hidden_states
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase=1e-6 ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : str = nn.Parameter(torch.ones(_lowerCamelCase ) )
UpperCAmelCase__ : List[str] = eps
def _a (self , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCamelCase )
UpperCAmelCase__ : Any = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
UpperCAmelCase__ : List[Any] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def _a (self , _lowerCamelCase ):
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(_lowerCamelCase , 3.0 )) ))
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__(self , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ : int = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase )
def _a (self , _lowerCamelCase , _lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : int = self.scale_bias(_lowerCamelCase )
UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = torch.chunk(_lowerCamelCase , 2 , -1 )
UpperCAmelCase__ : int = x * (1 + scale) + shift
return x
| 171
|
"""simple docstring"""
import copy
import random
from transformers import CLIPTokenizer
class lowerCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__(self , *_lowerCamelCase , **_lowerCamelCase ):
"""simple docstring"""
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
UpperCAmelCase__ : str = {}
def _a (self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : Union[str, Any] = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
if num_added_tokens == 0:
raise ValueError(
F"""The tokenizer already contains the token {placeholder_token}. Please pass a different"""
""" `placeholder_token` that is not already in the tokenizer.""" )
def _a (self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ):
"""simple docstring"""
UpperCAmelCase__ : int = []
if num_vec_per_token == 1:
self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
output.append(_lowerCamelCase )
else:
UpperCAmelCase__ : Any = []
for i in range(_lowerCamelCase ):
UpperCAmelCase__ : Optional[int] = placeholder_token + F"""_{i}"""
self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
output.append(_lowerCamelCase )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F"""The tokenizer already has placeholder token {token} that can get confused with"""
F""" {placeholder_token}keep placeholder tokens independent""" )
UpperCAmelCase__ : Dict = output
def _a (self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 ):
"""simple docstring"""
if isinstance(_lowerCamelCase , _lowerCamelCase ):
UpperCAmelCase__ : str = []
for i in range(len(_lowerCamelCase ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
UpperCAmelCase__ : List[str] = self.token_map[placeholder_token]
UpperCAmelCase__ : Any = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )]
if vector_shuffle:
UpperCAmelCase__ : Any = copy.copy(_lowerCamelCase )
random.shuffle(_lowerCamelCase )
UpperCAmelCase__ : Optional[Any] = text.replace(_lowerCamelCase , """ """.join(_lowerCamelCase ) )
return text
def __call__(self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ):
"""simple docstring"""
return super().__call__(
self.replace_placeholder_tokens_in_text(
_lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
def _a (self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ):
"""simple docstring"""
return super().encode(
self.replace_placeholder_tokens_in_text(
_lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
| 171
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_realm import RealmTokenizer
_A = logging.get_logger(__name__)
_A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_A = {
'vocab_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt',
},
'tokenizer_file': {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json'
),
'google/realm-orqa-nq-openqa': (
'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-nq-reader': (
'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-openqa': (
'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json'
),
'google/realm-orqa-wq-reader': (
'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json'
),
},
}
_A = {
'google/realm-cc-news-pretrained-embedder': 5_1_2,
'google/realm-cc-news-pretrained-encoder': 5_1_2,
'google/realm-cc-news-pretrained-scorer': 5_1_2,
'google/realm-cc-news-pretrained-openqa': 5_1_2,
'google/realm-orqa-nq-openqa': 5_1_2,
'google/realm-orqa-nq-reader': 5_1_2,
'google/realm-orqa-wq-openqa': 5_1_2,
'google/realm-orqa-wq-reader': 5_1_2,
}
_A = {
'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True},
'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True},
'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-openqa': {'do_lower_case': True},
'google/realm-orqa-nq-reader': {'do_lower_case': True},
'google/realm-orqa-wq-openqa': {'do_lower_case': True},
'google/realm-orqa-wq-reader': {'do_lower_case': True},
}
class _lowercase ( __UpperCAmelCase ):
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = RealmTokenizer
def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True , UpperCAmelCase_="[UNK]" , UpperCAmelCase_="[SEP]" , UpperCAmelCase_="[PAD]" , UpperCAmelCase_="[CLS]" , UpperCAmelCase_="[MASK]" , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ) -> str:
super().__init__(
UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , UpperCAmelCase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , UpperCAmelCase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_ ) != tokenize_chinese_chars
):
lowerCamelCase : Optional[int] = getattr(UpperCAmelCase_ , normalizer_state.pop('type' ) )
lowerCamelCase : Tuple = do_lower_case
lowerCamelCase : Dict = strip_accents
lowerCamelCase : Dict = tokenize_chinese_chars
lowerCamelCase : Union[str, Any] = normalizer_class(**UpperCAmelCase_ )
lowerCamelCase : str = do_lower_case
def _UpperCamelCase ( self , UpperCAmelCase_ , **UpperCAmelCase_ ) -> Optional[Any]:
lowerCamelCase : List[str] = PaddingStrategy.MAX_LENGTH
lowerCamelCase : int = text
lowerCamelCase : List[Any] = kwargs.pop('text_pair' , UpperCAmelCase_ )
lowerCamelCase : Optional[Any] = kwargs.pop('return_tensors' , UpperCAmelCase_ )
lowerCamelCase : Any = {
'input_ids': [],
'attention_mask': [],
'token_type_ids': [],
}
for idx, candidate_text in enumerate(UpperCAmelCase_ ):
if batch_text_pair is not None:
lowerCamelCase : Any = batch_text_pair[idx]
else:
lowerCamelCase : Union[str, Any] = None
lowerCamelCase : Any = super().__call__(UpperCAmelCase_ , UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCamelCase : str = encoded_candidates.get('input_ids' )
lowerCamelCase : List[str] = encoded_candidates.get('attention_mask' )
lowerCamelCase : Any = encoded_candidates.get('token_type_ids' )
if encoded_input_ids is not None:
output_data["input_ids"].append(UpperCAmelCase_ )
if encoded_attention_mask is not None:
output_data["attention_mask"].append(UpperCAmelCase_ )
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(UpperCAmelCase_ )
lowerCamelCase : Dict = {key: item for key, item in output_data.items() if len(UpperCAmelCase_ ) != 0}
return BatchEncoding(UpperCAmelCase_ , tensor_type=UpperCAmelCase_ )
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=None ) -> str:
lowerCamelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> List[int]:
lowerCamelCase : Any = [self.sep_token_id]
lowerCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ) -> Tuple[str]:
lowerCamelCase : Dict = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ )
return tuple(UpperCAmelCase_ )
| 205
|
"""simple docstring"""
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
_A = logging.getLogger(__name__)
class _lowercase :
def __init__( self ) -> Tuple:
lowerCamelCase : Dict = False
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Any:
if not self.initialized:
lowerCamelCase : Optional[int] = RagRetriever(
UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , )
lowerCamelCase : Union[str, Any] = True
def _UpperCamelCase ( self ) -> Union[str, Any]:
self.retriever.index.init_index()
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> str:
lowerCamelCase , lowerCamelCase : int = self.retriever._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ )
return doc_ids, retrieved_doc_embeds
class _lowercase ( __UpperCAmelCase ):
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) -> Dict:
if index is not None and index.is_initialized() and len(UpperCAmelCase_ ) > 0:
raise ValueError(
'When using Ray for distributed fine-tuning, '
'you\'ll need to provide the paths instead, '
'as the dataset and the index are loaded '
'separately. More info in examples/rag/use_own_knowledge_dataset.py ' )
super().__init__(
UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , index=UpperCAmelCase_ , init_retrieval=UpperCAmelCase_ , )
lowerCamelCase : List[str] = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
for worker in self.retrieval_workers
] )
def _UpperCamelCase ( self ) -> Dict:
logger.info('initializing retrieval' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> List[Any]:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
lowerCamelCase : Tuple = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
lowerCamelCase , lowerCamelCase : Tuple = ray.get(random_worker.retrieve.remote(UpperCAmelCase_ , UpperCAmelCase_ ) )
else:
lowerCamelCase , lowerCamelCase : int = self._main_retrieve(UpperCAmelCase_ , UpperCAmelCase_ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase_ )
@classmethod
def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> Dict:
return super(UpperCAmelCase_ , cls ).get_tokenizers(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ )
@classmethod
def _UpperCamelCase ( cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , **UpperCAmelCase_ ) -> Dict:
lowerCamelCase : str = kwargs.pop('config' , UpperCAmelCase_ ) or RagConfig.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCamelCase : Any = RagTokenizer.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ )
lowerCamelCase : Any = rag_tokenizer.question_encoder
lowerCamelCase : Union[str, Any] = rag_tokenizer.generator
if indexed_dataset is not None:
lowerCamelCase : int = 'custom'
lowerCamelCase : int = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ )
else:
lowerCamelCase : Optional[Any] = cls._build_index(UpperCAmelCase_ )
return cls(
UpperCAmelCase_ , question_encoder_tokenizer=UpperCAmelCase_ , generator_tokenizer=UpperCAmelCase_ , retrieval_workers=UpperCAmelCase_ , index=UpperCAmelCase_ , )
| 205
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCamelCase : Dict = logging.get_logger(__name__)
_lowerCamelCase : Any = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __UpperCAmelCase ( A_ , A_ ):
UpperCamelCase = "focalnet"
def __init__( self : Any, __A : Optional[int]=2_2_4, __A : Tuple=4, __A : Optional[Any]=3, __A : Optional[Any]=9_6, __A : List[Any]=False, __A : Optional[int]=[1_9_2, 3_8_4, 7_6_8, 7_6_8], __A : Optional[Any]=[2, 2, 6, 2], __A : Optional[int]=[2, 2, 2, 2], __A : List[str]=[3, 3, 3, 3], __A : List[str]="gelu", __A : Dict=4.0, __A : str=0.0, __A : Any=0.1, __A : Dict=False, __A : List[Any]=1E-4, __A : Dict=False, __A : Optional[int]=False, __A : Optional[Any]=False, __A : Dict=0.0_2, __A : Optional[int]=1E-5, __A : Optional[int]=3_2, __A : Any=None, __A : List[Any]=None, **__A : List[Any], ):
super().__init__(**_snake_case )
UpperCAmelCase : Optional[Any] = image_size
UpperCAmelCase : str = patch_size
UpperCAmelCase : Optional[Any] = num_channels
UpperCAmelCase : Dict = embed_dim
UpperCAmelCase : List[str] = use_conv_embed
UpperCAmelCase : Optional[Any] = hidden_sizes
UpperCAmelCase : Dict = depths
UpperCAmelCase : List[Any] = focal_levels
UpperCAmelCase : Tuple = focal_windows
UpperCAmelCase : str = hidden_act
UpperCAmelCase : Tuple = mlp_ratio
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : str = drop_path_rate
UpperCAmelCase : str = use_layerscale
UpperCAmelCase : List[Any] = layerscale_value
UpperCAmelCase : Optional[Any] = use_post_layernorm
UpperCAmelCase : str = use_post_layernorm_in_modulation
UpperCAmelCase : Dict = normalize_modulator
UpperCAmelCase : Dict = initializer_range
UpperCAmelCase : Union[str, Any] = layer_norm_eps
UpperCAmelCase : Any = encoder_stride
UpperCAmelCase : int = ['''stem'''] + [F'''stage{idx}''' for idx in range(1, len(self.depths ) + 1 )]
UpperCAmelCase : Tuple = get_aligned_output_features_output_indices(
out_features=_snake_case, out_indices=_snake_case, stage_names=self.stage_names )
| 336
|
"""simple docstring"""
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
lowerCAmelCase_ = 4
lowerCAmelCase_ = 3
class __A ( A_ ):
'''simple docstring'''
pass
def __UpperCAmelCase ( __lowerCamelCase ) -> Dict:
for shard in shards:
for i in range(__lowerCamelCase ):
yield {"i": i, "shard": shard}
def __UpperCAmelCase ( ) -> Tuple:
lowercase__ : int = int(os.environ['''RANK'''] )
lowercase__ : str = int(os.environ['''WORLD_SIZE'''] )
lowercase__ : List[Any] = ArgumentParser()
parser.add_argument('''--streaming''' , type=__lowerCamelCase )
parser.add_argument('''--local_rank''' , type=__lowerCamelCase )
parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 )
lowercase__ : int = parser.parse_args()
lowercase__ : Optional[Any] = args.streaming
lowercase__ : List[Any] = args.num_workers
lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]}
lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase )
if not streaming:
lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) )
lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase )
lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase )
lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD
lowercase__ : str = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
lowercase__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 16
| 0
|
import unittest
import numpy as np
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , ):
'''simple docstring'''
__UpperCamelCase :int = np.shape(SCREAMING_SNAKE_CASE )
__UpperCamelCase :str = np.shape(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Optional[Any] = np.shape(SCREAMING_SNAKE_CASE )
if shape_a[0] != shape_b[0]:
__UpperCamelCase :Dict = (
'''Expected the same number of rows for A and B. '''
f"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(SCREAMING_SNAKE_CASE )
if shape_b[1] != shape_c[1]:
__UpperCamelCase :Union[str, Any] = (
'''Expected the same number of columns for B and C. '''
f"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(SCREAMING_SNAKE_CASE )
__UpperCamelCase :Union[str, Any] = pseudo_inv
if a_inv is None:
try:
__UpperCamelCase :Dict = np.linalg.inv(SCREAMING_SNAKE_CASE )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase__ ( self) -> None:
__UpperCamelCase :str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]])
__UpperCamelCase :List[Any] = np.array([[0, 3], [3, 0], [2, 3]])
__UpperCamelCase :Tuple = np.array([[2, 1], [6, 3]])
__UpperCamelCase :Optional[int] = schur_complement(__lowercase , __lowercase , __lowercase)
__UpperCamelCase :List[Any] = np.block([[a, b], [b.T, c]])
__UpperCamelCase :Any = np.linalg.det(__lowercase)
__UpperCamelCase :int = np.linalg.det(__lowercase)
__UpperCamelCase :Tuple = np.linalg.det(__lowercase)
self.assertAlmostEqual(__lowercase , det_a * det_s)
def UpperCamelCase__ ( self) -> None:
__UpperCamelCase :List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]])
__UpperCamelCase :Union[str, Any] = np.array([[0, 3], [3, 0], [2, 3]])
__UpperCamelCase :Dict = np.array([[2, 1], [6, 3]])
with self.assertRaises(__lowercase):
schur_complement(__lowercase , __lowercase , __lowercase)
def UpperCamelCase__ ( self) -> None:
__UpperCamelCase :Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]])
__UpperCamelCase :Tuple = np.array([[0, 3], [3, 0], [2, 3]])
__UpperCamelCase :List[Any] = np.array([[2, 1, 3], [6, 3, 5]])
with self.assertRaises(__lowercase):
schur_complement(__lowercase , __lowercase , __lowercase)
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 105
|
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
__lowercase = logging.get_logger(__name__)
# General docstring
__lowercase = '''MobileNetV1Config'''
# Base docstring
__lowercase = '''google/mobilenet_v1_1.0_224'''
__lowercase = [1, 1024, 7, 7]
# Image classification docstring
__lowercase = '''google/mobilenet_v1_1.0_224'''
__lowercase = '''tabby, tabby cat'''
__lowercase = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
__UpperCamelCase :Tuple = {}
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :Dict = model.mobilenet_va
else:
__UpperCamelCase :str = model
__UpperCamelCase :int = '''MobilenetV1/Conv2d_0/'''
__UpperCamelCase :str = backbone.conv_stem.convolution.weight
__UpperCamelCase :int = backbone.conv_stem.normalization.bias
__UpperCamelCase :Union[str, Any] = backbone.conv_stem.normalization.weight
__UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_mean
__UpperCamelCase :Optional[int] = backbone.conv_stem.normalization.running_var
for i in range(13 ):
__UpperCamelCase :Optional[Any] = i + 1
__UpperCamelCase :Optional[int] = i * 2
__UpperCamelCase :List[Any] = backbone.layer[pt_index]
__UpperCamelCase :Tuple = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
__UpperCamelCase :Any = pointer.convolution.weight
__UpperCamelCase :Dict = pointer.normalization.bias
__UpperCamelCase :List[str] = pointer.normalization.weight
__UpperCamelCase :Any = pointer.normalization.running_mean
__UpperCamelCase :List[str] = pointer.normalization.running_var
__UpperCamelCase :Union[str, Any] = backbone.layer[pt_index + 1]
__UpperCamelCase :List[str] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
__UpperCamelCase :Optional[Any] = pointer.convolution.weight
__UpperCamelCase :Dict = pointer.normalization.bias
__UpperCamelCase :int = pointer.normalization.weight
__UpperCamelCase :Optional[int] = pointer.normalization.running_mean
__UpperCamelCase :Optional[int] = pointer.normalization.running_var
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :Any = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
__UpperCamelCase :Union[str, Any] = model.classifier.weight
__UpperCamelCase :int = model.classifier.bias
return tf_to_pt_map
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
__UpperCamelCase :Any = tf.train.list_variables(SCREAMING_SNAKE_CASE )
__UpperCamelCase :List[str] = {}
for name, shape in init_vars:
logger.info(f"""Loading TF weight {name} with shape {shape}""" )
__UpperCamelCase :str = tf.train.load_variable(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCamelCase :List[str] = array
# Build TF to PyTorch weights loading map
__UpperCamelCase :Optional[Any] = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for name, pointer in tf_to_pt_map.items():
logger.info(f"""Importing {name}""" )
if name not in tf_weights:
logger.info(f"""{name} not in tf pre-trained weights, skipping""" )
continue
__UpperCamelCase :Optional[Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
__UpperCamelCase :Optional[int] = np.transpose(SCREAMING_SNAKE_CASE , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
__UpperCamelCase :Tuple = array.squeeze().transpose()
else:
__UpperCamelCase :Union[str, Any] = np.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" )
__UpperCamelCase :Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE )
tf_weights.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
tf_weights.pop(name + '''/RMSProp''' , SCREAMING_SNAKE_CASE )
tf_weights.pop(name + '''/RMSProp_1''' , SCREAMING_SNAKE_CASE )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , SCREAMING_SNAKE_CASE )
logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" )
return model
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase :str = features.shape[-2:]
__UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.stride
__UpperCamelCase , __UpperCamelCase :Union[str, Any] = conv_layer.kernel_size
if in_height % stride_height == 0:
__UpperCamelCase :Optional[int] = max(kernel_height - stride_height , 0 )
else:
__UpperCamelCase :List[Any] = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
__UpperCamelCase :List[str] = max(kernel_width - stride_width , 0 )
else:
__UpperCamelCase :Tuple = max(kernel_width - (in_width % stride_width) , 0 )
__UpperCamelCase :Any = pad_along_width // 2
__UpperCamelCase :Tuple = pad_along_width - pad_left
__UpperCamelCase :Union[str, Any] = pad_along_height // 2
__UpperCamelCase :str = pad_along_height - pad_top
__UpperCamelCase :Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''constant''' , 0.0 )
class lowerCamelCase_ ( nn.Module ):
'''simple docstring'''
def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = 1 , __lowercase = 1 , __lowercase = False , __lowercase = True , __lowercase = True , ) -> None:
super().__init__()
__UpperCamelCase :str = config
if in_channels % groups != 0:
raise ValueError(f"""Input channels ({in_channels}) are not divisible by {groups} groups.""")
if out_channels % groups != 0:
raise ValueError(f"""Output channels ({out_channels}) are not divisible by {groups} groups.""")
__UpperCamelCase :Any = 0 if config.tf_padding else int((kernel_size - 1) / 2)
__UpperCamelCase :List[Any] = nn.Convad(
in_channels=__lowercase , out_channels=__lowercase , kernel_size=__lowercase , stride=__lowercase , padding=__lowercase , groups=__lowercase , bias=__lowercase , padding_mode='''zeros''' , )
if use_normalization:
__UpperCamelCase :str = nn.BatchNormad(
num_features=__lowercase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowercase , track_running_stats=__lowercase , )
else:
__UpperCamelCase :Tuple = None
if use_activation:
if isinstance(__lowercase , __lowercase):
__UpperCamelCase :Union[str, Any] = ACTaFN[use_activation]
elif isinstance(config.hidden_act , __lowercase):
__UpperCamelCase :Dict = ACTaFN[config.hidden_act]
else:
__UpperCamelCase :List[Any] = config.hidden_act
else:
__UpperCamelCase :Optional[Any] = None
def UpperCamelCase__ ( self , __lowercase) -> torch.Tensor:
if self.config.tf_padding:
__UpperCamelCase :Any = apply_tf_padding(__lowercase , self.convolution)
__UpperCamelCase :str = self.convolution(__lowercase)
if self.normalization is not None:
__UpperCamelCase :Any = self.normalization(__lowercase)
if self.activation is not None:
__UpperCamelCase :List[str] = self.activation(__lowercase)
return features
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : List[str] = MobileNetVaConfig
a__ : Dict = load_tf_weights_in_mobilenet_va
a__ : Tuple = """mobilenet_v1"""
a__ : Optional[Any] = """pixel_values"""
a__ : int = False
def UpperCamelCase__ ( self , __lowercase) -> None:
if isinstance(__lowercase , (nn.Linear, nn.Convad)):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__lowercase , nn.BatchNormad):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
__lowercase = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
__lowercase = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"""The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , UpperCAmelCase_ , )
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self , __lowercase , __lowercase = True) -> Optional[Any]:
super().__init__(__lowercase)
__UpperCamelCase :List[str] = config
__UpperCamelCase :Any = 32
__UpperCamelCase :List[str] = max(int(depth * config.depth_multiplier) , config.min_depth)
__UpperCamelCase :Union[str, Any] = MobileNetVaConvLayer(
__lowercase , in_channels=config.num_channels , out_channels=__lowercase , kernel_size=3 , stride=2 , )
__UpperCamelCase :str = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__UpperCamelCase :Any = nn.ModuleList()
for i in range(13):
__UpperCamelCase :str = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__UpperCamelCase :Tuple = max(int(depth * config.depth_multiplier) , config.min_depth)
self.layer.append(
MobileNetVaConvLayer(
__lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=3 , stride=strides[i] , groups=__lowercase , ))
self.layer.append(
MobileNetVaConvLayer(
__lowercase , in_channels=__lowercase , out_channels=__lowercase , kernel_size=1 , ))
__UpperCamelCase :str = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def UpperCamelCase__ ( self , __lowercase) -> Union[str, Any]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(__lowercase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
__UpperCamelCase :Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__UpperCamelCase :str = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''')
__UpperCamelCase :int = self.conv_stem(__lowercase)
__UpperCamelCase :List[str] = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
__UpperCamelCase :Optional[Any] = layer_module(__lowercase)
if output_hidden_states:
__UpperCamelCase :int = all_hidden_states + (hidden_states,)
__UpperCamelCase :Any = hidden_states
if self.pooler is not None:
__UpperCamelCase :str = torch.flatten(self.pooler(__lowercase) , start_dim=1)
else:
__UpperCamelCase :Tuple = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=__lowercase , )
@add_start_docstrings(
"""
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , UpperCAmelCase_ , )
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self , __lowercase) -> None:
super().__init__(__lowercase)
__UpperCamelCase :int = config.num_labels
__UpperCamelCase :Optional[int] = MobileNetVaModel(__lowercase)
__UpperCamelCase :Optional[Any] = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__UpperCamelCase :str = nn.Dropout(config.classifier_dropout_prob , inplace=__lowercase)
__UpperCamelCase :Dict = nn.Linear(__lowercase , config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__lowercase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase__ ( self , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
__UpperCamelCase :List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
__UpperCamelCase :Tuple = self.mobilenet_va(__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase)
__UpperCamelCase :List[str] = outputs.pooler_output if return_dict else outputs[1]
__UpperCamelCase :Union[str, Any] = self.classifier(self.dropout(__lowercase))
__UpperCamelCase :int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__UpperCamelCase :Tuple = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__UpperCamelCase :Union[str, Any] = '''single_label_classification'''
else:
__UpperCamelCase :Optional[Any] = '''multi_label_classification'''
if self.config.problem_type == "regression":
__UpperCamelCase :Any = MSELoss()
if self.num_labels == 1:
__UpperCamelCase :List[str] = loss_fct(logits.squeeze() , labels.squeeze())
else:
__UpperCamelCase :Dict = loss_fct(__lowercase , __lowercase)
elif self.config.problem_type == "single_label_classification":
__UpperCamelCase :Optional[int] = CrossEntropyLoss()
__UpperCamelCase :str = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
__UpperCamelCase :Dict = BCEWithLogitsLoss()
__UpperCamelCase :List[str] = loss_fct(__lowercase , __lowercase)
if not return_dict:
__UpperCamelCase :Tuple = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states , )
| 105
| 1
|
def _UpperCAmelCase (UpperCamelCase__ : str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_A : Any = ""
while len(UpperCamelCase__ ) % 3 != 0:
_A : Optional[Any] = "0" + bin_string
_A : Union[str, Any] = [
bin_string[index : index + 3]
for index in range(len(UpperCamelCase__ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_A : Tuple = 0
for index, val in enumerate(UpperCamelCase__ ):
oct_val += int(2 ** (2 - index) * int(UpperCamelCase__ ) )
oct_string += str(UpperCamelCase__ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod()
| 11
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : int = 4_0_0_0_0_0_0 ) -> int:
'''simple docstring'''
__UpperCAmelCase : int = [0, 1]
__UpperCAmelCase : Optional[Any] = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__UpperCAmelCase : str = 0
for j in range(len(_UpperCamelCase ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(F"{solution() = }")
| 115
| 0
|
"""simple docstring"""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase : Tuple = logging.get_logger(__name__)
lowercase : int = {"vocab_file": "vocab.txt"}
lowercase : str = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
lowercase : List[Any] = {
"openbmb/cpm-ant-10b": 1024,
}
def UpperCAmelCase_ (_lowerCAmelCase : Any ):
__UpperCamelCase : str = collections.OrderedDict()
with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as reader:
__UpperCamelCase : str = reader.readlines()
for index, token in enumerate(_lowerCAmelCase ):
__UpperCamelCase : Optional[int] = token.rstrip("\n" )
__UpperCamelCase : Dict = index
return vocab
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
"""simple docstring"""
def __init__( self , __UpperCamelCase , __UpperCamelCase="<unk>" , __UpperCamelCase=2_00 ) -> int:
'''simple docstring'''
__UpperCamelCase : str = vocab
__UpperCamelCase : Tuple = unk_token
__UpperCamelCase : Tuple = max_input_chars_per_word
def __lowerCamelCase ( self , __UpperCamelCase ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase : List[str] = list(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > self.max_input_chars_per_word:
return [self.unk_token]
__UpperCamelCase : Optional[Any] = 0
__UpperCamelCase : str = []
while start < len(_SCREAMING_SNAKE_CASE ):
__UpperCamelCase : str = len(_SCREAMING_SNAKE_CASE )
__UpperCamelCase : Tuple = None
while start < end:
__UpperCamelCase : Dict = ''''''.join(chars[start:end] )
if substr in self.vocab:
__UpperCamelCase : Optional[Any] = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(_SCREAMING_SNAKE_CASE )
__UpperCamelCase : int = end
return sub_tokens
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
"""simple docstring"""
lowercase : str = VOCAB_FILES_NAMES
lowercase : int = PRETRAINED_VOCAB_FILES_MAP
lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase : Tuple = ['input_ids', 'attention_mask']
lowercase : Union[str, Any] = False
def __init__( self , __UpperCamelCase , __UpperCamelCase="<d>" , __UpperCamelCase="</d>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<unk>" , __UpperCamelCase="</n>" , __UpperCamelCase="</_>" , __UpperCamelCase="left" , **__UpperCamelCase , ) -> Optional[Any]:
'''simple docstring'''
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=_SCREAMING_SNAKE_CASE , eod_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , line_token=_SCREAMING_SNAKE_CASE , space_token=_SCREAMING_SNAKE_CASE , padding_side=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
__UpperCamelCase : List[Any] = bod_token
__UpperCamelCase : Optional[Any] = eod_token
__UpperCamelCase : List[Any] = load_vocab(_SCREAMING_SNAKE_CASE )
__UpperCamelCase : Tuple = self.encoder[space_token]
__UpperCamelCase : Tuple = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
__UpperCamelCase : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) )
__UpperCamelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCamelCase : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def __lowerCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return self.encoder[self.bod_token]
@property
def __lowerCamelCase ( self ) -> List[str]:
'''simple docstring'''
return self.encoder[self.eod_token]
@property
def __lowerCamelCase ( self ) -> Any:
'''simple docstring'''
return self.encoder["\n"]
@property
def __lowerCamelCase ( self ) -> int:
'''simple docstring'''
return len(self.encoder )
def __lowerCamelCase ( self ) -> Any:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def __lowerCamelCase ( self , __UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = []
for x in jieba.cut(_SCREAMING_SNAKE_CASE , cut_all=_SCREAMING_SNAKE_CASE ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) )
return output_tokens
def __lowerCamelCase ( self , __UpperCamelCase , **__UpperCamelCase ) -> str:
'''simple docstring'''
__UpperCamelCase : Dict = [i for i in token_ids if i >= 0]
__UpperCamelCase : List[str] = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self , __UpperCamelCase ) -> List[str]:
'''simple docstring'''
return token in self.encoder
def __lowerCamelCase ( self , __UpperCamelCase ) -> str:
'''simple docstring'''
return "".join(_SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self , __UpperCamelCase ) -> Tuple:
'''simple docstring'''
return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) )
def __lowerCamelCase ( self , __UpperCamelCase ) -> Dict:
'''simple docstring'''
return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]:
'''simple docstring'''
if os.path.isdir(_SCREAMING_SNAKE_CASE ):
__UpperCamelCase : Any = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
__UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
__UpperCamelCase : Tuple = 0
if " " in self.encoder:
__UpperCamelCase : List[str] = self.encoder[''' ''']
del self.encoder[" "]
if "\n" in self.encoder:
__UpperCamelCase : Any = self.encoder['''\n''']
del self.encoder["\n"]
__UpperCamelCase : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __UpperCamelCase : x[1] ) )
with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
__UpperCamelCase : List[Any] = token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE )
if token_ids_a is not None:
return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
return [1] + ([0] * len(_SCREAMING_SNAKE_CASE ))
| 371
|
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
lowercase : Optional[int] = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ):
# Initialise PyTorch model
__UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase )
__UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else ""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
__UpperCamelCase : List[str] = finetuning_task
__UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task]
__UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase )
elif "squad" in finetuning_task:
__UpperCamelCase : List[str] = finetuning_task
__UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase )
else:
__UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# Save pytorch-model
__UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
__UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase )
print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' )
torch.save(model.state_dict() , _lowerCAmelCase )
print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
lowercase : Dict = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 171
| 0
|
import math
from datetime import datetime, timedelta
def __lowerCamelCase ( UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = year % 19
snake_case_ = year % 4
snake_case_ = year % 7
snake_case_ = math.floor(year / 100 )
snake_case_ = math.floor((13 + 8 * leap_day_inhibits) / 25 )
snake_case_ = leap_day_inhibits / 4
snake_case_ = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
snake_case_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
snake_case_ = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
snake_case_ = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(UpperCamelCase__ , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(UpperCamelCase__ , 4 , 18 )
else:
return datetime(UpperCamelCase__ , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
_UpperCAmelCase : Tuple = """will be""" if year > datetime.now().year else """was"""
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 285
|
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
snake_case_ = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
snake_case_ = max(
mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , )
snake_case_ = val
return f[i][j]
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
snake_case_ = dp[i - 1][w_]
return dp[n][w_], dp
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )):
raise ValueError(
'Both the weights and values vectors must be either lists or tuples' )
snake_case_ = len(UpperCamelCase__ )
if num_items != len(UpperCamelCase__ ):
snake_case_ = (
'The number of weights must be the same as the number of values.\n'
F'''But got {num_items} weights and {len(UpperCamelCase__ )} values'''
)
raise ValueError(UpperCamelCase__ )
for i in range(UpperCamelCase__ ):
if not isinstance(wt[i] , UpperCamelCase__ ):
snake_case_ = (
'All weights must be integers but got weight of '
F'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(UpperCamelCase__ )
snake_case_ , snake_case_ = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
snake_case_ = set()
_construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return optimal_val, example_optional_set
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ )
else:
optimal_set.add(UpperCamelCase__ )
_construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ )
if __name__ == "__main__":
_UpperCAmelCase : Tuple = [3, 2, 4, 4]
_UpperCAmelCase : Optional[Any] = [4, 3, 2, 3]
_UpperCAmelCase : List[str] = 4
_UpperCAmelCase : str = 6
_UpperCAmelCase : Tuple = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
_UpperCAmelCase , _UpperCAmelCase : List[Any] = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
_UpperCAmelCase , _UpperCAmelCase : Any = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("""optimal_value = """, optimal_solution)
print("""An optimal subset corresponding to the optimal value""", optimal_subset)
| 285
| 1
|
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
snake_case_ : List[str] = logging.get_logger(__name__)
class __snake_case ( a ):
def __init__( self : Optional[int] , *_snake_case : Union[str, Any] , **_snake_case : Optional[int]):
"""simple docstring"""
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , _snake_case , )
super().__init__(*_snake_case , **_snake_case)
| 7
|
import sys
def A (__A : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ = len(__A )
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
UpperCAmelCase_ = [[0 for x in range(__A )] for x in range(__A )]
for chain_length in range(2 , __A ):
for a in range(1 , n - chain_length + 1 ):
UpperCAmelCase_ = a + chain_length - 1
UpperCAmelCase_ = sys.maxsize
for c in range(__A , __A ):
UpperCAmelCase_ = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
UpperCAmelCase_ = cost
UpperCAmelCase_ = c
return matrix, sol
def A (__A : Any , __A : Dict , __A : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if i == j:
print('''A''' + str(__A ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(__A , __A , optimal_solution[i][j] )
print_optiomal_solution(__A , optimal_solution[i][j] + 1 , __A )
print(''')''' , end=''' ''' )
def A () -> List[str]:
"""simple docstring"""
UpperCAmelCase_ = [30, 35, 15, 5, 10, 20, 25]
UpperCAmelCase_ = len(__A )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
UpperCAmelCase_ , UpperCAmelCase_ = matrix_chain_order(__A )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(__A , 1 , n - 1 )
if __name__ == "__main__":
main()
| 7
| 1
|
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class UpperCAmelCase_ ( lowercase, unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] =VideoToVideoSDPipeline
UpperCamelCase_ : Dict =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'}
UpperCamelCase_ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'}
UpperCamelCase_ : str =PipelineTesterMixin.required_optional_params - {'latents'}
