code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=None , lowercase=2 , ) -> str: '''simple docstring''' a__ : Dict = parent a__ : List[str] = batch_size a__ : str = image_size a__ : Union[str, Any] = patch_size a__ : str = num_channels a__ : List[Any] = is_training a__ : str = use_labels a__ : Optional[Any] = hidden_size a__ : Dict = num_hidden_layers a__ : List[str] = num_attention_heads a__ : int = intermediate_size a__ : Tuple = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : str = attention_probs_dropout_prob a__ : Tuple = type_sequence_label_size a__ : Union[str, Any] = initializer_range a__ : Dict = scope a__ : Dict = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Optional[Any] = num_patches + 1 def __lowercase ( self) -> int: '''simple docstring''' a__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[Any] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> List[str]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : List[Any] = ViTModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ : int = model(lowerCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = ViTForMaskedImageModeling(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ : List[str] = model(lowerCAmelCase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images a__ : Dict = 1 a__ : Optional[int] = ViTForMaskedImageModeling(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Union[str, Any] = model(lowerCAmelCase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[Any]: '''simple docstring''' a__ : Any = self.type_sequence_label_size a__ : Union[str, Any] = ViTForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ : Dict = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ : int = 1 a__ : Tuple = ViTForImageClassification(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() a__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Any = model(lowerCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> List[str]: '''simple docstring''' a__ : Optional[Any] = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ) : int = config_and_inputs a__ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Dict = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __A : Any = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) __A : Optional[int] = True __A : int = False __A : Any = False __A : Tuple = False def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Tuple = ViTModelTester(self) a__ : List[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37) def __lowercase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Tuple: '''simple docstring''' a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase_ , nn.Linear)) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Tuple = model_class(lowerCAmelCase_) a__ : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def __lowercase ( self) -> int: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_) @slow def __lowercase ( self) -> int: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Any = ViTModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def A_ ( ) -> int: a__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def __lowercase ( self) -> str: '''simple docstring''' a__ : Dict = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(lowerCAmelCase_) a__ : Optional[Any] = self.default_image_processor a__ : int = prepare_img() a__ : Union[str, Any] = image_processor(images=lowerCAmelCase_ , return_tensors='pt').to(lowerCAmelCase_) # forward pass with torch.no_grad(): a__ : int = model(**lowerCAmelCase_) # verify the logits a__ : Optional[int] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) a__ : Any = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4)) @slow def __lowercase ( self) -> int: '''simple docstring''' a__ : Union[str, Any] = ViTModel.from_pretrained('facebook/dino-vits8').to(lowerCAmelCase_) a__ : Dict = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480) a__ : Any = prepare_img() a__ : str = image_processor(images=lowerCAmelCase_ , return_tensors='pt') a__ : Union[str, Any] = inputs.pixel_values.to(lowerCAmelCase_) # forward pass with torch.no_grad(): a__ : int = model(lowerCAmelCase_ , interpolate_pos_encoding=lowerCAmelCase_) # verify the logits a__ : str = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_) a__ : Tuple = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def __lowercase ( self) -> Any: '''simple docstring''' a__ : int = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') a__ : Union[str, Any] = self.default_image_processor a__ : Tuple = prepare_img() a__ : List[str] = image_processor(images=lowerCAmelCase_ , return_tensors='pt') a__ : int = inputs.pixel_values.to(lowerCAmelCase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): a__ : Optional[int] = model(lowerCAmelCase_)
99
"""simple docstring""" from math import isqrt, loga def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> list[int]: '''simple docstring''' lowercase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __lowerCAmelCase , __lowerCAmelCase ): lowercase_ = False return [i for i in range(2 , __lowerCAmelCase ) if is_prime[i]] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 80_08_00 , __lowerCAmelCase = 80_08_00 ) -> int: '''simple docstring''' lowercase_ = degree * loga(__lowerCAmelCase ) lowercase_ = int(__lowerCAmelCase ) lowercase_ = calculate_prime_numbers(__lowerCAmelCase ) lowercase_ = 0 lowercase_ = 0 lowercase_ = len(__lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
136
0
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase : List[Any] = TypeVar("""KT""") lowerCAmelCase : Optional[int] = TypeVar("""VT""") class UpperCamelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self , snake_case__ = "root" , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[Any] = key _lowerCAmelCase : Tuple = value _lowerCAmelCase : list[Node[KT, VT]] = [] def __repr__( self ): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def a ( self ): '''simple docstring''' return len(self.forward ) class UpperCamelCase__ ( Generic[KT, VT] ): """simple docstring""" def __init__( self , snake_case__ = 0.5 , snake_case__ = 16 ): '''simple docstring''' _lowerCAmelCase : Node[KT, VT] = Node[KT, VT]() _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : List[str] = p _lowerCAmelCase : str = max_level def __str__( self ): '''simple docstring''' _lowerCAmelCase : int = list(self ) if len(snake_case__ ) == 0: return F'SkipList(level={self.level})' _lowerCAmelCase : Any = max((len(str(snake_case__ ) ) for item in items) , default=4 ) _lowerCAmelCase : List[str] = max(snake_case__ , 4 ) + 4 _lowerCAmelCase : Union[str, Any] = self.head _lowerCAmelCase : int = [] _lowerCAmelCase : Any = node.forward.copy() lines.append(F'[{node.key}]'.ljust(snake_case__ , '-' ) + '* ' * len(snake_case__ ) ) lines.append(' ' * label_size + '| ' * len(snake_case__ ) ) while len(node.forward ) != 0: _lowerCAmelCase : Union[str, Any] = node.forward[0] lines.append( F'[{node.key}]'.ljust(snake_case__ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(snake_case__ ) ) _lowerCAmelCase : Union[str, Any] = node.forward lines.append('None'.ljust(snake_case__ ) + '* ' * len(snake_case__ ) ) return F'SkipList(level={self.level})\n' + "\n".join(snake_case__ ) def __iter__( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.head while len(node.forward ) != 0: yield node.forward[0].key _lowerCAmelCase : List[Any] = node.forward[0] def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 1 while random() < self.p and level < self.max_level: level += 1 return level def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = [] _lowerCAmelCase : Optional[int] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _lowerCAmelCase : Any = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(snake_case__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self._locate_node(snake_case__ ) if node is not None: for i, update_node in enumerate(snake_case__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _lowerCAmelCase : Optional[int] = node.forward[i] else: _lowerCAmelCase : int = update_node.forward[:i] def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self._locate_node(snake_case__ ) if node is not None: _lowerCAmelCase : Any = value else: _lowerCAmelCase : Dict = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , snake_case__ ): update_vector.append(self.head ) _lowerCAmelCase : Optional[int] = level _lowerCAmelCase : List[str] = Node(snake_case__ , snake_case__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(snake_case__ ) else: _lowerCAmelCase : Union[str, Any] = new_node def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : str = self._locate_node(snake_case__ ) if node is not None: return node.value return None def lowercase (): """simple docstring""" _lowerCAmelCase : Any = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 1_2 ) skip_list.insert('Key3' , 4_1 ) skip_list.insert('Key4' , -1_9 ) _lowerCAmelCase : Optional[int] = skip_list.head _lowerCAmelCase : Any = {} while node.level != 0: _lowerCAmelCase : List[str] = node.forward[0] _lowerCAmelCase : int = node.value assert len(_A ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def lowercase (): """simple docstring""" _lowerCAmelCase : Any = SkipList() skip_list.insert('Key1' , 1_0 ) skip_list.insert('Key1' , 1_2 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 1_0 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 1_0 ) _lowerCAmelCase : Union[str, Any] = skip_list.head _lowerCAmelCase : Optional[Any] = {} while node.level != 0: _lowerCAmelCase : List[Any] = node.forward[0] _lowerCAmelCase : Any = node.value if len(_A ) != 4: print() assert len(_A ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def lowercase (): """simple docstring""" _lowerCAmelCase : List[Any] = SkipList() assert skip_list.find('Some key' ) is None def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = SkipList() skip_list.insert('Key2' , 2_0 ) assert skip_list.find('Key2' ) == 2_0 skip_list.insert('Some Key' , 1_0 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 1_3 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 1_0 assert skip_list.find('V' ) == 1_3 def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[Any] = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def lowercase (): """simple docstring""" _lowerCAmelCase : List[str] = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 1_4 assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def lowercase (): """simple docstring""" _lowerCAmelCase : List[str] = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4_2 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('X' ) def traverse_keys(_A ): yield node.key for forward_node in node.forward: yield from traverse_keys(_A ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def lowercase (): """simple docstring""" def is_sorted(_A ): return all(next_item >= item for item, next_item in zip(_A , lst[1:] ) ) _lowerCAmelCase : Optional[Any] = SkipList() for i in range(1_0 ): skip_list.insert(_A , _A ) assert is_sorted(list(_A ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_A ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(_A ) ) def lowercase (): """simple docstring""" for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowercase (): """simple docstring""" _lowerCAmelCase : Any = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
25
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _a : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int=13 , __lowerCamelCase: Optional[Any]=30 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Any=True , __lowerCamelCase: Any=True , __lowerCamelCase: Any=32 , __lowerCamelCase: List[str]=5 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: Any=37 , __lowerCamelCase: str="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=0.1 , __lowerCamelCase: str=10 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Any=3 , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Union[str, Any]=2 , ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = parent UpperCamelCase__: List[str] = batch_size UpperCamelCase__: Optional[int] = image_size UpperCamelCase__: Tuple = patch_size UpperCamelCase__: Optional[int] = num_channels UpperCamelCase__: List[Any] = is_training UpperCamelCase__: Dict = use_labels UpperCamelCase__: Dict = hidden_size UpperCamelCase__: Any = num_hidden_layers UpperCamelCase__: List[str] = num_attention_heads UpperCamelCase__: List[str] = intermediate_size UpperCamelCase__: Dict = hidden_act UpperCamelCase__: Dict = hidden_dropout_prob UpperCamelCase__: Optional[int] = attention_probs_dropout_prob UpperCamelCase__: Tuple = type_sequence_label_size UpperCamelCase__: Optional[Any] = initializer_range UpperCamelCase__: Optional[Any] = scope UpperCamelCase__: Optional[int] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase__: List[Any] = (image_size // patch_size) ** 2 UpperCamelCase__: List[Any] = num_patches + 2 def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__: List[str] = None if self.use_labels: UpperCamelCase__: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__: Dict = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: int , __lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[int] = DeiTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__: Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Any ): '''simple docstring''' UpperCamelCase__: Optional[Any] = DeiTForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__: int = model(_lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase__: Dict = 1 UpperCamelCase__: List[Any] = DeiTForMaskedImageModeling(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__: Optional[int] = model(_lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Dict = self.type_sequence_label_size UpperCamelCase__: Dict = DeiTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__: Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase__: str = 1 UpperCamelCase__: List[str] = DeiTForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() UpperCamelCase__: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase__: List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ): str = config_and_inputs UpperCamelCase__: Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = DeiTModelTester(self ) UpperCamelCase__: List[Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' pass def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__: List[Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase__: str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__: List[str] = model_class(_lowerCAmelCase ) UpperCamelCase__: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__: Optional[int] = [*signature.parameters.keys()] UpperCamelCase__: Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def UpperCAmelCase_ ( self: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: Tuple=False ): '''simple docstring''' UpperCamelCase__: Tuple = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase_ ( self: str ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__: Any = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCamelCase__: Any = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() UpperCamelCase__: Union[str, Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCamelCase__: Optional[int] = model(**_lowerCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Any = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__: str = False UpperCamelCase__: Union[str, Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCamelCase__: str = model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() UpperCamelCase__: Optional[int] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) UpperCamelCase__: Tuple = model(**_lowerCAmelCase ).loss loss.backward() def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__: Union[str, Any] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCAmelCase ), *get_values(_lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): UpperCamelCase__: Dict = problem_type["title"] UpperCamelCase__: Any = problem_type["num_labels"] UpperCamelCase__: List[Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() UpperCamelCase__: List[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if problem_type["num_labels"] > 1: UpperCamelCase__: Any = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCamelCase__: Optional[int] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCAmelCase ) as warning_list: UpperCamelCase__: Union[str, Any] = model(**_lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__: Tuple = DeiTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( ): UpperCamelCase__: str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class _a ( unittest.TestCase): """simple docstring""" @cached_property def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: int = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _lowerCAmelCase ) UpperCamelCase__: Dict = self.default_image_processor UpperCamelCase__: Optional[Any] = prepare_img() UpperCamelCase__: str = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCamelCase__: Tuple = model(**_lowerCAmelCase ) # verify the logits UpperCamelCase__: int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) UpperCamelCase__: Union[str, Any] = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Any = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) UpperCamelCase__: Tuple = self.default_image_processor UpperCamelCase__: Tuple = prepare_img() UpperCamelCase__: Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="pt" ) UpperCamelCase__: str = inputs.pixel_values.to(_lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase__: Union[str, Any] = model(_lowerCAmelCase )
149
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def __lowerCamelCase ( self : Dict): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =SpeechTaTokenizer(_lowerCAmelCase) __lowercase =AddedToken('<mask>' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) __lowercase =mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase ='this is a test' __lowercase ='this is a test' return input_text, output_text def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Dict=2_0 , _lowerCAmelCase : Tuple=5): '''simple docstring''' __lowercase , __lowercase =self.get_input_output_texts(_lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase) return text, ids def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='<pad>' __lowercase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-4] , 'œ') self.assertEqual(vocab_keys[-2] , '<mask>') self.assertEqual(vocab_keys[-1] , '<ctc_blank>') self.assertEqual(len(_lowerCAmelCase) , 8_1) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.get_tokenizers(do_lower_case=_lowerCAmelCase) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}"""): __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowercase =['aaaaa bbbbbb', 'cccccccccdddddddd'] __lowercase =tokenizer.add_tokens(_lowerCAmelCase) __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase)) self.assertEqual(_lowerCAmelCase , all_size + len(_lowerCAmelCase)) __lowercase =tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_lowerCAmelCase) self.assertGreaterEqual(len(_lowerCAmelCase) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) __lowercase ={'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __lowercase =tokenizer.add_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase)) self.assertEqual(_lowerCAmelCase , all_size_a + len(_lowerCAmelCase)) __lowercase =tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_lowerCAmelCase) self.assertGreaterEqual(len(_lowerCAmelCase) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __lowerCamelCase ( self : List[str]): '''simple docstring''' pass def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =tokenizer.tokenize('This is a test') # fmt: off self.assertListEqual(_lowerCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase) # fmt: off self.assertListEqual(_lowerCAmelCase , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6]) # fmt: on __lowercase =tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off __lowercase ={ 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_lowerCAmelCase , )
166
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCamelCase__ ( __snake_case ): '''simple docstring''' _lowerCamelCase = 'mobilenet_v1' def __init__( self ,lowerCamelCase_=3 ,lowerCamelCase_=2_2_4 ,lowerCamelCase_=1.0 ,lowerCamelCase_=8 ,lowerCamelCase_="relu6" ,lowerCamelCase_=True ,lowerCamelCase_=0.9_99 ,lowerCamelCase_=0.02 ,lowerCamelCase_=0.0_01 ,**lowerCamelCase_ ,) -> List[str]: super().__init__(**lowerCamelCase_ ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) A = num_channels A = image_size A = depth_multiplier A = min_depth A = hidden_act A = tf_padding A = classifier_dropout_prob A = initializer_range A = layer_norm_eps class lowerCamelCase__ ( __snake_case ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def UpperCamelCase__ ( self ) -> float: return 1E-4
362
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''distilbert''' _lowerCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self ,lowerCamelCase_=3_0_5_2_2 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=False ,lowerCamelCase_=6 ,lowerCamelCase_=1_2 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=4 * 7_6_8 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.02 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.2 ,lowerCamelCase_=0 ,**lowerCamelCase_ ,) -> Dict: A = vocab_size A = max_position_embeddings A = sinusoidal_pos_embds A = n_layers A = n_heads A = dim A = hidden_dim A = dropout A = attention_dropout A = activation A = initializer_range A = qa_dropout A = seq_classif_dropout super().__init__(**lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
77
0
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : dict , lowercase : str ) -> set[str]: _a , _a = set(lowercase ), [start] while stack: _a = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored lowerCAmelCase_ : Dict = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
63
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='deta' __a ={ 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(__a , __a ): _a = backbone_config.pop("model_type" ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(__a ) _a = backbone_config _a = num_queries _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = init_xavier_std _a = encoder_layerdrop _a = auxiliary_loss _a = position_embedding_type # deformable attributes _a = num_feature_levels _a = encoder_n_points _a = decoder_n_points _a = two_stage _a = two_stage_num_proposals _a = with_box_refine _a = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher _a = class_cost _a = bbox_cost _a = giou_cost # Loss coefficients _a = mask_loss_coefficient _a = dice_loss_coefficient _a = bbox_loss_coefficient _a = giou_loss_coefficient _a = eos_coefficient _a = focal_alpha super().__init__(is_encoder_decoder=__a , **__a ) @property def UpperCamelCase__ ( self : Optional[Any] ): return self.encoder_attention_heads @property def UpperCamelCase__ ( self : Dict ): return self.d_model def UpperCamelCase__ ( self : List[str] ): _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