UpperCamelCase_ : List[str] =False
# No `output_type`.
UpperCamelCase_ : List[str] =frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def UpperCAmelCase ( self ) -> List[Any]:
torch.manual_seed(0 )
UpperCamelCase :Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , )
UpperCamelCase :str = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , )
torch.manual_seed(0 )
UpperCamelCase :int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
UpperCamelCase :List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
UpperCamelCase :Union[str, Any] = CLIPTextModel(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
UpperCamelCase :int = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Tuple:
# 3 frames
UpperCamelCase :Union[str, Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ):
UpperCamelCase :Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase :List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Dict = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''video''': video,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def UpperCAmelCase ( self ) -> Any:
UpperCamelCase :Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCamelCase :List[str] = self.get_dummy_components()
UpperCamelCase :Any = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Dict = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
UpperCamelCase :int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Optional[Any] = '''np'''
UpperCamelCase :Optional[int] = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames
UpperCamelCase :Optional[Any] = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
UpperCamelCase :List[str] = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def UpperCAmelCase ( self ) -> Union[str, Any]:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=5e-3 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def UpperCAmelCase ( self ) -> List[str]:
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def UpperCAmelCase ( self ) -> List[str]:
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def UpperCAmelCase ( self ) -> Any:
pass
def UpperCAmelCase ( self ) -> Tuple:
return super().test_progress_bar()
@slow
@skip_mps
class UpperCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> Tuple:
UpperCamelCase :Union[str, Any] = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
UpperCamelCase :Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCamelCase :str = torch.randn((1, 10, 3, 1024, 576) , generator=SCREAMING_SNAKE_CASE_ )
UpperCamelCase :Optional[Any] = video.to('''cuda''' )
UpperCamelCase :int = '''Spiderman is surfing'''
UpperCamelCase :Optional[int] = pipe(SCREAMING_SNAKE_CASE_ , video=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=3 , output_type='''pt''' ).frames
UpperCamelCase :Tuple = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 259
|
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
__snake_case = """https://openaipublic.azureedge.net/jukebox/models/"""
__snake_case = {
"""jukebox-1b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""1b_lyrics/prior_level_2.pth.tar""",
],
"""jukebox-5b-lyrics""": [
"""5b/vqvae.pth.tar""",
"""5b/prior_level_0.pth.tar""",
"""5b/prior_level_1.pth.tar""",
"""5b_lyrics/prior_level_2.pth.tar""",
],
}
def _A ( SCREAMING_SNAKE_CASE__ : List[Any] ):
if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10:
UpperCamelCase :int = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' )
elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10:
UpperCamelCase :Union[str, Any] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' )
elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10:
UpperCamelCase :Optional[Any] = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' )
elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10:
UpperCamelCase :Optional[int] = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' )
if "conditioner_blocks.0." in key:
UpperCamelCase :Any = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' )
if "prime_prior" in key:
UpperCamelCase :int = key.replace('''prime_prior''' , '''encoder''' )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
UpperCamelCase :Any = key.replace('''.emb.''' , '''.''' )
if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace('''.k''' , '''.codebook''' )
if "y_emb." in key:
return key.replace('''y_emb.''' , '''metadata_embedding.''' )
if "x_emb.emb." in key:
UpperCamelCase :str = key.replace('''0.x_emb.emb''' , '''embed_tokens''' )
if "prime_state_ln" in key:
return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' )
if ".ln" in key:
return key.replace('''.ln''' , '''.layer_norm''' )
if "_ln" in key:
return key.replace('''_ln''' , '''_layer_norm''' )
if "prime_state_proj" in key:
return key.replace('''prime_state_proj''' , '''encoder.proj_in''' )
if "prime_x_out" in key:
return key.replace('''prime_x_out''' , '''encoder.lm_head''' )
if "prior.x_out" in key:
return key.replace('''x_out''' , '''fc_proj_out''' )
if "x_emb" in key:
return key.replace('''x_emb''' , '''embed_tokens''' )
return key
def _A ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
UpperCamelCase :Optional[int] = {}
import re
UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
UpperCamelCase :str = re.compile(
R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
UpperCamelCase :int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
UpperCamelCase :Tuple = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' )
UpperCamelCase :int = re.compile(
R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
UpperCamelCase :Optional[int] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' )
UpperCamelCase :Optional[Any] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' )
UpperCamelCase :int = re.compile(
R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' )
UpperCamelCase :Tuple = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :int = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :List[str] = regex_match.groups()
UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] )
UpperCamelCase :List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
UpperCamelCase :int = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[Any] = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Optional[Any] = regex_match.groups()
UpperCamelCase :Any = int(groups[2] ) * 2 + int(groups[3] )
UpperCamelCase :Any = {'''1''': 1, '''3''': 2}[groups[-2]]
UpperCamelCase :str = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
UpperCamelCase :List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
UpperCamelCase :Union[str, Any] = prefix + resnet_block
UpperCamelCase :str = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[int] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :int = regex_match.groups()
UpperCamelCase :int = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
UpperCamelCase :str = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[Any] = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Optional[int] = regex_match.groups()
UpperCamelCase :str = int(groups[2] ) * 2 + int(groups[3] ) - 2
UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
UpperCamelCase :Union[str, Any] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[Any] = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Any = regex_match.groups()
UpperCamelCase :List[str] = int(groups[2] ) * 2 + int(groups[3] ) - 2
UpperCamelCase :Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]]
UpperCamelCase :Any = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
UpperCamelCase :Optional[int] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
UpperCamelCase :Any = prefix + resnet_block
UpperCamelCase :Optional[int] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :List[Any] = regex_match.groups()
UpperCamelCase :List[Any] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
UpperCamelCase :Any = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :Optional[Any] = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Optional[int] = regex_match.groups()
UpperCamelCase :str = int(groups[1] ) * 2 + int(groups[2] ) - 2
UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
UpperCamelCase :int = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :int = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Any = regex_match.groups()
UpperCamelCase :Optional[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2
UpperCamelCase :int = {'''1''': 1, '''3''': 2}[groups[-2]]
UpperCamelCase :Tuple = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
UpperCamelCase :List[Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
UpperCamelCase :Any = prefix + resnet_block
UpperCamelCase :Dict = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :List[str] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :List[str] = regex_match.groups()
UpperCamelCase :Dict = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
UpperCamelCase :Any = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# keep original key
else:
UpperCamelCase :List[str] = original_key
UpperCamelCase :Any = replace_key(SCREAMING_SNAKE_CASE__ )
if F'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(F'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape:
UpperCamelCase :Union[str, Any] = model_state_dict[F'''{key_prefix}.{key}''']
print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
UpperCamelCase :List[Any] = original_key
UpperCamelCase :Any = original_key
UpperCamelCase :Optional[int] = value
return new_dict
@torch.no_grad()
def _A ( SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Dict=None ):
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ):
UpperCamelCase :Dict = requests.get(F'''{PREFIX}{file}''' , allow_redirects=SCREAMING_SNAKE_CASE__ )
os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=SCREAMING_SNAKE_CASE__ )
open(F'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' , '''wb''' ).write(r.content )
UpperCamelCase :Optional[int] = MODEL_MAPPING[model_name.split('''/''' )[-1]]
UpperCamelCase :Any = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :List[str] = JukeboxModel(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Dict = []
UpperCamelCase :List[Any] = {}
for i, dict_name in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCamelCase :int = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )['''model''']
UpperCamelCase :Tuple = {}
for k in old_dic.keys():
if k.endswith('''.b''' ):
UpperCamelCase :Optional[int] = old_dic[k]
elif k.endswith('''.w''' ):
UpperCamelCase :Optional[Any] = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
UpperCamelCase :Optional[Any] = old_dic[k]
else:
UpperCamelCase :Any = old_dic[k]
UpperCamelCase :Any = '''vqvae''' if i == 0 else F'''priors.{3 - i}'''
UpperCamelCase :Dict = fix_jukebox_keys(SCREAMING_SNAKE_CASE__ , model.state_dict() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
weight_dict.append(SCREAMING_SNAKE_CASE__ )
UpperCamelCase :Optional[int] = weight_dict.pop(0 )
model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE__ )
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
return weight_dict
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""jukebox-5b-lyrics""",
type=str,
help="""Name of the model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""jukebox-5b-lyrics-converted""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
__snake_case = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 259
| 1
|
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 231
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase : Union[str, Any] = """▁"""
_lowerCamelCase : Optional[Any] = {"""vocab_file""": """spiece.model"""}
_lowerCamelCase : str = {
"""vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}
}
_lowerCamelCase : List[str] = {
"""google/pegasus-xsum""": 512,
}
_lowerCamelCase : int = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = VOCAB_FILES_NAMES
UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str="<pad>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<mask_2>" , UpperCAmelCase__ : List[str]="<mask_1>" , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=103 , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Dict , ) ->None:
'''simple docstring'''
A__ = offset
if additional_special_tokens is not None:
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__):
raise TypeError(
f"""additional_special_tokens should be of type {type(UpperCAmelCase__)}, but is"""
f""" {type(UpperCAmelCase__)}""")
A__ = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(UpperCAmelCase__) , self.offset - 1)
]
if len(set(UpperCAmelCase__)) != len(UpperCAmelCase__):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""")
A__ = additional_special_tokens_extended
else:
A__ = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset)]
A__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token_sent=UpperCAmelCase__ , offset=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , )
A__ = mask_token_sent
A__ = vocab_file
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(UpperCAmelCase__)
# add special tokens to encoder dict
A__ = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
})
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1)})
A__ = {v: k for k, v in self.encoder.items()}
@property
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->int:
'''simple docstring'''
return len(self.sp_model) + self.offset
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict[str, int]:
'''simple docstring'''
A__ = {self.convert_ids_to_tokens(UpperCAmelCase__): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Any) ->Union[str, Any]:
'''simple docstring'''
A__ = self.__dict__.copy()
A__ = None
return state
def __setstate__( self : int , UpperCAmelCase__ : Optional[int]) ->Optional[int]:
'''simple docstring'''
A__ = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs'''):
A__ = {}
A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->List[str]:
'''simple docstring'''
return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__)
def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str) ->int:
'''simple docstring'''
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
A__ = self.sp_model.piece_to_id(UpperCAmelCase__)
return sp_id + self.offset
def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : int) ->str:
'''simple docstring'''
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
A__ = self.sp_model.IdToPiece(index - self.offset)
return token
def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int) ->Optional[int]:
'''simple docstring'''
A__ = []
A__ = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(UpperCAmelCase__) + token
A__ = []
else:
current_sub_tokens.append(UpperCAmelCase__)
out_string += self.sp_model.decode(UpperCAmelCase__)
return out_string.strip()
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]=False) ->Union[str, Any]:
'''simple docstring'''
return 1
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
A__ = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List , UpperCAmelCase__ : Optional[List] = None , UpperCAmelCase__ : bool = False) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(UpperCAmelCase__)
elif token_ids_a is None:
return self._special_token_mask(UpperCAmelCase__) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a) + [1]
def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=None) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(UpperCAmelCase__):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
A__ = os.path.join(
UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase__) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , UpperCAmelCase__)
elif not os.path.isfile(self.vocab_file):
with open(UpperCAmelCase__ , '''wb''') as fi:
A__ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase__)
return (out_vocab_file,)
| 231
| 1
|
def A ( _SCREAMING_SNAKE_CASE ) -> int:
assert (
isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) and number_of_steps > 0
), f'''number_of_steps needs to be positive integer, your input {number_of_steps}'''
if number_of_steps == 1:
return 1
lowerCamelCase , lowerCamelCase : Dict = 1, 1
for _ in range(number_of_steps - 1 ):
lowerCamelCase , lowerCamelCase : Optional[Any] = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 48
|
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = {'vocab_file': 'spiece.model'}
SCREAMING_SNAKE_CASE__ : int = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
SCREAMING_SNAKE_CASE__ : str = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
SCREAMING_SNAKE_CASE__ : Dict = 0
SCREAMING_SNAKE_CASE__ : Tuple = 1
SCREAMING_SNAKE_CASE__ : Optional[int] = 2
SCREAMING_SNAKE_CASE__ : List[str] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = 4
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Dict = VOCAB_FILES_NAMES
lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ : List[str] = """left"""
def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<sep>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<cls>" , UpperCamelCase__="<mask>" , UpperCamelCase__=["<eop>", "<eod>"] , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token
lowerCamelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , )
lowerCamelCase : Any = 3
lowerCamelCase : Optional[Any] = do_lower_case
lowerCamelCase : List[Any] = remove_space
lowerCamelCase : str = keep_accents
lowerCamelCase : List[Any] = vocab_file
lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase__ )
@property
def _lowercase ( self ) -> Optional[Any]:
return len(self.sp_model )
def _lowercase ( self ) -> Optional[int]:
lowerCamelCase : int = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Optional[Any]:
lowerCamelCase : Optional[int] = self.__dict__.copy()
lowerCamelCase : Union[str, Any] = None
return state
def __setstate__( self , UpperCamelCase__ ) -> int:
lowerCamelCase : int = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCamelCase : Any = {}
lowerCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowercase ( self , UpperCamelCase__ ) -> Any:
if self.remove_space:
lowerCamelCase : Dict = " ".join(inputs.strip().split() )
else:
lowerCamelCase : Union[str, Any] = inputs
lowerCamelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
lowerCamelCase : Optional[int] = unicodedata.normalize("NFKD" , UpperCamelCase__ )
lowerCamelCase : List[Any] = "".join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] )
if self.do_lower_case:
lowerCamelCase : List[str] = outputs.lower()
return outputs
def _lowercase ( self , UpperCamelCase__ ) -> List[str]:
lowerCamelCase : Optional[Any] = self.preprocess_text(UpperCamelCase__ )
lowerCamelCase : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ )
lowerCamelCase : Dict = []
for piece in pieces:
if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
lowerCamelCase : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCamelCase : Union[str, Any] = cur_pieces[1:]
else:
lowerCamelCase : Optional[int] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(UpperCamelCase__ )
else:
new_pieces.append(UpperCamelCase__ )
return new_pieces
def _lowercase ( self , UpperCamelCase__ ) -> int:
return self.sp_model.PieceToId(UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> Tuple:
return self.sp_model.IdToPiece(UpperCamelCase__ )
def _lowercase ( self , UpperCamelCase__ ) -> List[str]:
lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip()
return out_string
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = True , **UpperCamelCase__ , ) -> str:
lowerCamelCase : Optional[int] = kwargs.pop("use_source_tokenizer" , UpperCamelCase__ )
lowerCamelCase : Optional[int] = self.convert_ids_to_tokens(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
lowerCamelCase : Any = []
lowerCamelCase : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) )
lowerCamelCase : int = []
sub_texts.append(UpperCamelCase__ )
else:
current_sub_text.append(UpperCamelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(UpperCamelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
lowerCamelCase : Union[str, Any] = "".join(UpperCamelCase__ )
lowerCamelCase : Tuple = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
lowerCamelCase : int = self.clean_up_tokenization(UpperCamelCase__ )
return clean_text
else:
return text
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
lowerCamelCase : str = [self.sep_token_id]
lowerCamelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ )
if token_ids_a is not None:
return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1]
return ([0] * len(UpperCamelCase__ )) + [1, 1]
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]:
lowerCamelCase : Any = [self.sep_token_id]
lowerCamelCase : List[str] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(UpperCamelCase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCamelCase : Union[str, Any] = os.path.join(
UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCamelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCamelCase__ , "wb" ) as fi:
lowerCamelCase : str = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase__ )
return (out_vocab_file,)
| 48
| 1
|
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class A__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = (UnCLIPScheduler,)
def _SCREAMING_SNAKE_CASE ( self: List[str] , **_SCREAMING_SNAKE_CASE: Dict) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : Tuple = {
"num_train_timesteps": 1000,
"variance_type": "fixed_small_log",
"clip_sample": True,
"clip_sample_range": 1.0,
"prediction_type": "epsilon",
}
config.update(**_SCREAMING_SNAKE_CASE)
return config
def _SCREAMING_SNAKE_CASE ( self: str) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Any) -> Any:
"""simple docstring"""
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: int) -> str:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[int]:
"""simple docstring"""
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple:
"""simple docstring"""
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]:
"""simple docstring"""
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Tuple:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.scheduler_classes[0]
__lowerCAmelCase : Dict = self.get_scheduler_config(variance_type="fixed_small_log")
__lowerCAmelCase : str = scheduler_class(**_SCREAMING_SNAKE_CASE)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.054_9625)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.999_4987)) < 1e-5
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : Any = self.scheduler_classes[0]
__lowerCAmelCase : Optional[Any] = self.get_scheduler_config(variance_type="learned_range")
__lowerCAmelCase : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : List[str] = 0.5
assert scheduler._get_variance(1 , predicted_variance=_SCREAMING_SNAKE_CASE) - -10.171_2790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=_SCREAMING_SNAKE_CASE) - -5.799_8052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=_SCREAMING_SNAKE_CASE) - -0.001_0011 < 1e-5
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : Dict = self.scheduler_classes[0]
__lowerCAmelCase : Tuple = self.get_scheduler_config()
__lowerCAmelCase : Union[str, Any] = scheduler_class(**_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Optional[Any] = scheduler.timesteps
__lowerCAmelCase : Dict = self.dummy_model()
__lowerCAmelCase : str = self.dummy_sample_deter
__lowerCAmelCase : str = torch.manual_seed(0)
for i, t in enumerate(_SCREAMING_SNAKE_CASE):
# 1. predict noise residual
__lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
# 2. predict previous mean of sample x_t-1
__lowerCAmelCase : str = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE).prev_sample
__lowerCAmelCase : List[Any] = pred_prev_sample
__lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE))
__lowerCAmelCase : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE))
assert abs(result_sum.item() - 252.268_2495) < 1e-2
assert abs(result_mean.item() - 0.328_4743) < 1e-3
def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[int]:
"""simple docstring"""
__lowerCAmelCase : str = self.scheduler_classes[0]
__lowerCAmelCase : str = self.get_scheduler_config()
__lowerCAmelCase : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE)
scheduler.set_timesteps(25)
__lowerCAmelCase : Optional[Any] = scheduler.timesteps
__lowerCAmelCase : int = self.dummy_model()
__lowerCAmelCase : Dict = self.dummy_sample_deter
__lowerCAmelCase : int = torch.manual_seed(0)
for i, t in enumerate(_SCREAMING_SNAKE_CASE):
# 1. predict noise residual
__lowerCAmelCase : int = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
if i + 1 == timesteps.shape[0]:
__lowerCAmelCase : List[Any] = None
else:
__lowerCAmelCase : Dict = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__lowerCAmelCase : str = scheduler.step(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_timestep=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE).prev_sample
__lowerCAmelCase : List[Any] = pred_prev_sample
__lowerCAmelCase : str = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE))
__lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE))
assert abs(result_sum.item() - 258.204_4983) < 1e-2
assert abs(result_mean.item() - 0.336_2038) < 1e-3
def _SCREAMING_SNAKE_CASE ( self: Dict) -> str:
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ( self: Any) -> Optional[Any]:
"""simple docstring"""
pass
| 58
|
"""simple docstring"""
from math import pi
def _lowercase ( __snake_case ,__snake_case ) -> float:
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10))
| 58
| 1
|
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
UpperCAmelCase_ = random.Random()
def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: int=1.0 , __UpperCAmelCase: Dict=None , __UpperCAmelCase: int=None ) -> Any:
if rng is None:
UpperCamelCase__ : Optional[int] = global_rng
UpperCamelCase__ : List[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowercase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self, __magic_name__, __magic_name__=7, __magic_name__=400, __magic_name__=2000, __magic_name__=1, __magic_name__=0.0, __magic_name__=16000, __magic_name__=True, __magic_name__=True, ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ : Any = parent
UpperCamelCase__ : Any = batch_size
UpperCamelCase__ : Any = min_seq_length
UpperCamelCase__ : Union[str, Any] = max_seq_length
UpperCamelCase__ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase__ : Union[str, Any] = feature_size
UpperCamelCase__ : Optional[int] = padding_value
UpperCamelCase__ : str = sampling_rate
UpperCamelCase__ : Tuple = return_attention_mask
UpperCamelCase__ : Tuple = do_normalize
def UpperCamelCase__ ( self ) -> Any:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def UpperCamelCase__ ( self, __magic_name__=False, __magic_name__=False ) -> str:
"""simple docstring"""
def _flatten(__magic_name__ ):
return list(itertools.chain(*__magic_name__ ) )
if equal_length:
UpperCamelCase__ : List[Any] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase__ : str = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff )
]
if numpify:
UpperCamelCase__ : List[Any] = [np.asarray(__magic_name__ ) for x in speech_inputs]
return speech_inputs
class lowercase__ ( __lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
a : List[str] = WavaVecaFeatureExtractor
def UpperCamelCase__ ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : str = WavaVecaFeatureExtractionTester(self )
def UpperCamelCase__ ( self, __magic_name__ ) -> int:
"""simple docstring"""
self.assertTrue(np.all(np.mean(__magic_name__, axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__magic_name__, axis=0 ) - 1 ) < 1E-3 ) )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase__ : Union[str, Any] = [np.asarray(__magic_name__ ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase__ : int = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values
UpperCamelCase__ : Dict = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values
self.assertTrue(np.allclose(__magic_name__, __magic_name__, atol=1E-3 ) )
# Test batched
UpperCamelCase__ : Dict = feat_extract(__magic_name__, return_tensors='''np''' ).input_values
UpperCamelCase__ : List[Any] = feat_extract(__magic_name__, return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(__magic_name__, __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__, __magic_name__, atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase__ : Optional[Any] = np.asarray(__magic_name__ )
UpperCamelCase__ : List[str] = feat_extract(__magic_name__, return_tensors='''np''' ).input_values
UpperCamelCase__ : List[Any] = feat_extract(__magic_name__, return_tensors='''np''' ).input_values
for enc_seq_a, enc_seq_a in zip(__magic_name__, __magic_name__ ):
self.assertTrue(np.allclose(__magic_name__, __magic_name__, atol=1E-3 ) )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase__ : int = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase__ : Dict = ['''longest''', '''max_length''', '''do_not_pad''']
UpperCamelCase__ : List[Any] = [None, 1600, None]
for max_length, padding in zip(__magic_name__, __magic_name__ ):
UpperCamelCase__ : List[Any] = feat_extract(__magic_name__, padding=__magic_name__, max_length=__magic_name__, return_tensors='''np''' )
UpperCamelCase__ : str = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def UpperCamelCase__ ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase__ : List[str] = range(800, 1400, 200 )
UpperCamelCase__ : List[Any] = [floats_list((1, x) )[0] for x in lengths]
UpperCamelCase__ : Optional[int] = ['''longest''', '''max_length''', '''do_not_pad''']
UpperCamelCase__ : str = [None, 1600, None]
for max_length, padding in zip(__magic_name__, __magic_name__ ):
UpperCamelCase__ : Tuple = feat_extract(__magic_name__, max_length=__magic_name__, padding=__magic_name__ )
UpperCamelCase__ : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def UpperCamelCase__ ( self ) -> int:
"""simple docstring"""
UpperCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase__ : Any = feat_extract(
__magic_name__, truncation=__magic_name__, max_length=1000, padding='''max_length''', return_tensors='''np''' )
UpperCamelCase__ : Dict = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def UpperCamelCase__ ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase__ : int = feat_extract(
__magic_name__, truncation=__magic_name__, max_length=1000, padding='''longest''', return_tensors='''np''' )
UpperCamelCase__ : Tuple = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )]
UpperCamelCase__ : Tuple = feat_extract(
__magic_name__, truncation=__magic_name__, max_length=2000, padding='''longest''', return_tensors='''np''' )
UpperCamelCase__ : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def UpperCamelCase__ ( self ) -> List[Any]:
"""simple docstring"""
import torch
UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase__ : List[Any] = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase__ : List[Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase__ : Union[str, Any] = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase__ : List[str] = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def UpperCamelCase__ ( self ) -> str:
"""simple docstring"""
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
UpperCamelCase__ : int = WavaVecaConfig.from_pretrained(__magic_name__ )
UpperCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == '''layer''' )
| 201
|
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: List[Any]=0.999 , __UpperCAmelCase: Tuple="cosine" , ) -> Optional[Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCAmelCase: List[Any] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCAmelCase: List[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" )
UpperCamelCase__ : Dict = []
for i in range(__UpperCAmelCase ):
UpperCamelCase__ : Optional[Any] = i / num_diffusion_timesteps
UpperCamelCase__ : int = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) )
return torch.tensor(__UpperCAmelCase , dtype=torch.floataa )
class lowercase__ ( __lowerCamelCase , __lowerCamelCase ):
'''simple docstring'''
a : Optional[Any] = [e.name for e in KarrasDiffusionSchedulers]
a : Union[str, Any] = 2
@register_to_config
def __init__( self, __magic_name__ = 1000, __magic_name__ = 0.0_0085, __magic_name__ = 0.012, __magic_name__ = "linear", __magic_name__ = None, __magic_name__ = "epsilon", __magic_name__ = "linspace", __magic_name__ = 0, ) -> Tuple:
"""simple docstring"""
if trained_betas is not None:
UpperCamelCase__ : int = torch.tensor(__magic_name__, dtype=torch.floataa )
elif beta_schedule == "linear":
UpperCamelCase__ : Dict = torch.linspace(__magic_name__, __magic_name__, __magic_name__, dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCamelCase__ : List[str] = (
torch.linspace(beta_start**0.5, beta_end**0.5, __magic_name__, dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCamelCase__ : str = betas_for_alpha_bar(__magic_name__ )
else:
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" )
UpperCamelCase__ : Optional[int] = 1.0 - self.betas
UpperCamelCase__ : List[Any] = torch.cumprod(self.alphas, dim=0 )
# set all values
self.set_timesteps(__magic_name__, __magic_name__, __magic_name__ )
def UpperCamelCase__ ( self, __magic_name__, __magic_name__=None ) -> str:
"""simple docstring"""
if schedule_timesteps is None:
UpperCamelCase__ : Dict = self.timesteps
UpperCamelCase__ : Tuple = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
UpperCamelCase__ : List[str] = 1 if len(__magic_name__ ) > 1 else 0
else:
UpperCamelCase__ : List[Any] = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep
UpperCamelCase__ : int = self._index_counter[timestep_int]
return indices[pos].item()
@property
def UpperCamelCase__ ( self ) -> List[str]:
"""simple docstring"""
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def UpperCamelCase__ ( self, __magic_name__, __magic_name__, ) -> torch.FloatTensor:
"""simple docstring"""
UpperCamelCase__ : Tuple = self.index_for_timestep(__magic_name__ )
if self.state_in_first_order:
UpperCamelCase__ : str = self.sigmas[step_index]
else:
UpperCamelCase__ : Optional[int] = self.sigmas_interpol[step_index]
UpperCamelCase__ : Optional[int] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, ) -> str:
"""simple docstring"""
UpperCamelCase__ : Dict = num_inference_steps
UpperCamelCase__ : Tuple = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
UpperCamelCase__ : Union[str, Any] = np.linspace(0, num_train_timesteps - 1, __magic_name__, dtype=__magic_name__ )[::-1].copy()
elif self.config.timestep_spacing == "leading":
UpperCamelCase__ : Union[str, Any] = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCamelCase__ : List[str] = (np.arange(0, __magic_name__ ) * step_ratio).round()[::-1].copy().astype(__magic_name__ )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
UpperCamelCase__ : Optional[Any] = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCamelCase__ : List[str] = (np.arange(__magic_name__, 0, -step_ratio )).round().copy().astype(__magic_name__ )
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
UpperCamelCase__ : int = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
UpperCamelCase__ : Optional[Any] = torch.from_numpy(np.log(__magic_name__ ) ).to(__magic_name__ )
UpperCamelCase__ : Any = np.interp(__magic_name__, np.arange(0, len(__magic_name__ ) ), __magic_name__ )
UpperCamelCase__ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
UpperCamelCase__ : Any = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ )
# interpolate sigmas
UpperCamelCase__ : int = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp()
UpperCamelCase__ : List[str] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
UpperCamelCase__ : str = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(__magic_name__ ).startswith('''mps''' ):
# mps does not support float64
UpperCamelCase__ : Optional[Any] = torch.from_numpy(__magic_name__ ).to(__magic_name__, dtype=torch.floataa )
else:
UpperCamelCase__ : List[Any] = torch.from_numpy(__magic_name__ ).to(__magic_name__ )
# interpolate timesteps
UpperCamelCase__ : str = self.sigma_to_t(__magic_name__ ).to(__magic_name__, dtype=timesteps.dtype )
UpperCamelCase__ : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten()
UpperCamelCase__ : Optional[int] = torch.cat([timesteps[:1], interleaved_timesteps] )
UpperCamelCase__ : List[str] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
UpperCamelCase__ : Dict = defaultdict(__magic_name__ )
def UpperCamelCase__ ( self, __magic_name__ ) -> Optional[Any]:
"""simple docstring"""
# get log sigma
UpperCamelCase__ : Any = sigma.log()
# get distribution
UpperCamelCase__ : List[str] = log_sigma - self.log_sigmas[:, None]
# get sigmas range
UpperCamelCase__ : int = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
UpperCamelCase__ : Optional[Any] = low_idx + 1
UpperCamelCase__ : str = self.log_sigmas[low_idx]
UpperCamelCase__ : int = self.log_sigmas[high_idx]
# interpolate sigmas
UpperCamelCase__ : List[Any] = (low - log_sigma) / (low - high)
UpperCamelCase__ : str = w.clamp(0, 1 )
# transform interpolation to time range
UpperCamelCase__ : Tuple = (1 - w) * low_idx + w * high_idx
UpperCamelCase__ : int = t.view(sigma.shape )
return t
@property
def UpperCamelCase__ ( self ) -> Union[str, Any]:
"""simple docstring"""
return self.sample is None
def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = True, ) -> Union[SchedulerOutput, Tuple]:
"""simple docstring"""
UpperCamelCase__ : List[str] = self.index_for_timestep(__magic_name__ )
# advance index counter by 1
UpperCamelCase__ : int = timestep.cpu().item() if torch.is_tensor(__magic_name__ ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
UpperCamelCase__ : Optional[Any] = self.sigmas[step_index]
UpperCamelCase__ : Union[str, Any] = self.sigmas_interpol[step_index + 1]
UpperCamelCase__ : List[Any] = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
UpperCamelCase__ : Tuple = self.sigmas[step_index - 1]
UpperCamelCase__ : Tuple = self.sigmas_interpol[step_index]
UpperCamelCase__ : Dict = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
UpperCamelCase__ : Optional[int] = 0
UpperCamelCase__ : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
UpperCamelCase__ : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol
UpperCamelCase__ : List[str] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
UpperCamelCase__ : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol
UpperCamelCase__ : Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError('''prediction_type not implemented yet: sample''' )
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
UpperCamelCase__ : List[Any] = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
UpperCamelCase__ : List[str] = sigma_interpol - sigma_hat
# store for 2nd order step
UpperCamelCase__ : Dict = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
UpperCamelCase__ : List[str] = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
UpperCamelCase__ : Union[str, Any] = sigma_next - sigma_hat
UpperCamelCase__ : Union[str, Any] = self.sample
UpperCamelCase__ : Dict = None
UpperCamelCase__ : Optional[int] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__magic_name__ )
def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, ) -> torch.FloatTensor:
"""simple docstring"""
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCamelCase__ : List[str] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(__magic_name__ ):
# mps does not support float64
UpperCamelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device, dtype=torch.floataa )
UpperCamelCase__ : Tuple = timesteps.to(original_samples.device, dtype=torch.floataa )
else:
UpperCamelCase__ : str = self.timesteps.to(original_samples.device )
UpperCamelCase__ : int = timesteps.to(original_samples.device )
UpperCamelCase__ : Any = [self.index_for_timestep(__magic_name__, __magic_name__ ) for t in timesteps]
UpperCamelCase__ : List[str] = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
UpperCamelCase__ : int = sigma.unsqueeze(-1 )
UpperCamelCase__ : List[str] = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> Any:
"""simple docstring"""
return self.config.num_train_timesteps
| 201
| 1
|
"""simple docstring"""
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __magic_name__ ( lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase = ['''image_processor''', '''tokenizer''']
__UpperCamelCase = '''BridgeTowerImageProcessor'''
__UpperCamelCase = ('''RobertaTokenizer''', '''RobertaTokenizerFast''')
def __init__( self :int , snake_case :Dict , snake_case :List[Any] ):
'''simple docstring'''
super().__init__(_a , _a )
def __call__( self :Dict , snake_case :Optional[int] , snake_case :str = None , snake_case :Tuple = True , snake_case :Tuple = False , snake_case :Union[str, Any] = None , snake_case :Union[str, Any] = None , snake_case :List[Any] = 0 , snake_case :List[str] = None , snake_case :Any = None , snake_case :Tuple = None , snake_case :int = False , snake_case :Union[str, Any] = False , snake_case :Union[str, Any] = False , snake_case :Dict = False , snake_case :List[str] = True , snake_case :Optional[int] = None , **snake_case :Optional[Any] , ):
'''simple docstring'''
A_ : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel_values + pixel_mask
A_ : List[str] = self.image_processor(
_a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a )
encoding.update(_a )
return encoding
def SCREAMING_SNAKE_CASE ( self :int , *snake_case :Optional[int] , **snake_case :Dict ):
'''simple docstring'''
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , *snake_case :Optional[Any] , **snake_case :Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.decode(*_a , **_a )
@property
def SCREAMING_SNAKE_CASE ( self :Tuple ):
'''simple docstring'''
A_ : Dict = self.tokenizer.model_input_names
A_ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 369
|
from math import pi, sqrt
def __snake_case ( _lowerCAmelCase : float ) -> float:
if num <= 0:
raise ValueError("math domain error" )
if num > 1_71.5:
raise OverflowError("math range error" )
elif num - int(_lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(_lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def __snake_case ( ) -> None:
assert gamma(0.5 ) == sqrt(_lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowerCAmelCase : List[str] = 1.0
while num:
_lowerCAmelCase : List[str] = float(input('''Gamma of: '''))
print(F'''gamma({num}) = {gamma(num)}''')
print('''\nEnter 0 to exit...''')
| 70
| 0
|
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
UpperCAmelCase_ : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class lowerCAmelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : str , lowercase_ : Optional[int]):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE_ : List[str] = torchvision.models.resnetaaa(pretrained=lowercase_)
SCREAMING_SNAKE_CASE_ : List[str] = list(model.children())[:-2]
SCREAMING_SNAKE_CASE_ : List[Any] = nn.Sequential(*lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds])
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : List[Any] = self.pool(self.model(lowercase_))
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.flatten(lowercase_ , start_dim=2)
SCREAMING_SNAKE_CASE_ : Dict = out.transpose(1 , 2).contiguous()
return out # BxNx2048
class lowerCAmelCase__ ( UpperCAmelCase__ ):
'''simple docstring'''
def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = [json.loads(lowercase_) for l in open(lowercase_)]
SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.dirname(lowercase_)
SCREAMING_SNAKE_CASE_ : int = tokenizer
SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels
SCREAMING_SNAKE_CASE_ : List[str] = len(lowercase_)
SCREAMING_SNAKE_CASE_ : Optional[int] = max_seq_length
SCREAMING_SNAKE_CASE_ : Optional[Any] = transforms
def __len__( self : List[Any]):
'''simple docstring'''
return len(self.data)
def __getitem__( self : Optional[Any] , lowercase_ : Optional[int]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=lowercase_))
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = sentence[0], sentence[1:-1], sentence[-1]
SCREAMING_SNAKE_CASE_ : Any = sentence[: self.max_seq_length]
SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros(self.n_classes)
SCREAMING_SNAKE_CASE_ : List[Any] = 1
SCREAMING_SNAKE_CASE_ : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''])).convert('''RGB''')
SCREAMING_SNAKE_CASE_ : Tuple = self.transforms(lowercase_)
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Optional[int] = Counter()
for row in self.data:
label_freqs.update(row['''label'''])
return label_freqs
def _A (__a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [len(row['''sentence'''] ) for row in batch]
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = len(__a ), max(__a )
SCREAMING_SNAKE_CASE_ : Tuple = torch.zeros(__a , __a , dtype=torch.long )
SCREAMING_SNAKE_CASE_ : Dict = torch.zeros(__a , __a , dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(__a , __a ) ):
SCREAMING_SNAKE_CASE_ : Any = input_row['''sentence''']
SCREAMING_SNAKE_CASE_ : Tuple = 1
SCREAMING_SNAKE_CASE_ : Dict = torch.stack([row['''image'''] for row in batch] )
SCREAMING_SNAKE_CASE_ : Dict = torch.stack([row['''label'''] for row in batch] )
SCREAMING_SNAKE_CASE_ : Optional[int] = torch.stack([row['''image_start_token'''] for row in batch] )
SCREAMING_SNAKE_CASE_ : List[Any] = torch.stack([row['''image_end_token'''] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def _A () -> Tuple:
"""simple docstring"""
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def _A () -> List[str]:
"""simple docstring"""
return transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ),
] )
| 91
|
"""simple docstring"""
def lowercase__( __SCREAMING_SNAKE_CASE : list ):
if len(__SCREAMING_SNAKE_CASE ) < 2:
return collection
def circle_sort_util(__SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> bool:
lowercase_ : Any = False
if low == high:
return swapped
lowercase_ : str = low
lowercase_ : int = high
while left < right:
if collection[left] > collection[right]:
lowercase_ , lowercase_ : Optional[Any] = (
collection[right],
collection[left],
)
lowercase_ : Tuple = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
lowercase_ , lowercase_ : Dict = (
collection[right + 1],
collection[left],
)
lowercase_ : str = True
lowercase_ : Optional[Any] = low + int((high - low) / 2 )
lowercase_ : str = circle_sort_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = circle_sort_util(__SCREAMING_SNAKE_CASE , mid + 1 , __SCREAMING_SNAKE_CASE )
return swapped or left_swap or right_swap
lowercase_ : Dict = True
while is_not_sorted is True:
lowercase_ : Optional[Any] = circle_sort_util(__SCREAMING_SNAKE_CASE , 0 , len(__SCREAMING_SNAKE_CASE ) - 1 )
return collection
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =input("Enter numbers separated by a comma:\n").strip()
__SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(",")]
print(circle_sort(unsorted))
| 213
| 0
|
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
lowerCamelCase : Any = logging.getLogger()
def snake_case_ ( ):
__lowercase : str = argparse.ArgumentParser()
parser.add_argument("""-f""" )
__lowercase : Optional[Any] = parser.parse_args()
return args.f
class lowerCAmelCase ( __a ):
'''simple docstring'''
def lowerCAmelCase ( self : List[str] ) -> None:
"""simple docstring"""
__lowercase : Union[str, Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(__a )
def lowerCAmelCase ( self : List[Any] , __a : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase : Union[str, Any] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(__a , """argv""" , __a ):
__lowercase : Dict = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(__a , 0.666 )
@slow
@require_torch_non_multi_gpu
def lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__lowercase : int = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(__a )
__lowercase : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(__a )
__lowercase : str = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(__a )
| 306
|
def snake_case_ ( lowerCAmelCase_ : int = 200 ):
__lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200]
__lowercase : List[str] = [0] * (pence + 1)
__lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(lowerCAmelCase_ , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(2_00) == 7_36_82
| 306
| 1
|
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__lowercase : List[Any] = logging.get_logger(__name__)
__lowercase : str = '''▁'''
__lowercase : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''}
__lowercase : List[Any] = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
__lowercase : Any = {
'''facebook/xglm-564M''': 2048,
}
class __lowercase ( _lowercase ):
lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Any = ["input_ids", "attention_mask"]
def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A = None , **A , ):
lowerCamelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
lowerCamelCase_ : List[Any] = 7
lowerCamelCase_ : Union[str, Any] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
lowerCamelCase_ : Union[str, Any] = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , )
lowerCamelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(A ) )
lowerCamelCase_ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCamelCase_ : str = 1
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCamelCase_ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
lowerCamelCase_ : Union[str, Any] = len(self.sp_model )
lowerCamelCase_ : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(A )
lowerCamelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__(self ):
lowerCamelCase_ : str = self.__dict__.copy()
lowerCamelCase_ : List[Any] = None
lowerCamelCase_ : int = self.sp_model.serialized_model_proto()
return state
def __setstate__(self , A ):
lowerCamelCase_ : int = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
lowerCamelCase_ : List[Any] = {}
lowerCamelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase__ (self , A , A = None ):
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
lowerCamelCase_ : List[str] = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def UpperCAmelCase__ (self , A , A = None , A = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A , token_ids_a=A , already_has_special_tokens=A )
if token_ids_a is None:
return [1] + ([0] * len(A ))
return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A ))
def UpperCAmelCase__ (self , A , A = None ):
lowerCamelCase_ : str = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def UpperCAmelCase__ (self ):
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase__ (self , A ):
return self.sp_model.encode(A , out_type=A )
def UpperCAmelCase__ (self , A ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase_ : List[str] = self.sp_model.PieceToId(A )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def UpperCAmelCase__ (self , A ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def UpperCAmelCase__ (self , A ):
lowerCamelCase_ : Optional[Any] = ''''''.join(A ).replace(A , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ (self , A , A = None ):
if not os.path.isdir(A ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase_ : Dict = os.path.join(
A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , A )
elif not os.path.isfile(self.vocab_file ):
with open(A , '''wb''' ) as fi:
lowerCamelCase_ : Dict = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
| 318
|
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__lowercase : Any = logging.get_logger(__name__)
__lowercase : Any = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase_ ( _lowercase ) -> List[Any]:
'''simple docstring'''
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase )
lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' )
try:
return getattr(_lowercase , _lowercase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' )
if hasattr(_lowercase , _lowercase ):
return getattr(_lowercase , _lowercase )
return None
def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]:
'''simple docstring'''
lowerCamelCase_ : Optional[int] = get_file_from_repo(
_lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_lowercase , encoding='''utf-8''' ) as reader:
return json.load(_lowercase )
class __lowercase :
def __init__(self ):
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' )
@classmethod
@replace_list_option_in_docstrings(A )
def UpperCAmelCase__ (cls , A , **A ):
lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A )
lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A )
lowerCamelCase_ : List[Any] = True
lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A )
lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A )
lowerCamelCase_ : List[Any] = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ):
lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(A , A ):
lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A )
# It could be in `config.feature_extractor_type``
lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A )
if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map:
lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
lowerCamelCase_ : Any = feature_extractor_class_from_name(A )
lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None
lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING
lowerCamelCase_ : int = resolve_trust_remote_code(
A , A , A , A )
if has_remote_code and trust_remote_code:
lowerCamelCase_ : Any = get_class_from_dynamic_module(
A , A , **A )
lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A )
if os.path.isdir(A ):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(A , **A )
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(A , **A )
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(A ) in FEATURE_EXTRACTOR_MAPPING:
lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )]
return feature_extractor_class.from_dict(A , **A )
raise ValueError(
F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """
F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """
F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" )
@staticmethod
def UpperCAmelCase__ (A , A ):
FEATURE_EXTRACTOR_MAPPING.register(A , A )
| 318
| 1
|
'''simple docstring'''
from __future__ import annotations
def UpperCAmelCase_ ( __lowercase : list[int] ) -> int:
'''simple docstring'''
if not nums:
return 0
_UpperCAmelCase = nums[0]
_UpperCAmelCase = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase = (
max_excluding + num,
max(__lowercase , __lowercase ),
)
return max(__lowercase , __lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 156
|
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class A_ :
def __init__( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any]=1_3 , snake_case_ : List[Any]=1_0 , snake_case_ : Tuple=3 , snake_case_ : Tuple=2 , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=2 , snake_case_ : Optional[Any]=True , snake_case_ : Union[str, Any]=True , snake_case_ : List[Any]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : List[Any]=4 , snake_case_ : int=3_7 , snake_case_ : str="gelu" , snake_case_ : str=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[Any]=1_0 , snake_case_ : List[str]=0.0_2 , snake_case_ : int=0.9 , snake_case_ : List[Any]=None , ):
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = patch_size
_UpperCAmelCase = tubelet_size
_UpperCAmelCase = num_frames
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = mask_ratio
_UpperCAmelCase = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
_UpperCAmelCase = int(mask_ratio * self.seq_length )
def lowercase ( self : Tuple ):
_UpperCAmelCase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def lowercase ( self : Optional[int] ):
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , )
def lowercase ( self : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : str ):
_UpperCAmelCase = VideoMAEModel(config=snake_case_ )
model.to(snake_case_ )
model.eval()
_UpperCAmelCase = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase ( self : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Tuple ):
_UpperCAmelCase = VideoMAEForPreTraining(snake_case_ )
model.to(snake_case_ )
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
_UpperCAmelCase = torch.ones((self.num_masks,) )
_UpperCAmelCase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] )
_UpperCAmelCase = mask.expand(self.batch_size , -1 ).bool()
_UpperCAmelCase = model(snake_case_ , snake_case_ )
# model only returns predictions for masked patches
_UpperCAmelCase = mask.sum().item()
_UpperCAmelCase = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) )
def lowercase ( self : Dict ):
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
_lowerCamelCase : Any = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
_lowerCamelCase : List[Any] = (
{"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Any = False
_lowerCamelCase : str = False
_lowerCamelCase : str = False
def lowercase ( self : List[str] ):
_UpperCAmelCase = VideoMAEModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 )
def lowercase ( self : Any , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Union[str, Any]=False ):
_UpperCAmelCase = copy.deepcopy(snake_case_ )
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
_UpperCAmelCase = torch.ones((self.model_tester.num_masks,) )
_UpperCAmelCase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] )
_UpperCAmelCase = mask.expand(self.model_tester.batch_size , -1 ).bool()
_UpperCAmelCase = bool_masked_pos.to(snake_case_ )
if return_labels:
if model_class in [
*get_values(snake_case_ ),
]:
_UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=snake_case_ )
return inputs_dict
def lowercase ( self : Optional[int] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="VideoMAE does not use inputs_embeds" )
def lowercase ( self : Union[str, Any] ):
pass
def lowercase ( self : str ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(snake_case_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) )
def lowercase ( self : Union[str, Any] ):
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(snake_case_ )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case_ )
def lowercase ( self : Any ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def lowercase ( self : Any ):
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case_ )
@slow
def lowercase ( self : List[Any] ):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = VideoMAEModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
def lowercase ( self : Tuple ):
if not self.has_attentions:
pass
else:
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
for model_class in self.all_model_classes:
_UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks
_UpperCAmelCase = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
_UpperCAmelCase = True
_UpperCAmelCase = False
_UpperCAmelCase = True
_UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_UpperCAmelCase = True
_UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
_UpperCAmelCase = len(snake_case_ )
# Check attention is always last and order is fine
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
self.assertEqual(out_len + 1 , len(snake_case_ ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def lowercase ( self : Tuple ):
def check_hidden_states_output(snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict ):
_UpperCAmelCase = model_class(snake_case_ )
model.to(snake_case_ )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(snake_case_ ) , snake_case_ )
_UpperCAmelCase = self.model_tester.seq_length - self.model_tester.num_masks
_UpperCAmelCase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
_UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = True
check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowercase ( self : int ):
pass
def UpperCAmelCase_ ( ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" )
_UpperCAmelCase = np.load(__lowercase )
return list(__lowercase )
@require_torch
@require_vision
class A_ ( unittest.TestCase ):
@cached_property
def lowercase ( self : List[str] ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def lowercase ( self : Tuple ):
_UpperCAmelCase = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to(
snake_case_ )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_video()
_UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**snake_case_ )
# verify the logits
_UpperCAmelCase = torch.Size((1, 4_0_0) )
self.assertEqual(outputs.logits.shape , snake_case_ )
_UpperCAmelCase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(snake_case_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
@slow
def lowercase ( self : List[Any] ):
_UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(snake_case_ )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_video()
_UpperCAmelCase = image_processor(snake_case_ , return_tensors="pt" ).to(snake_case_ )
# add boolean mask, indicating which patches to mask
_UpperCAmelCase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" )
_UpperCAmelCase = torch.load(snake_case_ )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**snake_case_ )
# verify the logits
_UpperCAmelCase = torch.Size([1, 1_4_0_8, 1_5_3_6] )
_UpperCAmelCase = torch.tensor(
[[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=snake_case_ )
self.assertEqual(outputs.logits.shape , snake_case_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , snake_case_ , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `True`)
_UpperCAmelCase = torch.tensor([0.5_1_4_2] , device=snake_case_ )
self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4 ) )
# verify the loss (`config.norm_pix_loss` = `False`)
_UpperCAmelCase = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=snake_case_ ).to(
snake_case_ )
with torch.no_grad():
_UpperCAmelCase = model(**snake_case_ )
_UpperCAmelCase = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=snake_case_ )
self.assertTrue(torch.allclose(outputs.loss , snake_case_ , atol=1e-4 ) )
| 156
| 1
|
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
lowerCamelCase__ = TypeVar("""T""")
class SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self : List[str] , __lowercase : T ):
'''simple docstring'''
__a = data
__a = None
def __str__( self : List[str] ):
'''simple docstring'''
return F"{self.data}"
class SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self : Union[str, Any] ):
'''simple docstring'''
__a = None
def __iter__( self : List[str] ):
'''simple docstring'''
__a = self.top
while node:
yield node.data
__a = node.next
def __str__( self : Optional[Any] ):
'''simple docstring'''
return "->".join([str(__lowercase ) for item in self] )
def __len__( self : Any ):
'''simple docstring'''
return len(tuple(iter(self ) ) )
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return self.top is None
def UpperCamelCase_ ( self : Tuple , __lowercase : T ):
'''simple docstring'''
__a = Node(__lowercase )
if not self.is_empty():
__a = self.top
__a = node
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
if self.is_empty():
raise IndexError("""pop from empty stack""" )
assert isinstance(self.top , __lowercase )
__a = self.top
__a = self.top.next
return pop_node.data
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
if self.is_empty():
raise IndexError("""peek from empty stack""" )
assert self.top is not None
return self.top.data
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 302
|
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : Tuple =KandinskyVaaPriorPipeline
__lowerCamelCase : Union[str, Any] =['prompt']
__lowerCamelCase : Any =['prompt', 'negative_prompt']
__lowerCamelCase : List[str] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
__lowerCamelCase : List[Any] =False
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
return 32
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return 100
@property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__lowercase )
@property
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
__a = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 12,
"""embedding_dim""": self.text_embedder_hidden_size,
"""num_layers""": 1,
}
__a = PriorTransformer(**__lowercase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__a = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
__a = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__a = CLIPVisionModelWithProjection(__lowercase )
return model
@property
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
__a = CLIPImageProcessor(
crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , )
return image_processor
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
__a = self.dummy_prior
__a = self.dummy_image_encoder
__a = self.dummy_text_encoder
__a = self.dummy_tokenizer
__a = self.dummy_image_processor
__a = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , )
__a = {
"""prior""": prior,
"""image_encoder""": image_encoder,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""scheduler""": scheduler,
"""image_processor""": image_processor,
}
return components
def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ):
'''simple docstring'''
if str(__lowercase ).startswith("""mps""" ):
__a = torch.manual_seed(__lowercase )
else:
__a = torch.Generator(device=__lowercase ).manual_seed(__lowercase )
__a = {
"""prompt""": """horse""",
"""generator""": generator,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = """cpu"""
__a = self.get_dummy_components()
__a = self.pipeline_class(**__lowercase )
__a = pipe.to(__lowercase )
pipe.set_progress_bar_config(disable=__lowercase )
__a = pipe(**self.get_dummy_inputs(__lowercase ) )
__a = output.image_embeds
__a = pipe(
**self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0]
__a = image[0, -10:]
__a = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__a = np.array(
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = True
__a = False
self._test_inference_batch_single_identical(
test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
@skip_mps
def UpperCamelCase_ ( self : Any ):
'''simple docstring'''
__a = torch_device == """cpu"""
__a = False
self._test_attention_slicing_forward_pass(
test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
| 302
| 1
|
def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ):
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def _a ( ):
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 364
|
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple=7 , lowerCamelCase__ : List[Any]=3 , lowerCamelCase__ : Optional[int]=18 , lowerCamelCase__ : Any=30 , lowerCamelCase__ : int=400 , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=False , lowerCamelCase__ : Union[str, Any]=True , lowerCamelCase__ : int=True , lowerCamelCase__ : Dict=[0.5, 0.5, 0.5] , lowerCamelCase__ : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Optional[Any] = parent
UpperCamelCase__ : Dict = batch_size
UpperCamelCase__ : List[Any] = num_channels
UpperCamelCase__ : int = image_size
UpperCamelCase__ : str = min_resolution
UpperCamelCase__ : str = max_resolution
UpperCamelCase__ : Tuple = do_resize
UpperCamelCase__ : str = size if size is not None else {'''height''': 18, '''width''': 20}
UpperCamelCase__ : Optional[Any] = do_thumbnail
UpperCamelCase__ : int = do_align_axis
UpperCamelCase__ : List[Any] = do_pad
UpperCamelCase__ : List[Any] = do_normalize
UpperCamelCase__ : Dict = image_mean
UpperCamelCase__ : List[Any] = image_std
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class __magic_name__ ( __lowerCAmelCase , unittest.TestCase):