63
1
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _snake_case ( a__ , a__ , a__ ): @register_to_config def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , ): super().__init__() UpperCAmelCase__ : Optional[Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Optional[int] = nn.Embedding(_lowerCamelCase , _lowerCamelCase) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Optional[Any] = nn.Dropout(p=_lowerCamelCase) UpperCAmelCase__ : Tuple = TaConfig( vocab_size=_lowerCamelCase , d_model=_lowerCamelCase , num_heads=_lowerCamelCase , d_kv=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , feed_forward_proj=_lowerCamelCase , is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , ) UpperCAmelCase__ : List[str] = nn.ModuleList() for lyr_num in range(_lowerCamelCase): UpperCAmelCase__ : Dict = TaBlock(_lowerCamelCase) self.encoders.append(_lowerCamelCase) UpperCAmelCase__ : List[str] = TaLayerNorm(_lowerCamelCase) UpperCAmelCase__ : Any = nn.Dropout(p=_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = self.token_embedder(_lowerCamelCase) UpperCAmelCase__ : Any = encoder_input_tokens.shape[1] UpperCAmelCase__ : str = torch.arange(_lowerCamelCase , device=encoder_input_tokens.device) x += self.position_encoding(_lowerCamelCase) UpperCAmelCase__ : List[str] = self.dropout_pre(_lowerCamelCase) # inverted the attention mask UpperCAmelCase__ : int = encoder_input_tokens.size() UpperCAmelCase__ : List[Any] = self.get_extended_attention_mask(_lowerCamelCase , _lowerCamelCase) for lyr in self.encoders: UpperCAmelCase__ : Tuple = lyr(_lowerCamelCase , _lowerCamelCase)[0] UpperCAmelCase__ : Optional[int] = self.layer_norm(_lowerCamelCase) return self.dropout_post(_lowerCamelCase), encoder_inputs_mask
283
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A =logging.get_logger(__name__) __A ={'vocab_file': 'spiece.model'} __A ={ 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<sep>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<cls>" , _lowerCamelCase="<mask>" , _lowerCamelCase=["<eop>", "<eod>"] , _lowerCamelCase = None , **_lowerCamelCase , ): UpperCAmelCase__ : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token UpperCAmelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCAmelCase__ : List[str] = 3 UpperCAmelCase__ : str = do_lower_case UpperCAmelCase__ : Tuple = remove_space UpperCAmelCase__ : List[str] = keep_accents UpperCAmelCase__ : Any = vocab_file UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowerCamelCase) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""") UpperCAmelCase__ : Union[str, Any] = jieba UpperCAmelCase__ : int = str.maketrans(""" \n""" , """\u2582\u2583""") @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def snake_case__ ( self): return len(self.sp_model) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): UpperCAmelCase__ : List[str] = self.__dict__.copy() UpperCAmelCase__ : Optional[int] = None return state def __setstate__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self , _lowerCamelCase): if self.remove_space: UpperCAmelCase__ : Tuple = """ """.join(inputs.strip().split()) else: UpperCAmelCase__ : str = inputs UpperCAmelCase__ : List[Any] = outputs.replace("""``""" , """\"""").replace("""''""" , """\"""") if not self.keep_accents: UpperCAmelCase__ : str = unicodedata.normalize("""NFKD""" , _lowerCamelCase) UpperCAmelCase__ : Any = """""".join([c for c in outputs if not unicodedata.combining(_lowerCamelCase)]) if self.do_lower_case: UpperCAmelCase__ : Optional[int] = outputs.lower() return outputs def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : List[str] = self.preprocess_text(_lowerCamelCase) UpperCAmelCase__ : Dict = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase) UpperCAmelCase__ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase) > 1 and piece[-1] == str(""",""") and piece[-2].isdigit(): UpperCAmelCase__ : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , """""")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase__ : Optional[int] = cur_pieces[1:] else: UpperCAmelCase__ : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowerCamelCase) else: new_pieces.append(_lowerCamelCase) return new_pieces def snake_case__ ( self , _lowerCamelCase): return self.sp_model.PieceToId(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): return self.sp_model.IdToPiece(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase): UpperCAmelCase__ : str = """""".join(_lowerCamelCase).replace(_lowerCamelCase , """ """).strip() return out_string def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : Optional[Any] = [self.sep_token_id] UpperCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase) if token_ids_a is not None: return ([0] * len(_lowerCamelCase)) + [1] + ([0] * len(_lowerCamelCase)) + [1, 1] return ([0] * len(_lowerCamelCase)) + [1, 1] def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : int = [self.sep_token_id] UpperCAmelCase__ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not os.path.isdir(_lowerCamelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return UpperCAmelCase__ : str = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowerCamelCase) elif not os.path.isfile(self.vocab_file): with open(_lowerCamelCase , """wb""") as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase) return (out_vocab_file,) def snake_case__ ( self , *_lowerCamelCase , **_lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = super()._decode(*_lowerCamelCase , **_lowerCamelCase) UpperCAmelCase__ : Any = text.replace(""" """ , """""").replace("""\u2582""" , """ """).replace("""\u2583""" , """\n""") return text
283
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
from __future__ import annotations import os from collections.abc import Mapping a_ = tuple[int, int] class lowercase__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' lowerCAmelCase__ = vertices lowerCAmelCase__ = { (min(__UpperCAmelCase ), max(__UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase__ = weight def UpperCAmelCase ( self )-> Graph: '''simple docstring''' lowerCAmelCase__ = Graph({min(self.vertices )} , {} ) lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase__ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase__ = edge lowerCAmelCase__ = weight subgraph.add_edge(__UpperCAmelCase , __UpperCAmelCase ) return subgraph def _a ( UpperCamelCase_ : str = "p107_network.txt" ) -> int: """simple docstring""" lowerCAmelCase__ = os.path.abspath(os.path.dirname(UpperCamelCase_ ) ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = {} lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 with open(UpperCamelCase_ ) as f: lowerCAmelCase__ = f.read().strip().split("\n" ) lowerCAmelCase__ = [line.split("," ) for line in data] for edgea in range(1 , len(UpperCamelCase_ ) ): for edgea in range(UpperCamelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase__ = int(adjaceny_matrix[edgea][edgea] ) lowerCAmelCase__ = Graph(set(range(len(UpperCamelCase_ ) ) ) , UpperCamelCase_ ) lowerCAmelCase__ = graph.prims_algorithm() lowerCAmelCase__ = sum(graph.edges.values() ) lowerCAmelCase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
340
0
"""simple docstring""" lowercase__ : Union[str, Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) lowercase__ : Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def UpperCamelCase_ ( lowerCAmelCase__ : float , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: """simple docstring""" lowerCAmelCase_ : List[Any] = from_type.lower().strip('s' ) lowerCAmelCase_ : Optional[Any] = to_type.lower().strip('s' ) lowerCAmelCase_ : Union[str, Any] = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase_ : Any = ( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}" ) raise ValueError(lowerCAmelCase__ ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase_ : str = ( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(lowerCAmelCase__ )}" ) raise ValueError(lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = METRIC_CONVERSION[from_sanitized] lowerCAmelCase_ : List[str] = METRIC_CONVERSION[to_sanitized] lowerCAmelCase_ : Any = 1 if from_exponent > to_exponent: lowerCAmelCase_ : Optional[Any] = from_exponent - to_exponent else: lowerCAmelCase_ : List[str] = -(to_exponent - from_exponent) return value * pow(10 , lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
289
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict=1_3 , SCREAMING_SNAKE_CASE_ : List[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]=9_9 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=3_6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Tuple=6 , SCREAMING_SNAKE_CASE_ : List[Any]=6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3_7 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , SCREAMING_SNAKE_CASE_ : Dict=3 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Tuple=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Tuple = is_training lowerCAmelCase_ : str = use_input_mask lowerCAmelCase_ : Union[str, Any] = use_token_type_ids lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Any = embedding_size lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_hidden_groups lowerCAmelCase_ : Dict = num_attention_heads lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : int = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Tuple = num_labels lowerCAmelCase_ : Dict = num_choices lowerCAmelCase_ : Tuple = scope def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : str = None if self.use_input_mask: lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): lowerCAmelCase_ : Union[str, Any] = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase_ : Optional[Any] = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , sentence_order_label=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : str = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCAmelCase_ : List[str] = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Any = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): lowerCAmelCase_ : Union[str, Any] = self.num_labels lowerCAmelCase_ : Union[str, Any] = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[Any] = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : str = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : Optional[Any] = self.num_choices lowerCAmelCase_ : int = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCAmelCase_ : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : List[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) ,( lowerCAmelCase_ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase_ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=False ): lowerCAmelCase_ : List[str] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = AlbertModelTester(self ) lowerCAmelCase_ : Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ : int = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Any = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] lowerCAmelCase_ : str = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
289
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCamelCase :Optional[Any] = pytest.mark.integration @require_faiss class _lowerCAmelCase ( lowerCAmelCase_ ): def _a (self ): A_ : List[Any] = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(__lowerCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _a (self ): import faiss A_ : List[Any] = self._create_dummy_dataset() A_ : int = dset.map( lambda lowercase , lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ) A_ : Union[str, Any] = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) A_, A_ : List[Any] = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def _a (self ): import faiss A_ : Optional[int] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) A_, A_ : int = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def _a (self ): import faiss A_ : Optional[Any] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCAmelCase ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) A_, A_ : Dict = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def _a (self ): A_ : Tuple = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(__lowerCAmelCase , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def _a (self ): from elasticsearch import Elasticsearch A_ : Dict = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: A_ : Optional[Any] = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) A_ : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} A_ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=__lowerCAmelCase ) A_, A_ : Tuple = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class _lowerCAmelCase ( lowerCAmelCase_ ): def _a (self ): import faiss A_ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query A_ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) A_ : int = 1 A_, A_ : Tuple = index.search(__lowerCAmelCase ) self.assertRaises(__lowerCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries A_ : Union[str, Any] = np.eye(5 , dtype=np.floataa )[::-1] A_, A_ : Any = index.search_batch(__lowerCAmelCase ) self.assertRaises(__lowerCAmelCase , index.search_batch , queries[0] ) A_ : str = [scores[0] for scores in total_scores] A_ : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCAmelCase ) def _a (self ): import faiss A_ : Tuple = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) A_ : Dict = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCAmelCase ): A_ : str = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def _a (self ): import faiss A_ : List[Any] = faiss.IndexFlat(5 ) A_ : Union[str, Any] = FaissIndex(custom_index=__lowerCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _a (self ): import faiss A_ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCAmelCase ) as tmp_file: index.save(tmp_file.name ) A_ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) A_ : Dict = np.zeros(5 , dtype=np.floataa ) A_ : Optional[Any] = 1 A_, A_ : Optional[int] = index.search(__lowerCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a ( lowerCamelCase__ ): '''simple docstring''' import faiss A_ : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) A_ : int = """index.faiss""" A_ : Optional[int] = f'mock://{index_name}' index.save(lowerCamelCase__ , storage_options=mockfs.storage_options ) A_ : Tuple = FaissIndex.load(lowerCamelCase__ , storage_options=mockfs.storage_options ) A_ : List[Any] = np.zeros(5 , dtype=np.floataa ) A_ : List[str] = 1 A_, A_ : Optional[Any] = index.search(lowerCamelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCAmelCase ( lowerCAmelCase_ ): def _a (self ): from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: A_ : List[str] = Elasticsearch() A_ : int = {"""acknowledged""": True} A_ : List[str] = ElasticSearchIndex(es_client=__lowerCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query A_ : Any = """foo""" A_ : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} A_, A_ : int = index.search(__lowerCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout A_ : str = """foo""" A_ : Any = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} A_, A_ : List[str] = index.search(__lowerCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries A_ : Any = ["""foo""", """bar""", """foobar"""] A_ : Optional[Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} A_, A_ : List[str] = index.search_batch(__lowerCAmelCase ) A_ : Dict = [scores[0] for scores in total_scores] A_ : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCAmelCase ) # batched queries with timeout A_ : Union[str, Any] = ["""foo""", """bar""", """foobar"""] A_ : Union[str, Any] = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} A_, A_ : Optional[Any] = index.search_batch(__lowerCAmelCase , request_timeout=30 ) A_ : Optional[int] = [scores[0] for scores in total_scores] A_ : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCAmelCase )
206
"""simple docstring""" UpperCAmelCase__ = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Return True if there is node that has not iterated. _UpperCAmelCase = [False] * len(lowercase ) _UpperCAmelCase = [s] _UpperCAmelCase = True while queue: _UpperCAmelCase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) _UpperCAmelCase = True _UpperCAmelCase = u return visited[t] def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [-1] * (len(lowercase )) _UpperCAmelCase = 0 _UpperCAmelCase = [] _UpperCAmelCase = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase ,lowercase ,lowercase ,lowercase ): _UpperCAmelCase = float("""Inf""" ) _UpperCAmelCase = sink while s != source: # Find the minimum value in select path _UpperCAmelCase = min(lowercase ,graph[parent[s]][s] ) _UpperCAmelCase = parent[s] max_flow += path_flow _UpperCAmelCase = sink while v != source: _UpperCAmelCase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCAmelCase = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
289
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ ={ """configuration_mgp_str""": ["""MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MgpstrConfig"""], """processing_mgp_str""": ["""MgpstrProcessor"""], """tokenization_mgp_str""": ["""MgpstrTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ =[ """MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST""", """MgpstrModel""", """MgpstrPreTrainedModel""", """MgpstrForSceneTextRecognition""", ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys UpperCamelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
128
"""simple docstring""" from ...processing_utils import ProcessorMixin class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''feature_extractor'''] UpperCamelCase = '''TvltImageProcessor''' UpperCamelCase = '''TvltFeatureExtractor''' def __init__( self : Union[str, Any], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__(image_processor=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : int = feature_extractor def __call__( self : List[str], lowerCAmelCase__ : Optional[int]=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Dict=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : str=False, *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : Optional[int], ) -> Dict: '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) _UpperCamelCase : Optional[int] = None if images is not None: _UpperCamelCase : Optional[int] = self.image_processor(lowerCAmelCase__, mask_pixel=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ ) if images_mixed is not None: _UpperCamelCase : str = self.image_processor(lowerCAmelCase__, is_mixed=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ ) if audio is not None: _UpperCamelCase : Union[str, Any] = self.feature_extractor( lowerCAmelCase__, *lowerCAmelCase__, sampling_rate=lowerCAmelCase__, mask_audio=lowerCAmelCase__, **lowerCAmelCase__ ) _UpperCamelCase : str = {} if audio is not None: output_dict.update(lowerCAmelCase__ ) if images is not None: output_dict.update(lowerCAmelCase__ ) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase__ ) return output_dict @property def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[str] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
128
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _lowerCamelCase : Dict = "src/diffusers" # Matches is_xxx_available() _lowerCamelCase : Any = re.compile(R"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla _lowerCamelCase : Dict = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") _lowerCamelCase : int = "\n{0} = None\n" _lowerCamelCase : List[str] = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" _lowerCamelCase : Any = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def a__ ( UpperCAmelCase : Dict ) -> Tuple: UpperCAmelCase : Dict = _re_backend.findall(lowercase_ ) if len(lowercase_ ) == 0: return None return "_and_".join(lowercase_ ) def a__ ( ) -> str: with open(os.path.join(lowercase_ , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : str = f.readlines() # Get to the point we do the actual imports for type checking UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Tuple = {} # Go through the end of the file while line_index < len(lowercase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCAmelCase : Dict = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 UpperCAmelCase : Tuple = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase_ ) and len(lines[line_index] ) > 1: UpperCAmelCase : Optional[Any] = lines[line_index] UpperCAmelCase : int = _re_single_line_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase_ ) > 0: UpperCAmelCase : int = objects else: line_index += 1 return backend_specific_objects def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ) -> Dict: if name.isupper(): return DUMMY_CONSTANT.format(lowercase_ ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase_ , lowercase_ ) else: return DUMMY_CLASS.format(lowercase_ , lowercase_ ) def a__ ( UpperCAmelCase : Union[str, Any]=None ) -> Union[str, Any]: if backend_specific_objects is None: UpperCAmelCase : Dict = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCAmelCase : Any = {} for backend, objects in backend_specific_objects.items(): UpperCAmelCase : str = '''[''' + ''', '''.join(f'''\"{b}\"''' for b in backend.split('''_and_''' ) ) + ''']''' UpperCAmelCase : Union[str, Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase_ , lowercase_ ) for o in objects] ) UpperCAmelCase : Dict = dummy_file return dummy_files def a__ ( UpperCAmelCase : Any=False ) -> Union[str, Any]: UpperCAmelCase : List[Any] = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCAmelCase : Dict = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. UpperCAmelCase : str = os.path.join(lowercase_ , '''utils''' ) UpperCAmelCase : List[str] = { backend: os.path.join(lowercase_ , f'''dummy_{short_names.get(lowercase_ , lowercase_ )}_objects.py''' ) for backend in dummy_files.keys() } UpperCAmelCase : Any = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase_ ): with open(lowercase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Dict = f.read() else: UpperCAmelCase : Any = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(lowercase_ , lowercase_ )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f'''diffusers.utils.dummy_{short_names.get(lowercase_ , lowercase_ )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowerCamelCase : Dict = parser.parse_args() check_dummies(args.fix_and_overwrite)
336
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : lowercase__ = field( default=A_, metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(A_ )} ) lowercase__ = field( default=A_, metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) lowercase__ = field( default=1_28, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowercase__ = field( default=1_28, metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''}, ) lowercase__ = field( default=64, metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) }, ) lowercase__ = field( default=30, metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) }, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) lowercase__ = field( default=0.0, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowercase__ = field( default=20, metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) lowercase__ = field( default=0, metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) }, ) lowercase__ = field(default=1, metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( A_ ): lowercase__ = '''train''' lowercase__ = '''dev''' class UpperCAmelCase_ ( A_ ): lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 def __init__( self : List[Any] , snake_case_ : SquadDataTrainingArguments , snake_case_ : PreTrainedTokenizer , snake_case_ : Optional[int] = None , snake_case_ : Union[str, Split] = Split.train , snake_case_ : Optional[bool] = False , snake_case_ : Optional[str] = None , snake_case_ : Optional[str] = "pt" , ) -> Union[str, Any]: '''simple docstring''' A__ = args A__ = is_language_sensitive A__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case_ , snake_case_ ): try: A__ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) A__ = mode # Load data features from cache or dataset file A__ = "v2" if args.version_2_with_negative else "v1" A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + ".lock" with FileLock(snake_case_ ): if os.path.exists(snake_case_ ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(snake_case_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ = self.old_features["features"] A__ = self.old_features.get("dataset" , snake_case_ ) A__ = self.old_features.get("examples" , snake_case_ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" " future run" ) else: if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) A__, A__ = squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case_ , ) A__ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , snake_case_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Dict ) -> Optional[Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , snake_case_ : Any ) -> Dict[str, torch.Tensor]: '''simple docstring''' A__ = self.features[i] A__ = torch.tensor(feature.input_ids , dtype=torch.long ) A__ = torch.tensor(feature.attention_mask , dtype=torch.long ) A__ = torch.tensor(feature.token_type_ids , dtype=torch.long ) A__ = torch.tensor(feature.cls_index , dtype=torch.long ) A__ = torch.tensor(feature.p_mask , dtype=torch.float ) A__ = torch.tensor(feature.is_impossible , dtype=torch.float ) A__ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ = torch.tensor(feature.start_position , dtype=torch.long ) A__ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
247
0
'''simple docstring''' from __future__ import annotations from statistics import mean def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [0] * no_of_processes _snake_case = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = burst_time[i] _snake_case = [] _snake_case = 0 _snake_case = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _snake_case = [] _snake_case = -1 for i in range(_SCREAMING_SNAKE_CASE ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _snake_case = i total_time += burst_time[target_process] completed += 1 _snake_case = 0 _snake_case = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = [0] * no_of_processes for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') __lowerCAmelCase = 4 __lowerCAmelCase = [2, 5, 3, 7] __lowerCAmelCase = [0, 0, 0, 0] __lowerCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
358
'''simple docstring''' import qiskit def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register _snake_case = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCAmelCase = single_qubit_measure(2, 2) print(f'''Total count for various states are: {counts}''')
270
0
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowerCAmelCase: Optional[Any] = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCAmelCase: Tuple = parser.parse_args() if args.model_type == "roberta": lowerCAmelCase: Tuple = RobertaForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase: Optional[int] = 'roberta' elif args.model_type == "gpt2": lowerCAmelCase: int = GPTaLMHeadModel.from_pretrained(args.model_name) lowerCAmelCase: List[Any] = 'transformer' lowerCAmelCase: int = model.state_dict() lowerCAmelCase: Optional[Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowerCAmelCase: Optional[Any] = state_dict[F"{prefix}.{param_name}"] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowerCAmelCase: Tuple = F"{prefix}.embeddings.{w}.weight" lowerCAmelCase: List[Any] = state_dict[param_name] for w in ["weight", "bias"]: lowerCAmelCase: List[str] = F"{prefix}.embeddings.LayerNorm.{w}" lowerCAmelCase: str = state_dict[param_name] # Transformer Blocks # lowerCAmelCase: List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowerCAmelCase: Dict = state_dict[ F"{prefix}.h.{teacher_idx}.{layer}.{w}" ] lowerCAmelCase: List[str] = state_dict[F"{prefix}.h.{teacher_idx}.attn.bias"] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowerCAmelCase: Tuple = state_dict[ F"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowerCAmelCase: str = state_dict[F"{layer}"] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase: str = state_dict[F"lm_head.dense.{w}"] lowerCAmelCase: str = state_dict[F"lm_head.layer_norm.{w}"] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowerCAmelCase: Dict = state_dict[F"{prefix}.ln_f.{w}"] lowerCAmelCase: Optional[Any] = state_dict['lm_head.weight'] print(F"N layers selected for distillation: {std_idx}") print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(F"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
297
from math import factorial __snake_case = {str(digit): factorial(digit) for digit in range(10)} def _A ( SCREAMING_SNAKE_CASE__ : int ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE__ ) ) def _A ( SCREAMING_SNAKE_CASE__ : int = 60 , SCREAMING_SNAKE_CASE__ : int = 1000000 ): if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length UpperCamelCase :Any = 0 # the cached sizes of the previous chains UpperCamelCase :dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE__ ): # The temporary set will contain the elements of the chain UpperCamelCase :List[Any] = set() UpperCamelCase :Any = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase :Optional[Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE__ ) chain_set_length += 1 UpperCamelCase :List[Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase :Any = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
259
0
import qiskit def lowerCAmelCase__ ( lowerCamelCase_ : int = 2): '''simple docstring''' lowerCAmelCase__ : Any = qubits # Using Aer's simulator lowerCAmelCase__ : Any = qiskit.Aer.get_backend('''aer_simulator''') # Creating a Quantum Circuit acting on the q register lowerCAmelCase__ : Optional[Any] = qiskit.QuantumCircuit(lowerCamelCase_ ,lowerCamelCase_) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 ,lowerCamelCase_): # Adding CX (CNOT) gate circuit.cx(i - 1 ,lowerCamelCase_) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_)) ,list(range(lowerCamelCase_))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCAmelCase__ : Optional[Any] = qiskit.execute(lowerCamelCase_ ,lowerCamelCase_ ,shots=1000) return job.result().get_counts(lowerCamelCase_) if __name__ == "__main__": print(f"""Total count for various states are: {quantum_entanglement(3)}""")
94
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =IFInpaintingSuperResolutionPipeline snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} snake_case_ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""}) snake_case_ =PipelineTesterMixin.required_optional_params - {"""latents"""} def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=0 ) -> Dict: """simple docstring""" if str(__lowerCamelCase ).startswith('''mps''' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: lowerCAmelCase__ : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCAmelCase__ : str = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCAmelCase__ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase__ (self ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
94
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): return abs(lowerCamelCase) if a == 0 else greatest_common_divisor(b % a, lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase): while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowerCAmelCase , __lowerCAmelCase = y, x % y return abs(lowerCamelCase) def __magic_name__( ): try: __lowerCAmelCase = input('''Enter two integers separated by comma (,): ''').split(''',''') __lowerCAmelCase = int(nums[0]) __lowerCAmelCase = int(nums[1]) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(lowerCamelCase, lowerCamelCase)}""") print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(lowerCamelCase, lowerCamelCase)}""") except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''') if __name__ == "__main__": main()
174
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) class a__ ( __A ): """simple docstring""" __UpperCamelCase : Optional[Any] = ['pixel_values'] def __init__(self , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = PILImageResampling.BILINEAR , __lowercase = True , __lowercase = 1 / 2_55 , __lowercase = True , __lowercase = None , __lowercase = None , **__lowercase , ): super().__init__(**__lowercase ) __lowerCAmelCase = size if size is not None else {'''shortest_edge''': 3_84} __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = do_resize __lowerCAmelCase = size # Default value set here for backwards compatibility where the value in config is None __lowerCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 __lowerCAmelCase = resample __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ): __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) __lowerCAmelCase = size['''shortest_edge'''] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __lowerCAmelCase = int(shortest_edge / crop_pct ) __lowerCAmelCase = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = resize(image=__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=__lowercase , size=(shortest_edge, shortest_edge) , data_format=__lowercase , **__lowercase ) else: # warping (no cropping) when evaluated at 384 or larger return resize( __lowercase , size=(shortest_edge, shortest_edge) , resample=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ): return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def _snake_case (self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ): __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__lowercase , default_to_square=__lowercase ) __lowerCAmelCase = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError('''crop_pct must be specified if size < 384.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__lowercase ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __lowerCAmelCase = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
174
1
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["keras_nlp"] def __init__( self: int ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Tuple ) -> Tuple: requires_backends(self ,["""keras_nlp"""] )
368
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[int] = "roformer" def __init__( self: Optional[int] ,lowerCamelCase_: Tuple=50000 ,lowerCamelCase_: Optional[int]=None ,lowerCamelCase_: List[Any]=768 ,lowerCamelCase_: List[Any]=12 ,lowerCamelCase_: Optional[int]=12 ,lowerCamelCase_: Optional[Any]=3072 ,lowerCamelCase_: int="gelu" ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: Any=1536 ,lowerCamelCase_: str=2 ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-12 ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: Any=False ,lowerCamelCase_: Union[str, Any]=True ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size if embedding_size is None else embedding_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = rotary_value UpperCAmelCase_ : str = use_cache class _snake_case ( __snake_case ): '''simple docstring''' @property def A__ ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase_ : Optional[Any] = {0: """batch""", 1: """sequence"""} UpperCAmelCase_ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
59
0
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = data SCREAMING_SNAKE_CASE__ : Dict = None SCREAMING_SNAKE_CASE__ : Dict = None def lowercase_ ( ): print("""\n********Press N to stop entering at any point of time********\n""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = input("""Enter the value of the root node: """ ).strip().lower() SCREAMING_SNAKE_CASE__ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE__ : int = TreeNode(int(_snake_case ) ) q.put(_snake_case ) while not q.empty(): SCREAMING_SNAKE_CASE__ : Dict = q.get() SCREAMING_SNAKE_CASE__ : Any = f'''Enter the left node of {node_found.data}: ''' SCREAMING_SNAKE_CASE__ : List[Any] = input(_snake_case ).strip().lower() or """n""" if check == "n": return tree_node SCREAMING_SNAKE_CASE__ : Union[str, Any] = TreeNode(int(_snake_case ) ) SCREAMING_SNAKE_CASE__ : List[Any] = left_node q.put(_snake_case ) SCREAMING_SNAKE_CASE__ : int = f'''Enter the right node of {node_found.data}: ''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = input(_snake_case ).strip().lower() or """n""" if check == "n": return tree_node SCREAMING_SNAKE_CASE__ : Any = TreeNode(int(_snake_case ) ) SCREAMING_SNAKE_CASE__ : str = right_node q.put(_snake_case ) raise def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return print(node.data ,end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return in_order(node.left ) print(node.data ,end=""",""" ) in_order(node.right ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data ,end=""",""" ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): SCREAMING_SNAKE_CASE__ : int = q.get() print(node_dequeued.data ,end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : queue.Queue = queue.Queue() q.put(_snake_case ) while not q.empty(): SCREAMING_SNAKE_CASE__ : int = [] while not q.empty(): SCREAMING_SNAKE_CASE__ : List[Any] = q.get() print(node_dequeued.data ,end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_snake_case ) def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : list[TreeNode] = [] SCREAMING_SNAKE_CASE__ : str = node while n or stack: while n: # start from root node, find its left child print(n.data ,end=""",""" ) stack.append(_snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE__ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE__ : Dict = n.right def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ : list[TreeNode] = [] SCREAMING_SNAKE_CASE__ : Dict = node while n or stack: while n: stack.append(_snake_case ) SCREAMING_SNAKE_CASE__ : str = n.left SCREAMING_SNAKE_CASE__ : int = stack.pop() print(n.data ,end=""",""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = n.right def lowercase_ ( _snake_case ): if not isinstance(_snake_case ,_snake_case ) or not node: return SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = [], [] SCREAMING_SNAKE_CASE__ : Union[str, Any] = node stacka.append(_snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE__ : Optional[Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data ,end=""",""" ) def lowercase_ ( _snake_case = "" ,_snake_case=50 ,_snake_case="*" ): if not s: return "\n" + width * char SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = divmod(width - len(_snake_case ) - 2 ,2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) UpperCAmelCase__ : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 5_0 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
25
"""simple docstring""" UpperCAmelCase__ : Any = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase__ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase__ : Optional[int] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
25
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( lowercase_ , unittest.TestCase ): lowerCAmelCase_ : str = KandinskyImgaImgPipeline lowerCAmelCase_ : Union[str, Any] = ["prompt", "image_embeds", "negative_image_embeds", "image"] lowerCAmelCase_ : Optional[int] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] lowerCAmelCase_ : Optional[Any] = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowerCAmelCase_ : Optional[Any] = False @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) snake_case_ = MultilingualCLIP(a__ ) snake_case_ = text_encoder.eval() return text_encoder @property def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case_ = UNetaDConditionModel(**a__ ) return model @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } snake_case_ = DDIMScheduler(**a__ ) snake_case_ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self , a__ , a__=0 ) -> Dict: '''simple docstring''' snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a__ ) ).to(a__ ) snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a__ ) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(a__ ) ).to(a__ ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(a__ ) ).convert("RGB" ).resize((256, 256) ) if str(a__ ).startswith("mps" ): snake_case_ = torch.manual_seed(a__ ) else: snake_case_ = torch.Generator(device=a__ ).manual_seed(a__ ) snake_case_ = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = "cpu" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**a__ ) snake_case_ = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) snake_case_ = pipe(**self.get_dummy_inputs(a__ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) snake_case_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case_ = "A red cartoon frog, 4k" snake_case_ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(a__ ) snake_case_ = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(a__ ) pipeline.set_progress_bar_config(disable=a__ ) snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( a__ , generator=a__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() snake_case_ = pipeline( a__ , image=a__ , image_embeds=a__ , negative_image_embeds=a__ , generator=a__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ )
92
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "mgp-str" def __init__( self , a__=[32, 128] , a__=4 , a__=3 , a__=27 , a__=38 , a__=50_257 , a__=30_522 , a__=768 , a__=12 , a__=12 , a__=4.0 , a__=True , a__=False , a__=1e-5 , a__=0.0 , a__=0.0 , a__=0.0 , a__=False , a__=0.0_2 , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**a__ ) snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = max_token_length snake_case_ = num_character_labels snake_case_ = num_bpe_labels snake_case_ = num_wordpiece_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = mlp_ratio snake_case_ = distilled snake_case_ = layer_norm_eps snake_case_ = drop_rate snake_case_ = qkv_bias snake_case_ = attn_drop_rate snake_case_ = drop_path_rate snake_case_ = output_aa_attentions snake_case_ = initializer_range
92
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCAmelCase__ (lowerCAmelCase_ = 100 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 for i in range(2 , max_n + 1 ): __SCREAMING_SNAKE_CASE = pre_numerator __SCREAMING_SNAKE_CASE = 2 * i // 3 if i % 3 == 0 else 1 __SCREAMING_SNAKE_CASE = cur_numerator __SCREAMING_SNAKE_CASE = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase_ ) if __name__ == "__main__": print(F"{solution() = }")
54
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> None: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = crop_pct __UpperCamelCase = resample __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCamelCase = int(size['''height'''] / crop_pct ) else: __UpperCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) else: if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(SCREAMING_SNAKE_CASE_ ) ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"size must contain 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> str: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , )-> np.ndarray: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , )-> PIL.Image.Image: '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) __UpperCamelCase = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: __UpperCamelCase = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , crop_pct=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: __UpperCamelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: __UpperCamelCase = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] __UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
328
0
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Tuple = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : int = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : str = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return model(**SCREAMING_SNAKE_CASE_ ) eval(**SCREAMING_SNAKE_CASE_ ).block_until_ready() @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase_ : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**SCREAMING_SNAKE_CASE_ : List[Any] ): return model(**SCREAMING_SNAKE_CASE_ ) eval(**SCREAMING_SNAKE_CASE_ ).block_until_ready() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase_ : Optional[int] = FlaxAutoModel.from_pretrained('bert-base' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase_ : Any = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , revision='aaaaaa' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): lowerCAmelCase_ : str = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'Use `from_pt=True` to load this model' ): lowerCAmelCase_ : Tuple = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
289