A: Tuple = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase__ ( self : str ) -> int:
'''simple docstring'''
UpperCamelCase__ : int = DonutImageProcessingTester(self )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_thumbnail''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_align_long_axis''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} )
UpperCamelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} )
def UpperCAmelCase__ ( self : Any ) -> str:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , Image.Image )
# Test not batched input
UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , np.ndarray )
# Test not batched input
UpperCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
UpperCamelCase__ : List[Any] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
@is_flaky()
def UpperCAmelCase__ ( self : str ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , torch.Tensor )
# Test not batched input
UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
UpperCamelCase__ : List[str] = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
| 51
| 0
|
'''simple docstring'''
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = inspect.getfile(accelerate.test_utils )
lowerCamelCase__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_cli.py"""] )
lowerCamelCase__ = ["""accelerate""", """launch"""]
lowerCamelCase__ = Path.home() / """.cache/huggingface/accelerate"""
lowerCamelCase__ = """default_config.yaml"""
lowerCamelCase__ = config_folder / config_file
lowerCamelCase__ = config_folder / """_default_config.yaml"""
lowerCamelCase__ = Path("""tests/test_configs""" )
@classmethod
def A ( cls : int ) -> Any:
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def A ( cls : Dict ) -> Optional[int]:
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def A ( self : Union[str, Any] ) -> Tuple:
UpperCAmelCase : Tuple = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def A ( self : Any ) -> Tuple:
for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ):
with self.subTest(config_file=__snake_case ):
execute_subprocess_async(
self.base_cmd + ['''--config_file''', str(__snake_case ), self.test_file_path] , env=os.environ.copy() )
def A ( self : str ) -> Optional[int]:
execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() )
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = """test-tpu"""
lowerCamelCase__ = """us-central1-a"""
lowerCamelCase__ = """ls"""
lowerCamelCase__ = ["""accelerate""", """tpu-config"""]
lowerCamelCase__ = """cd /usr/share"""
lowerCamelCase__ = """tests/test_samples/test_command_file.sh"""
lowerCamelCase__ = """Running gcloud compute tpus tpu-vm ssh"""
def A ( self : List[Any] ) -> Tuple:
UpperCAmelCase : int = run_command(
self.cmd
+ ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , )
def A ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase : Tuple = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command''',
self.command,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , )
def A ( self : str ) -> Optional[Any]:
UpperCAmelCase : List[Any] = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__snake_case )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : str ) -> Optional[int]:
UpperCAmelCase : Any = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , __snake_case , )
def A ( self : Optional[int] ) -> Tuple:
UpperCAmelCase : Any = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--command''',
self.command,
'''--command''',
'''echo "Hello World"''',
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , __snake_case , )
def A ( self : Union[str, Any] ) -> Tuple:
UpperCAmelCase : List[Any] = run_command(
self.cmd
+ ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : Tuple ) -> Any:
UpperCAmelCase : int = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/0_12_0.yaml''',
'''--command_file''',
self.command_file,
'''--tpu_zone''',
self.tpu_zone,
'''--tpu_name''',
self.tpu_name,
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : int ) -> Any:
UpperCAmelCase : Tuple = run_command(
self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
def A ( self : Union[str, Any] ) -> str:
UpperCAmelCase : Optional[int] = run_command(
self.cmd
+ [
'''--config_file''',
'''tests/test_configs/latest.yaml''',
'''--install_accelerate''',
'''--accelerate_version''',
'''12.0.0''',
'''--debug''',
] , return_stdout=__snake_case , )
self.assertIn(
F"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , __snake_case , )
| 23
|
"""simple docstring"""
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE_ = open # noqa: we just need to have a builtin inside this module to test it properly
| 301
| 0
|
'''simple docstring'''
import collections
import importlib.util
import os
import re
from pathlib import Path
__A : Dict = 'src/transformers'
# Matches is_xxx_available()
__A : int = re.compile(r'is\_([a-z_]*)_available()')
# Catches a one-line _import_struct = {xxx}
__A : Optional[int] = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__A : Union[str, Any] = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]')
# Catches a line if not is_foo_available
__A : Dict = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)')
# Catches a line _import_struct["bla"].append("foo")
__A : int = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__A : Optional[int] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]')
# Catches a line with an object between quotes and a comma: "MyModel",
__A : Any = re.compile('^\s+"([^"]+)",')
# Catches a line with objects between brackets only: ["foo", "bar"],
__A : Optional[int] = re.compile('^\s+\[([^\]]+)\]')
# Catches a line with from foo import bar, bla, boo
__A : Any = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n')
# Catches a line with try:
__A : Optional[Any] = re.compile(r'^\s*try:')
# Catches a line with else:
__A : Union[str, Any] = re.compile(r'^\s*else:')
def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ):
'''simple docstring'''
if _re_test_backend.search(a__ ) is None:
return None
snake_case_ : Tuple = [b[0] for b in _re_backend.findall(a__ )]
backends.sort()
return "_and_".join(a__ )
def UpperCAmelCase ( lowerCamelCase_ :List[Any] ):
'''simple docstring'''
with open(a__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
snake_case_ : List[str] = f.readlines()
snake_case_ : Optional[Any] = 0
while line_index < len(a__ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(a__ ):
return None
# First grab the objects without a specific backend in _import_structure
snake_case_ : str = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
snake_case_ : Union[str, Any] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(a__ ):
snake_case_ : Dict = _re_one_line_import_struct.search(a__ ).groups()[0]
snake_case_ : str = re.findall("""\[([^\]]+)\]""" , a__ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
snake_case_ : Optional[int] = _re_import_struct_key_value.search(a__ )
if single_line_import_search is not None:
snake_case_ : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(a__ ) > 0]
objects.extend(a__ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
snake_case_ : Any = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
snake_case_ : Optional[Any] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : List[str] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : Dict = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
snake_case_ : Union[str, Any] = lines[line_index]
if _re_import_struct_add_one.search(a__ ) is not None:
objects.append(_re_import_struct_add_one.search(a__ ).groups()[0] )
elif _re_import_struct_add_many.search(a__ ) is not None:
snake_case_ : Any = _re_import_struct_add_many.search(a__ ).groups()[0].split(""", """ )
snake_case_ : Any = [obj[1:-1] for obj in imports if len(a__ ) > 0]
objects.extend(a__ )
elif _re_between_brackets.search(a__ ) is not None:
snake_case_ : List[Any] = _re_between_brackets.search(a__ ).groups()[0].split(""", """ )
snake_case_ : Optional[int] = [obj[1:-1] for obj in imports if len(a__ ) > 0]
objects.extend(a__ )
elif _re_quote_object.search(a__ ) is not None:
objects.append(_re_quote_object.search(a__ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
snake_case_ : Optional[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
snake_case_ : Optional[int] = []
while (
line_index < len(a__ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
snake_case_ : str = lines[line_index]
snake_case_ : str = _re_import.search(a__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
snake_case_ : Tuple = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(a__ ):
# If the line is an if is_backend_available, we grab all objects associated.
snake_case_ : List[str] = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
snake_case_ : Optional[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
snake_case_ : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
snake_case_ : Optional[Any] = lines[line_index]
snake_case_ : Union[str, Any] = _re_import.search(a__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
snake_case_ : int = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :str ):
'''simple docstring'''
def find_duplicates(lowerCamelCase_ :Any ):
return [k for k, v in collections.Counter(a__ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
snake_case_ : Tuple = []
for key in import_dict_objects.keys():
snake_case_ : Any = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
snake_case_ : str = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
snake_case_ : Union[str, Any] = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : Any = []
for root, _, files in os.walk(a__ ):
if "__init__.py" in files:
snake_case_ : List[str] = os.path.join(a__ , """__init__.py""" )
snake_case_ : int = parse_init(a__ )
if objects is not None:
snake_case_ : Optional[int] = analyze_results(*a__ )
if len(a__ ) > 0:
snake_case_ : Tuple = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(a__ ) )
if len(a__ ) > 0:
raise ValueError("""\n\n""".join(a__ ) )
def UpperCAmelCase ( ):
'''simple docstring'''
snake_case_ : str = []
for path, directories, files in os.walk(a__ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(a__ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(a__ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
snake_case_ : Any = str((Path(a__ ) / folder).relative_to(a__ ) )
snake_case_ : Any = short_path.replace(os.path.sep , """.""" )
submodules.append(a__ )
for fname in files:
if fname == "__init__.py":
continue
snake_case_ : int = str((Path(a__ ) / fname).relative_to(a__ ) )
snake_case_ : Optional[int] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(a__ )
return submodules
__A : Union[str, Any] = [
'convert_pytorch_checkpoint_to_tf2',
'modeling_flax_pytorch_utils',
]
def UpperCAmelCase ( ):
'''simple docstring'''
# This is to make sure the transformers module imported is the one in the repo.
snake_case_ : Union[str, Any] = importlib.util.spec_from_file_location(
"""transformers""" , os.path.join(a__ , """__init__.py""" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
snake_case_ : Optional[int] = spec.loader.load_module()
snake_case_ : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(a__ ) > 0:
snake_case_ : Any = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registered in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 360
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : str = {
'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __UpperCamelCase ( lowercase__ ):
lowercase : List[Any] = 'canine'
def __init__( self :Optional[int] ,_UpperCamelCase :Dict=7_6_8 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :Any=0.1 ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Any=1_6_3_8_4 ,_UpperCamelCase :Tuple=1_6 ,_UpperCamelCase :List[str]=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=0 ,_UpperCamelCase :List[str]=0xE_0_0_0 ,_UpperCamelCase :Optional[Any]=0xE_0_0_1 ,_UpperCamelCase :str=4 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :str=8 ,_UpperCamelCase :int=1_6_3_8_4 ,_UpperCamelCase :int=1_2_8 ,**_UpperCamelCase :str ,):
super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase )
snake_case_ : List[str] = max_position_embeddings
snake_case_ : Union[str, Any] = hidden_size
snake_case_ : Dict = num_hidden_layers
snake_case_ : Optional[int] = num_attention_heads
snake_case_ : Tuple = intermediate_size
snake_case_ : str = hidden_act
snake_case_ : Union[str, Any] = hidden_dropout_prob
snake_case_ : Dict = attention_probs_dropout_prob
snake_case_ : Optional[Any] = initializer_range
snake_case_ : Optional[int] = type_vocab_size
snake_case_ : List[str] = layer_norm_eps
# Character config:
snake_case_ : Any = downsampling_rate
snake_case_ : List[str] = upsampling_kernel_size
snake_case_ : int = num_hash_functions
snake_case_ : Tuple = num_hash_buckets
snake_case_ : Tuple = local_transformer_stride
| 8
| 0
|
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowercase_ = logging.get_logger(__name__)
class A ( _UpperCAmelCase ):
"""simple docstring"""
def __init__( self : str,*lowercase_ : Union[str, Any],**lowercase_ : Union[str, Any] )-> None:
'''simple docstring'''
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.',lowercase_,)
super().__init__(*lowercase_,**lowercase_ )
| 7
|
class A :
"""simple docstring"""
def __init__( self : Any,lowercase_ : Tuple,lowercase_ : Any,lowercase_ : List[str] )-> List[Any]:
'''simple docstring'''
A__ = name
A__ = value
A__ = weight
def __repr__( self : int )-> Tuple:
'''simple docstring'''
return F'{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
return self.value
def snake_case__ ( self : Any )-> Tuple:
'''simple docstring'''
return self.name
def snake_case__ ( self : Any )-> Dict:
'''simple docstring'''
return self.weight
def snake_case__ ( self : Union[str, Any] )-> Optional[Any]:
'''simple docstring'''
return self.value / self.weight
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ = []
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Any:
'''simple docstring'''
A__ = sorted(SCREAMING_SNAKE_CASE__ , key=SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ )
A__ = []
A__ , A__ = 0.0, 0.0
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _snake_case( ) -> Any:
'''simple docstring'''
if __name__ == "__main__":
import doctest
doctest.testmod()
| 7
| 1
|
"""simple docstring"""
def _snake_case ( lowercase__ : int , lowercase__ : int ) -> int:
'''simple docstring'''
return x if y == 0 else greatest_common_divisor(lowercase__ , x % y )
def _snake_case ( lowercase__ : int , lowercase__ : int ) -> int:
'''simple docstring'''
return (x * y) // greatest_common_divisor(lowercase__ , lowercase__ )
def _snake_case ( lowercase__ : int = 2_0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ :Tuple = 1
for i in range(1 , n + 1 ):
lowerCAmelCase_ :Dict = lcm(lowercase__ , lowercase__ )
return g
if __name__ == "__main__":
print(F"""{solution() = }""")
| 1
|
"""simple docstring"""
def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int:
'''simple docstring'''
if index == number_of_items:
return 0
lowerCAmelCase_ :Any = 0
lowerCAmelCase_ :str = 0
lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 )
if weights[index] <= max_weight:
lowerCAmelCase_ :str = values[index] + knapsack(
lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 )
return max(lowercase__ , lowercase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 1
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A : int = {
"configuration_poolformer": [
"POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"PoolFormerConfig",
"PoolFormerOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ["PoolFormerFeatureExtractor"]
A : List[str] = ["PoolFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
"POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PoolFormerForImageClassification",
"PoolFormerModel",
"PoolFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 57
|
"""simple docstring"""
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class _UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
def __init__( self , __a , __a=None , __a=True , __a=None , **__a ):
__lowerCAmelCase = parent
__lowerCAmelCase = config_class
__lowerCAmelCase = has_text_modality
__lowerCAmelCase = kwargs
__lowerCAmelCase = common_properties
def snake_case ( self ):
__lowerCAmelCase = self.config_class(**self.inputs_dict )
__lowerCAmelCase = (
["hidden_size", "num_attention_heads", "num_hidden_layers"]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["vocab_size"] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(__a , __a ) , msg=f"`{prop}` does not exist" )
# Test that config has the common properties as setter
for idx, name in enumerate(__a ):
try:
setattr(__a , __a , __a )
self.parent.assertEqual(
getattr(__a , __a ) , __a , msg=f"`{name} value {idx} expected, but was {getattr(__a , __a )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(__a ):
try:
__lowerCAmelCase = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(__a , __a ) , __a , msg=f"`{name} value {idx} expected, but was {getattr(__a , __a )}" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def snake_case ( self ):
__lowerCAmelCase = self.config_class(**self.inputs_dict )
__lowerCAmelCase = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , __a )
def snake_case ( self ):
__lowerCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = os.path.join(__a , "config.json" )
config_first.to_json_file(__a )
__lowerCAmelCase = self.config_class.from_json_file(__a )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def snake_case ( self ):
__lowerCAmelCase = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(__a )
__lowerCAmelCase = self.config_class.from_pretrained(__a )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def snake_case ( self ):
__lowerCAmelCase = self.config_class(**self.inputs_dict )
__lowerCAmelCase = "test"
with tempfile.TemporaryDirectory() as tmpdirname:
__lowerCAmelCase = os.path.join(__a , __a )
config_first.save_pretrained(__a )
__lowerCAmelCase = self.config_class.from_pretrained(__a , subfolder=__a )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def snake_case ( self ):
__lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
__lowerCAmelCase = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def snake_case ( self ):
if self.config_class.is_composition:
return
__lowerCAmelCase = self.config_class()
self.parent.assertIsNotNone(__a )
def snake_case ( self ):
__lowerCAmelCase = copy.deepcopy(__a )
__lowerCAmelCase = self.config_class(**__a )
__lowerCAmelCase = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) )
elif getattr(__a , __a ) != value:
wrong_values.append((key, getattr(__a , __a ), value) )
if len(__a ) > 0:
__lowerCAmelCase = "\n".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] )
raise ValueError(f"The following keys were not properly set in the config:\n{errors}" )
def snake_case ( self ):
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 57
| 1
|
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=10 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[1, 1, 2, 1] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=3 , lowerCAmelCase__=None , ) -> List[str]:
'''simple docstring'''
lowercase__: List[Any] = parent
lowercase__: Dict = batch_size
lowercase__: Dict = image_size
lowercase__: Optional[Any] = num_channels
lowercase__: List[Any] = embeddings_size
lowercase__: Any = hidden_sizes
lowercase__: Any = depths
lowercase__: int = is_training
lowercase__: Union[str, Any] = use_labels
lowercase__: Dict = hidden_act
lowercase__: Optional[Any] = num_labels
lowercase__: Optional[Any] = scope
lowercase__: int = len(lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
'''simple docstring'''
lowercase__: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase__: Optional[int] = None
if self.use_labels:
lowercase__: Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
lowercase__: str = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]:
'''simple docstring'''
lowercase__: Dict = TFResNetModel(config=lowerCAmelCase__ )
lowercase__: Optional[Any] = model(lowerCAmelCase__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]:
'''simple docstring'''
lowercase__: int = self.num_labels
lowercase__: Dict = TFResNetForImageClassification(lowerCAmelCase__ )
lowercase__: Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
lowercase__: Tuple = self.prepare_config_and_inputs()
lowercase__ , lowercase__ , lowercase__: Optional[Any] = config_and_inputs
lowercase__: Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __a ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
__lowercase : Dict = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__lowercase : Optional[Any] = (
{'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification}
if is_tf_available()
else {}
)
__lowercase : Any = False
__lowercase : Optional[Any] = False
__lowercase : Optional[Any] = False
__lowercase : Tuple = False
__lowercase : Optional[int] = False
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]:
'''simple docstring'''
lowercase__: int = TFResNetModelTester(self )
lowercase__: Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
lowercase__ , lowercase__: Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase__: Optional[Any] = model_class(lowerCAmelCase__ )
lowercase__: Dict = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase__: Any = [*signature.parameters.keys()]
lowercase__: Optional[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
'''simple docstring'''
lowercase__: List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase__: Dict = model_class(lowerCAmelCase__ )
lowercase__: Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
lowercase__: Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowercase__: Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowercase__ , lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__: List[Any] = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowercase__: Optional[Any] = layer_type
lowercase__: Dict = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase__: Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
'''simple docstring'''
lowercase__: Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__: Any = TFResNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def snake_case_ ( ) -> List[Any]:
lowercase__: List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowercase__: int = self.default_image_processor
lowercase__: Any = prepare_img()
lowercase__: List[str] = image_processor(images=lowerCAmelCase__ , return_tensors='tf' )
# forward pass
lowercase__: List[Any] = model(**lowerCAmelCase__ )
# verify the logits
lowercase__: Optional[int] = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
lowercase__: str = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCAmelCase__ , atol=1E-4 ) )
| 288
|
def snake_case_ ( snake_case ) -> list[int]:
lowercase__: Dict = [0 for i in range(len(snake_case ) )]
# initialize interval's left pointer and right pointer
lowercase__ , lowercase__: Union[str, Any] = 0, 0
for i in range(1 , len(snake_case ) ):
# case when current index is inside the interval
if i <= right_pointer:
lowercase__: List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] )
lowercase__: List[str] = min_edge
while go_next(snake_case , snake_case , snake_case ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
lowercase__ , lowercase__: List[Any] = i, i + z_result[i] - 1
return z_result
def snake_case_ ( snake_case , snake_case , snake_case ) -> bool:
return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]]
def snake_case_ ( snake_case , snake_case ) -> int:
lowercase__: Tuple = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
lowercase__: Any = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(snake_case ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 288
| 1
|
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( __a , unittest.TestCase ):
_lowercase =DanceDiffusionPipeline
_lowercase =UNCONDITIONAL_AUDIO_GENERATION_PARAMS
_lowercase =PipelineTesterMixin.required_optional_params - {
'''callback''',
'''latents''',
'''callback_steps''',
'''output_type''',
'''num_images_per_prompt''',
}
_lowercase =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
_lowercase =False
_lowercase =False
def __a ( self ) -> str:
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_UpperCamelCase , use_timestep_embedding=_UpperCamelCase , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , )
lowerCAmelCase_ = IPNDMScheduler()
lowerCAmelCase_ = {
"unet": unet,
"scheduler": scheduler,
}
return components
def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Optional[int]:
if str(_UpperCamelCase ).startswith("mps" ):
lowerCAmelCase_ = torch.manual_seed(_UpperCamelCase )
else:
lowerCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase )
lowerCAmelCase_ = {
"batch_size": 1,
"generator": generator,
"num_inference_steps": 4,
}
return inputs
def __a ( self ) -> Tuple:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.get_dummy_components()
lowerCAmelCase_ = DanceDiffusionPipeline(**_UpperCamelCase )
lowerCAmelCase_ = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase_ = self.get_dummy_inputs(_UpperCamelCase )
lowerCAmelCase_ = pipe(**_UpperCamelCase )
lowerCAmelCase_ = output.audios
lowerCAmelCase_ = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
lowerCAmelCase_ = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __a ( self ) -> List[str]:
return super().test_save_load_local()
@skip_mps
def __a ( self ) -> Union[str, Any]:
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def __a ( self ) -> str:
return super().test_save_load_optional_components()
@skip_mps
def __a ( self ) -> Dict:
return super().test_attention_slicing_forward_pass()
def __a ( self ) -> Optional[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
def __a ( self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ) -> Tuple:
lowerCAmelCase_ = torch_device
lowerCAmelCase_ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" )
lowerCAmelCase_ = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
lowerCAmelCase_ = output.audios
lowerCAmelCase_ = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase_ = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def __a ( self ) -> List[str]:
lowerCAmelCase_ = torch_device
lowerCAmelCase_ = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa )
lowerCAmelCase_ = pipe.to(_UpperCamelCase )
pipe.set_progress_bar_config(disable=_UpperCamelCase )
lowerCAmelCase_ = torch.manual_seed(0 )
lowerCAmelCase_ = pipe(generator=_UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.096 )
lowerCAmelCase_ = output.audios
lowerCAmelCase_ = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
lowerCAmelCase_ = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
| 231
|
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=32 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=[10, 20, 30, 40] , _UpperCamelCase=[2, 2, 3, 2] , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=["stage2", "stage3", "stage4"] , _UpperCamelCase=[2, 3, 4] , _UpperCamelCase=None , ) -> Union[str, Any]:
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = image_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = num_stages
lowerCAmelCase_ = hidden_sizes
lowerCAmelCase_ = depths
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = num_labels
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = out_features
lowerCAmelCase_ = out_indices
lowerCAmelCase_ = scope
def __a ( self ) -> Optional[int]:
lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ = None
if self.use_labels:
lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase_ = self.get_config()
return config, pixel_values, labels
def __a ( self ) -> List[str]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str:
lowerCAmelCase_ = ConvNextVaModel(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
lowerCAmelCase_ = model(_UpperCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]:
lowerCAmelCase_ = ConvNextVaForImageClassification(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
lowerCAmelCase_ = model(_UpperCamelCase , labels=_UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple:
lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
lowerCAmelCase_ = model(_UpperCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
lowerCAmelCase_ = None
lowerCAmelCase_ = ConvNextVaBackbone(config=_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
lowerCAmelCase_ = model(_UpperCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __a ( self ) -> Any:
lowerCAmelCase_ = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs
lowerCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
def __a ( self ) -> str:
lowerCAmelCase_ = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs
lowerCAmelCase_ = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __a , __a , unittest.TestCase ):
_lowercase =(
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
_lowercase =(
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
_lowercase =False
_lowercase =False
_lowercase =False
_lowercase =False
_lowercase =False
def __a ( self ) -> Tuple:
lowerCAmelCase_ = ConvNextVaModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 )
def __a ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __a ( self ) -> Any:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def __a ( self ) -> List[Any]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def __a ( self ) -> int:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def __a ( self ) -> str:
pass
def __a ( self ) -> Union[str, Any]:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels()
lowerCAmelCase_ = True
if model_class.__name__ in [
*get_values(_UpperCamelCase ),
*get_values(_UpperCamelCase ),
]:
continue
lowerCAmelCase_ = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.train()
lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
lowerCAmelCase_ = model(**_UpperCamelCase ).loss
loss.backward()
def __a ( self ) -> Optional[int]:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_with_labels()
lowerCAmelCase_ = False
lowerCAmelCase_ = True
if (
model_class.__name__
in [*get_values(_UpperCamelCase ), *get_values(_UpperCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
lowerCAmelCase_ = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
lowerCAmelCase_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase )
lowerCAmelCase_ = model(**_UpperCamelCase ).loss
loss.backward()
def __a ( self ) -> Any:
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ = model_class(_UpperCamelCase )
lowerCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ = [*signature.parameters.keys()]
lowerCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _UpperCamelCase )
def __a ( self ) -> Tuple:
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCamelCase )
def __a ( self ) -> List[Any]:
def check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
lowerCAmelCase_ = model_class(_UpperCamelCase )
model.to(_UpperCamelCase )
model.eval()
with torch.no_grad():
lowerCAmelCase_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) )
lowerCAmelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase_ = self.model_tester.num_stages
self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ = True
check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def __a ( self ) -> Optional[int]:
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase )
@slow
def __a ( self ) -> Optional[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ = ConvNextVaModel.from_pretrained(_UpperCamelCase )
self.assertIsNotNone(_UpperCamelCase )
def lowerCamelCase__ ( ):
"""simple docstring"""
lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _lowerCAmelCase ( unittest.TestCase ):
@cached_property
def __a ( self ) -> int:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def __a ( self ) -> List[str]:
lowerCAmelCase_ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(_UpperCamelCase )
lowerCAmelCase_ = self.default_image_processor
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = preprocessor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ = model(**_UpperCamelCase )
# verify the logits
lowerCAmelCase_ = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , _UpperCamelCase )
lowerCAmelCase_ = torch.tensor([0.9996, 0.1966, -0.4386] ).to(_UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
| 231
| 1
|
from math import ceil
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] = 1001 ) -> Dict:
UpperCAmelCase_ = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
UpperCAmelCase_ = 2 * i + 1
UpperCAmelCase_ = 2 * i
UpperCAmelCase_ = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
_lowerCamelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 359
|
from __future__ import annotations
_lowerCamelCase = list[list[int]]
# assigning initial values to the grid
_lowerCamelCase = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
_lowerCamelCase = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> bool:
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> tuple[int, int] | None:
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> Matrix | None:
if location := find_empty_location(__UpperCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
UpperCAmelCase_ = digit
if sudoku(__UpperCamelCase ) is not None:
return grid
UpperCAmelCase_ = 0
return None
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Matrix ) -> None:
for row in grid:
for cell in row:
print(__UpperCamelCase , end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('\nExample grid:\n' + '=' * 20)
print_solution(example_grid)
print('\nExample grid solution:')
_lowerCamelCase = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('Cannot find a solution.')
| 177
| 0
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , A_ , A_=7 , A_=3 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=True , A_=1 / 255 , A_=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
__UpperCamelCase =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
__UpperCamelCase =parent
__UpperCamelCase =batch_size
__UpperCamelCase =num_channels
__UpperCamelCase =min_resolution
__UpperCamelCase =max_resolution
__UpperCamelCase =do_resize
__UpperCamelCase =size
__UpperCamelCase =do_normalize
__UpperCamelCase =image_mean
__UpperCamelCase =image_std
__UpperCamelCase =do_rescale
__UpperCamelCase =rescale_factor
__UpperCamelCase =do_pad
def _a ( self ) -> Any:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _a ( self , A_ , A_=False ) -> Optional[int]:
if not batched:
__UpperCamelCase =image_inputs[0]
if isinstance(A_ , Image.Image ):
__UpperCamelCase , __UpperCamelCase =image.size
else:
__UpperCamelCase , __UpperCamelCase =image.shape[1], image.shape[2]
if w < h:
__UpperCamelCase =int(self.size['shortest_edge'] * h / w )
__UpperCamelCase =self.size['shortest_edge']
elif w > h:
__UpperCamelCase =self.size['shortest_edge']
__UpperCamelCase =int(self.size['shortest_edge'] * w / h )
else:
__UpperCamelCase =self.size['shortest_edge']
__UpperCamelCase =self.size['shortest_edge']
else:
__UpperCamelCase =[]
for image in image_inputs:
__UpperCamelCase , __UpperCamelCase =self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCamelCase =max(A_ , key=lambda A_ : item[0] )[0]
__UpperCamelCase =max(A_ , key=lambda A_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class UpperCAmelCase__ ( A_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : int = DeformableDetrImageProcessor if is_vision_available() else None
def _a ( self ) -> str:
__UpperCamelCase =DeformableDetrImageProcessingTester(self )
@property
def _a ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self ) -> int:
__UpperCamelCase =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'do_rescale' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
def _a ( self ) -> str:
__UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} )
self.assertEqual(image_processor.do_pad , A_ )
__UpperCamelCase =self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A_ )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , A_ )
def _a ( self ) -> Optional[int]:
pass
def _a ( self ) -> Tuple:
# Initialize image_processing
__UpperCamelCase =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
__UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ , batched=A_ )
__UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self ) -> Dict:
# Initialize image_processing
__UpperCamelCase =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
__UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values
__UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ , batched=A_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self ) -> List[Any]:
# Initialize image_processing
__UpperCamelCase =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
__UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values
__UpperCamelCase , __UpperCamelCase =self.image_processor_tester.get_expected_values(A_ , batched=A_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _a ( self ) -> Optional[Any]:
# prepare image and target
__UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
__UpperCamelCase =json.loads(f.read() )
__UpperCamelCase ={'image_id': 39769, 'annotations': target}
# encode them
__UpperCamelCase =DeformableDetrImageProcessor()
__UpperCamelCase =image_processing(images=A_ , annotations=A_ , return_tensors='pt' )
# verify pixel values
__UpperCamelCase =torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , A_ )
__UpperCamelCase =torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1E-4 ) )
# verify area
__UpperCamelCase =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) )
# verify boxes
__UpperCamelCase =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ )
__UpperCamelCase =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1E-3 ) )
# verify image_id
__UpperCamelCase =torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) )
# verify is_crowd
__UpperCamelCase =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) )
# verify class_labels
__UpperCamelCase =torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) )
# verify orig_size
__UpperCamelCase =torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) )
# verify size
__UpperCamelCase =torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
@slow
def _a ( self ) -> List[Any]:
# prepare image, target and masks_path
__UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
__UpperCamelCase =json.loads(f.read() )
__UpperCamelCase ={'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target}
__UpperCamelCase =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
__UpperCamelCase =DeformableDetrImageProcessor(format='coco_panoptic' )
__UpperCamelCase =image_processing(images=A_ , annotations=A_ , masks_path=A_ , return_tensors='pt' )
# verify pixel values
__UpperCamelCase =torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['pixel_values'].shape , A_ )
__UpperCamelCase =torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , A_ , atol=1E-4 ) )
# verify area
__UpperCamelCase =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , A_ ) )
# verify boxes
__UpperCamelCase =torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , A_ )
__UpperCamelCase =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , A_ , atol=1E-3 ) )
# verify image_id
__UpperCamelCase =torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , A_ ) )
# verify is_crowd
__UpperCamelCase =torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , A_ ) )
# verify class_labels
__UpperCamelCase =torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , A_ ) )
# verify masks
__UpperCamelCase =822873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , A_ )
# verify orig_size
__UpperCamelCase =torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , A_ ) )
# verify size
__UpperCamelCase =torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , A_ ) )
| 62
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A__ : List[Any] =logging.get_logger(__name__)
A__ : Any =torch.device('''cpu''')
def UpperCamelCase__ ( ):
"""simple docstring"""
_lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw )
return im
def UpperCamelCase__ ( lowerCAmelCase ):
"""simple docstring"""
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02] )
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = dct.pop(lowerCAmelCase )
_lowerCAmelCase = val
def UpperCamelCase__ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = []
for k in state_dict.keys():
_lowerCAmelCase = k
if ".pwconv" in k:
_lowerCAmelCase = k_new.replace(""".pwconv""" , """.point_wise_conv""" )
if ".dwconv" in k:
_lowerCAmelCase = k_new.replace(""".dwconv""" , """.depth_wise_conv""" )
if ".Proj." in k:
_lowerCAmelCase = k_new.replace(""".Proj.""" , """.proj.""" )
if "patch_embed" in k_new:
_lowerCAmelCase = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" )
if "network" in k_new:
_lowerCAmelCase = k_new.split(""".""" )
if ls[2].isdigit():
_lowerCAmelCase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
_lowerCAmelCase = k_new.replace("""network""" , """swiftformer.encoder.network""" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
_lowerCAmelCase = 10_00
_lowerCAmelCase = """huggingface/label-files"""
_lowerCAmelCase = """imagenet-1k-id2label.json"""
_lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
_lowerCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()}
_lowerCAmelCase = idalabel
_lowerCAmelCase = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
_lowerCAmelCase = [3, 3, 6, 4]
_lowerCAmelCase = [48, 56, 1_12, 2_20]
elif swiftformer_name == "swiftformer_s":
_lowerCAmelCase = [3, 3, 9, 6]
_lowerCAmelCase = [48, 64, 1_68, 2_24]
elif swiftformer_name == "swiftformer_l1":
_lowerCAmelCase = [4, 3, 10, 5]
_lowerCAmelCase = [48, 96, 1_92, 3_84]
elif swiftformer_name == "swiftformer_l3":
_lowerCAmelCase = [4, 4, 12, 6]
_lowerCAmelCase = [64, 1_28, 3_20, 5_12]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("""https""" ):
_lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" , check_hash=lowerCAmelCase )
else:
_lowerCAmelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )
_lowerCAmelCase = checkpoint
_lowerCAmelCase = create_rename_keys(lowerCAmelCase )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
# load HuggingFace model
_lowerCAmelCase = SwiftFormerForImageClassification(lowerCAmelCase ).eval()
hf_model.load_state_dict(lowerCAmelCase )
# prepare test inputs
_lowerCAmelCase = prepare_img()
_lowerCAmelCase = ViTImageProcessor.from_pretrained("""preprocessor_config""" )
_lowerCAmelCase = processor(images=lowerCAmelCase , return_tensors="""pt""" )
# compare outputs from both models
_lowerCAmelCase = get_expected_output(lowerCAmelCase )
_lowerCAmelCase = hf_model(inputs["""pixel_values"""] ).logits
assert hf_logits.shape == torch.Size([1, 10_00] )
assert torch.allclose(hf_logits[0, 0:5] , lowerCAmelCase , atol=1e-3 )
Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase )
print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" )
hf_model.save_pretrained(lowerCAmelCase )
if __name__ == "__main__":
A__ : str =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swiftformer_name''',
default='''swiftformer_xs''',
choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''],
type=str,
help='''Name of the SwiftFormer model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''./converted_outputs/''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''')
A__ : Tuple =parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 70
| 0
|
'''simple docstring'''
snake_case__ : str = '''0.18.2'''
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 367
|
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase_ :int
lowerCamelCase_ :int
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self , snake_case_ ):
'''simple docstring'''
UpperCAmelCase_ : list[list[Edge]] = [[] for _ in range(snake_case_ )]
UpperCAmelCase_ : Any = size
def __getitem__( self , snake_case_ ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def _UpperCamelCase ( self ):
'''simple docstring'''
return self._size
def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError('Edge weight must be either 0 or 1.' )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError('Vertex indexes must be in [0; size).' )
self._graph[from_vertex].append(Edge(snake_case_ , snake_case_ ) )
def _UpperCamelCase ( self , snake_case_ , snake_case_ ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = deque([start_vertex] )
UpperCAmelCase_ : list[int | None] = [None] * self.size
UpperCAmelCase_ : str = 0
while queue:
UpperCAmelCase_ : Optional[int] = queue.popleft()
UpperCAmelCase_ : List[str] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
UpperCAmelCase_ : Union[str, Any] = current_distance + edge.weight
UpperCAmelCase_ : Union[str, Any] = distances[edge.destination_vertex]
if (
isinstance(snake_case_ , snake_case_ )
and new_distance >= dest_vertex_distance
):
continue
UpperCAmelCase_ : Optional[Any] = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError('No path from start_vertex to finish_vertex.' )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 274
| 0
|
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : int ,*lowerCamelCase__ : Tuple ,**lowerCamelCase__ : Optional[int] ) -> int:
'''simple docstring'''
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" ,lowerCamelCase__ ,)
super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
| 296
|
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase):
@slow
def UpperCamelCase__ ( self ):
lowerCamelCase : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
lowerCamelCase : Any = tf.convert_to_tensor(
[[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase : str = model(__magic_name__ )["""last_hidden_state"""]
lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 1_0, 7_6_8) )
self.assertEqual(output.shape , __magic_name__ )
# compare the actual values for a slice.
lowerCamelCase : Dict = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 287
| 0
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
snake_case_ = None
snake_case_ = logging.get_logger(__name__)
snake_case_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
snake_case_ = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
snake_case_ = {
'camembert-base': 512,
}
snake_case_ = '▁'
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : Any = VOCAB_FILES_NAMES
A_ : Any = PRETRAINED_VOCAB_FILES_MAP
A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : Tuple = ['input_ids', 'attention_mask']
A_ : Dict = CamembertTokenizer
def __init__(self : int , a__ : Tuple=None , a__ : Dict=None , a__ : Tuple="<s>" , a__ : Optional[int]="</s>" , a__ : Tuple="</s>" , a__ : Optional[Any]="<s>" , a__ : Dict="<unk>" , a__ : Optional[Any]="<pad>" , a__ : str="<mask>" , a__ : Optional[int]=["<s>NOTUSED", "</s>NOTUSED"] , **a__ : Optional[int] , ):
"""simple docstring"""
__snake_case = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
_SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
__snake_case = vocab_file
__snake_case = False if not self.vocab_file else True
def a (self : str , a__ : Optional[Any] , a__ : str = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case = [self.cls_token_id]
__snake_case = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a (self : Optional[int] , a__ : int , a__ : Tuple = None ):
"""simple docstring"""
__snake_case = [self.sep_token_id]
__snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a (self : List[str] , a__ : Optional[Any] , a__ : Optional[Any] = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case = os.path.join(
_SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 371
|
import math
def lowerCamelCase__ ( snake_case_ : int ) -> list[int]:
__snake_case = []
__snake_case = 2
__snake_case = int(math.sqrt(snake_case_ ) ) # Size of every segment
__snake_case = [True] * (end + 1)
__snake_case = []
while start <= end:
if temp[start] is True:
in_prime.append(snake_case_ )
for i in range(start * start , end + 1 , snake_case_ ):
__snake_case = False
start += 1
prime += in_prime
__snake_case = end + 1
__snake_case = min(2 * end , snake_case_ )
while low <= n:
__snake_case = [True] * (high - low + 1)
for each in in_prime:
__snake_case = math.floor(low / each ) * each
if t < low:
t += each
for j in range(snake_case_ , high + 1 , snake_case_ ):
__snake_case = False
for j in range(len(snake_case_ ) ):
if temp[j] is True:
prime.append(j + low )
__snake_case = high + 1
__snake_case = min(high + end , snake_case_ )
return prime
print(sieve(10**6))
| 238
| 0
|
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class _UpperCAmelCase ( lowerCAmelCase__):
def __init__( self : Optional[int] , lowercase_ : str , lowercase_ : int ):
snake_case_ : Dict = params
snake_case_ : Union[str, Any] = np.array(lowercase_ )
snake_case_ : str = np.array([len(lowercase_ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Dict , lowercase_ : Union[str, Any] ):
return (self.token_ids[index], self.lengths[index])
def __len__( self : List[Any] ):
return len(self.lengths )
def _snake_case ( self : Tuple ):
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def _snake_case ( self : Tuple ):
snake_case_ : str = self.params.max_model_input_size
snake_case_ : Dict = self.lengths > max_len
logger.info(f"Splitting {sum(lowercase_ )} too long sequences." )
def divide_chunks(lowercase_ : Tuple , lowercase_ : Optional[Any] ):
return [l[i : i + n] for i in range(0 , len(lowercase_ ) , lowercase_ )]
snake_case_ : Tuple = []
snake_case_ : Any = []
if self.params.mlm:
snake_case_, snake_case_ : Union[str, Any] = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token''']
else:
snake_case_, snake_case_ : Dict = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token''']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
snake_case_ : Any = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
snake_case_ : Dict = np.insert(lowercase_ , 0 , lowercase_ )
if sub_s[-1] != sep_id:
snake_case_ : Tuple = np.insert(lowercase_ , len(lowercase_ ) , lowercase_ )
assert len(lowercase_ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowercase_ )
new_tok_ids.extend(lowercase_ )
new_lengths.extend([len(lowercase_ ) for l in sub_seqs] )
snake_case_ : List[str] = np.array(lowercase_ )
snake_case_ : Optional[Any] = np.array(lowercase_ )
def _snake_case ( self : Optional[int] ):
snake_case_ : List[Any] = len(self )
snake_case_ : List[str] = self.lengths > 11
snake_case_ : Dict = self.token_ids[indices]
snake_case_ : Dict = self.lengths[indices]
snake_case_ : str = len(self )
logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences." )
def _snake_case ( self : Tuple ):
if "unk_token" not in self.params.special_tok_ids:
return
else:
snake_case_ : str = self.params.special_tok_ids['''unk_token''']
snake_case_ : str = len(self )
snake_case_ : int = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
snake_case_ : str = (unk_occs / self.lengths) < 0.5
snake_case_ : Optional[Any] = self.token_ids[indices]
snake_case_ : Optional[int] = self.lengths[indices]
snake_case_ : Dict = len(self )
logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." )
def _snake_case ( self : Dict ):
if not self.params.is_master:
return
logger.info(f"{len(self )} sequences" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def _snake_case ( self : List[str] , lowercase_ : Dict ):
snake_case_ : Optional[int] = [t[0] for t in batch]
snake_case_ : str = [t[1] for t in batch]
assert len(lowercase_ ) == len(lowercase_ )
# Max for paddings
snake_case_ : str = max(lowercase_ )
# Pad token ids
if self.params.mlm:
snake_case_ : Tuple = self.params.special_tok_ids['''pad_token''']
else:
snake_case_ : Dict = self.params.special_tok_ids['''unk_token''']
snake_case_ : Any = [list(t.astype(lowercase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase_ )) for t in token_ids]
assert len(tk_ ) == len(lowercase_ )
assert all(len(lowercase_ ) == max_seq_len_ for t in tk_ )
snake_case_ : str = torch.tensor(tk_ ) # (bs, max_seq_len_)
snake_case_ : Optional[int] = torch.tensor(lowercase_ ) # (bs)
return tk_t, lg_t
| 264
|
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase):
_lowerCAmelCase : str = XLMRobertaTokenizer
_lowerCAmelCase : int = XLMRobertaTokenizerFast
_lowerCAmelCase : str = True
_lowerCAmelCase : Dict = True
def _snake_case ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case_ : List[str] = XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : str ):
snake_case_ : List[Any] = '''<pad>'''
snake_case_ : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ )
def _snake_case ( self : Union[str, Any] ):
snake_case_ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(lowercase_ ) , 1002 )
def _snake_case ( self : Union[str, Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1002 )
def _snake_case ( self : Dict ):
snake_case_ : Optional[Any] = XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ )
snake_case_ : Dict = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
snake_case_ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowercase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _snake_case ( self : List[str] ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case_ : int = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
snake_case_ : int = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
snake_case_ : Optional[Any] = tempfile.mkdtemp()
snake_case_ : Tuple = tokenizer_r.save_pretrained(lowercase_ )
snake_case_ : List[str] = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
snake_case_ : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowercase_ , lowercase_ )
# Checks everything loads correctly in the same way
snake_case_ : Union[str, Any] = tokenizer_r.from_pretrained(lowercase_ )
snake_case_ : List[Any] = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=True
snake_case_ : Optional[Any] = tempfile.mkdtemp()
snake_case_ : List[str] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ )
snake_case_ : List[str] = tokenizer_p.save_pretrained(lowercase_ )
# Checks it save with the same files
self.assertSequenceEqual(lowercase_ , lowercase_ )
# Checks everything loads correctly in the same way
snake_case_ : List[Any] = tokenizer_r.from_pretrained(lowercase_ )
snake_case_ : List[str] = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
shutil.rmtree(lowercase_ )
# Save tokenizer rust, legacy_format=False
snake_case_ : Optional[Any] = tempfile.mkdtemp()
snake_case_ : List[Any] = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ )
snake_case_ : Tuple = tokenizer_p.save_pretrained(lowercase_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case_ : Optional[Any] = tokenizer_r.from_pretrained(lowercase_ )
snake_case_ : Dict = tokenizer_p.from_pretrained(lowercase_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowercase_ , lowercase_ ) )
shutil.rmtree(lowercase_ )
@cached_property
def _snake_case ( self : List[str] ):
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _snake_case ( self : Optional[Any] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowercase_ , f.name )
snake_case_ : Any = XLMRobertaTokenizer(f.name , keep_accents=lowercase_ )
snake_case_ : List[Any] = pickle.dumps(lowercase_ )
pickle.loads(lowercase_ )
def _snake_case ( self : Tuple ):
if not self.test_rust_tokenizer:
return
snake_case_ : List[str] = self.get_tokenizer()
snake_case_ : Optional[int] = self.get_rust_tokenizer()
snake_case_ : Dict = '''I was born in 92000, and this is falsé.'''
snake_case_ : Optional[int] = tokenizer.tokenize(lowercase_ )
snake_case_ : Tuple = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
snake_case_ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
snake_case_ : str = rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
snake_case_ : int = self.get_rust_tokenizer()
snake_case_ : Any = tokenizer.encode(lowercase_ )
snake_case_ : int = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
@slow
def _snake_case ( self : Tuple ):
snake_case_ : int = '''Hello World!'''
snake_case_ : int = [0, 35378, 6661, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) )
@slow
def _snake_case ( self : List[Any] ):
snake_case_ : Any = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
snake_case_ : Optional[int] = [
0,
3293,
83,
10,
4552,
4989,
7986,
678,
10,
5915,
111,
179459,
124850,
4,
6044,
237,
12,
6,
5,
6,
4,
6780,
705,
15,
1388,
44,
378,
10114,
711,
152,
20,
6,
5,
22376,
642,
1221,
15190,
34153,
450,
5608,
959,
1119,
57702,
136,
186,
47,
1098,
29367,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
6044,
237,
6284,
50901,
528,
31,
90,
34,
927,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) )
@slow
def _snake_case ( self : Dict ):
# fmt: off
snake_case_ : int = {'''input_ids''': [[0, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [0, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 264
| 1
|
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser
@dataclass
class snake_case__ :
"""simple docstring"""
lowerCamelCase = field(
metadata={"""help""": """The output directory where the model will be written."""} , )
lowerCamelCase = field(
metadata={
"""help""": (
"""The encoder model checkpoint for weights initialization."""
"""Don't set if you want to train an encoder model from scratch."""
)
} , )
lowerCamelCase = field(
metadata={
"""help""": (
"""The decoder model checkpoint for weights initialization."""
"""Don't set if you want to train a decoder model from scratch."""
)
} , )
lowerCamelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained encoder config name or path if not the same as encoder_model_name"""} )
lowerCamelCase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained decoder config name or path if not the same as decoder_model_name"""} )
def _UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
snake_case : List[str] = HfArgumentParser((ModelArguments,) )
((snake_case) ,) : str = parser.parse_args_into_dataclasses()
# Load pretrained model and tokenizer
# Use explicit specified encoder config
if model_args.encoder_config_name:
snake_case : List[str] = AutoConfig.from_pretrained(model_args.encoder_config_name )
# Use pretrained encoder model's config
else:
snake_case : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path )
# Use explicit specified decoder config
if model_args.decoder_config_name:
snake_case : Tuple = AutoConfig.from_pretrained(model_args.decoder_config_name )
# Use pretrained decoder model's config
else:
snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path )
# necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed
snake_case : Tuple = True
snake_case : Dict = True
snake_case : Optional[int] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=SCREAMING_SNAKE_CASE__ , decoder_config=SCREAMING_SNAKE_CASE__ , )
# GPT2 only has bos/eos tokens but not decoder_start/pad tokens
snake_case : Any = decoder_config.decoder_start_token_id
snake_case : int = decoder_config.pad_token_id
if decoder_start_token_id is None:
snake_case : Union[str, Any] = decoder_config.bos_token_id
if pad_token_id is None:
snake_case : Tuple = decoder_config.eos_token_id
# This is necessary to make Flax's generate() work
snake_case : Dict = decoder_config.eos_token_id
snake_case : Any = decoder_start_token_id
snake_case : Any = pad_token_id
snake_case : str = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path )
snake_case : List[str] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path )
snake_case : int = tokenizer.convert_ids_to_tokens(model.config.pad_token_id )
model.save_pretrained(model_args.output_dir )
image_processor.save_pretrained(model_args.output_dir )
tokenizer.save_pretrained(model_args.output_dir )
if __name__ == "__main__":
main()
| 83
|
'''simple docstring'''
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
lowercase__ = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"--original_config_file",
default=None,
type=str,
help="The YAML config file corresponding to the original architecture.",
)
parser.add_argument(
"--num_in_channels",
default=None,
type=int,
help="The number of input channels. If `None` number of input channels will be automatically inferred.",
)
parser.add_argument(
"--scheduler_type",
default="pndm",
type=str,
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
)
parser.add_argument(
"--pipeline_type",
default=None,
type=str,
help=(
"The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"
". If `None` pipeline will be automatically inferred."
),
)
parser.add_argument(
"--image_size",
default=None,
type=int,
help=(
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
" Base. Use 768 for Stable Diffusion v2."
),
)
parser.add_argument(
"--prediction_type",
default=None,
type=str,
help=(
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."
),
)
parser.add_argument(
"--extract_ema",
action="store_true",
help=(
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
),
)
parser.add_argument(
"--upcast_attention",
action="store_true",
help=(
"Whether the attention computation should always be upcasted. This is necessary when running stable"
" diffusion 2.1."
),
)
parser.add_argument(
"--from_safetensors",
action="store_true",
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
)
parser.add_argument(
"--to_safetensors",
action="store_true",
help="Whether to store pipeline in safetensors format or not.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
parser.add_argument(
"--stable_unclip",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.",
)
parser.add_argument(
"--stable_unclip_prior",
type=str,
default=None,
required=False,
help="Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.",
)
parser.add_argument(
"--clip_stats_path",
type=str,
help="Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.",
required=False,
)
parser.add_argument(
"--controlnet", action="store_true", default=None, help="Set flag if this is a controlnet checkpoint."
)
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--vae_path",
type=str,
default=None,
required=False,
help="Set to a path, hub id to an already converted vae to not convert it again.",
)
lowercase__ = parser.parse_args()
lowercase__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 83
| 1
|
'''simple docstring'''
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case =logging.get_logger(__name__)
set_seed(770)
__snake_case ={
"""c_attn""": """att_proj""",
"""c_proj""": """out_proj""",
"""c_fc""": """in_proj""",
"""transformer.""": """""",
"""h.""": """layers.""",
"""ln_1""": """layernorm_1""",
"""ln_2""": """layernorm_2""",
"""ln_f""": """layernorm_final""",
"""wpe""": """position_embeds_layer""",
"""wte""": """input_embeds_layer""",
}
__snake_case ={
"""text_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """text.pt""",
},
"""coarse_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """coarse.pt""",
},
"""fine_small""": {
"""repo_id""": """suno/bark""",
"""file_name""": """fine.pt""",
},
"""text""": {
"""repo_id""": """suno/bark""",
"""file_name""": """text_2.pt""",
},
"""coarse""": {
"""repo_id""": """suno/bark""",
"""file_name""": """coarse_2.pt""",
},
"""fine""": {
"""repo_id""": """suno/bark""",
"""file_name""": """fine_2.pt""",
},
}
__snake_case =os.path.dirname(os.path.abspath(__file__))
__snake_case =os.path.join(os.path.expanduser("""~"""), """.cache""")
__snake_case =os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""")
def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any]=False ):
lowerCAmelCase = model_type
if use_small:
key += "_small"
return os.path.join(lowerCamelCase , REMOTE_MODEL_PATHS[key]['file_name'] )
def a_ ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] ):
os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase )
hf_hub_download(repo_id=lowerCamelCase , filename=lowerCamelCase , local_dir=lowerCamelCase )
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]="text" ):
if model_type == "text":
lowerCAmelCase = BarkSemanticModel
lowerCAmelCase = BarkSemanticConfig
lowerCAmelCase = BarkSemanticGenerationConfig
elif model_type == "coarse":
lowerCAmelCase = BarkCoarseModel
lowerCAmelCase = BarkCoarseConfig
lowerCAmelCase = BarkCoarseGenerationConfig
elif model_type == "fine":
lowerCAmelCase = BarkFineModel
lowerCAmelCase = BarkFineConfig
lowerCAmelCase = BarkFineGenerationConfig
else:
raise NotImplementedError()
lowerCAmelCase = f'''{model_type}_small''' if use_small else model_type
lowerCAmelCase = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(lowerCamelCase ):
logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info['repo_id'] , model_info['file_name'] )
lowerCAmelCase = torch.load(lowerCamelCase , map_location=lowerCamelCase )
# this is a hack
lowerCAmelCase = checkpoint['model_args']
if "input_vocab_size" not in model_args:
lowerCAmelCase = model_args['vocab_size']
lowerCAmelCase = model_args['vocab_size']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
lowerCAmelCase = model_args.pop('n_head' )
lowerCAmelCase = model_args.pop('n_embd' )
lowerCAmelCase = model_args.pop('n_layer' )
lowerCAmelCase = ConfigClass(**checkpoint['model_args'] )
lowerCAmelCase = ModelClass(config=lowerCamelCase )
lowerCAmelCase = GenerationConfigClass()
lowerCAmelCase = model_generation_config
lowerCAmelCase = checkpoint['model']
# fixup checkpoint
lowerCAmelCase = '_orig_mod.'