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int ): # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[Any] = False while not completed: if counter == 1: self.reset() lowerCAmelCase_ : Any = self.advance() if not self.does_advance(SCREAMING_SNAKE_CASE_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : List[str] = self.update(SCREAMING_SNAKE_CASE_ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Tuple ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : str ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCAmelCase_ : Union[str, Any] = token_ids lowerCAmelCase_ : Union[str, Any] = len(self.token_ids ) lowerCAmelCase_ : Union[str, Any] = -1 # the index of the currently fulfilled step lowerCAmelCase_ : Dict = False def SCREAMING_SNAKE_CASE__ ( self : int ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.fulfilled_idx += 1 lowerCAmelCase_ : Optional[int] = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : List[str] = completed else: # failed to make progress. lowerCAmelCase_ : Optional[Any] = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : int = 0 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple=False ): lowerCAmelCase_ : Any = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : int = self.seqlen lowerCAmelCase_ : Dict = self.fulfilled_idx lowerCAmelCase_ : Optional[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True ): lowerCAmelCase_ : Tuple = max([len(SCREAMING_SNAKE_CASE_ ) for one in nested_token_ids] ) lowerCAmelCase_ : Optional[Any] = {} for token_ids in nested_token_ids: lowerCAmelCase_ : Union[str, Any] = root for tidx, token_id in enumerate(SCREAMING_SNAKE_CASE_ ): if token_id not in level: lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Tuple = level[token_id] if no_subsets and self.has_subsets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) lowerCAmelCase_ : Union[str, Any] = root def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : str = self.trie for current_token in current_seq: lowerCAmelCase_ : Optional[int] = start[current_token] lowerCAmelCase_ : Dict = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase_ : Any = self.next_tokens(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) == 0 def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase_ : Tuple = list(root.values() ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 1 else: return sum([self.count_leaves(SCREAMING_SNAKE_CASE_ ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Any = self.count_leaves(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) != leaf_count class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[List[int]] ): super(SCREAMING_SNAKE_CASE_ , self ).__init__() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCAmelCase_ : Dict = DisjunctiveTrie(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Optional[int] = nested_token_ids lowerCAmelCase_ : Tuple = self.trie.max_height lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : int = self.trie.next_tokens(self.current_seq ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : Optional[int] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(SCREAMING_SNAKE_CASE_ )}" ) lowerCAmelCase_ : int = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False if self.does_advance(SCREAMING_SNAKE_CASE_ ): self.current_seq.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = True else: lowerCAmelCase_ : List[str] = True self.reset() lowerCAmelCase_ : Dict = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase_ : List[str] = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : int = False lowerCAmelCase_ : Optional[Any] = [] def SCREAMING_SNAKE_CASE__ ( self : str ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict=False ): lowerCAmelCase_ : Dict = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase_ : Dict = self.seqlen lowerCAmelCase_ : Optional[Any] = self.current_seq lowerCAmelCase_ : List[Any] = self.completed return new_constraint class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Constraint] ): lowerCAmelCase_ : Optional[int] = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase_ : Optional[int] = max([c.seqlen for c in constraints] ) lowerCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : int = None lowerCAmelCase_ : Optional[int] = [constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase_ : List[Any] = constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : Dict = self.inprogress_constraint.advance() if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.append(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): token_list.extend(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase_ ,lowerCAmelCase_ : Union[str, Any] = self.add(SCREAMING_SNAKE_CASE_ ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : int ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) lowerCAmelCase_ ,lowerCAmelCase_ : Tuple = False, False if self.completed: lowerCAmelCase_ : Any = True lowerCAmelCase_ : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : Any = self.inprogress_constraint.update(SCREAMING_SNAKE_CASE_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase_ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase_ : str = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase_ : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ : str = pending_constraint.update(SCREAMING_SNAKE_CASE_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = None if not complete and stepped: lowerCAmelCase_ : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase_ : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase_ : Optional[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=True ): lowerCAmelCase_ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase_ : Any = [ constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase_ : List[str] = self.inprogress_constraint.copy(stateful=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
289
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , *_a , **_a ): warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
45
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Any = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Optional[int] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] )
116
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" _lowerCAmelCase : str = """dpt""" def __init__( self , lowerCAmelCase=7_68 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=30_72 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=3_84 , lowerCAmelCase=16 , lowerCAmelCase=3 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=[2, 5, 8, 11] , lowerCAmelCase="project" , lowerCAmelCase=[4, 2, 1, 0.5] , lowerCAmelCase=[96, 1_92, 3_84, 7_68] , lowerCAmelCase=2_56 , lowerCAmelCase=-1 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=0.4 , lowerCAmelCase=2_55 , lowerCAmelCase=0.1 , lowerCAmelCase=[1, 10_24, 24, 24] , lowerCAmelCase=[0, 1] , lowerCAmelCase=None , **lowerCAmelCase , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) snake_case = hidden_size snake_case = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) snake_case = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } snake_case = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): logger.info('Initializing the config with a `BiT` backbone.' ) snake_case = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) snake_case = backbone_featmap_shape snake_case = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: snake_case = None snake_case = None snake_case = [] snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = qkv_bias snake_case = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) snake_case = readout_type snake_case = reassemble_factors snake_case = neck_hidden_sizes snake_case = fusion_hidden_size snake_case = head_in_index snake_case = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case = use_auxiliary_head snake_case = auxiliary_loss_weight snake_case = semantic_loss_ignore_index snake_case = semantic_classifier_dropout def snake_case ( self ): """simple docstring""" snake_case = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case = self.backbone_config.to_dict() snake_case = self.__class__.model_type return output
367
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase__ ( _UpperCamelCase : int = 8 ) -> str: """simple docstring""" snake_case = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" i -= len(_UpperCamelCase ) snake_case = i // 3 snake_case = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case = ( chars_incl + random(_UpperCamelCase , quotient + remainder ) + random(_UpperCamelCase , _UpperCamelCase ) + random(_UpperCamelCase , _UpperCamelCase ) ) snake_case = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int = 8 ) -> bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case = any(char in ascii_uppercase for char in password ) snake_case = any(char in ascii_lowercase for char in password ) snake_case = any(char in digits for char in password ) snake_case = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase__ ( ) -> Any: """simple docstring""" snake_case = int(input('Please indicate the max length of your password: ' ).strip() ) snake_case = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_UpperCamelCase ) ) print( 'Alternative Password generated:' , alternative_password_generator(_UpperCamelCase , _UpperCamelCase ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
149
0
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Optional[Any] , *UpperCamelCase: Union[str, Any] , **UpperCamelCase: List[Any] ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Tuple , *UpperCamelCase: Optional[int] , **UpperCamelCase: Any ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: int , *UpperCamelCase: List[Any] , **UpperCamelCase: int ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: str , *UpperCamelCase: Any , **UpperCamelCase: Optional[Any] ) -> Tuple: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: str , *UpperCamelCase: str , **UpperCamelCase: Optional[Any] ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Any , *UpperCamelCase: List[Any] , **UpperCamelCase: Tuple ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Tuple , *UpperCamelCase: Dict , **UpperCamelCase: Optional[int] ) -> List[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Union[str, Any] , *UpperCamelCase: List[str] , **UpperCamelCase: Any ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: int , *UpperCamelCase: Dict , **UpperCamelCase: Dict ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: Dict , *UpperCamelCase: str , **UpperCamelCase: Any ) -> Optional[int]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Any , *UpperCamelCase: Optional[int] , **UpperCamelCase: List[str] ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: List[str] , *UpperCamelCase: List[Any] , **UpperCamelCase: int ) -> Optional[int]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: List[Any] , *UpperCamelCase: int , **UpperCamelCase: List[Any] ) -> Union[str, Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: List[Any] , *UpperCamelCase: str , **UpperCamelCase: Tuple ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Dict , *UpperCamelCase: Tuple , **UpperCamelCase: Tuple ) -> List[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE( metaclass=a_ ): _UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self: str , *UpperCamelCase: List[str] , **UpperCamelCase: int ) -> Dict: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Any , *UpperCamelCase: str , **UpperCamelCase: Any ) -> Optional[Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowerCAmelCase_ ( cls: Optional[int] , *UpperCamelCase: List[Any] , **UpperCamelCase: Tuple ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> Any: lowerCAmelCase__ : str = len(__UpperCAmelCase ) for i in range(length - 1 ): lowerCAmelCase__ : Optional[int] = i for k in range(i + 1 , __UpperCAmelCase ): if collection[k] < collection[least]: lowerCAmelCase__ : Dict = k if least != i: lowerCAmelCase__ : str = (collection[i], collection[least]) return collection if __name__ == "__main__": _A = input("""Enter numbers separated by a comma:\n""").strip() _A = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
367
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _A = logging.get_logger(__name__) class _lowerCamelCase ( a_ ): def __init__( self : Union[str, Any] , *UpperCamelCase : int , **UpperCamelCase : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
212
0
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ) -> Tuple: UpperCAmelCase : Dict = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCAmelCase : Optional[Any] = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } UpperCAmelCase : Optional[Any] = f"""{src_lang}-{tgt_lang}""" UpperCAmelCase : List[Any] = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(a_ , exist_ok=a_ ) UpperCAmelCase : Union[str, Any] = os.path.join(a_ , '''README.md''' ) print(f"""Generating {path}""" ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(a_ ) # make sure we are under the root of the project UpperCamelCase__: Dict = Path(__file__).resolve().parent.parent.parent UpperCamelCase__: Tuple = repo_dir / "model_cards" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__: int = model_name.split("-") UpperCamelCase__: Optional[int] = model_cards_dir / "facebook" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
23
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
178
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Dict = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[Any] = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : List[str] = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCamelCase_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : Any = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=10 , __A=160 , __A=8 , __A=0.0 , __A=4000 , __A=False , __A=True , ) -> Optional[Any]: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def SCREAMING_SNAKE_CASE ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> str: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__A ) for speech_input in speech_inputs_truncated] a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off a =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1E-3 ) )
215
0
lowercase__ :dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.6_02_17_66_34E-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.355_818, } def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(lowerCAmelCase__ )}' ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
101
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Union[str, Any] =RoCBertTokenizer lowercase_ : str =None lowercase_ : Optional[Any] =False lowercase_ : Any =True lowercase_ : int =filter_non_english def A__ ( self): super().setUp() lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowercase = {} lowercase = {} for i, value in enumerate(A__): lowercase = i lowercase = i lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''word_shape_file''']) lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''word_pronunciation_file''']) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) with open(self.word_shape_file ,'''w''' ,encoding='''utf-8''') as word_shape_writer: json.dump(A__ ,A__ ,ensure_ascii=A__) with open(self.word_pronunciation_file ,'''w''' ,encoding='''utf-8''') as word_pronunciation_writer: json.dump(A__ ,A__ ,ensure_ascii=A__) def A__ ( self): lowercase = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) lowercase = tokenizer.tokenize('''你好[SEP]你是谁''') self.assertListEqual(A__ ,['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A__) ,[5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A__) ,[5, 6, 2, 5, 7, 8]) def A__ ( self): lowercase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''') ,['''ah''', '''\u535A''', '''\u63A8''', '''zz''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''h\u00E9llo''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?''']) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') ,['''hello''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''') ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,strip_accents=A__) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''') ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''']) def A__ ( self): lowercase = RoCBertBasicTokenizer(do_lower_case=A__ ,never_split=['''[UNK]''']) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''') ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]''']) def A__ ( self): lowercase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowercase = {} for i, token in enumerate(A__): lowercase = i lowercase = RoCBertWordpieceTokenizer(vocab=A__ ,unk_token='''[UNK]''') self.assertListEqual(tokenizer.tokenize('''''') ,[]) self.assertListEqual(tokenizer.tokenize('''unwanted running''') ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.tokenize('''unwantedX running''') ,['''[UNK]''', '''runn''', '''##ing''']) def A__ ( self): self.assertTrue(_is_whitespace(''' ''')) self.assertTrue(_is_whitespace('''\t''')) self.assertTrue(_is_whitespace('''\r''')) self.assertTrue(_is_whitespace('''\n''')) self.assertTrue(_is_whitespace('''\u00A0''')) self.assertFalse(_is_whitespace('''A''')) self.assertFalse(_is_whitespace('''-''')) def A__ ( self): self.assertTrue(_is_control('''\u0005''')) self.assertFalse(_is_control('''A''')) self.assertFalse(_is_control(''' ''')) self.assertFalse(_is_control('''\t''')) self.assertFalse(_is_control('''\r''')) def A__ ( self): self.assertTrue(_is_punctuation('''-''')) self.assertTrue(_is_punctuation('''$''')) self.assertTrue(_is_punctuation('''`''')) self.assertTrue(_is_punctuation('''.''')) self.assertFalse(_is_punctuation('''A''')) self.assertFalse(_is_punctuation(''' ''')) def A__ ( self): lowercase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']]) if self.test_rust_tokenizer: lowercase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A__) for t in ['''Test''', '''\xad''', '''test''']] ,[['''[UNK]'''], [], ['''[UNK]''']]) def A__ ( self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase = tokenizer_r.encode_plus( A__ ,return_attention_mask=A__ ,return_token_type_ids=A__ ,return_offsets_mapping=A__ ,add_special_tokens=A__ ,) lowercase = tokenizer_r.do_lower_case if hasattr(A__ ,'''do_lower_case''') else False lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''Allen'''), ((2_1, 2_3), '''##NL'''), ((2_3, 2_4), '''##P'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), '''allen'''), ((2_1, 2_3), '''##nl'''), ((2_3, 2_4), '''##p'''), ((2_5, 3_3), '''sentence'''), ((3_3, 3_4), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''])) self.assertEqual([e[0] for e in expected_results] ,tokens['''offset_mapping''']) def A__ ( self): lowercase = ['''的''', '''人''', '''有'''] lowercase = ''''''.join(A__) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase = True lowercase = self.tokenizer_class.from_pretrained(A__ ,**A__) lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = tokenizer_p.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.convert_ids_to_tokens(A__) lowercase = tokenizer_p.convert_ids_to_tokens(A__) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ ,A__) self.assertListEqual(A__ ,A__) lowercase = False lowercase = self.rust_tokenizer_class.from_pretrained(A__ ,**A__) lowercase = self.tokenizer_class.from_pretrained(A__ ,**A__) lowercase = tokenizer_r.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_p.encode(A__ ,add_special_tokens=A__) lowercase = tokenizer_r.convert_ids_to_tokens(A__) lowercase = tokenizer_p.convert_ids_to_tokens(A__) # it is expected that only the first Chinese character is not preceded by "##". lowercase = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(A__) ] self.assertListEqual(A__ ,A__) self.assertListEqual(A__ ,A__) @slow def A__ ( self): lowercase = self.tokenizer_class(self.vocab_file ,self.word_shape_file ,self.word_pronunciation_file) lowercase = tokenizer.encode('''你好''' ,add_special_tokens=A__) lowercase = tokenizer.encode('''你是谁''' ,add_special_tokens=A__) lowercase = tokenizer.build_inputs_with_special_tokens(A__) lowercase = tokenizer.build_inputs_with_special_tokens(A__ ,A__) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def A__ ( self): lowercase = self.get_tokenizers(do_lower_case=A__) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase = '''你好,你是谁''' lowercase = tokenizer.tokenize(A__) lowercase = tokenizer.convert_tokens_to_ids(A__) lowercase = tokenizer.convert_tokens_to_shape_ids(A__) lowercase = tokenizer.convert_tokens_to_pronunciation_ids(A__) lowercase = tokenizer.prepare_for_model( A__ ,A__ ,A__ ,add_special_tokens=A__) lowercase = tokenizer.encode_plus(A__ ,add_special_tokens=A__) self.assertEqual(A__ ,A__)
101
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=False , _a=True , _a="None" , _a=3 , _a=4 , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : str = use_input_mask SCREAMING_SNAKE_CASE__ : List[Any] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Any = use_labels SCREAMING_SNAKE_CASE__ : Any = vocab_size SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE__ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Any = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = num_labels SCREAMING_SNAKE_CASE__ : Dict = num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = relative_attention SCREAMING_SNAKE_CASE__ : List[str] = position_biased_input SCREAMING_SNAKE_CASE__ : int = pos_att_type SCREAMING_SNAKE_CASE__ : Optional[int] = scope def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Optional[int] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFDebertaVaModel(config=_a ) SCREAMING_SNAKE_CASE__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE__ : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE__ : List[str] = model(_a ) SCREAMING_SNAKE_CASE__ : Dict = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFDebertaVaForMaskedLM(config=_a ) SCREAMING_SNAKE_CASE__ : Optional[int] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ : Any = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE__ : List[Any] = TFDebertaVaForSequenceClassification(config=_a ) SCREAMING_SNAKE_CASE__ : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE__ : str = TFDebertaVaForTokenClassification(config=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ : List[str] = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFDebertaVaForQuestionAnswering(config=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE__ : Dict = model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : str = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE :int = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :List[str] = False def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE__ : Any = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(_a ) @require_tf class __a (unittest.TestCase): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _a ( self ) -> str: """simple docstring""" pass @slow def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__ : Tuple = model(_a , attention_mask=_a )[0] SCREAMING_SNAKE_CASE__ : List[str] = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _a , atol=1E-4 )
56
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : int = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator SCREAMING_SNAKE_CASE__ : List[Any] = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(__lowerCAmelCase ) , """Postfix""".center(__lowerCAmelCase ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE__ : Optional[int] = """)""" # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE__ : Optional[Any] = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a :Optional[int] = input("\nEnter an Infix Equation = ") # Input an Infix equation a :Dict = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
56
1
'''simple docstring''' import numpy class lowerCamelCase_ : def __init__( self : Dict , _A : Optional[int] , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCAmelCase__ : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCAmelCase__ : List[Any] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCAmelCase__ : str = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCAmelCase__ : List[Any] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCAmelCase__ : Optional[Any] = numpy.zeros(output_array.shape ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCAmelCase__ : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCAmelCase__ : str = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowercase_ ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCAmelCase__ : Tuple = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCAmelCase__ : Any = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowercase_ ( self : Optional[int] , _A : Union[str, Any] , _A : List[str] , _A : Tuple ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): UpperCAmelCase__ : List[Any] = self.feedforward() self.back_propagation() if give_loss: UpperCAmelCase__ : Optional[Any] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def lowercase_ ( self : Union[str, Any] , _A : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = input_arr UpperCAmelCase__ : List[str] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCAmelCase__ : str = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCAmelCase__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def a__ ( lowerCAmelCase__ ) -> List[str]: return 1 / (1 + numpy.exp(-value )) def a__ ( lowerCAmelCase__ ) -> Union[str, Any]: return (value) * (1 - (value)) def a__ ( ) -> Optional[int]: UpperCAmelCase__ : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCAmelCase__ : int = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. UpperCAmelCase__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=UpperCamelCase_ , output_array=UpperCamelCase_ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=UpperCamelCase_ , iterations=10 , give_loss=UpperCamelCase_ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
181
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE : List[Any] = "PoolFormerConfig" # Base docstring _SCREAMING_SNAKE_CASE : Any = "sail/poolformer_s12" _SCREAMING_SNAKE_CASE : str = [1, 5_12, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE : Any = "sail/poolformer_s12" _SCREAMING_SNAKE_CASE : List[Any] = "tabby, tabby cat" _SCREAMING_SNAKE_CASE : List[str] = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ = 0.0 ,UpperCamelCase_ = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input snake_case = 1 - drop_prob snake_case = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets snake_case = keep_prob + torch.rand(UpperCamelCase_ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize snake_case = input.div(UpperCamelCase_ ) * random_tensor return output class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case = None ): super().__init__() snake_case = drop_prob def a_ ( self , __snake_case ): return drop_path(__snake_case , self.drop_prob , self.training ) def a_ ( self ): return "p={}".format(self.drop_prob ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=None ): super().__init__() snake_case = patch_size if isinstance(__snake_case , collections.abc.Iterable ) else (patch_size, patch_size) snake_case = stride if isinstance(__snake_case , collections.abc.Iterable ) else (stride, stride) snake_case = padding if isinstance(__snake_case , collections.abc.Iterable ) else (padding, padding) snake_case = nn.Convad(__snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=__snake_case ) snake_case = norm_layer(__snake_case ) if norm_layer else nn.Identity() def a_ ( self , __snake_case ): snake_case = self.projection(__snake_case ) snake_case = self.norm(__snake_case ) return embeddings class A__ ( nn.GroupNorm ): """simple docstring""" def __init__( self , __snake_case , **__snake_case ): super().__init__(1 , __snake_case , **__snake_case ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = nn.AvgPoolad(__snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=__snake_case ) def a_ ( self , __snake_case ): return self.pool(__snake_case ) - hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case ): super().__init__() snake_case = nn.Convad(__snake_case , __snake_case , 1 ) snake_case = nn.Convad(__snake_case , __snake_case , 1 ) snake_case = PoolFormerDropPath(__snake_case ) if isinstance(config.hidden_act , __snake_case ): snake_case = ACTaFN[config.hidden_act] else: snake_case = config.hidden_act def a_ ( self , __snake_case ): snake_case = self.conva(__snake_case ) snake_case = self.act_fn(__snake_case ) snake_case = self.drop(__snake_case ) snake_case = self.conva(__snake_case ) snake_case = self.drop(__snake_case ) return hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): super().__init__() snake_case = PoolFormerPooling(__snake_case ) snake_case = PoolFormerOutput(__snake_case , __snake_case , __snake_case , __snake_case ) snake_case = PoolFormerGroupNorm(__snake_case ) snake_case = PoolFormerGroupNorm(__snake_case ) # Useful for training neural nets snake_case = PoolFormerDropPath(__snake_case ) if drop_path > 0.0 else nn.Identity() snake_case = config.use_layer_scale if config.use_layer_scale: snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((__snake_case) ) , requires_grad=__snake_case ) snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((__snake_case) ) , requires_grad=__snake_case ) def a_ ( self , __snake_case ): if self.use_layer_scale: snake_case = self.pooling(self.before_norm(__snake_case ) ) snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection snake_case = hidden_states + self.drop_path(__snake_case ) snake_case = () snake_case = self.output(self.after_norm(__snake_case ) ) snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection snake_case = hidden_states + self.drop_path(__snake_case ) snake_case = (output,) + outputs return outputs else: snake_case = self.drop_path(self.pooling(self.before_norm(__snake_case ) ) ) # First residual connection snake_case = pooling_output + hidden_states snake_case = () # Second residual connection inside the PoolFormerOutput block snake_case = self.drop_path(self.output(self.after_norm(__snake_case ) ) ) snake_case = hidden_states + layer_output snake_case = (output,) + outputs return outputs class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = config # stochastic depth decay rule snake_case = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings snake_case = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) snake_case = nn.ModuleList(__snake_case ) # Transformer blocks snake_case = [] snake_case = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers snake_case = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__snake_case ) ) snake_case = nn.ModuleList(__snake_case ) def a_ ( self , __snake_case , __snake_case=False , __snake_case=True ): snake_case = () if output_hidden_states else None snake_case = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): snake_case , snake_case = layers # Get patch embeddings from hidden_states snake_case = embedding_layer(__snake_case ) # Send the embeddings through the blocks for _, blk in enumerate(__snake_case ): snake_case = blk(__snake_case ) snake_case = layer_outputs[0] if output_hidden_states: snake_case = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = PoolFormerConfig __magic_name__ = 'poolformer' __magic_name__ = 'pixel_values' __magic_name__ = True def a_ ( self , __snake_case ): if isinstance(__snake_case , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__snake_case , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def a_ ( self , __snake_case , __snake_case=False ): if isinstance(__snake_case , __snake_case ): snake_case = value _SCREAMING_SNAKE_CASE : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _SCREAMING_SNAKE_CASE : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , snake_case__ , ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = config snake_case = PoolFormerEncoder(__snake_case ) # Initialize weights and apply final processing self.post_init() def a_ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a_ ( self , __snake_case = None , __snake_case = None , __snake_case = None , ): snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) snake_case = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , ) snake_case = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__snake_case , hidden_states=encoder_outputs.hidden_states , ) class A__ ( nn.Module ): """simple docstring""" def __init__( self , __snake_case ): super().__init__() snake_case = nn.Linear(config.hidden_size , config.hidden_size ) def a_ ( self , __snake_case ): snake_case = self.dense(__snake_case ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , snake_case__ , ) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case ): super().__init__(__snake_case ) snake_case = config.num_labels snake_case = PoolFormerModel(__snake_case ) # Final norm snake_case = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head snake_case = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a_ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , ): snake_case = return_dict if return_dict is not None else self.config.use_return_dict snake_case = self.poolformer( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , ) snake_case = outputs[0] snake_case = self.classifier(self.norm(__snake_case ).mean([-2, -1] ) ) snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case = '''single_label_classification''' else: snake_case = '''multi_label_classification''' if self.config.problem_type == "regression": snake_case = MSELoss() if self.num_labels == 1: snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": snake_case = CrossEntropyLoss() snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case = BCEWithLogitsLoss() snake_case = loss_fct(__snake_case , __snake_case ) if not return_dict: snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
127
0
"""simple docstring""" from math import pi, sqrt def lowercase__(A ) ->float: """simple docstring""" if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(A ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def lowercase__() ->None: """simple docstring""" assert gamma(0.5 ) == sqrt(A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() a : Tuple = 1.0 while num: a : List[Any] = float(input("""Gamma of: """)) print(F"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
354
"""simple docstring""" import os from pathlib import Path def lowercase__() ->List[Any]: """simple docstring""" from torch.utils.cpp_extension import load lowercase__ : Any= Path(A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowercase__ : Any= [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , A , with_cuda=A , extra_include_paths=[str(A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
150
0
import random def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' UpperCAmelCase = num - 1 UpperCAmelCase = 0 while s % 2 == 0: UpperCAmelCase = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase = random.randrange(2 , num - 1 ) UpperCAmelCase = pow(snake_case__ , snake_case__ , snake_case__ ) if v != 1: UpperCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase = i + 1 UpperCAmelCase = (v**2) % num return True def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> int: '''simple docstring''' if num < 2: return False UpperCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 1024 ) -> List[Any]: '''simple docstring''' while True: UpperCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": __A : Optional[Any] = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
273
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '''Hello, World!''' _lowerCAmelCase = '''en_XX''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Union[str, Any] = Path("data_bin" ) __UpperCamelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case__ ).parent ) , checkpoint_file=Path(snake_case__ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(snake_case__ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(snake_case__ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(snake_case__ ) __UpperCamelCase : List[str] = xmod.model.encoder.sentence_encoder __UpperCamelCase : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , snake_case__ ) __UpperCamelCase : Dict = XmodForSequenceClassification(snake_case__ ) if classification_head else XmodForMaskedLM(snake_case__ ) model.eval() # Now let's copy all the weights. # Embeddings __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_tokens.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.embed_positions.weight __UpperCamelCase : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __UpperCamelCase : Any = xmod_sent_encoder.layernorm_embedding.weight __UpperCamelCase : str = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __UpperCamelCase : int = model.roberta.encoder.layer[i] __UpperCamelCase : Any = xmod_sent_encoder.layers[i] # self attention __UpperCamelCase : List[str] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __UpperCamelCase : Dict = xmod_layer.self_attn.q_proj.weight __UpperCamelCase : Optional[Any] = xmod_layer.self_attn.q_proj.bias __UpperCamelCase : Any = xmod_layer.self_attn.k_proj.weight __UpperCamelCase : Tuple = xmod_layer.self_attn.k_proj.bias __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.v_proj.weight __UpperCamelCase : Any = xmod_layer.self_attn.v_proj.bias # self-attention output __UpperCamelCase : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.weight __UpperCamelCase : str = xmod_layer.self_attn.out_proj.bias __UpperCamelCase : Dict = xmod_layer.self_attn_layer_norm.weight __UpperCamelCase : Any = xmod_layer.self_attn_layer_norm.bias # intermediate __UpperCamelCase : Dict = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __UpperCamelCase : List[Any] = xmod_layer.fca.weight __UpperCamelCase : Optional[int] = xmod_layer.fca.bias # output __UpperCamelCase : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __UpperCamelCase : Tuple = xmod_layer.fca.weight __UpperCamelCase : int = xmod_layer.fca.bias __UpperCamelCase : Dict = xmod_layer.final_layer_norm.weight __UpperCamelCase : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __UpperCamelCase : Any = xmod_layer.adapter_layer_norm.weight __UpperCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __UpperCamelCase : Any = bert_output.adapter_modules[lang_code] __UpperCamelCase : Dict = xmod_layer.adapter_modules[lang_code] __UpperCamelCase : int = from_adapter.fca.weight __UpperCamelCase : Dict = from_adapter.fca.bias __UpperCamelCase : List[Any] = from_adapter.fca.weight __UpperCamelCase : int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __UpperCamelCase : Tuple = xmod_sent_encoder.layer_norm.weight __UpperCamelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: __UpperCamelCase : Optional[Any] = xmod.model.classification_heads["mnli"].dense.weight __UpperCamelCase : Any = xmod.model.classification_heads["mnli"].dense.bias __UpperCamelCase : Tuple = xmod.model.classification_heads["mnli"].out_proj.weight __UpperCamelCase : List[Any] = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __UpperCamelCase : Any = xmod.model.encoder.lm_head.dense.weight __UpperCamelCase : Optional[Any] = xmod.model.encoder.lm_head.dense.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.layer_norm.weight __UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias __UpperCamelCase : Tuple = xmod.model.encoder.lm_head.weight __UpperCamelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __UpperCamelCase : Any = xmod.encode(snake_case__ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case__ ) __UpperCamelCase : Optional[Any] = model(snake_case__ )[0] if classification_head: __UpperCamelCase : int = xmod.model.classification_heads["mnli"](xmod.extract_features(snake_case__ ) ) else: __UpperCamelCase : Optional[Any] = xmod.model(snake_case__ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __UpperCamelCase : Dict = torch.max(torch.abs(our_output - their_output ) ).item() print(F"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __UpperCamelCase : Union[str, Any] = torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(snake_case__ ).mkdir(parents=snake_case__ , exist_ok=snake_case__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _lowerCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
298
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = """falcon""" lowerCAmelCase_ = ["""past_key_values"""] def __init__( self : int , _lowercase : Dict=6_50_24 , _lowercase : List[str]=45_44 , _lowercase : List[Any]=32 , _lowercase : Optional[int]=71 , _lowercase : Optional[Any]=1E-5 , _lowercase : List[str]=0.02 , _lowercase : Any=True , _lowercase : Optional[int]=0.0 , _lowercase : Tuple=0.0 , _lowercase : Union[str, Any]=None , _lowercase : Any=False , _lowercase : Any=False , _lowercase : List[str]=True , _lowercase : List[str]=True , _lowercase : str=False , _lowercase : Tuple=11 , _lowercase : Optional[int]=11 , **_lowercase : int , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE__ = kwargs.pop("""n_embed""" , _lowercase ) SCREAMING_SNAKE_CASE__ = hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = hidden_dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = num_attention_heads if num_kv_heads is None else num_kv_heads SCREAMING_SNAKE_CASE__ = alibi SCREAMING_SNAKE_CASE__ = new_decoder_architecture SCREAMING_SNAKE_CASE__ = multi_query # Ignored when new_decoder_architecture is True SCREAMING_SNAKE_CASE__ = parallel_attn SCREAMING_SNAKE_CASE__ = bias super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) @property def __a ( self : str ): """simple docstring""" return self.hidden_size // self.num_attention_heads @property def __a ( self : int ): """simple docstring""" return not self.alibi
366
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Tuple = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES else: SCREAMING_SNAKE_CASE__ = {tokenizer_name: getattr(__UpperCamelCase , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: SCREAMING_SNAKE_CASE__ = TOKENIZER_CLASSES[tokenizer_name] SCREAMING_SNAKE_CASE__ = True if checkpoint_name is None: SCREAMING_SNAKE_CASE__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: SCREAMING_SNAKE_CASE__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained(__UpperCamelCase , force_download=__UpperCamelCase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = checkpoint.split("""/""" ) SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) elif add_prefix: SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = dump_path else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: SCREAMING_SNAKE_CASE__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] SCREAMING_SNAKE_CASE__ = file_path.split(__UpperCamelCase )[-1][0] if next_char == "/": SCREAMING_SNAKE_CASE__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) SCREAMING_SNAKE_CASE__ = tokenizer.save_pretrained( __UpperCamelCase , legacy_format=__UpperCamelCase , filename_prefix=__UpperCamelCase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__UpperCamelCase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __lowerCamelCase : Any = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
204
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class _UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : Optional[Any] = '''levit''' def __init__( self : str , lowerCAmelCase__ : List[Any]=2_2_4 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[Any]=1 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : List[Any]=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase__ : int=[4, 8, 1_2] , lowerCAmelCase__ : Dict=[4, 4, 4] , lowerCAmelCase__ : Any=[1_6, 1_6, 1_6] , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Optional[Any]=[2, 2, 2] , lowerCAmelCase__ : Any=[2, 2, 2] , lowerCAmelCase__ : List[Any]=0.02 , **lowerCAmelCase__ : Any , ): """simple docstring""" super().__init__(**lowercase_ ) __SCREAMING_SNAKE_CASE : Any = image_size __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : List[str] = kernel_size __SCREAMING_SNAKE_CASE : Union[str, Any] = stride __SCREAMING_SNAKE_CASE : Union[str, Any] = padding __SCREAMING_SNAKE_CASE : Tuple = hidden_sizes __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = depths __SCREAMING_SNAKE_CASE : List[Any] = key_dim __SCREAMING_SNAKE_CASE : int = drop_path_rate __SCREAMING_SNAKE_CASE : List[Any] = patch_size __SCREAMING_SNAKE_CASE : Dict = attention_ratio __SCREAMING_SNAKE_CASE : str = mlp_ratio __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _UpperCamelCase ( _UpperCAmelCase ): '''simple docstring''' _A : Dict = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self : Dict ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return 1E-4
112
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowercase : Optional[int] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowercase : List[Any] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowercase : List[Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Any=None , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : Any=None , lowercase_ : int="auto" , lowercase_ : Tuple=-1 , lowercase_ : str=0.9 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[str]=500 , lowercase_ : Union[str, Any]="gpt2-large" , lowercase_ : List[Any]=-1 , lowercase_ : str=1024 , lowercase_ : List[str]=25 , lowercase_ : str=5 , lowercase_ : List[Any]=True , lowercase_ : Tuple=25 , ): lowercase_ : List[str] = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
239