for k, v in list(state_dict.items() ):
if k.startswith(lowerCamelCase ):
# replace part of the key with corresponding layer name in HF implementation
lowerCAmelCase = k[len(lowerCamelCase ) :]
for old_layer_name in new_layer_name_dict:
lowerCAmelCase = new_k.replace(lowerCamelCase , new_layer_name_dict[old_layer_name] )
lowerCAmelCase = state_dict.pop(lowerCamelCase )
lowerCAmelCase = set(state_dict.keys() ) - set(model.state_dict().keys() )
lowerCAmelCase = {k for k in extra_keys if not k.endswith('.attn.bias' )}
lowerCAmelCase = set(model.state_dict().keys() ) - set(state_dict.keys() )
lowerCAmelCase = {k for k in missing_keys if not k.endswith('.attn.bias' )}
if len(lowerCamelCase ) != 0:
raise ValueError(f'''extra keys found: {extra_keys}''' )
if len(lowerCamelCase ) != 0:
raise ValueError(f'''missing keys: {missing_keys}''' )
model.load_state_dict(lowerCamelCase , strict=lowerCamelCase )
lowerCAmelCase = model.num_parameters(exclude_embeddings=lowerCamelCase )
lowerCAmelCase = checkpoint['best_val_loss'].item()
logger.info(f'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowerCamelCase , 3 )} loss''' )
model.eval()
model.to(lowerCamelCase )
del checkpoint, state_dict
return model
def a_ ( lowerCamelCase : Tuple , lowerCamelCase : List[str]=False , lowerCamelCase : Union[str, Any]="text" ):
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
lowerCAmelCase = 'cpu' # do conversion on cpu
lowerCAmelCase = _get_ckpt_path(lowerCamelCase , use_small=lowerCamelCase )
lowerCAmelCase = _load_model(lowerCamelCase , lowerCamelCase , model_type=lowerCamelCase , use_small=lowerCamelCase )
# load bark initial model
lowerCAmelCase = _bark_load_model(lowerCamelCase , 'cpu' , model_type=lowerCamelCase , use_small=lowerCamelCase )
if model_type == "text":
lowerCAmelCase = bark_model['model']
if model.num_parameters(exclude_embeddings=lowerCamelCase ) != bark_model.get_num_params():
raise ValueError('initial and new models don\'t have the same number of parameters' )
# check if same output as the bark model
lowerCAmelCase = 5
lowerCAmelCase = 10
if model_type in ["text", "coarse"]:
lowerCAmelCase = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int )
lowerCAmelCase = bark_model(lowerCamelCase )[0]
lowerCAmelCase = model(lowerCamelCase )
# take last logits
lowerCAmelCase = output_new_model_total.logits[:, [-1], :]
else:
lowerCAmelCase = 3
lowerCAmelCase = 8
lowerCAmelCase = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int )
lowerCAmelCase = model(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = bark_model(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError('initial and new outputs don\'t have the same shape' )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError('initial and new outputs are not equal' )
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
model.save_pretrained(lowerCamelCase )
def a_ ( lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : str , ):
lowerCAmelCase = os.path.join(lowerCamelCase , lowerCamelCase )
lowerCAmelCase = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) )
lowerCAmelCase = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) )
lowerCAmelCase = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase , 'config.json' ) )
lowerCAmelCase = EncodecConfig.from_pretrained('facebook/encodec_24khz' )
lowerCAmelCase = BarkSemanticModel.from_pretrained(lowerCamelCase )
lowerCAmelCase = BarkCoarseModel.from_pretrained(lowerCamelCase )
lowerCAmelCase = BarkFineModel.from_pretrained(lowerCamelCase )
lowerCAmelCase = EncodecModel.from_pretrained('facebook/encodec_24khz' )
lowerCAmelCase = BarkConfig.from_sub_model_configs(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
lowerCAmelCase = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config )
lowerCAmelCase = BarkModel(lowerCamelCase )
lowerCAmelCase = semantic
lowerCAmelCase = coarseAcoustic
lowerCAmelCase = fineAcoustic
lowerCAmelCase = codec
lowerCAmelCase = bark_generation_config
Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase )
bark.save_pretrained(lowerCamelCase , repo_id=lowerCamelCase , push_to_hub=lowerCamelCase )
if __name__ == "__main__":
__snake_case =argparse.ArgumentParser()
# Required parameters
parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""")
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""")
__snake_case =parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 4
|
"""simple docstring"""
import os
def lowercase_ ( _UpperCAmelCase = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file:
A_ : List[Any] = [
[int(_UpperCAmelCase ) for element in line.split(''',''' )]
for line in input_file.readlines()
]
A_ : Dict = len(_UpperCAmelCase )
A_ : Union[str, Any] = len(matrix[0] )
A_ : Optional[Any] = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )]
for i in range(_UpperCAmelCase ):
A_ : str = matrix[i][0]
for j in range(1 , _UpperCAmelCase ):
for i in range(_UpperCAmelCase ):
A_ : Any = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _UpperCAmelCase ):
A_ : Optional[int] = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
A_ : int = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 167
| 0
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ):
lowercase : int =KandinskyVaaPriorPipeline
lowercase : Tuple =['prompt']
lowercase : int =['prompt', 'negative_prompt']
lowercase : Optional[Any] =[
'num_images_per_prompt',
'generator',
'num_inference_steps',
'latents',
'negative_prompt',
'guidance_scale',
'output_type',
'return_dict',
]
lowercase : Optional[Any] =False
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return 32
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def lowercase__ ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def lowercase__ ( self ):
"""simple docstring"""
return 100
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_000, )
return CLIPTextModelWithProjection(lowerCAmelCase )
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ ={
'''num_attention_heads''': 2,
'''attention_head_dim''': 12,
'''embedding_dim''': self.text_embedder_hidden_size,
'''num_layers''': 1,
}
lowerCamelCase_ =PriorTransformer(**lowerCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
lowerCamelCase_ =nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCamelCase_ =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size, image_size=224, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, )
lowerCamelCase_ =CLIPVisionModelWithProjection(lowerCAmelCase )
return model
@property
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =CLIPImageProcessor(
crop_size=224, do_center_crop=lowerCAmelCase, do_normalize=lowerCAmelCase, do_resize=lowerCAmelCase, image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], resample=3, size=224, )
return image_processor
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =self.dummy_prior
lowerCamelCase_ =self.dummy_image_encoder
lowerCamelCase_ =self.dummy_text_encoder
lowerCamelCase_ =self.dummy_tokenizer
lowerCamelCase_ =self.dummy_image_processor
lowerCamelCase_ =UnCLIPScheduler(
variance_type='''fixed_small_log''', prediction_type='''sample''', num_train_timesteps=1_000, clip_sample=lowerCAmelCase, clip_sample_range=1_0.0, )
lowerCamelCase_ ={
'''prior''': prior,
'''image_encoder''': image_encoder,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''scheduler''': scheduler,
'''image_processor''': image_processor,
}
return components
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=0 ):
"""simple docstring"""
if str(lowerCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ =torch.manual_seed(lowerCAmelCase )
else:
lowerCamelCase_ =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase )
lowerCamelCase_ ={
'''prompt''': '''horse''',
'''generator''': generator,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ ='''cpu'''
lowerCamelCase_ =self.get_dummy_components()
lowerCamelCase_ =self.pipeline_class(**lowerCAmelCase )
lowerCamelCase_ =pipe.to(lowerCAmelCase )
pipe.set_progress_bar_config(disable=lowerCAmelCase )
lowerCamelCase_ =pipe(**self.get_dummy_inputs(lowerCAmelCase ) )
lowerCamelCase_ =output.image_embeds
lowerCamelCase_ =pipe(
**self.get_dummy_inputs(lowerCAmelCase ), return_dict=lowerCAmelCase, )[0]
lowerCamelCase_ =image[0, -10:]
lowerCamelCase_ =image_from_tuple[0, -10:]
assert image.shape == (1, 32)
lowerCamelCase_ =np.array(
[-0.0_5_3_2, 1.7_1_2_0, 0.3_6_5_6, -1.0_8_5_2, -0.8_9_4_6, -1.1_7_5_6, 0.4_3_4_8, 0.2_4_8_2, 0.5_1_4_6, -0.1_1_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =True
lowerCamelCase_ =False
self._test_inference_batch_single_identical(
test_max_difference=lowerCAmelCase, relax_max_difference=lowerCAmelCase, test_mean_pixel_difference=lowerCAmelCase, )
@skip_mps
def lowercase__ ( self ):
"""simple docstring"""
lowerCamelCase_ =torch_device == '''cpu'''
lowerCamelCase_ =False
self._test_attention_slicing_forward_pass(
test_max_difference=lowerCAmelCase, test_mean_pixel_difference=lowerCAmelCase, )
| 6
|
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(""".""")
def a_ ( __snake_case : Any ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '''
F'''{test_file} instead.''' )
lowerCamelCase_ =components[-1]
if not test_fn.endswith('''py''' ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith('''test_modeling_''' ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
lowerCamelCase_ =components[:-1] + [test_fn.replace('''.py''' , '''''' )]
lowerCamelCase_ ='''.'''.join(__snake_case )
return test_module_path
def a_ ( __snake_case : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ =get_module_path(__snake_case )
lowerCamelCase_ =importlib.import_module(__snake_case )
return test_module
def a_ ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
if attr.endswith('''ModelTester''' ):
tester_classes.append(getattr(__snake_case , __snake_case ) )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =[]
lowerCamelCase_ =get_test_module(__snake_case )
for attr in dir(__snake_case ):
lowerCamelCase_ =getattr(__snake_case , __snake_case )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
lowerCamelCase_ =getattr(__snake_case , '''all_model_classes''' , [] )
if len(__snake_case ) > 0:
test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : str ) -> str:
"""simple docstring"""
lowerCamelCase_ =test_class()
if hasattr(__snake_case , '''setUp''' ):
test.setUp()
lowerCamelCase_ =None
if hasattr(__snake_case , '''model_tester''' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
lowerCamelCase_ =test.model_tester.__class__
return model_tester
def a_ ( __snake_case : Dict , __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Optional[Any] , __snake_case : List[str] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =get_test_classes_for_model(__snake_case , __snake_case )
lowerCamelCase_ =[]
for test_class in test_classes:
lowerCamelCase_ =get_model_tester_from_test_class(__snake_case )
if tester_class is not None:
tester_classes.append(__snake_case )
# sort with class names
return sorted(__snake_case , key=lambda __snake_case : x.__name__ )
def a_ ( __snake_case : Tuple ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ =get_test_classes(__snake_case )
lowerCamelCase_ ={test_class: get_model_tester_from_test_class(__snake_case ) for test_class in test_classes}
return test_tester_mapping
def a_ ( __snake_case : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_test_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_test_mapping
def a_ ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_ =get_model_classes(__snake_case )
lowerCamelCase_ ={
model_class: get_tester_classes_for_model(__snake_case , __snake_case ) for model_class in model_classes
}
return model_to_tester_mapping
def a_ ( __snake_case : List[str] ) -> List[Any]:
"""simple docstring"""
if isinstance(__snake_case , __snake_case ):
return o
elif isinstance(__snake_case , __snake_case ):
return o.__name__
elif isinstance(__snake_case , (list, tuple) ):
return [to_json(__snake_case ) for x in o]
elif isinstance(__snake_case , __snake_case ):
return {to_json(__snake_case ): to_json(__snake_case ) for k, v in o.items()}
else:
return o
| 6
| 1
|
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _UpperCAmelCase :
def __init__( self : Any , A : int , A : Optional[Any]=2 , A : int=3 , A : Optional[Any]=4 , A : Union[str, Any]=2 , A : Dict=7 , A : Any=True , A : List[Any]=True , A : Any=True , A : str=True , A : Union[str, Any]=99 , A : Tuple=36 , A : Optional[int]=2 , A : Union[str, Any]=4 , A : Any=37 , A : Tuple="gelu" , A : Dict=0.1 , A : Optional[Any]=0.1 , A : List[Any]=5_12 , A : List[str]=16 , A : Optional[Any]=2 , A : Any=0.02 , A : Optional[int]=6 , A : int=6 , A : Optional[int]=3 , A : str=4 , A : Tuple=None , A : int=10_00 , ) -> Optional[Any]:
lowercase_ : Dict = parent
lowercase_ : Dict = batch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : List[str] = image_size
lowercase_ : str = patch_size
lowercase_ : Optional[int] = is_training
lowercase_ : str = use_input_mask
lowercase_ : Dict = use_token_type_ids
lowercase_ : int = use_labels
lowercase_ : Tuple = vocab_size
lowercase_ : List[Any] = hidden_size
lowercase_ : str = num_hidden_layers
lowercase_ : Any = num_attention_heads
lowercase_ : List[str] = intermediate_size
lowercase_ : Optional[Any] = hidden_act
lowercase_ : Tuple = hidden_dropout_prob
lowercase_ : Optional[Any] = attention_probs_dropout_prob
lowercase_ : List[Any] = max_position_embeddings
lowercase_ : str = type_vocab_size
lowercase_ : str = type_sequence_label_size
lowercase_ : List[Any] = initializer_range
lowercase_ : Dict = coordinate_size
lowercase_ : List[str] = shape_size
lowercase_ : int = num_labels
lowercase_ : Union[str, Any] = num_choices
lowercase_ : Union[str, Any] = scope
lowercase_ : Optional[int] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
lowercase_ : Union[str, Any] = text_seq_length
lowercase_ : Tuple = (image_size // patch_size) ** 2 + 1
lowercase_ : Dict = self.text_seq_length + self.image_seq_length
def A ( self : Optional[Any] ) -> Optional[Any]:
lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
lowercase_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
lowercase_ : Any = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowercase_ : List[str] = bbox[i, j, 3]
lowercase_ : List[str] = bbox[i, j, 1]
lowercase_ : List[Any] = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
lowercase_ : Dict = bbox[i, j, 2]
lowercase_ : int = bbox[i, j, 0]
lowercase_ : int = tmp_coordinate
lowercase_ : Any = tf.constant(A )
lowercase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : List[Any] = None
if self.use_input_mask:
lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] )
lowercase_ : Union[str, Any] = None
if self.use_token_type_ids:
lowercase_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
lowercase_ : Optional[Any] = None
lowercase_ : List[Any] = None
if self.use_labels:
lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
lowercase_ : Optional[Any] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def A ( self : Optional[Any] , A : Optional[int] , A : Optional[Any] , A : Tuple , A : str , A : Optional[int] , A : str ) -> Any:
lowercase_ : Tuple = TFLayoutLMvaModel(config=A )
# text + image
lowercase_ : Optional[Any] = model(A , pixel_values=A , training=A )
lowercase_ : Optional[Any] = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , training=A , )
lowercase_ : Any = model(A , bbox=A , pixel_values=A , training=A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
lowercase_ : Tuple = model(A , training=A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
lowercase_ : Union[str, Any] = model({'''pixel_values''': pixel_values} , training=A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , A : str , A : Optional[int] , A : Optional[Any] , A : str , A : List[str] , A : List[str] , A : Tuple ) -> Dict:
lowercase_ : int = self.num_labels
lowercase_ : Union[str, Any] = TFLayoutLMvaForSequenceClassification(config=A )
lowercase_ : Any = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , training=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : Dict , A : int , A : int , A : Union[str, Any] , A : Any , A : Optional[int] , A : int , A : int ) -> List[Any]:
lowercase_ : Any = self.num_labels
lowercase_ : str = TFLayoutLMvaForTokenClassification(config=A )
lowercase_ : Tuple = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , labels=A , training=A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def A ( self : Optional[Any] , A : Dict , A : List[Any] , A : Dict , A : Tuple , A : Union[str, Any] , A : Union[str, Any] , A : int ) -> Tuple:
lowercase_ : Union[str, Any] = 2
lowercase_ : Dict = TFLayoutLMvaForQuestionAnswering(config=A )
lowercase_ : Optional[Any] = model(
A , bbox=A , pixel_values=A , attention_mask=A , token_type_ids=A , start_positions=A , end_positions=A , training=A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A ( self : Any ) -> Any:
lowercase_ : Optional[int] = self.prepare_config_and_inputs()
((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : List[Any] = config_and_inputs
lowercase_ : List[str] = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( _A , _A , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : int = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
SCREAMING_SNAKE_CASE_ : str = (
{"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
SCREAMING_SNAKE_CASE_ : int = False
SCREAMING_SNAKE_CASE_ : Optional[int] = False
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False
def A ( self : List[Any] , A : Tuple , A : Optional[int] , A : Dict , A : Tuple , A : List[str] ) -> List[Any]:
return True
def A ( self : Tuple , A : List[str] , A : Any , A : List[Any]=False ) -> dict:
lowercase_ : int = copy.deepcopy(A )
if model_class in get_values(A ):
lowercase_ : List[str] = {
k: tf.tile(tf.expand_dims(A , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(A , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(A ):
lowercase_ : int = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(A ):
lowercase_ : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
lowercase_ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(A ):
lowercase_ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(A ):
lowercase_ : Optional[int] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def A ( self : Optional[int] ) -> List[str]:
lowercase_ : Union[str, Any] = TFLayoutLMvaModelTester(self )
lowercase_ : List[Any] = ConfigTester(self , config_class=A , hidden_size=37 )
def A ( self : str ) -> Any:
self.config_tester.run_common_tests()
def A ( self : Dict ) -> Optional[int]:
lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Any = model_class(A )
if getattr(A , '''hf_compute_loss''' , A ):
# The number of elements in the loss should be the same as the number of elements in the label
lowercase_ : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A )
lowercase_ : int = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=A )[0]
]
lowercase_ : Any = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
lowercase_ : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A )
lowercase_ : Any = prepared_for_class.pop('''input_ids''' )
lowercase_ : Optional[Any] = model(A , **A )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
lowercase_ : str = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A )
lowercase_ : Union[str, Any] = prepared_for_class.pop('''input_ids''' )
if "labels" in prepared_for_class:
lowercase_ : List[Any] = prepared_for_class['''labels'''].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
lowercase_ : Dict = -1_00
lowercase_ : Tuple = tf.convert_to_tensor(A )
lowercase_ : Union[str, Any] = model(A , **A )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
lowercase_ : List[str] = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A )
lowercase_ : Tuple = model(A )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
lowercase_ : str = self._prepare_for_class(inputs_dict.copy() , A , return_labels=A )
# Get keys that were added with the _prepare_for_class function
lowercase_ : List[str] = prepared_for_class.keys() - inputs_dict.keys()
lowercase_ : Any = inspect.signature(model.call ).parameters
lowercase_ : int = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
lowercase_ : Union[str, Any] = {0: '''input_ids'''}
for label_key in label_keys:
lowercase_ : Optional[int] = signature_names.index(A )
lowercase_ : Any = label_key
lowercase_ : List[str] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
lowercase_ : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
lowercase_ : int = prepared_for_class[value]
lowercase_ : Optional[int] = tuple(A )
# Send to model
lowercase_ : List[str] = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def A ( self : Tuple ) -> Any:
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(A , A , A , A , A , A )
def A ( self : str ) -> Optional[int]:
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowercase_ : Optional[int] = type
self.model_tester.create_and_check_model(A , A , A , A , A , A )
def A ( self : Tuple ) -> int:
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
A , A , A , A , A , A , A )
def A ( self : Tuple ) -> Union[str, Any]:
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
A , A , A , A , A , A , A )
def A ( self : List[Any] ) -> Optional[Any]:
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
A , A , A , A , A , A , A )
@slow
def A ( self : Union[str, Any] ) -> str:
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Optional[Any] = TFLayoutLMvaModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase ( ):
lowercase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
@cached_property
def A ( self : Dict ) -> Dict:
return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None
@slow
def A ( self : Union[str, Any] ) -> Union[str, Any]:
lowercase_ : List[str] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' )
lowercase_ : List[Any] = self.default_image_processor
lowercase_ : Optional[Any] = prepare_img()
lowercase_ : Dict = image_processor(images=A , return_tensors='''tf''' ).pixel_values
lowercase_ : List[str] = tf.constant([[1, 2]] )
lowercase_ : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
lowercase_ : List[Any] = model(input_ids=A , bbox=A , pixel_values=A , training=A )
# verify the logits
lowercase_ : List[Any] = (1, 1_99, 7_68)
self.assertEqual(outputs.last_hidden_state.shape , A )
lowercase_ : List[Any] = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A , atol=1e-4 ) )
| 33
|
from __future__ import annotations
from math import pi, sqrt
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if inductance <= 0:
raise ValueError('''Inductance cannot be 0 or negative''' )
elif capacitance <= 0:
raise ValueError('''Capacitance cannot be 0 or negative''' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 8
| 0
|
"""simple docstring"""
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class A_ (unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = JukeboxTokenizer
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""artist""": """Zac Brown Band""",
"""genres""": """Country""",
"""lyrics""": """I met a traveller from an antique land,
Who said \"Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
""",
}
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
import torch
UpperCAmelCase_ : Any = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
UpperCAmelCase_ : str = tokenizer(**self.metas )["input_ids"]
# fmt: off
UpperCAmelCase_ : Any = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
import torch
UpperCAmelCase_ : Dict = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
UpperCAmelCase_ : Any = tokenizer(**self.metas )["input_ids"]
# fmt: off
UpperCAmelCase_ : Tuple = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 354
|
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_a = logging.get_logger(__name__)
_a = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Dict = """detr"""
SCREAMING_SNAKE_CASE__ : str = ["""past_key_values"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self , lowercase_=True , lowercase_=None , lowercase_=3 , lowercase_=100 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=6 , lowercase_=2048 , lowercase_=8 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=True , lowercase_="relu" , lowercase_=256 , lowercase_=0.1 , lowercase_=0.0 , lowercase_=0.0 , lowercase_=0.02 , lowercase_=1.0 , lowercase_=False , lowercase_="sine" , lowercase_="resnet50" , lowercase_=True , lowercase_=False , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=1 , lowercase_=1 , lowercase_=5 , lowercase_=2 , lowercase_=0.1 , **lowercase_ , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = backbone_config.get("model_type" )
UpperCAmelCase_ : int = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(lowercase_ )
# set timm attributes to None
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = None, None, None
UpperCAmelCase_ : int = use_timm_backbone
UpperCAmelCase_ : int = backbone_config
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Union[str, Any] = d_model
UpperCAmelCase_ : str = encoder_ffn_dim
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : List[Any] = encoder_attention_heads
UpperCAmelCase_ : Union[str, Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Union[str, Any] = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : List[str] = attention_dropout
UpperCAmelCase_ : Any = activation_dropout
UpperCAmelCase_ : str = activation_function
UpperCAmelCase_ : Tuple = init_std
UpperCAmelCase_ : Optional[Any] = init_xavier_std
UpperCAmelCase_ : Optional[Any] = encoder_layerdrop
UpperCAmelCase_ : Optional[int] = decoder_layerdrop
UpperCAmelCase_ : Tuple = encoder_layers
UpperCAmelCase_ : int = auxiliary_loss
UpperCAmelCase_ : Optional[Any] = position_embedding_type
UpperCAmelCase_ : Tuple = backbone
UpperCAmelCase_ : Optional[int] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : Any = bbox_cost
UpperCAmelCase_ : int = giou_cost
# Loss coefficients
UpperCAmelCase_ : str = mask_loss_coefficient
UpperCAmelCase_ : Any = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : List[str] = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.d_model
@classmethod
def UpperCamelCase__ ( cls , lowercase_ , **lowercase_ ):
"""simple docstring"""
return cls(backbone_config=lowercase_ , **lowercase_ )
def UpperCamelCase__ ( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase_ : Union[str, Any] = self.backbone_config.to_dict()
UpperCAmelCase_ : str = self.__class__.model_type
return output
class A_ (lowercase__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = version.parse("""1.11""" )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-5
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
| 23
| 0
|
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int:
'''simple docstring'''
return x if y == 0 else greatest_common_divisor(snake_case_ , x % y )
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int:
'''simple docstring'''
return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ )
def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int:
'''simple docstring'''
UpperCAmelCase_ = 1
for i in range(1 , n + 1 ):
UpperCAmelCase_ = lcm(snake_case_ , snake_case_ )
return g
if __name__ == "__main__":
print(f"{solution() = }")
| 1
|
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __A ( unittest.TestCase ):
def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ):
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (image_size // patch_size) ** 2
UpperCAmelCase_ = num_patches + 1
def _lowercase (self : Any ):
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , )
return config, pixel_values
def _lowercase (self : Dict , __a : Any , __a : List[Any] ):
UpperCAmelCase_ = FlaxViTModel(config=__a )
UpperCAmelCase_ = model(__a )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (self.image_size, self.image_size)
UpperCAmelCase_ = (self.patch_size, self.patch_size)
UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def _lowercase (self : Tuple , __a : str , __a : Any ):
UpperCAmelCase_ = self.type_sequence_label_size
UpperCAmelCase_ = FlaxViTForImageClassification(config=__a )
UpperCAmelCase_ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ = 1
UpperCAmelCase_ = FlaxViTForImageClassification(__a )
UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ = model(__a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class __A ( UpperCamelCase__ , unittest.TestCase ):
a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _lowercase (self : Any ):
UpperCAmelCase_ = FlaxViTModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 )
def _lowercase (self : Tuple ):
self.config_tester.run_common_tests()
def _lowercase (self : str ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def _lowercase (self : str ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
def _lowercase (self : Tuple ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__a )
UpperCAmelCase_ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase_ = self._prepare_for_class(__a , __a )
UpperCAmelCase_ = model_class(__a )
@jax.jit
def model_jitted(__a : Tuple , **__a : List[Any] ):
return model(pixel_values=__a , **__a )
with self.subTest("JIT Enabled" ):
UpperCAmelCase_ = model_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowercase (self : Tuple ):
for model_class_name in self.all_model_classes:
UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(__a )
| 1
| 1
|
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
UpperCAmelCase__ = logging.get_logger(__name__)
def _UpperCAmelCase ( __lowerCamelCase : bool , __lowerCamelCase : bool ) -> Any:
def run_func(__lowerCamelCase : List[str] ):
@wraps(__lowerCamelCase )
def run_in_eager_mode(*__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : List[str] ):
return func(*__lowerCamelCase , **__lowerCamelCase )
@wraps(__lowerCamelCase )
@tf.function(experimental_compile=__lowerCamelCase )
def run_in_graph_mode(*__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[Any] ):
return func(*__lowerCamelCase , **__lowerCamelCase )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> ["tf.Tensor"]:
_snake_case = random.Random()
_snake_case = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(__lowerCamelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class lowerCAmelCase__ ( A_ ):
__a = 42
__a = 42
__a = "TensorFlow"
@property
def lowercase ( self : Dict ):
return tf.__version__
def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ):
# initialize GPU on separate process
_snake_case = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case = self._prepare_inference_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return self._measure_speed(_inference )
def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ):
_snake_case = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case = self._prepare_train_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return self._measure_speed(_train )
def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ):
# initialize GPU on separate process
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCamelCase )
_snake_case = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case = self._prepare_inference_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return self._measure_memory(_inference )
def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ):
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _lowerCamelCase )
_snake_case = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
_snake_case = self._prepare_train_func(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return self._measure_memory(_train )
def lowercase ( self : int , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ):
_snake_case = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
_snake_case = (
hasattr(_lowerCamelCase , '''architectures''' )
and isinstance(config.architectures , _lowerCamelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case = __import__('''transformers''' , fromlist=[model_class] )
_snake_case = getattr(_lowerCamelCase , _lowerCamelCase )
_snake_case = model_cls(_lowerCamelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
_snake_case = TF_MODEL_MAPPING[config.__class__](_lowerCamelCase )
# encoder-decoder has vocab size saved differently
_snake_case = config.vocab_size if hasattr(_lowerCamelCase , '''vocab_size''' ) else config.encoder.vocab_size
_snake_case = random_input_ids(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase , training=_lowerCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(_lowerCamelCase , training=_lowerCamelCase )
_snake_case = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int ):
_snake_case = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' )
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
_snake_case = (
hasattr(_lowerCamelCase , '''architectures''' )
and isinstance(config.architectures , _lowerCamelCase )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
_snake_case = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
_snake_case = __import__('''transformers''' , fromlist=[model_class] )
_snake_case = getattr(_lowerCamelCase , _lowerCamelCase )
_snake_case = model_cls(_lowerCamelCase )
except ImportError:
raise ImportError(
f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to'''
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
_snake_case = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_lowerCamelCase )
# encoder-decoder has vocab size saved differently
_snake_case = config.vocab_size if hasattr(_lowerCamelCase , '''vocab_size''' ) else config.encoder.vocab_size
_snake_case = random_input_ids(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
_snake_case = model(_lowerCamelCase , decoder_input_ids=_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )[0]
_snake_case = tf.gradients(_lowerCamelCase , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
_snake_case = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase )[0]
_snake_case = tf.gradients(_lowerCamelCase , model.trainable_variables )
return gradients
_snake_case = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def lowercase ( self : int , _lowerCamelCase : List[Any] ):
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' )
timeit.repeat(_lowerCamelCase , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
_snake_case = timeit.repeat(
_lowerCamelCase , repeat=self.args.repeat , number=10 , )
return min(_lowerCamelCase ) / 1_0.0
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
def lowercase ( self : int , _lowerCamelCase : Callable[[], None] ):
logger.info(
'''Note that TensorFlow allocates more memory than '''
'''it might need to speed up computation. '''
'''The memory reported here corresponds to the memory '''
'''reported by `nvidia-smi`, which can vary depending '''
'''on total available memory on the GPU that is used.''' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'''
''' consumption line by line.''' )
_snake_case = start_memory_tracing('''transformers''' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'''
''' with `args.memory=False`''' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'''py3nvml not installed, we won\'t log GPU memory usage. '''
'''Install py3nvml (pip install py3nvml) to log information about GPU.''' )
_snake_case = '''N/A'''
else:
logger.info(
'''Measuring total GPU usage on GPU device. Make sure to not have additional processes'''
''' running on the same GPU.''' )
# init nvml
nvml.nvmlInit()
func()
_snake_case = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
_snake_case = nvml.nvmlDeviceGetMemoryInfo(_lowerCamelCase )
_snake_case = meminfo.used
_snake_case = Memory(_lowerCamelCase )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'''When enabling line by line tracing, the max peak memory for CPU is inaccurate in'''
''' TensorFlow.''' )
_snake_case = None
else:
_snake_case = measure_peak_memory_cpu(_lowerCamelCase )
_snake_case = Memory(_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else memory_bytes
if self.args.trace_memory_line_by_line:
_snake_case = stop_memory_tracing(_lowerCamelCase )
if memory is None:
_snake_case = summary.total
else:
_snake_case = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f'''Doesn\'t fit on GPU. {e}''' )
return "N/A", None
| 40
|
"""simple docstring"""
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class lowerCAmelCase__ ( A_ ):
__a = 42
__a = jnp.floataa
__a = True
def lowercase ( self : Tuple ):
super().setup()
_snake_case = nn.Dense(5 , dtype=self.dtype )
def __call__( self : str , *_lowerCamelCase : int , **_lowerCamelCase : Any ):
_snake_case = super().__call__(*_lowerCamelCase , **_lowerCamelCase )
_snake_case = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class lowerCAmelCase__ ( A_ ):
__a = FlaxBigBirdForNaturalQuestionsModule
def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> Any:
def cross_entropy(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None ):
_snake_case = logits.shape[-1]
_snake_case = (labels[..., None] == jnp.arange(__lowerCamelCase )[None]).astype('''f4''' )
_snake_case = jax.nn.log_softmax(__lowerCamelCase , axis=-1 )
_snake_case = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
_snake_case = reduction(__lowerCamelCase )
return loss
_snake_case = partial(__lowerCamelCase , reduction=jnp.mean )
_snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase )
_snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase )
_snake_case = cross_entropy(__lowerCamelCase , __lowerCamelCase )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class lowerCAmelCase__ :
__a = "google/bigbird-roberta-base"
__a = 3000
__a = 10500
__a = 128
__a = 3
__a = 1
__a = 5
# tx_args
__a = 3e-5
__a = 0.0
__a = 20000
__a = 0.0095
__a = "bigbird-roberta-natural-questions"
__a = "training-expt"
__a = "data/nq-training.jsonl"
__a = "data/nq-validation.jsonl"
def lowercase ( self : Optional[Any] ):
os.makedirs(self.base_dir , exist_ok=_lowerCamelCase )
_snake_case = os.path.join(self.base_dir , self.save_dir )
_snake_case = self.batch_size_per_device * jax.device_count()
@dataclass
class lowerCAmelCase__ :
__a = 42
__a = 4096 # no dynamic padding on TPUs
def __call__( self : Dict , _lowerCamelCase : Any ):
_snake_case = self.collate_fn(_lowerCamelCase )
_snake_case = jax.tree_util.tree_map(_lowerCamelCase , _lowerCamelCase )
return batch
def lowercase ( self : Dict , _lowerCamelCase : str ):
_snake_case , _snake_case = self.fetch_inputs(features['''input_ids'''] )
_snake_case = {
'''input_ids''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ),
'''attention_mask''': jnp.array(_lowerCamelCase , dtype=jnp.intaa ),
'''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ),
'''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ),
'''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ),
}
return batch
def lowercase ( self : List[Any] , _lowerCamelCase : list ):
_snake_case = [self._fetch_inputs(_lowerCamelCase ) for ids in input_ids]
return zip(*_lowerCamelCase )
def lowercase ( self : Optional[Any] , _lowerCamelCase : list ):
_snake_case = [1 for _ in range(len(_lowerCamelCase ) )]
while len(_lowerCamelCase ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=None ) -> str:
if seed is not None:
_snake_case = dataset.shuffle(seed=__lowerCamelCase )
for i in range(len(__lowerCamelCase ) // batch_size ):
_snake_case = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(__lowerCamelCase )
@partial(jax.pmap , axis_name='''batch''' )
def _UpperCAmelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]:
def loss_fn(__lowerCamelCase : Union[str, Any] ):
_snake_case = model_inputs.pop('''start_labels''' )
_snake_case = model_inputs.pop('''end_labels''' )
_snake_case = model_inputs.pop('''pooled_labels''' )
_snake_case = state.apply_fn(**__lowerCamelCase , params=__lowerCamelCase , dropout_rng=__lowerCamelCase , train=__lowerCamelCase )
_snake_case , _snake_case , _snake_case = outputs
return state.loss_fn(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
_snake_case , _snake_case = jax.random.split(__lowerCamelCase )
_snake_case = jax.value_and_grad(__lowerCamelCase )
_snake_case , _snake_case = grad_fn(state.params )
_snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' )
_snake_case = jax.lax.pmean(__lowerCamelCase , '''batch''' )
_snake_case = state.apply_gradients(grads=__lowerCamelCase )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name='''batch''' )
def _UpperCAmelCase ( __lowerCamelCase : str , **__lowerCamelCase : List[str] ) -> Any:
_snake_case = model_inputs.pop('''start_labels''' )
_snake_case = model_inputs.pop('''end_labels''' )
_snake_case = model_inputs.pop('''pooled_labels''' )
_snake_case = state.apply_fn(**__lowerCamelCase , params=state.params , train=__lowerCamelCase )
_snake_case , _snake_case , _snake_case = outputs
_snake_case = state.loss_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
_snake_case = jax.lax.pmean({'''loss''': loss} , axis_name='''batch''' )
return metrics
class lowerCAmelCase__ ( train_state.TrainState ):
__a = struct.field(pytree_node=A_ )
@dataclass
class lowerCAmelCase__ :
__a = 42
__a = 42
__a = 42
__a = 42
__a = 42
__a = 42
__a = None
def lowercase ( self : List[Any] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict=None ):
_snake_case = model.params
_snake_case = TrainState.create(
apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , loss_fn=_lowerCamelCase , )
if ckpt_dir is not None:
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case = restore_checkpoint(_lowerCamelCase , _lowerCamelCase )
_snake_case = {
'''lr''': args.lr,
'''init_lr''': args.init_lr,
'''warmup_steps''': args.warmup_steps,
'''num_train_steps''': num_train_steps,
'''weight_decay''': args.weight_decay,
}
_snake_case , _snake_case = build_tx(**_lowerCamelCase )
_snake_case = train_state.TrainState(
step=_lowerCamelCase , apply_fn=model.__call__ , params=_lowerCamelCase , tx=_lowerCamelCase , opt_state=_lowerCamelCase , )
_snake_case = args
_snake_case = data_collator
_snake_case = lr
_snake_case = params
_snake_case = jax_utils.replicate(_lowerCamelCase )
return state
def lowercase ( self : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : str ):
_snake_case = self.args
_snake_case = len(_lowerCamelCase ) // args.batch_size
_snake_case = jax.random.PRNGKey(0 )
_snake_case = jax.random.split(_lowerCamelCase , jax.device_count() )
for epoch in range(args.max_epochs ):
_snake_case = jnp.array(0 , dtype=jnp.floataa )
_snake_case = get_batched_dataset(_lowerCamelCase , args.batch_size , seed=_lowerCamelCase )
_snake_case = 0
for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc=f'''Running EPOCH-{epoch}''' ):
_snake_case = self.data_collator(_lowerCamelCase )
_snake_case , _snake_case , _snake_case = self.train_step_fn(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
running_loss += jax_utils.unreplicate(metrics['''loss'''] )
i += 1
if i % args.logging_steps == 0:
_snake_case = jax_utils.unreplicate(state.step )
_snake_case = running_loss.item() / i
_snake_case = self.scheduler_fn(state_step - 1 )
_snake_case = self.evaluate(_lowerCamelCase , _lowerCamelCase )
_snake_case = {
'''step''': state_step.item(),
'''eval_loss''': eval_loss.item(),
'''tr_loss''': tr_loss,
'''lr''': lr.item(),
}
tqdm.write(str(_lowerCamelCase ) )
self.logger.log(_lowerCamelCase , commit=_lowerCamelCase )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=_lowerCamelCase )
def lowercase ( self : Optional[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] ):
_snake_case = get_batched_dataset(_lowerCamelCase , self.args.batch_size )
_snake_case = len(_lowerCamelCase ) // self.args.batch_size
_snake_case = jnp.array(0 , dtype=jnp.floataa )
_snake_case = 0
for batch in tqdm(_lowerCamelCase , total=_lowerCamelCase , desc='''Evaluating ... ''' ):
_snake_case = self.data_collator(_lowerCamelCase )
_snake_case = self.val_step_fn(_lowerCamelCase , **_lowerCamelCase )
running_loss += jax_utils.unreplicate(metrics['''loss'''] )
i += 1
return running_loss / i
def lowercase ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict ):
_snake_case = jax_utils.unreplicate(_lowerCamelCase )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' )
self.model_save_fn(_lowerCamelCase , params=state.params )
with open(os.path.join(_lowerCamelCase , '''opt_state.msgpack''' ) , '''wb''' ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(_lowerCamelCase , '''args.joblib''' ) )
joblib.dump(self.data_collator , os.path.join(_lowerCamelCase , '''data_collator.joblib''' ) )
with open(os.path.join(_lowerCamelCase , '''training_state.json''' ) , '''w''' ) as f:
json.dump({'''step''': state.step.item()} , _lowerCamelCase )
print('''DONE''' )
def _UpperCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Tuple:
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=''' ... ''' )
with open(os.path.join(__lowerCamelCase , '''flax_model.msgpack''' ) , '''rb''' ) as f:
_snake_case = from_bytes(state.params , f.read() )
with open(os.path.join(__lowerCamelCase , '''opt_state.msgpack''' ) , '''rb''' ) as f:
_snake_case = from_bytes(state.opt_state , f.read() )
_snake_case = joblib.load(os.path.join(__lowerCamelCase , '''args.joblib''' ) )
_snake_case = joblib.load(os.path.join(__lowerCamelCase , '''data_collator.joblib''' ) )
with open(os.path.join(__lowerCamelCase , '''training_state.json''' ) , '''r''' ) as f:
_snake_case = json.load(__lowerCamelCase )
_snake_case = training_state['''step''']
print('''DONE''' )
return params, opt_state, step, args, data_collator
def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> List[Any]:
_snake_case = num_train_steps - warmup_steps
_snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=__lowerCamelCase , transition_steps=__lowerCamelCase )
_snake_case = optax.linear_schedule(init_value=__lowerCamelCase , end_value=1E-7 , transition_steps=__lowerCamelCase )
_snake_case = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def _UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ) -> List[str]:
def weight_decay_mask(__lowerCamelCase : List[Any] ):
_snake_case = traverse_util.flatten_dict(__lowerCamelCase )
_snake_case = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()}
return traverse_util.unflatten_dict(__lowerCamelCase )
_snake_case = scheduler_fn(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
_snake_case = optax.adamw(learning_rate=__lowerCamelCase , weight_decay=__lowerCamelCase , mask=__lowerCamelCase )
return tx, lr
| 40
| 1
|
from jiwer import compute_measures
import datasets
lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n'
lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase (datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/Word_error_rate""",
] , )
def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]:
if concatenate_texts:
return compute_measures(A , A )["wer"]
else:
snake_case : Any = 0
snake_case : Any = 0
for prediction, reference in zip(A , A ):
snake_case : Tuple = compute_measures(A , A )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 124
|
from jiwer import compute_measures
import datasets
lowerCamelCase : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
lowerCamelCase : int = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n'
lowerCamelCase : str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowercase (datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase ( self ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/Word_error_rate""",
] , )
def UpperCAmelCase ( self , A=None , A=None , A=False ) -> List[Any]:
if concatenate_texts:
return compute_measures(A , A )["wer"]
else:
snake_case : Any = 0
snake_case : Any = 0
for prediction, reference in zip(A , A ):
snake_case : Tuple = compute_measures(A , A )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 124
| 1
|
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class _a ( __lowercase ):
A = '''openai/whisper-base'''
A = (
'''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the '''
'''transcribed text.'''
)
A = '''transcriber'''
A = WhisperProcessor
A = WhisperForConditionalGeneration
A = ['''audio''']
A = ['''text''']
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
return self.pre_processor(UpperCAmelCase__, return_tensors="""pt""" ).input_features
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]:
return self.model.generate(inputs=UpperCAmelCase__ )
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
| 361
|
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class _a :
def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> int:
UpperCAmelCase_: List[Any] = parent
UpperCAmelCase_: int = batch_size
UpperCAmelCase_: Any = seq_length
UpperCAmelCase_: Optional[int] = is_training
UpperCAmelCase_: Dict = use_input_mask
UpperCAmelCase_: Optional[int] = use_token_type_ids
UpperCAmelCase_: Dict = use_labels
UpperCAmelCase_: List[str] = vocab_size
UpperCAmelCase_: Union[str, Any] = hidden_size
UpperCAmelCase_: List[Any] = num_hidden_layers
UpperCAmelCase_: Tuple = num_attention_heads
UpperCAmelCase_: Optional[int] = intermediate_size
UpperCAmelCase_: Tuple = hidden_act
UpperCAmelCase_: Tuple = hidden_dropout_prob
UpperCAmelCase_: List[str] = attention_probs_dropout_prob
UpperCAmelCase_: Any = max_position_embeddings
UpperCAmelCase_: List[Any] = type_vocab_size
UpperCAmelCase_: List[str] = type_sequence_label_size
UpperCAmelCase_: Tuple = initializer_range
UpperCAmelCase_: Optional[int] = num_labels
UpperCAmelCase_: Union[str, Any] = num_choices
UpperCAmelCase_: Any = scope
def __snake_case (self ) -> Tuple:
UpperCAmelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
UpperCAmelCase_: str = None
if self.use_input_mask:
UpperCAmelCase_: Dict = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_: int = None
if self.use_token_type_ids:
UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
UpperCAmelCase_: Dict = None
UpperCAmelCase_: List[str] = None
UpperCAmelCase_: Any = None
if self.use_labels:
UpperCAmelCase_: Tuple = ids_tensor([self.batch_size], self.type_sequence_label_size )
UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.num_choices )
UpperCAmelCase_: List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __snake_case (self ) -> List[Any]:
return OpenLlamaConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, use_stable_embedding=SCREAMING_SNAKE_CASE_, )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str:
UpperCAmelCase_: List[Any] = OpenLlamaModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Optional[Any]:
UpperCAmelCase_: Tuple = True
UpperCAmelCase_: List[Any] = OpenLlamaModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase_: Any = model(
SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, )
UpperCAmelCase_: Optional[int] = model(
SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, )
UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> List[Any]:
UpperCAmelCase_: Any = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> Any:
UpperCAmelCase_: Tuple = True
UpperCAmelCase_: Optional[int] = True
UpperCAmelCase_: Dict = OpenLlamaForCausalLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
# first forward pass
UpperCAmelCase_: str = model(
SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, use_cache=SCREAMING_SNAKE_CASE_, )
UpperCAmelCase_: Tuple = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_: Tuple = ids_tensor((self.batch_size, 3), config.vocab_size )
UpperCAmelCase_: Optional[Any] = ids_tensor((self.batch_size, 3), vocab_size=2 )
# append to next input_ids and
UpperCAmelCase_: str = torch.cat([input_ids, next_tokens], dim=-1 )
UpperCAmelCase_: str = torch.cat([input_mask, next_mask], dim=-1 )
UpperCAmelCase_: Dict = model(
SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0]
UpperCAmelCase_: Tuple = model(
SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, encoder_hidden_states=SCREAMING_SNAKE_CASE_, encoder_attention_mask=SCREAMING_SNAKE_CASE_, past_key_values=SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_, )["""hidden_states"""][0]
# select random slice
UpperCAmelCase_: str = ids_tensor((1,), output_from_past.shape[-1] ).item()
UpperCAmelCase_: str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_: Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-3 ) )
def __snake_case (self ) -> List[str]:
UpperCAmelCase_: List[str] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
): List[Any] = config_and_inputs
UpperCAmelCase_: List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _a ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
A = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
A = (OpenLlamaForCausalLM,) if is_torch_available() else ()
A = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
A = False
A = False
def __snake_case (self ) -> int:
UpperCAmelCase_: str = OpenLlamaModelTester(self )
UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 )
def __snake_case (self ) -> Optional[int]:
self.config_tester.run_common_tests()
def __snake_case (self ) -> Optional[int]:
UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def __snake_case (self ) -> Union[str, Any]:
UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_: Dict = type
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def __snake_case (self ) -> str:
UpperCAmelCase_ , UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_: int = 3
UpperCAmelCase_: Tuple = input_dict["""input_ids"""]
UpperCAmelCase_: Optional[int] = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Tuple = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size )
UpperCAmelCase_: Optional[int] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
def __snake_case (self ) -> int:
UpperCAmelCase_ , UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_: Dict = 3
UpperCAmelCase_: Optional[Any] = """single_label_classification"""
UpperCAmelCase_: Optional[int] = input_dict["""input_ids"""]
UpperCAmelCase_: str = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Optional[int] = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size )
UpperCAmelCase_: List[str] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
def __snake_case (self ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_: Optional[int] = 3
UpperCAmelCase_: int = """multi_label_classification"""
UpperCAmelCase_: Tuple = input_dict["""input_ids"""]
UpperCAmelCase_: int = input_ids.ne(1 ).to(SCREAMING_SNAKE_CASE_ )
UpperCAmelCase_: Union[str, Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_: Optional[Any] = OpenLlamaForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
UpperCAmelCase_: Any = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ )
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" )
def __snake_case (self ) -> int:
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_: Dict = ids_tensor([1, 10], config.vocab_size )
UpperCAmelCase_: Optional[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )], config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase_: Any = OpenLlamaModel(SCREAMING_SNAKE_CASE_ )
original_model.to(SCREAMING_SNAKE_CASE_ )
original_model.eval()
UpperCAmelCase_: Any = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state
UpperCAmelCase_: Tuple = original_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
UpperCAmelCase_: Optional[Any] = {"""type""": scaling_type, """factor""": 1_0.0}
UpperCAmelCase_: int = OpenLlamaModel(SCREAMING_SNAKE_CASE_ )
scaled_model.to(SCREAMING_SNAKE_CASE_ )
scaled_model.eval()
UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state
UpperCAmelCase_: Union[str, Any] = scaled_model(SCREAMING_SNAKE_CASE_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, atol=1E-5 ) )
| 82
| 0
|
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.17.0.dev0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''')
a__ : List[str] = logging.getLogger(__name__)
@dataclass
class a_ :
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , )
__SCREAMING_SNAKE_CASE : int = field(
default=1024 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__SCREAMING_SNAKE_CASE : bool = field(
default=a__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
__SCREAMING_SNAKE_CASE : bool = field(
default=a__ , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
__SCREAMING_SNAKE_CASE : Optional[int] = field(
default=a__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
__SCREAMING_SNAKE_CASE : Optional[int] = field(
default=a__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
__SCREAMING_SNAKE_CASE : Optional[int] = field(
default=a__ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default=a__ , metadata={'help': 'A csv or a json file containing the training data.'} )
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default=a__ , metadata={'help': 'A csv or a json file containing the validation data.'} )
__SCREAMING_SNAKE_CASE : Optional[str] = field(default=a__ , metadata={'help': 'A csv or a json file containing the test data.'} )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
SCREAMING_SNAKE_CASE : Dict = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
SCREAMING_SNAKE_CASE : Tuple = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class a_ :
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = field(
default=a__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default=a__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default=a__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
__SCREAMING_SNAKE_CASE : Optional[str] = field(
default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
__SCREAMING_SNAKE_CASE : bool = field(
default=a__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
__SCREAMING_SNAKE_CASE : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
__SCREAMING_SNAKE_CASE : bool = field(
default=a__ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level()
logger.setLevel(a__ )
datasets.utils.logging.set_verbosity(a__ )
transformers.utils.logging.set_verbosity(a__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE : int = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE : List[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
SCREAMING_SNAKE_CASE : Tuple = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
SCREAMING_SNAKE_CASE : Optional[int] = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = data_args.train_file.split('''.''' )[-1]
SCREAMING_SNAKE_CASE : int = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
SCREAMING_SNAKE_CASE : Optional[Any] = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(F"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
SCREAMING_SNAKE_CASE : Dict = load_dataset('''csv''' , data_files=a__ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
SCREAMING_SNAKE_CASE : List[Any] = load_dataset('''json''' , data_files=a__ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
SCREAMING_SNAKE_CASE : Dict = raw_datasets['''train'''].features['''label'''].names
SCREAMING_SNAKE_CASE : int = len(a__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
SCREAMING_SNAKE_CASE : Tuple = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a__ , )
SCREAMING_SNAKE_CASE : Dict = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE : str = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE : Any = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
SCREAMING_SNAKE_CASE : Optional[int] = {'''Refused''': 0, '''Entailed''': 1}
SCREAMING_SNAKE_CASE : str = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
SCREAMING_SNAKE_CASE : Tuple = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(a__ ):
# Tokenize the texts
def _convert_table_text_to_pandas(a__ ):
SCREAMING_SNAKE_CASE : int = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
SCREAMING_SNAKE_CASE : Optional[int] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
SCREAMING_SNAKE_CASE : str = examples['''statement''']
SCREAMING_SNAKE_CASE : Tuple = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) )
SCREAMING_SNAKE_CASE : int = tokenizer(a__ , a__ , padding=a__ , max_length=a__ , truncation=a__ )
SCREAMING_SNAKE_CASE : int = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
SCREAMING_SNAKE_CASE : Optional[int] = raw_datasets.map(
a__ , batched=a__ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
SCREAMING_SNAKE_CASE : str = raw_datasets['''train''']
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE : List[Any] = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
SCREAMING_SNAKE_CASE : Any = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(a__ ) ) , 3 ):
logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(a__ ):
SCREAMING_SNAKE_CASE : Dict = p.predictions[0] if isinstance(p.predictions , a__ ) else p.predictions
SCREAMING_SNAKE_CASE : Dict = np.argmax(a__ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE : List[str] = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE : List[Any] = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE : Optional[int] = Trainer(
model=a__ , args=a__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a__ , tokenizer=a__ , data_collator=a__ , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE : List[str] = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE : Tuple = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE : List[str] = last_checkpoint
SCREAMING_SNAKE_CASE : Dict = trainer.train(resume_from_checkpoint=a__ )
SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics
SCREAMING_SNAKE_CASE : Optional[Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a__ )
)
SCREAMING_SNAKE_CASE : Dict = min(a__ , len(a__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' , a__ )
trainer.save_metrics('''train''' , a__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
SCREAMING_SNAKE_CASE : Any = trainer.evaluate(eval_dataset=a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = min(a__ , len(a__ ) )
trainer.log_metrics('''eval''' , a__ )
trainer.save_metrics('''eval''' , a__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
SCREAMING_SNAKE_CASE : List[str] = predict_dataset.remove_columns('''label''' )
SCREAMING_SNAKE_CASE : Optional[int] = trainer.predict(a__ , metric_key_prefix='''predict''' ).predictions
SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a__ , axis=1 )
SCREAMING_SNAKE_CASE : Any = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(a__ , '''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(a__ ):
SCREAMING_SNAKE_CASE : Tuple = label_list[item]
writer.write(F"""{index}\t{item}\n""" )
SCREAMING_SNAKE_CASE : Any = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**a__ )
else:
trainer.create_model_card(**a__ )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 313
|
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if (
(cp >= 0x4_E00 and cp <= 0x9_FFF)
or (cp >= 0x3_400 and cp <= 0x4_DBF) #
or (cp >= 0x20_000 and cp <= 0x2A_6DF) #
or (cp >= 0x2A_700 and cp <= 0x2B_73F) #
or (cp >= 0x2B_740 and cp <= 0x2B_81F) #
or (cp >= 0x2B_820 and cp <= 0x2C_EAF) #
or (cp >= 0xF_900 and cp <= 0xF_AFF)
or (cp >= 0x2F_800 and cp <= 0x2F_A1F) #
): #
return True
return False
def UpperCAmelCase_( a__ ):
"""simple docstring"""
for char in word:
SCREAMING_SNAKE_CASE : str = ord(a__ )
if not _is_chinese_char(a__ ):
return 0
return 1
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = set()
for token in tokens:
SCREAMING_SNAKE_CASE : str = len(a__ ) > 1 and is_chinese(a__ )
if chinese_word:
word_set.add(a__ )
SCREAMING_SNAKE_CASE : str = list(a__ )
return word_list
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
SCREAMING_SNAKE_CASE : List[str] = max([len(a__ ) for w in chinese_word_set] )
SCREAMING_SNAKE_CASE : Tuple = bert_tokens
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = 0, len(a__ )
while start < end:
SCREAMING_SNAKE_CASE : Dict = True
if is_chinese(bert_word[start] ):
SCREAMING_SNAKE_CASE : Optional[int] = min(end - start , a__ )
for i in range(a__ , 1 , -1 ):
SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
SCREAMING_SNAKE_CASE : Optional[int] = '''##''' + bert_word[j]
SCREAMING_SNAKE_CASE : List[str] = start + i
SCREAMING_SNAKE_CASE : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(0 , len(a__ ) , 100 ):
SCREAMING_SNAKE_CASE : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0]
SCREAMING_SNAKE_CASE : Union[str, Any] = [get_chinese_word(a__ ) for r in res]
ltp_res.extend(a__ )
assert len(a__ ) == len(a__ )
SCREAMING_SNAKE_CASE : Any = []
for i in range(0 , len(a__ ) , 100 ):
SCREAMING_SNAKE_CASE : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=a__ , truncation=a__ , max_length=512 )
bert_res.extend(res['''input_ids'''] )
assert len(a__ ) == len(a__ )
SCREAMING_SNAKE_CASE : int = []
for input_ids, chinese_word in zip(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[Any] = []
for id in input_ids:
SCREAMING_SNAKE_CASE : List[Any] = bert_tokenizer._convert_id_to_token(a__ )
input_tokens.append(a__ )
SCREAMING_SNAKE_CASE : List[str] = add_sub_symbol(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(a__ ):
if token[:2] == "##":
SCREAMING_SNAKE_CASE : Optional[int] = token[2:]
# save chinese tokens' pos
if len(a__ ) == 1 and _is_chinese_char(ord(a__ ) ):
ref_id.append(a__ )
ref_ids.append(a__ )
assert len(a__ ) == len(a__ )
return ref_ids
def UpperCAmelCase_( a__ ):
"""simple docstring"""
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE : List[str] = f.readlines()
SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in data if len(a__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
SCREAMING_SNAKE_CASE : List[str] = LTP(args.ltp ) # faster in GPU device
SCREAMING_SNAKE_CASE : int = BertTokenizer.from_pretrained(args.bert )
SCREAMING_SNAKE_CASE : int = prepare_ref(a__ , a__ , a__ )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
SCREAMING_SNAKE_CASE : Tuple = [json.dumps(a__ ) + '''\n''' for ref in ref_ids]
f.writelines(a__ )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
a__ : int = parser.parse_args()
main(args)
| 313
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__)
_lowerCAmelCase :Any = {
'microsoft/swin-tiny-patch4-window7-224': (
'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _UpperCAmelCase ( a ,a ):
'''simple docstring'''
a__ ='''swin'''
a__ ={
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , A=2_2_4 , A=4 , A=3 , A=9_6 , A=[2, 2, 6, 2] , A=[3, 6, 1_2, 2_4] , A=7 , A=4.0 , A=True , A=0.0 , A=0.0 , A=0.1 , A="gelu" , A=False , A=0.02 , A=1E-5 , A=3_2 , A=None , A=None , **A , ) -> Tuple:
super().__init__(**A )
_UpperCAmelCase : Optional[int] = image_size
_UpperCAmelCase : Tuple = patch_size
_UpperCAmelCase : List[str] = num_channels
_UpperCAmelCase : Tuple = embed_dim
_UpperCAmelCase : List[Any] = depths
_UpperCAmelCase : Any = len(A )
_UpperCAmelCase : str = num_heads
_UpperCAmelCase : str = window_size
_UpperCAmelCase : Tuple = mlp_ratio
_UpperCAmelCase : str = qkv_bias
_UpperCAmelCase : str = hidden_dropout_prob
_UpperCAmelCase : Tuple = attention_probs_dropout_prob
_UpperCAmelCase : Optional[int] = drop_path_rate
_UpperCAmelCase : Optional[Any] = hidden_act
_UpperCAmelCase : str = use_absolute_embeddings
_UpperCAmelCase : Optional[Any] = layer_norm_eps
_UpperCAmelCase : Dict = initializer_range