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( _lowerCAmelCase ): def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Any=13 , _lowercase : Optional[int]=7 , _lowercase : List[Any]=True , _lowercase : List[str]=True , _lowercase : Tuple=True , _lowercase : List[str]=True , _lowercase : Optional[Any]=True , _lowercase : Tuple=False , _lowercase : int=False , _lowercase : int=False , _lowercase : Optional[int]=2 , _lowercase : int=99 , _lowercase : int=0 , _lowercase : List[Any]=32 , _lowercase : Optional[Any]=5 , _lowercase : Tuple=4 , _lowercase : Tuple=0.1 , _lowercase : Any=0.1 , _lowercase : List[Any]=5_12 , _lowercase : Any=12 , _lowercase : List[str]=2 , _lowercase : List[Any]=0.02 , _lowercase : Dict=3 , _lowercase : Optional[int]=4 , _lowercase : str="last" , _lowercase : int=None , _lowercase : int=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_lengths __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = gelu_activation __UpperCAmelCase = sinusoidal_embeddings __UpperCAmelCase = causal __UpperCAmelCase = asm __UpperCAmelCase = n_langs __UpperCAmelCase = vocab_size __UpperCAmelCase = n_special __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = summary_type __UpperCAmelCase = use_proj __UpperCAmelCase = scope def a ( self : List[Any] ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase = None if self.use_input_lengths: __UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self : Tuple ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a ( self : int , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Tuple , ): __UpperCAmelCase = FlaubertModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , lengths=_lowercase , langs=_lowercase ) __UpperCAmelCase = model(_lowercase , langs=_lowercase ) __UpperCAmelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int , _lowercase : str , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , ): __UpperCAmelCase = FlaubertWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : int , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int , ): __UpperCAmelCase = FlaubertForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : int , _lowercase : Dict , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] , _lowercase : List[Any] , ): __UpperCAmelCase = FlaubertForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) __UpperCAmelCase = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((__UpperCAmelCase) , ) = result_with_labels.to_tuple() __UpperCAmelCase = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((__UpperCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self : str , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Any , _lowercase : int , _lowercase : Any , _lowercase : List[Any] , _lowercase : Any , _lowercase : Any , _lowercase : Any , ): __UpperCAmelCase = FlaubertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self : Tuple , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : str , ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = FlaubertForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : str , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : List[str] , ): __UpperCAmelCase = self.num_choices __UpperCAmelCase = FlaubertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self : Dict ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a__ : str = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a ( self : Union[str, Any] , _lowercase : str , _lowercase : str , _lowercase : List[str] , _lowercase : Dict , _lowercase : Optional[Any] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self : Union[str, Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : Any=False ): __UpperCAmelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) __UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def a ( self : Any ): __UpperCAmelCase = FlaubertModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , emb_dim=37 ) def a ( self : Optional[int] ): self.config_tester.run_common_tests() def a ( self : int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_lowercase ) def a ( self : List[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_lowercase ) def a ( self : int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_lowercase ) def a ( self : Tuple ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_lowercase ) def a ( self : int ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_lowercase ) @slow def a ( self : Any ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = FlaubertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase = True __UpperCAmelCase = model_class(config=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = torch.jit.trace( _lowercase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , '''traced_model.pt''' ) ) __UpperCAmelCase = torch.jit.load(os.path.join(_lowercase , '''traced_model.pt''' ) , map_location=_lowercase ) loaded(inputs_dict['''input_ids'''].to(_lowercase ) , inputs_dict['''attention_mask'''].to(_lowercase ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def a ( self : Union[str, Any] ): __UpperCAmelCase = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) __UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __UpperCAmelCase = model(_lowercase )[0] __UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _lowercase ) __UpperCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
86
"""simple docstring""" def lowercase__ ( snake_case_ :int , snake_case_ :int , snake_case_ :int ): __UpperCAmelCase = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase__ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder a_ = datasets.utils.logging.get_logger(__name__) class _UpperCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' lowerCamelCase__ =datasets.Audio() lowerCamelCase__ ='audio' lowerCamelCase__ =AudioFolderConfig lowerCamelCase__ =42 # definition at the bottom of the script lowerCamelCase__ =AudioClassification(audio_column='audio' , label_column='label' ) a_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] a_ = AUDIO_EXTENSIONS
76
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase : List[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Any =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__ : str =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__ : Dict =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : Tuple, lowerCamelCase : List[str]=13, lowerCamelCase : Dict=7, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : int=99, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : List[str]=2, lowerCamelCase : int=4, lowerCamelCase : Tuple=4, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : str=0.1, lowerCamelCase : Optional[int]=32, lowerCamelCase : List[str]=2, lowerCamelCase : Tuple=1, lowerCamelCase : Optional[int]=0, lowerCamelCase : int=0.02, )-> Optional[Any]: lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Dict =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Any =is_training lowerCamelCase__ : Optional[int] =use_labels lowerCamelCase__ : List[str] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : List[Any] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : Union[str, Any] =hidden_act lowerCamelCase__ : Optional[Any] =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : List[Any] =eos_token_id lowerCamelCase__ : Tuple =pad_token_id lowerCamelCase__ : Union[str, Any] =bos_token_id lowerCamelCase__ : List[Any] =initializer_range def snake_case ( self : Optional[Any] )-> str: lowerCamelCase__ : Dict =np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) lowerCamelCase__ : Union[str, Any] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) lowerCamelCase__ : Dict =shift_tokens_right(lowerCamelCase, 1, 2 ) lowerCamelCase__ : Optional[Any] =BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCamelCase, ) lowerCamelCase__ : List[str] =prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return config, inputs_dict def snake_case ( self : str )-> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : Any =self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self : int, lowerCamelCase : Tuple, lowerCamelCase : Dict, lowerCamelCase : Tuple )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =20 lowerCamelCase__ : Optional[int] =model_class_name(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase__ : Any =model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Dict =jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' ) lowerCamelCase__ : List[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase__ : int =model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : Optional[int] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowerCamelCase__ : Union[str, Any] =model.decode( decoder_input_ids[:, -1:], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : int =model.decode(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) def snake_case ( self : str, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : str )-> List[str]: lowerCamelCase__ : List[Any] =20 lowerCamelCase__ : List[Any] =model_class_name(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase__ , lowerCamelCase__ : str =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase__ : Tuple =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) lowerCamelCase__ : List[str] =model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase__ : List[Any] =model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowerCamelCase__ : Optional[Any] =model.decode( decoder_input_ids[:, -1:], lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : Optional[Any] =model.decode(lowerCamelCase, lowerCamelCase, decoder_attention_mask=lowerCamelCase ) lowerCamelCase__ : List[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' _a = 9_9 def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) lowerCamelCase__ : Any =input_ids.shape[0] lowerCamelCase__ : Any =BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def snake_case ( self : Any )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =self._get_config_and_data() lowerCamelCase__ : int =FlaxBlenderbotForConditionalGeneration(lowerCamelCase ) lowerCamelCase__ : str =lm_model(input_ids=lowerCamelCase ) lowerCamelCase__ : List[Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape, lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lowerCamelCase__ : Union[str, Any] =FlaxBlenderbotForConditionalGeneration(lowerCamelCase ) lowerCamelCase__ : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) lowerCamelCase__ : Optional[Any] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) lowerCamelCase__ : Optional[int] =lm_model(input_ids=lowerCamelCase, decoder_input_ids=lowerCamelCase ) lowerCamelCase__ : List[str] =(*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape, lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) lowerCamelCase__ : Optional[Any] =shift_tokens_right(lowerCamelCase, 1, 2 ) lowerCamelCase__ : str =np.equal(lowerCamelCase, 1 ).astype(np.floataa ).sum() lowerCamelCase__ : List[str] =np.equal(lowerCamelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(lowerCamelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' _a = True _a = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _a = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case ( self : Union[str, Any] )-> List[str]: lowerCamelCase__ : str =FlaxBlenderbotModelTester(self ) def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[str] )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[Any] )-> Tuple: lowerCamelCase__ , lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : List[Any] =self._prepare_for_class(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : int =model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase : int, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : List[str] ): return model.encode(input_ids=lowerCamelCase, attention_mask=lowerCamelCase ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Any =encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Dict =encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) def snake_case ( self : List[str] )-> Dict: lowerCamelCase__ , lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Optional[Any] =model_class(lowerCamelCase ) lowerCamelCase__ : List[Any] =model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] ) lowerCamelCase__ : Optional[int] ={ '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Tuple ): return model.decode( decoder_input_ids=lowerCamelCase, decoder_attention_mask=lowerCamelCase, encoder_outputs=lowerCamelCase, ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Union[str, Any] =decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Optional[Any] =decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def snake_case ( self : Tuple )-> Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : int =model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__ : Union[str, Any] =np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase__ : Optional[Any] =model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skipUnless(jax_device != '''cpu''', '''3B test too slow on CPU.''' ) @slow def snake_case ( self : Optional[int] )-> Tuple: lowerCamelCase__ : List[Any] ={'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowerCamelCase__ : Optional[int] ={'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCamelCase__ : Tuple =FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''', from_pt=lowerCamelCase ) lowerCamelCase__ : int =BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCamelCase__ : str =['''Sam'''] lowerCamelCase__ : Union[str, Any] =tokenizer(lowerCamelCase, return_tensors='''jax''' ) lowerCamelCase__ : Tuple =model.generate(**lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Tuple ='''Sam is a great name. It means "sun" in Gaelic.''' lowerCamelCase__ : Union[str, Any] =tokenizer.batch_decode(lowerCamelCase, **lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
238
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = model.config SCREAMING_SNAKE_CASE : str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE : str = MBartConfig( is_decoder=a__ , is_encoder_decoder=a__ , add_cross_attention=a__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=a__ , add_final_layer_norm=a__ , ) return encoder_config, decoder_config def UpperCAmelCase_( a__ ): """simple docstring""" if "encoder.model" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: SCREAMING_SNAKE_CASE : Dict = '''encoder.''' + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE : Optional[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE : Tuple = '''encoder.layernorm.bias''' return name def UpperCAmelCase_( a__ , a__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(a__ ) if "qkv" in key: SCREAMING_SNAKE_CASE : List[str] = key.split('''.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_split[3] ) SCREAMING_SNAKE_CASE : Dict = int(key_split[5] ) SCREAMING_SNAKE_CASE : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[Any] = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Any = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def UpperCAmelCase_( a__ , a__=None , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DonutModel.from_pretrained(a__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_configs(a__ ) SCREAMING_SNAKE_CASE : List[Any] = DonutSwinModel(a__ ) SCREAMING_SNAKE_CASE : List[Any] = MBartForCausalLM(a__ ) SCREAMING_SNAKE_CASE : List[Any] = VisionEncoderDecoderModel(encoder=a__ , decoder=a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = original_model.state_dict() SCREAMING_SNAKE_CASE : str = convert_state_dict(a__ , a__ ) model.load_state_dict(a__ ) # verify results on scanned document SCREAMING_SNAKE_CASE : Dict = load_dataset('''hf-internal-testing/example-documents''' ) SCREAMING_SNAKE_CASE : Optional[Any] = dataset['''test'''][0]['''image'''].convert('''RGB''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained(a__ , from_slow=a__ ) SCREAMING_SNAKE_CASE : List[str] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE : int = DonutProcessor(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = processor(a__ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE : Optional[int] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''When is the coffee break?''' SCREAMING_SNAKE_CASE : Any = task_prompt.replace('''{user_input}''' , a__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE : Union[str, Any] = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE : int = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE : str = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE : Optional[int] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE : List[str] = '''hello world''' else: raise ValueError('''Model name not supported''' ) SCREAMING_SNAKE_CASE : Any = original_model.decoder.tokenizer(a__ , add_special_tokens=a__ , return_tensors='''pt''' )[ '''input_ids''' ] SCREAMING_SNAKE_CASE : Optional[Any] = original_model.encoder.model.patch_embed(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = model.encoder.embeddings(a__ ) assert torch.allclose(a__ , a__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE : Dict = original_model.encoder(a__ ) SCREAMING_SNAKE_CASE : int = model.encoder(a__ ).last_hidden_state assert torch.allclose(a__ , a__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE : Optional[Any] = original_model(a__ , a__ , a__ ).logits SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ , decoder_input_ids=a__ ).logits assert torch.allclose(a__ , a__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) a__ : Tuple = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
19
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
1
import re def __lowercase ( __lowerCAmelCase : str ): if len(re.findall('[ATCG]' , __lowerCAmelCase ) ) != len(__lowerCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
240
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) snake_case : str = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : str = '''mobilenet_v2''' def __init__( self :Optional[Any] ,__snake_case :List[Any]=3 ,__snake_case :Any=2_24 ,__snake_case :Dict=1.0 ,__snake_case :str=8 ,__snake_case :Union[str, Any]=8 ,__snake_case :Optional[Any]=6 ,__snake_case :str=32 ,__snake_case :Tuple=True ,__snake_case :Union[str, Any]=True ,__snake_case :Any="relu6" ,__snake_case :List[str]=True ,__snake_case :Dict=0.8 ,__snake_case :Optional[int]=0.02 ,__snake_case :Tuple=0.0_01 ,__snake_case :Dict=2_55 ,**__snake_case :Dict ,) -> Any: super().__init__(**__snake_case ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) a__ = num_channels a__ = image_size a__ = depth_multiplier a__ = depth_divisible_by a__ = min_depth a__ = expand_ratio a__ = output_stride a__ = first_layer_is_expansion a__ = finegrained_output a__ = hidden_act a__ = tf_padding a__ = classifier_dropout_prob a__ = initializer_range a__ = layer_norm_eps a__ = semantic_loss_ignore_index class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Tuple = version.parse('''1.11''' ) @property def lowerCamelCase__( self :Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def lowerCamelCase__( self :List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def lowerCamelCase__( self :Any ) -> float: return 1E-4
240
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Tuple =FlaxAutoencoderKL @property def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = (32, 32) SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE__ = jax.random.uniform(UpperCAmelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE__ = self.dummy_input return init_dict, inputs_dict
169
from __future__ import annotations class lowercase__ : def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = text, pattern SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : str ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A_ ( self : Tuple , UpperCAmelCase_ : int ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A_ ( self : str ): # searches pattern in text and returns index positions SCREAMING_SNAKE_CASE__ = [] for i in range(self.textLen - self.patLen + 1 ): SCREAMING_SNAKE_CASE__ = self.mismatch_in_text(UpperCAmelCase_ ) if mismatch_index == -1: positions.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = self.match_in_pattern(self.text[mismatch_index] ) SCREAMING_SNAKE_CASE__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __snake_case = """ABAABA""" __snake_case = """AB""" __snake_case = BoyerMooreSearch(text, pattern) __snake_case = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
169
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=400 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=True , _snake_case=[0.5, 0.5, 0.5] , _snake_case=[0.5, 0.5, 0.5] , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size if size is not None else {"""height""": 18, """width""": 20} _lowerCAmelCase = do_thumbnail _lowerCAmelCase = do_align_axis _lowerCAmelCase = do_pad _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std def snake_case ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = DonutImageProcessor if is_vision_available() else None def snake_case ( self ): """simple docstring""" _lowerCAmelCase = DonutImageProcessingTester(self ) @property def snake_case ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , """do_resize""" ) ) self.assertTrue(hasattr(_snake_case , """size""" ) ) self.assertTrue(hasattr(_snake_case , """do_thumbnail""" ) ) self.assertTrue(hasattr(_snake_case , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_snake_case , """do_pad""" ) ) self.assertTrue(hasattr(_snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(_snake_case , """image_mean""" ) ) self.assertTrue(hasattr(_snake_case , """image_std""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def snake_case ( self ): """simple docstring""" pass @is_flaky() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(_snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(_snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _lowerCAmelCase = image_processing(_snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
82
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase : List[str] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } UpperCAmelCase : Tuple = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } UpperCAmelCase : str = '▁' class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] __a = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase : List[str]=None , UpperCamelCase : List[str]=None , UpperCamelCase : Union[str, Any]="<s>" , UpperCamelCase : Any="</s>" , UpperCamelCase : Tuple="</s>" , UpperCamelCase : Tuple="<s>" , UpperCamelCase : int="<unk>" , UpperCamelCase : List[str]="<pad>" , UpperCamelCase : int="<mask>" , **UpperCamelCase : Any , ): '''simple docstring''' __UpperCAmelCase : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , **UpperCamelCase , ) __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Tuple = False if not self.vocab_file else True def lowerCamelCase__ ( self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] __UpperCAmelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : List[Any] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ): copyfile(self.vocab_file , UpperCamelCase ) return (out_vocab_file,)
115
0
'''simple docstring''' def _lowerCAmelCase ( lowercase , lowercase ) -> Optional[Any]: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase = str(bin(A__ ) )[2:] # remove the leading "0b" __lowerCAmelCase = str(bin(A__ ) )[2:] # remove the leading "0b" __lowerCAmelCase = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : List[Any] = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
46
0
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = split_dict._to_yaml_list() assert len(__lowercase ) == len(__lowercase ) SCREAMING_SNAKE_CASE : List[str] = SplitDict._from_yaml_list(__lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE : str = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE : Any = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=__lowercase ), SplitInfo(dataset_name='''my_dataset''' )] ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
182
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[str] ={ '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =[ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __snake_case : '''simple docstring''' @staticmethod def UpperCAmelCase__ ( *A : List[Any] , **A : Union[str, Any] ): pass def A__ ( SCREAMING_SNAKE_CASE__) -> str: __snake_case: str = hashlib.mda(image.tobytes()) return m.hexdigest()[:10] def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case: Tuple = np.array(SCREAMING_SNAKE_CASE__) __snake_case: Union[str, Any] = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE__), "shape": shape} @is_pipeline_test @require_vision @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase__ ( self : List[Any] , A : Union[str, Any] , A : str , A : Optional[int] ): __snake_case: List[str] = MaskGenerationPipeline(model=A , image_processor=A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase__ ( self : List[Any] , A : Optional[Any] , A : str ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def UpperCAmelCase__ ( self : str ): pass @slow @require_torch def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) __snake_case: Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing __snake_case: int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: Union[str, Any] = """facebook/sam-vit-huge""" __snake_case: str = pipeline("""mask-generation""" , model=A ) __snake_case: int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __snake_case: str = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(A , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ] , )
369
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = ort.SessionOptions() __snake_case: List[Any] = False return options def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __snake_case: Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __snake_case: List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) __snake_case: int = """A red cat sitting on a park bench""" __snake_case: Any = np.random.RandomState(0 ) __snake_case: Optional[Any] = pipe( prompt=A , image=A , mask_image=A , guidance_scale=7.5 , num_inference_steps=10 , generator=A , output_type="""np""" , ) __snake_case: List[Any] = output.images __snake_case: str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __snake_case: Any = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __snake_case: Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __snake_case: Optional[int] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case: List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=A , safety_checker=A , feature_extractor=A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=A ) __snake_case: Optional[int] = """A red cat sitting on a park bench""" __snake_case: Dict = np.random.RandomState(0 ) __snake_case: Optional[Any] = pipe( prompt=A , image=A , mask_image=A , guidance_scale=7.5 , num_inference_steps=20 , generator=A , output_type="""np""" , ) __snake_case: List[str] = output.images __snake_case: str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __snake_case: Union[str, Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
293
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device a__ : Any = False class lowercase_ ( unittest.TestCase ): pass @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): def __a ( self ): UpperCamelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) UpperCamelCase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = pipe( image=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images UpperCamelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
80
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = StableDiffusionInstructPixaPixPipeline lowerCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowerCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self ) -> int: torch.manual_seed(0 ) __lowerCamelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __lowerCamelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase : int = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Dict: __lowerCamelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : int = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): __lowerCamelCase : Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Any = self.get_dummy_components() __lowerCamelCase : Tuple = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Optional[int] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Union[str, Any] = self.get_dummy_components() __lowerCamelCase : List[Any] = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = 'french fries' __lowerCamelCase : List[Any] = sd_pipe(**SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = output.images __lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Optional[Any] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Union[str, Any] = self.get_dummy_components() __lowerCamelCase : Any = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = [inputs['prompt']] * 2 __lowerCamelCase : Tuple = np.array(inputs['image'] ).astype(np.floataa ) / 2_5_5.0 __lowerCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ).to(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = image / 2 + 0.5 __lowerCamelCase : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __lowerCamelCase : Dict = image.repeat(2 , 1 , 1 , 1 ) __lowerCamelCase : int = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase : Tuple = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __lowerCamelCase : Union[str, Any] = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : int = self.get_dummy_components() __lowerCamelCase : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' ) __lowerCamelCase : str = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Tuple = [round(SCREAMING_SNAKE_CASE_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(SCREAMING_SNAKE_CASE_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __lowerCamelCase : List[str] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase_ ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = self.get_dummy_components() __lowerCamelCase : Tuple = StableDiffusionInstructPixaPixPipeline(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = VaeImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , do_normalize=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = pipe(**self.get_dummy_inputs_by_type(SCREAMING_SNAKE_CASE_ , input_image_type='pt' ) )[0] __lowerCamelCase : Optional[Any] = components['vae'] __lowerCamelCase : Dict = self.get_dummy_inputs_by_type(SCREAMING_SNAKE_CASE_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __lowerCamelCase : str = vae.encode(inputs[image_param] ).latent_dist.mode() __lowerCamelCase : str = pipe(**SCREAMING_SNAKE_CASE_ )[0] __lowerCamelCase : Optional[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(SCREAMING_SNAKE_CASE_ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0 ) -> str: __lowerCamelCase : str = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) __lowerCamelCase : Any = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def lowercase_ ( self ) -> str: __lowerCamelCase : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : Optional[Any] = self.get_inputs() __lowerCamelCase : List[str] = pipe(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Any = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase_ ( self ) -> Any: __lowerCamelCase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : Optional[Any] = self.get_inputs() __lowerCamelCase : Optional[int] = pipe(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Optional[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : Union[str, Any] = self.get_inputs() __lowerCamelCase : str = pipe(**SCREAMING_SNAKE_CASE_ ).images __lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Union[str, Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = 0 def callback_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __lowerCamelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __lowerCamelCase : Union[str, Any] = latents[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __lowerCamelCase : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __lowerCamelCase : List[Any] = latents[0, -3:, -3:, -1] __lowerCamelCase : Any = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __lowerCamelCase : int = False __lowerCamelCase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) __lowerCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : Optional[int] = self.get_inputs() pipe(**SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) __lowerCamelCase : List[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase : List[str] = self.get_inputs() __lowerCamelCase : Tuple = pipe(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Optional[int] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __lowerCamelCase : Union[str, Any] = inputs['image'].resize((5_04, 5_04) ) __lowerCamelCase : int = 'timbrooks/instruct-pix2pix' __lowerCamelCase : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : Dict = pipe(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = output.images[0] __lowerCamelCase : Optional[int] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) __lowerCamelCase : List[str] = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
185
0
"""simple docstring""" import re import string import numpy as np import datasets lowerCAmelCase_ : Union[str, Any] = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCAmelCase_ : Dict = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCAmelCase_ : Any = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=False , ) -> int: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase = np.array([re.sub(snake_case__ , """""" , snake_case__ ) for x in predictions] ) UpperCAmelCase = np.array([re.sub(snake_case__ , """""" , snake_case__ ) for x in references] ) else: UpperCAmelCase = np.asarray(snake_case__ ) UpperCAmelCase = np.asarray(snake_case__ ) if ignore_case: UpperCAmelCase = np.char.lower(snake_case__ ) UpperCAmelCase = np.char.lower(snake_case__ ) if ignore_punctuation: UpperCAmelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCAmelCase = np.char.translate(snake_case__ , table=snake_case__ ) UpperCAmelCase = np.char.translate(snake_case__ , table=snake_case__ ) if ignore_numbers: UpperCAmelCase = string.digits.maketrans("""""" , """""" , string.digits ) UpperCAmelCase = np.char.translate(snake_case__ , table=snake_case__ ) UpperCAmelCase = np.char.translate(snake_case__ , table=snake_case__ ) UpperCAmelCase = predictions == references return {"exact_match": np.mean(snake_case__ ) * 1_00}
358
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=lowerCAmelCase ) UpperCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=lowerCAmelCase ) env_command_parser(subparsers=lowerCAmelCase ) launch_command_parser(subparsers=lowerCAmelCase ) tpu_command_parser(subparsers=lowerCAmelCase ) test_command_parser(subparsers=lowerCAmelCase ) # Let's go UpperCAmelCase = parser.parse_args() if not hasattr(lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase ) if __name__ == "__main__": main()
248
0
from __future__ import annotations from math import pi def lowerCamelCase__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
114
from functools import lru_cache @lru_cache def lowerCamelCase__ ( __lowerCamelCase : int ): if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
114
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets lowercase__ :str = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowercase__ :str = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" lowercase__ :Optional[Any] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def A__ ( self): if version.parse(scb.__version__) < version.parse('''1.4.12'''): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''') return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' ,id='''sequence''') ,id='''references'''), }) ,codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] ,reference_urls=[ '''https://github.com/m-popovic/chrF''', ] ,) def A__ ( self ,A__ ,A__ ,A__ = CHRF.CHAR_ORDER ,A__ = CHRF.WORD_ORDER ,A__ = CHRF.BETA ,A__ = False ,A__ = False ,A__ = False ,): lowercase = len(references[0]) if any(len(A__) != references_per_prediction for refs in references): raise ValueError('''Sacrebleu requires the same number of references for each prediction''') lowercase = [[refs[i] for refs in references] for i in range(A__)] lowercase = CHRF(A__ ,A__ ,A__ ,A__ ,A__ ,A__) lowercase = sb_chrf.corpus_score(A__ ,A__) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
368
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :int = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :List[str] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
97
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Dict =logging.get_logger(__name__) __snake_case : Optional[int] ={ 'facebook/xlm-roberta-xl': 'https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json', 'facebook/xlm-roberta-xxl': 'https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""xlm-roberta-xl""" def __init__(self ,__lowerCamelCase=25_08_80 ,__lowerCamelCase=25_60 ,__lowerCamelCase=36 ,__lowerCamelCase=32 ,__lowerCamelCase=1_02_40 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=5_14 ,__lowerCamelCase=1 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-05 ,__lowerCamelCase=1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase="absolute" ,__lowerCamelCase=True ,__lowerCamelCase=None ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : str = classifier_dropout class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' @property def lowerCAmelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
129
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Optional[Any] ={ 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] =[ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __snake_case : int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
129
1
import datasets from .evaluate import evaluate __SCREAMING_SNAKE_CASE : List[Any] = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' __SCREAMING_SNAKE_CASE : Any = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' __SCREAMING_SNAKE_CASE : Optional[Any] = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): def UpperCamelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def UpperCamelCase ( self , lowercase_ , lowercase_ ): _snake_case : int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _snake_case : Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _snake_case : Any = evaluate(dataset=lowercase_ , predictions=lowercase_ ) return score
368
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__(self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : List[Any] = size if size is not None else {"""height""": 384, """width""": 384} UpperCAmelCase__ : Optional[int] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : Dict = size UpperCAmelCase__ : Optional[Any] = resample UpperCAmelCase__ : Optional[Any] = do_rescale UpperCAmelCase__ : List[str] = rescale_factor UpperCAmelCase__ : List[Any] = do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase__ : Optional[int] = do_convert_rgb def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) UpperCAmelCase__ : Dict = (size["""height"""], size["""width"""]) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : int = resample if resample is not None else self.resample UpperCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Any = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase__ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase__ : Optional[int] = size if size is not None else self.size UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Any = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase__ : Dict = [convert_to_rgb(_lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase__ : Optional[Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ : Union[str, Any] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[str] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: UpperCAmelCase__ : Union[str, Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] UpperCAmelCase__ : List[str] = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCAmelCase__ : Optional[Any] = BatchFeature(data={"""pixel_values""": images} , tensor_type=_lowerCamelCase ) return encoded_outputs
171
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__(self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ): """simple docstring""" super().__init__(**_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 224} UpperCAmelCase__ : List[Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : str = crop_size if crop_size is not None else {"""height""": 256, """width""": 256} UpperCAmelCase__ : str = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) UpperCAmelCase__ : int = do_resize UpperCAmelCase__ : Any = size UpperCAmelCase__ : int = resample UpperCAmelCase__ : Union[str, Any] = do_rescale UpperCAmelCase__ : Union[str, Any] = rescale_factor UpperCAmelCase__ : str = do_center_crop UpperCAmelCase__ : Dict = crop_size UpperCAmelCase__ : List[str] = do_flip_channel_order def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : List[str] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase__ : Union[str, Any] = get_resize_output_image_size(_lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=_lowerCamelCase ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ): """simple docstring""" return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" return flip_channel_order(_lowerCamelCase , data_format=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : List[str] = resample if resample is not None else self.resample UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : int = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase__ : List[str] = size if size is not None else self.size UpperCAmelCase__ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) UpperCAmelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : str = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) UpperCAmelCase__ : List[str] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase__ : Union[str, Any] = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: UpperCAmelCase__ : Tuple = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: UpperCAmelCase__ : Optional[Any] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: UpperCAmelCase__ : List[Any] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase__ : Any = [self.flip_channel_order(image=_lowerCamelCase ) for image in images] UpperCAmelCase__ : int = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] UpperCAmelCase__ : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase = None ): """simple docstring""" UpperCAmelCase__ : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_lowerCamelCase ): UpperCAmelCase__ : Optional[int] = target_sizes.numpy() UpperCAmelCase__ : Tuple = [] for idx in range(len(_lowerCamelCase ) ): UpperCAmelCase__ : Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_lowerCamelCase ) UpperCAmelCase__ : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowerCamelCase ) else: UpperCAmelCase__ : str = logits.argmax(dim=1 ) UpperCAmelCase__ : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
171
1
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.02 , ) -> str: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = rotary_dim A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = None A_ = vocab_size - 1 A_ = vocab_size - 1 A_ = vocab_size - 1 def __A ( self ) -> Any: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __A ( self ) -> Any: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = 20 A_ = model_class_name(_SCREAMING_SNAKE_CASE ) A_ = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) A_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) A_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A_ = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) A_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ = model( input_ids[:, -1:] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=_SCREAMING_SNAKE_CASE , ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = 20 A_ = model_class_name(_SCREAMING_SNAKE_CASE ) A_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) A_ = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) A_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A_ = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) A_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) A_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowercase : Optional[int] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __A ( self ) -> Optional[Any]: A_ = FlaxGPTJModelTester(self ) def __A ( self ) -> Tuple: for model_class_name in self.all_model_classes: A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: for model_class_name in self.all_model_classes: A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @tooslow def __A ( self ) -> str: A_ = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) A_ = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) A_ = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) A_ = False A_ = model.config.eos_token_id A_ = jax.jit(model.generate ) A_ = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences A_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) A_ = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def __A ( self ) -> Union[str, Any]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A_ = model_class.__name__[4:] # Skip the "Flax" at the beginning A_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ ,A_ = pt_inputs['''input_ids'''].shape A_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): A_ = 0 A_ = 1 A_ = 0 A_ = 1 A_ = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() A_ = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) A_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) A_ = fx_state with torch.no_grad(): A_ = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() A_ = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) A_ = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A_ = model_class.__name__[4:] # Skip the "Flax" at the beginning A_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() A_ = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) A_ = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) A_ ,A_ = pt_inputs['''input_ids'''].shape A_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): A_ = 0 A_ = 1 A_ = 0 A_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A_ = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() A_ = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = pt_model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): A_ = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def __A ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) A_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down lowerCamelCase_ = mock.Mock() lowerCamelCase_ = 500 lowerCamelCase_ = {} lowerCamelCase_ = HTTPError lowerCamelCase_ = {} # Download this model to make sure it's in the cache. lowerCamelCase_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowercase ) as mock_head: lowerCamelCase_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE_( self ) -> Tuple: # A mock response for an HTTP head request to emulate server down lowerCamelCase_ = mock.Mock() lowerCamelCase_ = 500 lowerCamelCase_ = {} lowerCamelCase_ = HTTPError lowerCamelCase_ = {} # Download this model to make sure it's in the cache. lowerCamelCase_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowercase ) as mock_head: lowerCamelCase_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_( self ) -> Any: # This test is for deprecated behavior and can be removed in v5 try: lowerCamelCase_ = tempfile.mktemp() with open(lowercase , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , lowercase ) lowerCamelCase_ = AlbertTokenizer.from_pretrained(lowercase ) finally: os.remove(lowercase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def SCREAMING_SNAKE_CASE_( self ) -> int: # This test is for deprecated behavior and can be removed in v5 lowerCamelCase_ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Tuple: lowerCamelCase_ = TOKEN HfFolder.save_token(lowercase ) @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Dict: try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(lowercase , "vocab.txt" ) with open(lowercase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase_ = BertTokenizer(lowercase ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) lowerCamelCase_ = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowercase , repo_id="test-tokenizer" , push_to_hub=lowercase , use_auth_token=self._token ) lowerCamelCase_ = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(lowercase , "vocab.txt" ) with open(lowercase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase_ = BertTokenizer(lowercase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) lowerCamelCase_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowercase , repo_id="valid_org/test-tokenizer-org" , push_to_hub=lowercase , use_auth_token=self._token ) lowerCamelCase_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def SCREAMING_SNAKE_CASE_( self ) -> str: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(lowercase , "vocab.txt" ) with open(lowercase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase_ = CustomTokenizer(lowercase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCamelCase_ = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase_ = os.path.join(lowercase , "vocab.txt" ) with open(lowercase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCamelCase_ = BertTokenizerFast.from_pretrained(lowercase ) bert_tokenizer.save_pretrained(lowercase ) lowerCamelCase_ = CustomTokenizerFast.from_pretrained(lowercase ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) lowerCamelCase_ = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer' , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) lowerCamelCase_ = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer' , use_fast=lowercase , trust_remote_code=lowercase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: # Even if the offsets are wrong, we necessarily output correct string # parts. lowerCamelCase_ = Trie() lowerCamelCase_ = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(lowercase , ["AB", "C"] )