_UpperCAmelCase : Tuple = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_UpperCAmelCase : int = int(embed_dim * 2 ** (len(A ) - 1) )
_UpperCAmelCase : Union[str, Any] = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(A ) + 1 )]
_UpperCAmelCase , _UpperCAmelCase : List[Any] = get_aligned_output_features_output_indices(
out_features=A , out_indices=A , stage_names=self.stage_names )
class _UpperCAmelCase ( a ):
'''simple docstring'''
a__ =version.parse('''1.11''' )
@property
def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __lowerCAmelCase ( self ) -> float:
return 1E-4
| 68
|
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_UpperCAmelCase : str = {}
def __lowerCAmelCase ( self , A , A , A=1 ) -> Optional[Any]:
if self.graph.get(A ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_UpperCAmelCase : Optional[int] = [[w, v]]
if not self.graph.get(A ):
_UpperCAmelCase : List[str] = []
def __lowerCAmelCase ( self ) -> Optional[int]:
return list(self.graph )
def __lowerCAmelCase ( self , A , A ) -> int:
if self.graph.get(A ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A )
def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Optional[int]:
if s == d:
return []
_UpperCAmelCase : Any = []
_UpperCAmelCase : Tuple = []
if s == -2:
_UpperCAmelCase : List[str] = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : Tuple = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : Optional[Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : Any = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A ) != 0:
_UpperCAmelCase : List[str] = stack[len(A ) - 1]
else:
_UpperCAmelCase : Union[str, Any] = ss
# check if se have reached the starting point
if len(A ) == 0:
return visited
def __lowerCAmelCase ( self , A=-1 ) -> List[Any]:
if c == -1:
_UpperCAmelCase : Optional[int] = floor(random() * 1_0_0_0_0 ) + 1_0
for i in range(A ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_0_2 ) + 1 ):
_UpperCAmelCase : List[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(A , A , 1 )
def __lowerCAmelCase ( self , A=-2 ) -> Optional[Any]:
_UpperCAmelCase : int = deque()
_UpperCAmelCase : Optional[int] = []
if s == -2:
_UpperCAmelCase : Tuple = list(self.graph )[0]
d.append(A )
visited.append(A )
while d:
_UpperCAmelCase : int = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def __lowerCAmelCase ( self , A ) -> Optional[int]:
_UpperCAmelCase : str = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def __lowerCAmelCase ( self , A ) -> int:
return len(self.graph[u] )
def __lowerCAmelCase ( self , A=-2 ) -> str:
_UpperCAmelCase : int = []
_UpperCAmelCase : Union[str, Any] = []
if s == -2:
_UpperCAmelCase : Any = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : List[Any] = s
_UpperCAmelCase : str = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : Optional[int] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : str = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(A ) != 0:
_UpperCAmelCase : Optional[Any] = stack[len(A ) - 1]
else:
_UpperCAmelCase : List[str] = ss
# check if se have reached the starting point
if len(A ) == 0:
return sorted_nodes
def __lowerCAmelCase ( self ) -> Tuple:
_UpperCAmelCase : Union[str, Any] = []
_UpperCAmelCase : Optional[Any] = []
_UpperCAmelCase : Dict = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : Union[str, Any] = -2
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Tuple = s
_UpperCAmelCase : Tuple = False
_UpperCAmelCase : Optional[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : int = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_UpperCAmelCase : Union[str, Any] = len(A ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_UpperCAmelCase : Tuple = True
if len(A ) != 0:
_UpperCAmelCase : Union[str, Any] = stack[len(A ) - 1]
else:
_UpperCAmelCase : Union[str, Any] = False
indirect_parents.append(A )
_UpperCAmelCase : Optional[int] = s
_UpperCAmelCase : int = ss
# check if se have reached the starting point
if len(A ) == 0:
return list(A )
def __lowerCAmelCase ( self ) -> List[Any]:
_UpperCAmelCase : Any = []
_UpperCAmelCase : Tuple = []
_UpperCAmelCase : List[str] = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : int = -2
_UpperCAmelCase : Tuple = []
_UpperCAmelCase : Optional[int] = s
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : List[str] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_UpperCAmelCase : Optional[Any] = len(A ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : str = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_UpperCAmelCase : List[Any] = True
if len(A ) != 0:
_UpperCAmelCase : int = stack[len(A ) - 1]
else:
_UpperCAmelCase : List[str] = False
indirect_parents.append(A )
_UpperCAmelCase : List[Any] = s
_UpperCAmelCase : Any = ss
# check if se have reached the starting point
if len(A ) == 0:
return False
def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Dict:
_UpperCAmelCase : Tuple = time()
self.dfs(A , A )
_UpperCAmelCase : Optional[int] = time()
return end - begin
def __lowerCAmelCase ( self , A=-2 ) -> Dict:
_UpperCAmelCase : int = time()
self.bfs(A )
_UpperCAmelCase : str = time()
return end - begin
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_UpperCAmelCase : str = {}
def __lowerCAmelCase ( self , A , A , A=1 ) -> str:
# check if the u exists
if self.graph.get(A ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_UpperCAmelCase : int = [[w, v]]
# add the other way
if self.graph.get(A ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_UpperCAmelCase : List[Any] = [[w, u]]
def __lowerCAmelCase ( self , A , A ) -> List[str]:
if self.graph.get(A ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(A )
# the other way round
if self.graph.get(A ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(A )
def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> Any:
if s == d:
return []
_UpperCAmelCase : Optional[Any] = []
_UpperCAmelCase : Tuple = []
if s == -2:
_UpperCAmelCase : Optional[int] = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : int = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(A )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : Any = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(A ) != 0:
_UpperCAmelCase : Dict = stack[len(A ) - 1]
else:
_UpperCAmelCase : Tuple = ss
# check if se have reached the starting point
if len(A ) == 0:
return visited
def __lowerCAmelCase ( self , A=-1 ) -> List[str]:
if c == -1:
_UpperCAmelCase : int = floor(random() * 1_0_0_0_0 ) + 1_0
for i in range(A ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_0_2 ) + 1 ):
_UpperCAmelCase : Dict = floor(random() * c ) + 1
if n != i:
self.add_pair(A , A , 1 )
def __lowerCAmelCase ( self , A=-2 ) -> Tuple:
_UpperCAmelCase : List[str] = deque()
_UpperCAmelCase : Optional[int] = []
if s == -2:
_UpperCAmelCase : Optional[int] = list(self.graph )[0]
d.append(A )
visited.append(A )
while d:
_UpperCAmelCase : str = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def __lowerCAmelCase ( self , A ) -> List[str]:
return len(self.graph[u] )
def __lowerCAmelCase ( self ) -> Any:
_UpperCAmelCase : str = []
_UpperCAmelCase : Any = []
_UpperCAmelCase : Optional[Any] = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : Any = -2
_UpperCAmelCase : Any = []
_UpperCAmelCase : Tuple = s
_UpperCAmelCase : Tuple = False
_UpperCAmelCase : Tuple = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : Any = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_UpperCAmelCase : Optional[int] = len(A ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : Any = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_UpperCAmelCase : Dict = True
if len(A ) != 0:
_UpperCAmelCase : List[str] = stack[len(A ) - 1]
else:
_UpperCAmelCase : str = False
indirect_parents.append(A )
_UpperCAmelCase : Tuple = s
_UpperCAmelCase : int = ss
# check if se have reached the starting point
if len(A ) == 0:
return list(A )
def __lowerCAmelCase ( self ) -> Tuple:
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : Union[str, Any] = []
_UpperCAmelCase : str = list(self.graph )[0]
stack.append(A )
visited.append(A )
_UpperCAmelCase : Tuple = -2
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : Any = s
_UpperCAmelCase : Dict = False
_UpperCAmelCase : List[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_UpperCAmelCase : Dict = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_UpperCAmelCase : List[str] = len(A ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_UpperCAmelCase : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_UpperCAmelCase : List[Any] = True
if len(A ) != 0:
_UpperCAmelCase : Dict = stack[len(A ) - 1]
else:
_UpperCAmelCase : str = False
indirect_parents.append(A )
_UpperCAmelCase : List[Any] = s
_UpperCAmelCase : Optional[int] = ss
# check if se have reached the starting point
if len(A ) == 0:
return False
def __lowerCAmelCase ( self ) -> int:
return list(self.graph )
def __lowerCAmelCase ( self , A=-2 , A=-1 ) -> str:
_UpperCAmelCase : List[Any] = time()
self.dfs(A , A )
_UpperCAmelCase : Union[str, Any] = time()
return end - begin
def __lowerCAmelCase ( self , A=-2 ) -> Optional[int]:
_UpperCAmelCase : List[Any] = time()
self.bfs(A )
_UpperCAmelCase : Optional[int] = time()
return end - begin
| 68
| 1
|
"""simple docstring"""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
'''simple docstring'''
assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match'''
lowerCAmelCase = nn.Parameter(_UpperCAmelCase )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match'''
lowerCAmelCase = nn.Parameter(_UpperCAmelCase )
def lowercase (snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : str ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase = np.asarray(weights[0] )
lowerCAmelCase = np.asarray(weights[1] )
lowerCAmelCase = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , )
set_param(
torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , )
def lowercase (snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase = np.asarray(weights[0] )
lowerCAmelCase = np.asarray(weights[1] )
lowerCAmelCase = np.asarray(weights[2] )
lowerCAmelCase = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(_UpperCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , _UpperCAmelCase ) , )
set_param(
torch_layer.output.dense , torch.tensor(_UpperCAmelCase ).view(-1 , _UpperCAmelCase ).contiguous().transpose(0 , 1 ) , )
def lowercase (snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict ) -> Any:
'''simple docstring'''
lowerCAmelCase = weights[0][0][0]
lowerCAmelCase = np.asarray(layer_norm_a[0] )
lowerCAmelCase = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , )
# lsh weights + output
lowerCAmelCase = weights[0][1]
if len(_UpperCAmelCase ) < 4:
set_layer_weights_in_torch_lsh(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase )
else:
set_layer_weights_in_torch_local(_UpperCAmelCase , torch_block.attention , _UpperCAmelCase )
# intermediate weighs
lowerCAmelCase = weights[2][0][1][2]
# Chunked Feed Forward
if len(_UpperCAmelCase ) == 4:
lowerCAmelCase = intermediate_weights[2]
# layernorm 2
lowerCAmelCase = np.asarray(intermediate_weights[0][0] )
lowerCAmelCase = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , )
# intermediate dense
lowerCAmelCase = np.asarray(intermediate_weights[1][0] )
lowerCAmelCase = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , )
# intermediate out
lowerCAmelCase = np.asarray(intermediate_weights[4][0] )
lowerCAmelCase = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , )
def lowercase (snake_case__ : Any , snake_case__ : Dict , snake_case__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase = torch_model.reformer
# word embeds
lowerCAmelCase = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(_UpperCAmelCase ) , )
if isinstance(weights[3] , _UpperCAmelCase ):
lowerCAmelCase = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowerCAmelCase = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f'''{position_embeddings[emb_idx]} emb does not match'''
lowerCAmelCase = nn.Parameter(torch.tensor(_UpperCAmelCase ) )
lowerCAmelCase = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
_UpperCAmelCase ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowerCAmelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# output layer norm
lowerCAmelCase = np.asarray(weights[7][0] )
lowerCAmelCase = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) , )
# output embeddings
lowerCAmelCase = np.asarray(weights[9][0] )
lowerCAmelCase = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(_UpperCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(_UpperCAmelCase ) , )
def lowercase (snake_case__ : Union[str, Any] , snake_case__ : Dict , snake_case__ : Tuple ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase = ReformerConfig.from_json_file(_UpperCAmelCase )
print(f'''Building PyTorch model from configuration: {config}''' )
lowerCAmelCase = ReformerModelWithLMHead(_UpperCAmelCase )
with open(_UpperCAmelCase , """rb""" ) as f:
lowerCAmelCase = pickle.load(_UpperCAmelCase )["""weights"""]
set_model_weights_in_torch(_UpperCAmelCase , _UpperCAmelCase , config.hidden_size )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , _UpperCAmelCase )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained Reformer model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 155
|
# This code is adapted from OpenAI's release
# https://github.com/openai/human-eval/blob/master/human_eval/execution.py
import contextlib
import faulthandler
import io
import multiprocessing
import os
import platform
import signal
import tempfile
def A ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Any:
'''simple docstring'''
_UpperCAmelCase = multiprocessing.Manager()
_UpperCAmelCase = manager.list()
_UpperCAmelCase = multiprocessing.Process(target=_UpperCAmelCase , args=(check_program, result, timeout) )
p.start()
p.join(timeout=timeout + 1 )
if p.is_alive():
p.kill()
if not result:
result.append('timed out' )
return {
"task_id": task_id,
"passed": result[0] == "passed",
"result": result[0],
"completion_id": completion_id,
}
def A ( _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
_UpperCAmelCase = shutil.rmtree
_UpperCAmelCase = os.rmdir
_UpperCAmelCase = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Run program.
try:
_UpperCAmelCase = {}
with swallow_io():
with time_limit(_UpperCAmelCase ):
exec(_UpperCAmelCase , _UpperCAmelCase )
result.append('passed' )
except TimeoutException:
result.append('timed out' )
except BaseException as e:
result.append(F"failed: {e}" )
# Needed for cleaning up.
_UpperCAmelCase = rmtree
_UpperCAmelCase = rmdir
_UpperCAmelCase = chdir
@contextlib.contextmanager
def A ( _UpperCAmelCase : Union[str, Any] ) -> Any:
'''simple docstring'''
def signal_handler(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ):
raise TimeoutException('Timed out!' )
signal.setitimer(signal.ITIMER_REAL , _UpperCAmelCase )
signal.signal(signal.SIGALRM , _UpperCAmelCase )
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL , 0 )
@contextlib.contextmanager
def A ( ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = WriteOnlyStringIO()
with contextlib.redirect_stdout(_UpperCAmelCase ):
with contextlib.redirect_stderr(_UpperCAmelCase ):
with redirect_stdin(_UpperCAmelCase ):
yield
@contextlib.contextmanager
def A ( ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as dirname:
with chdir(_UpperCAmelCase ):
yield dirname
class __lowerCAmelCase ( A ):
pass
class __lowerCAmelCase ( io.StringIO ):
def _lowerCamelCase ( self : Tuple , *A : str , **A : Any) -> Any:
"""simple docstring"""
raise OSError
def _lowerCamelCase ( self : List[str] , *A : Optional[Any] , **A : Optional[Any]) -> Optional[int]:
"""simple docstring"""
raise OSError
def _lowerCamelCase ( self : str , *A : List[str] , **A : List[Any]) -> Union[str, Any]:
"""simple docstring"""
raise OSError
def _lowerCamelCase ( self : Union[str, Any] , *A : Optional[Any] , **A : List[str]) -> Optional[int]:
"""simple docstring"""
return False
class __lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore
UpperCamelCase = '''stdin'''
@contextlib.contextmanager
def A ( _UpperCAmelCase : List[Any] ) -> Dict:
'''simple docstring'''
if root == ".":
yield
return
_UpperCAmelCase = os.getcwd()
os.chdir(_UpperCAmelCase )
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(_UpperCAmelCase )
def A ( _UpperCAmelCase : List[str]=None ) -> Any:
'''simple docstring'''
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) )
resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) )
if not platform.uname().system == "Darwin":
resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) )
faulthandler.disable()
import builtins
_UpperCAmelCase = None
_UpperCAmelCase = None
import os
_UpperCAmelCase = '1'
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
import shutil
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
import subprocess
_UpperCAmelCase = None # type: ignore
_UpperCAmelCase = None
import sys
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
| 339
| 0
|
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : Tuple = ["""image_processor""", """tokenizer"""]
A : str = """FlavaImageProcessor"""
A : Dict = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Optional[Any] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Union[str, Any]=None , **_lowerCAmelCase : List[Any] ):
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _lowercase , )
__snake_case : str = kwargs.pop("""feature_extractor""" )
__snake_case : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(_lowercase , _lowercase )
__snake_case : List[Any] = self.image_processor
def __call__( self : int , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : Any = None , _lowerCAmelCase : Tuple = True , _lowerCAmelCase : Optional[int] = False , _lowerCAmelCase : Union[str, Any] = False , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : Union[str, Any] = 0 , _lowerCAmelCase : Optional[Any] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : List[str] = None , _lowerCAmelCase : Dict = None , _lowerCAmelCase : List[Any] = False , _lowerCAmelCase : int = False , _lowerCAmelCase : str = False , _lowerCAmelCase : List[str] = False , _lowerCAmelCase : int = True , _lowerCAmelCase : Union[str, Any] = None , **_lowerCAmelCase : Optional[Any] , ):
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
__snake_case : Any = self.tokenizer(
text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , )
if images is not None:
__snake_case : Optional[Any] = self.image_processor(
_lowercase , return_image_mask=_lowercase , return_codebook_pixels=_lowercase , return_tensors=_lowercase , **_lowercase , )
if text is not None and images is not None:
encoding.update(_lowercase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase )
def snake_case__ ( self : Union[str, Any] , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any] ):
return self.tokenizer.batch_decode(*_lowercase , **_lowercase )
def snake_case__ ( self : str , *_lowerCAmelCase : Dict , **_lowerCAmelCase : int ):
return self.tokenizer.decode(*_lowercase , **_lowercase )
@property
def snake_case__ ( self : List[str] ):
__snake_case : Any = self.tokenizer.model_input_names
__snake_case : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def snake_case__ ( self : Any ):
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _lowercase , )
return self.image_processor_class
@property
def snake_case__ ( self : List[Any] ):
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _lowercase , )
return self.image_processor
| 365
|
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = "▁"
lowercase_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
lowercase_ = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
lowercase_ = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
lowercase_ = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
lowercase_ = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
A : List[str] = ["input_ids"]
A : Tuple = VOCAB_FILES_NAMES
A : List[Any] = PRETRAINED_INIT_CONFIGURATION
A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Optional[Any] = RESOURCE_FILES_NAMES
def __init__( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Dict=False , _lowerCAmelCase : List[Any]="utf8" , _lowerCAmelCase : Optional[Any]="[UNK]" , _lowerCAmelCase : Optional[int]="[SEP]" , _lowerCAmelCase : List[str]="[PAD]" , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[MASK]" , _lowerCAmelCase : Optional[Dict[str, Any]] = None , **_lowerCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , vocab_file=_lowerCAmelCase , encoding=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , )
__snake_case : List[Any] = do_lower_case
__snake_case : Any = sentencepiece_model_ckpt
__snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCAmelCase )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
__snake_case : int = self.load_vocab(filepath=_lowerCAmelCase )
else:
__snake_case : Tuple = {self.sp_model.id_to_piece(_lowerCAmelCase ): id for id in range(self.sp_model.get_piece_size() )}
__snake_case : str = {v: k for k, v in self.vocab.items()}
def snake_case__ ( self : List[Any] , _lowerCAmelCase : List[Any] ):
if text is None:
return None
__snake_case : List[Any] = self.tokenize(_lowerCAmelCase )
__snake_case , __snake_case : Optional[Any] = """""", []
for i, ch in enumerate(_lowerCAmelCase ):
if ch in self.SP_CHAR_MAPPING:
__snake_case : Any = self.SP_CHAR_MAPPING.get(_lowerCAmelCase )
else:
__snake_case : Dict = unicodedata.normalize("""NFKC""" , _lowerCAmelCase )
if self.is_whitespace(_lowerCAmelCase ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_lowerCAmelCase ) )
__snake_case , __snake_case , __snake_case : str = normalized_text, [], 0
if self.do_lower_case:
__snake_case : int = text.lower()
for token in split_tokens:
if token[:1] == "▁":
__snake_case : int = token[1:]
__snake_case : Optional[int] = text[offset:].index(_lowerCAmelCase ) + offset
__snake_case : int = start + len(_lowerCAmelCase )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
__snake_case : str = end
return token_mapping
@property
def snake_case__ ( self : Tuple ):
return len(self.vocab )
def snake_case__ ( self : Dict ):
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : int ):
__snake_case : str = self.__dict__.copy()
__snake_case : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , _lowerCAmelCase : List[str] ):
__snake_case : Union[str, Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__snake_case : Optional[Any] = {}
__snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def snake_case__ ( self : str , _lowerCAmelCase : Optional[int] ):
return "".join((self.SP_CHAR_MAPPING.get(_lowerCAmelCase , _lowerCAmelCase ) for c in text) )
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : Tuple=False , _lowerCAmelCase : Optional[Any]=64 , _lowerCAmelCase : Optional[int]=0.1 ):
if self.sp_model_kwargs.get("""enable_sampling""" ) is True:
__snake_case : List[str] = True
if self.sp_model_kwargs.get("""alpha""" ) is not None:
__snake_case : Dict = self.sp_model_kwargs.get("""alpha""" )
if self.sp_model_kwargs.get("""nbest_size""" ) is not None:
__snake_case : List[Any] = self.sp_model_kwargs.get("""nbest_size""" )
if not enable_sampling:
__snake_case : str = self.sp_model.EncodeAsPieces(_lowerCAmelCase )
else:
__snake_case : Tuple = self.sp_model.SampleEncodeAsPieces(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case : Union[str, Any] = []
for pi, piece in enumerate(_lowerCAmelCase ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_lowerCAmelCase ) and pi != 0:
new_pieces.append(_lowerCAmelCase )
continue
else:
continue
__snake_case : Optional[int] = 0
for i, chunk in enumerate(_lowerCAmelCase ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_lowerCAmelCase ) or self.is_punct(_lowerCAmelCase ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_lowerCAmelCase )
__snake_case : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
__snake_case : Tuple = i
if len(_lowerCAmelCase ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ):
__snake_case : int = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
__snake_case : int = self.convert_ids_to_tokens(_lowerCAmelCase )
__snake_case : Any = """""".join(_lowerCAmelCase ).replace(_lowerCAmelCase , """ """ ).strip()
return out_string
def snake_case__ ( self : Dict , _lowerCAmelCase : Tuple ):
return self.vocab.get(_lowerCAmelCase , self.vocab.get(self.unk_token ) )
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Dict ):
return self.reverse_vocab.get(_lowerCAmelCase , self.unk_token )
def snake_case__ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any]=None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
__snake_case : Optional[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def snake_case__ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None ):
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[Any]=False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) + [1]
return [1] + ([0] * len(_lowerCAmelCase )) + [1]
def snake_case__ ( self : Optional[int] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ):
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_lowerCAmelCase ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_lowerCAmelCase ) + 1) + [1] * (len(_lowerCAmelCase ) + 3)
def snake_case__ ( self : Tuple , _lowerCAmelCase : List[str] ):
if "\u4e00" <= char <= "\u9fff":
return True
return False
def snake_case__ ( self : List[str] , _lowerCAmelCase : Any ):
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def snake_case__ ( self : int , _lowerCAmelCase : List[Any] ):
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : Optional[Any] ):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_lowerCAmelCase ) == 1:
__snake_case : Dict = unicodedata.category(_lowerCAmelCase )
if cat == "Zs":
return True
return False
def snake_case__ ( self : str , _lowerCAmelCase : List[Any] ):
__snake_case : Dict = {}
with io.open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f:
for index, line in enumerate(_lowerCAmelCase ):
__snake_case : Tuple = line.rstrip("""\n""" )
__snake_case : List[str] = int(_lowerCAmelCase )
return token_to_idx
def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ):
__snake_case : Optional[int] = 0
if os.path.isdir(_lowerCAmelCase ):
__snake_case : int = os.path.join(
_lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
else:
__snake_case : Optional[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory
with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
__snake_case : Union[str, Any] = token_index
writer.write(token + """\n""" )
index += 1
__snake_case : List[Any] = os.path.join(_lowerCAmelCase , """sentencepiece.bpe.model""" )
with open(_lowerCAmelCase , """wb""" ) as fi:
__snake_case : List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCAmelCase )
return (vocab_file,)
| 20
| 0
|
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
if index == number_of_items:
return 0
__UpperCamelCase =0
__UpperCamelCase =0
__UpperCamelCase =knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 )
if weights[index] <= max_weight:
__UpperCamelCase =values[index] + knapsack(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_weight - weights[index] , index + 1 )
return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 62
|
'''simple docstring'''
from itertools import count
def __lowerCamelCase ( _lowercase = 5_0 ) -> int:
UpperCAmelCase : Any = [1] * min_block_length
for n in count(_lowercase ):
fill_count_functions.append(1 )
for block_length in range(_lowercase , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 1_0_0_0_0_0_0:
break
return n
if __name__ == "__main__":
print(F'''{solution() = }''')
| 265
| 0
|
'''simple docstring'''
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def a__ ( a__ , a__ , a__ , a__ , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = coefficient_matrix.shape
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = constant_matrix.shape
if rowsa != colsa:
__SCREAMING_SNAKE_CASE = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}'
raise ValueError(a__ )
if colsa != 1:
__SCREAMING_SNAKE_CASE = F'Constant matrix must be nx1 but received {rowsa}x{colsa}'
raise ValueError(a__ )
if rowsa != rowsa:
__SCREAMING_SNAKE_CASE = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
F'received {rowsa}x{colsa} and {rowsa}x{colsa}'
)
raise ValueError(a__ )
if len(a__ ) != rowsa:
__SCREAMING_SNAKE_CASE = (
"""Number of initial values must be equal to number of rows in coefficient """
F'matrix but received {len(a__ )} and {rowsa}'
)
raise ValueError(a__ )
if iterations <= 0:
raise ValueError("""Iterations must be at least 1""" )
__SCREAMING_SNAKE_CASE = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = table.shape
strictly_diagonally_dominant(a__ )
# Iterates the whole matrix for given number of times
for _ in range(a__ ):
__SCREAMING_SNAKE_CASE = []
for row in range(a__ ):
__SCREAMING_SNAKE_CASE = 0
for col in range(a__ ):
if col == row:
__SCREAMING_SNAKE_CASE = table[row][col]
elif col == cols - 1:
__SCREAMING_SNAKE_CASE = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
__SCREAMING_SNAKE_CASE = (temp + val) / denom
new_val.append(a__ )
__SCREAMING_SNAKE_CASE = new_val
return [float(a__ ) for i in new_val]
def a__ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = table.shape
__SCREAMING_SNAKE_CASE = True
for i in range(0 , a__ ):
__SCREAMING_SNAKE_CASE = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359
|
'''simple docstring'''
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
UpperCAmelCase : Dict = TypeVar('T')
def a__ ( a__ ):
"""simple docstring"""
return (position - 1) // 2
def a__ ( a__ ):
"""simple docstring"""
return (2 * position) + 1
def a__ ( a__ ):
"""simple docstring"""
return (2 * position) + 2
class lowerCAmelCase__ ( Generic[T] ):
"""simple docstring"""
def __init__( self : List[str] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = []
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = 0
def __len__( self : Optional[Any] ) -> int:
"""simple docstring"""
return self.elements
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
return str(self.heap )
def UpperCAmelCase__ ( self : Tuple ) -> bool:
"""simple docstring"""
return self.elements == 0
def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
self.heap.append((elem, weight) )
__SCREAMING_SNAKE_CASE = self.elements
self.elements += 1
self._bubble_up(__SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self : Any ) -> T:
"""simple docstring"""
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0]
self._bubble_down(__SCREAMING_SNAKE_CASE )
return elem
def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.position_map[elem]
__SCREAMING_SNAKE_CASE = (elem, weight)
if position > 0:
__SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__SCREAMING_SNAKE_CASE )
else:
self._bubble_down(__SCREAMING_SNAKE_CASE )
else:
self._bubble_down(__SCREAMING_SNAKE_CASE )
def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.position_map[elem]
if curr_pos == 0:
return None
__SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return self._bubble_up(__SCREAMING_SNAKE_CASE )
return None
def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.position_map[elem]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos]
__SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE )
if child_left_position < self.elements and child_right_position < self.elements:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return self._bubble_down(__SCREAMING_SNAKE_CASE )
if child_left_position < self.elements:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return self._bubble_down(__SCREAMING_SNAKE_CASE )
else:
return None
if child_right_position < self.elements:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return self._bubble_down(__SCREAMING_SNAKE_CASE )
return None
def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0]
__SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
__SCREAMING_SNAKE_CASE = nodea_pos
__SCREAMING_SNAKE_CASE = nodea_pos
class lowerCAmelCase__ ( Generic[T] ):
"""simple docstring"""
def __init__( self : Union[str, Any] ) -> None:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {}
__SCREAMING_SNAKE_CASE = 0
def __repr__( self : Dict ) -> str:
"""simple docstring"""
return str(self.connections )
def __len__( self : Dict ) -> int:
"""simple docstring"""
return self.nodes
def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None:
"""simple docstring"""
if node not in self.connections:
__SCREAMING_SNAKE_CASE = {}
self.nodes += 1
def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None:
"""simple docstring"""
self.add_node(__SCREAMING_SNAKE_CASE )
self.add_node(__SCREAMING_SNAKE_CASE )
__SCREAMING_SNAKE_CASE = weight
__SCREAMING_SNAKE_CASE = weight
def a__ ( a__ , ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections}
__SCREAMING_SNAKE_CASE = {node: None for node in graph.connections}
__SCREAMING_SNAKE_CASE = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(a__ , a__ )
if priority_queue.is_empty():
return dist, parent
# initialization
__SCREAMING_SNAKE_CASE = priority_queue.extract_min()
__SCREAMING_SNAKE_CASE = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
__SCREAMING_SNAKE_CASE = node
# running prim's algorithm
while not priority_queue.is_empty():
__SCREAMING_SNAKE_CASE = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
__SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
__SCREAMING_SNAKE_CASE = node
return dist, parent
| 331
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.