19
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
1
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase (a_ :Optional[int]) -> Tuple: lowercase :List[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_A): for j in range(_A): lowercase :Tuple = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase = imread('''image_data/lena.jpg''', 1) # convert to its negative UpperCAmelCase = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
353
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } UpperCAmelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } UpperCAmelCase = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } UpperCAmelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class __magic_name__ ( __UpperCAmelCase ): __A : List[str] = ["input_ids"] __A : Optional[Any] = VOCAB_FILES_NAMES __A : str = PRETRAINED_INIT_CONFIGURATION __A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : List[str] = RESOURCE_FILES_NAMES def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : List[Any]=None , snake_case__ : int=False , snake_case__ : Optional[int]="utf8" , snake_case__ : List[str]="[UNK]" , snake_case__ : Tuple="[SEP]" , snake_case__ : List[Any]="[PAD]" , snake_case__ : Dict="[CLS]" , snake_case__ : Dict="[MASK]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : str , ): '''simple docstring''' lowercase :Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , vocab_file=snake_case__ , encoding=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowercase :Dict = do_lower_case lowercase :str = sentencepiece_model_ckpt lowercase :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase :Tuple = self.load_vocab(filepath=snake_case__ ) else: lowercase :str = {self.sp_model.id_to_piece(snake_case__ ): id for id in range(self.sp_model.get_piece_size() )} lowercase :Any = {v: k for k, v in self.vocab.items()} def __snake_case ( self : List[str] , snake_case__ : str ): '''simple docstring''' if text is None: return None lowercase :List[Any] = self.tokenize(snake_case__ ) lowercase , lowercase :List[str] = '''''', [] for i, ch in enumerate(snake_case__ ): if ch in self.SP_CHAR_MAPPING: lowercase :Optional[int] = self.SP_CHAR_MAPPING.get(snake_case__ ) else: lowercase :Optional[int] = unicodedata.normalize('''NFKC''' , snake_case__ ) if self.is_whitespace(snake_case__ ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case__ ) ) lowercase , lowercase , lowercase :int = normalized_text, [], 0 if self.do_lower_case: lowercase :Any = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase :Tuple = token[1:] lowercase :List[str] = text[offset:].index(snake_case__ ) + offset lowercase :Tuple = start + len(snake_case__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase :int = end return token_mapping @property def __snake_case ( self : List[Any] ): '''simple docstring''' return len(self.vocab ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Optional[int] ): '''simple docstring''' lowercase :Any = self.__dict__.copy() lowercase :Optional[int] = None return state def __setstate__( self : Tuple , snake_case__ : Dict ): '''simple docstring''' lowercase :Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase :Dict = {} lowercase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __snake_case ( self : int , snake_case__ : List[Any] ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(snake_case__ , snake_case__ ) for c in text) ) def __snake_case ( self : List[str] , snake_case__ : Optional[int] , snake_case__ : int=False , snake_case__ : Dict=6_4 , snake_case__ : Any=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowercase :Any = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowercase :Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowercase :Optional[Any] = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowercase :Any = self.sp_model.EncodeAsPieces(snake_case__ ) else: lowercase :List[Any] = self.sp_model.SampleEncodeAsPieces(snake_case__ , snake_case__ , snake_case__ ) lowercase :str = [] for pi, piece in enumerate(snake_case__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case__ ) and pi != 0: new_pieces.append(snake_case__ ) continue else: continue lowercase :int = 0 for i, chunk in enumerate(snake_case__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case__ ) or self.is_punct(snake_case__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case__ ) lowercase :Optional[int] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :str = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase :Dict = i if len(snake_case__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __snake_case ( self : Dict , snake_case__ : str ): '''simple docstring''' lowercase :int = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : str ): '''simple docstring''' lowercase :Tuple = self.convert_ids_to_tokens(snake_case__ ) lowercase :Any = ''''''.join(snake_case__ ).replace(snake_case__ , ''' ''' ).strip() return out_string def __snake_case ( self : int , snake_case__ : Union[str, Any] ): '''simple docstring''' return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def __snake_case ( self : List[Any] , snake_case__ : List[str] ): '''simple docstring''' return self.reverse_vocab.get(snake_case__ , self.unk_token ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase :int = [self.cls_token_id] lowercase :str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __snake_case ( self : Any , snake_case__ : Dict , snake_case__ : str=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __snake_case ( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def __snake_case ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case__ ) + 1) + [1] * (len(snake_case__ ) + 3) def __snake_case ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __snake_case ( self : List[str] , snake_case__ : Any ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __snake_case ( self : List[str] , snake_case__ : Union[str, Any] ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __snake_case ( self : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case__ ) == 1: lowercase :str = unicodedata.category(snake_case__ ) if cat == "Zs": return True return False def __snake_case ( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Dict = {} with io.open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(snake_case__ ): lowercase :Dict = line.rstrip('''\n''' ) lowercase :str = int(snake_case__ ) return token_to_idx def __snake_case ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' lowercase :Optional[int] = 0 if os.path.isdir(snake_case__ ): lowercase :str = os.path.join( snake_case__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase :Any = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowercase :Optional[int] = token_index writer.write(token + '''\n''' ) index += 1 lowercase :int = os.path.join(snake_case__ , '''sentencepiece.bpe.model''' ) with open(snake_case__ , '''wb''' ) as fi: lowercase :Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (vocab_file,)
172
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : int ): if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate A__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly A__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
237
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def UpperCamelCase ( _lowerCamelCase : list[list[float]] ): A__ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix A__ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements A__ = [[0.0, 0.0], [0.0, 0.0]] A__, A__ = matrix[1][1], matrix[0][0] A__, A__ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule A__ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix A__ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] A__ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) A__ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) A__ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) A__ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) A__ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) A__ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) A__ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) A__ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) A__ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) A__ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): A__ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix A__ = array(_lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(_lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
237
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
'''simple docstring''' def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" UpperCamelCase = 0 for ch in input_str: UpperCamelCase = ord(A__ ) UpperCamelCase = pow(2 , A__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
"""simple docstring""" # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests SCREAMING_SNAKE_CASE__ = open # noqa: we just need to have a builtin inside this module to test it properly
46
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } _lowerCamelCase : List[str] = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def a_ ( __lowercase : int ) -> Optional[int]: _snake_case = EfficientNetConfig() _snake_case = CONFIG_MAP[model_name]['hidden_dim'] _snake_case = CONFIG_MAP[model_name]['width_coef'] _snake_case = CONFIG_MAP[model_name]['depth_coef'] _snake_case = CONFIG_MAP[model_name]['image_size'] _snake_case = CONFIG_MAP[model_name]['dropout_rate'] _snake_case = CONFIG_MAP[model_name]['dw_padding'] _snake_case = 'huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = 1_000 _snake_case = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__lowercase ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def a_ ( ) -> Any: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def a_ ( __lowercase : Union[str, Any] ) -> Tuple: _snake_case = CONFIG_MAP[model_name]['image_size'] _snake_case = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def a_ ( __lowercase : str ) -> List[Any]: _snake_case = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] _snake_case = sorted(set(__lowercase ) ) _snake_case = len(__lowercase ) _snake_case = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} _snake_case = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: _snake_case = block_name_mapping[b] rename_keys.append((f'''block{b}_expand_conv/kernel:0''', f'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((f'''block{b}_expand_bn/gamma:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((f'''block{b}_expand_bn/beta:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (f'''block{b}_expand_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (f'''block{b}_dwconv/depthwise_kernel:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((f'''block{b}_bn/gamma:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((f'''block{b}_bn/beta:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (f'''block{b}_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (f'''block{b}_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((f'''block{b}_se_reduce/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((f'''block{b}_se_reduce/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((f'''block{b}_se_expand/kernel:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((f'''block{b}_se_expand/bias:0''', f'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (f'''block{b}_project_conv/kernel:0''', f'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((f'''block{b}_project_bn/gamma:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((f'''block{b}_project_bn/beta:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (f'''block{b}_project_bn/moving_mean:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (f'''block{b}_project_bn/moving_variance:0''', f'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) _snake_case = {} for item in rename_keys: if item[0] in original_param_names: _snake_case = 'efficientnet.' + item[1] _snake_case = 'classifier.weight' _snake_case = 'classifier.bias' return key_mapping def a_ ( __lowercase : Any , __lowercase : Any , __lowercase : Any ) -> Optional[Any]: for key, value in tf_params.items(): if "normalization" in key: continue _snake_case = key_mapping[key] if "_conv" in key and "kernel" in key: _snake_case = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: _snake_case = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: _snake_case = torch.from_numpy(np.transpose(__lowercase ) ) else: _snake_case = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def a_ ( __lowercase : List[Any] , __lowercase : Any , __lowercase : int , __lowercase : str ) -> Dict: _snake_case = model_classes[model_name]( include_top=__lowercase , weights='imagenet' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_000 , classifier_activation='softmax' , ) _snake_case = original_model.trainable_variables _snake_case = original_model.non_trainable_variables _snake_case = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _snake_case = param.numpy() _snake_case = list(tf_params.keys() ) # Load HuggingFace model _snake_case = get_efficientnet_config(__lowercase ) _snake_case = EfficientNetForImageClassification(__lowercase ).eval() _snake_case = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) _snake_case = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image _snake_case = convert_image_processor(__lowercase ) _snake_case = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): _snake_case = hf_model(**__lowercase ) _snake_case = outputs.logits.detach().numpy() # Original model inference _snake_case = False _snake_case = CONFIG_MAP[model_name]['image_size'] _snake_case = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) _snake_case = image.img_to_array(__lowercase ) _snake_case = np.expand_dims(__lowercase , axis=0 ) _snake_case = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(f'''Pushing converted {model_name} to the hub...''' ) _snake_case = f'''efficientnet-{model_name}''' preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') _lowerCamelCase : List[str] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
130
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a_ ( __lowercase : str , __lowercase : List[str] , __lowercase : Dict ) -> List[str]: if isinstance(__lowercase , torch.Tensor ): return image elif isinstance(__lowercase , PIL.Image.Image ): _snake_case = [image] if isinstance(image[0] , PIL.Image.Image ): _snake_case = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _snake_case = np.concatenate(__lowercase , axis=0 ) _snake_case = np.array(__lowercase ).astype(np.floataa ) / 2_5_5.0 _snake_case = image.transpose(0 , 3 , 1 , 2 ) _snake_case = 2.0 * image - 1.0 _snake_case = torch.from_numpy(__lowercase ) elif isinstance(image[0] , torch.Tensor ): _snake_case = torch.cat(__lowercase , dim=0 ) return image def a_ ( __lowercase : int , __lowercase : Any , __lowercase : List[Any] , __lowercase : Tuple=0.9_9_9_5 ) -> List[str]: if not isinstance(__lowercase , np.ndarray ): _snake_case = True _snake_case = va.device _snake_case = va.cpu().numpy() _snake_case = va.cpu().numpy() _snake_case = np.sum(va * va / (np.linalg.norm(__lowercase ) * np.linalg.norm(__lowercase )) ) if np.abs(__lowercase ) > DOT_THRESHOLD: _snake_case = (1 - t) * va + t * va else: _snake_case = np.arccos(__lowercase ) _snake_case = np.sin(__lowercase ) _snake_case = theta_a * t _snake_case = np.sin(__lowercase ) _snake_case = np.sin(theta_a - theta_t ) / sin_theta_a _snake_case = sin_theta_t / sin_theta_a _snake_case = sa * va + sa * va if inputs_are_torch: _snake_case = torch.from_numpy(__lowercase ).to(__lowercase ) return va def a_ ( __lowercase : int , __lowercase : Optional[int] ) -> List[Any]: _snake_case = F.normalize(__lowercase , dim=-1 ) _snake_case = F.normalize(__lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a_ ( __lowercase : int , __lowercase : Any ) -> Optional[Any]: for param in model.parameters(): _snake_case = value class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase : AutoencoderKL , lowercase : CLIPTextModel , lowercase : CLIPModel , lowercase : CLIPTokenizer , lowercase : UNetaDConditionModel , lowercase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowercase : CLIPFeatureExtractor , lowercase : Any=None , lowercase : List[str]=None , lowercase : List[str]=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=lowercase , text_encoder=lowercase , clip_model=lowercase , tokenizer=lowercase , unet=lowercase , scheduler=lowercase , feature_extractor=lowercase , coca_model=lowercase , coca_tokenizer=lowercase , coca_transform=lowercase , ) _snake_case = ( feature_extractor.size if isinstance(feature_extractor.size , lowercase ) else feature_extractor.size['shortest_edge'] ) _snake_case = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowercase ) set_requires_grad(self.clip_model , lowercase ) def A ( self : Optional[int] , lowercase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase ) def A ( self : Dict ): '''simple docstring''' self.enable_attention_slicing(lowercase ) def A ( self : int ): '''simple docstring''' set_requires_grad(self.vae , lowercase ) def A ( self : Union[str, Any] ): '''simple docstring''' set_requires_grad(self.vae , lowercase ) def A ( self : str ): '''simple docstring''' set_requires_grad(self.unet , lowercase ) def A ( self : Dict ): '''simple docstring''' set_requires_grad(self.unet , lowercase ) def A ( self : str , lowercase : Optional[Any] , lowercase : Optional[int] , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = min(int(num_inference_steps * strength ) , lowercase ) _snake_case = max(num_inference_steps - init_timestep , 0 ) _snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A ( self : Optional[Any] , lowercase : List[str] , lowercase : Optional[Any] , lowercase : str , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : List[Any]=None ): '''simple docstring''' if not isinstance(lowercase , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(lowercase )}''' ) _snake_case = image.to(device=lowercase , dtype=lowercase ) if isinstance(lowercase , lowercase ): _snake_case = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase ) ] _snake_case = torch.cat(lowercase , dim=0 ) else: _snake_case = self.vae.encode(lowercase ).latent_dist.sample(lowercase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _snake_case = 0.18215 * init_latents _snake_case = init_latents.repeat_interleave(lowercase , dim=0 ) _snake_case = randn_tensor(init_latents.shape , generator=lowercase , device=lowercase , dtype=lowercase ) # get latents _snake_case = self.scheduler.add_noise(lowercase , lowercase , lowercase ) _snake_case = init_latents return latents def A ( self : int , lowercase : int ): '''simple docstring''' _snake_case = self.coca_transform(lowercase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): _snake_case = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) _snake_case = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def A ( self : List[Any] , lowercase : Dict , lowercase : Any ): '''simple docstring''' _snake_case = self.feature_extractor.preprocess(lowercase ) _snake_case = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() _snake_case = self.clip_model.get_image_features(lowercase ) _snake_case = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase ) _snake_case = image_embeddings_clip.repeat_interleave(lowercase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def A ( self : int , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : Optional[int] , lowercase : int , lowercase : Any , lowercase : Union[str, Any] , lowercase : Optional[int] , ): '''simple docstring''' _snake_case = latents.detach().requires_grad_() _snake_case = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual _snake_case = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): _snake_case = self.scheduler.alphas_cumprod[timestep] _snake_case = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _snake_case = torch.sqrt(lowercase ) _snake_case = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowercase ): _snake_case = self.scheduler.sigmas[index] _snake_case = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _snake_case = 1 / 0.18215 * sample _snake_case = self.vae.decode(lowercase ).sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = transforms.Resize(self.feature_extractor_size )(lowercase ) _snake_case = self.normalize(lowercase ).to(latents.dtype ) _snake_case = self.clip_model.get_image_features(lowercase ) _snake_case = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase ) _snake_case = spherical_dist_loss(lowercase , lowercase ).mean() * clip_guidance_scale _snake_case = -torch.autograd.grad(lowercase , lowercase )[0] if isinstance(self.scheduler , lowercase ): _snake_case = latents.detach() + grads * (sigma**2) _snake_case = noise_pred_original else: _snake_case = noise_pred_original - torch.sqrt(lowercase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : int , lowercase : Union[torch.FloatTensor, PIL.Image.Image] , lowercase : Union[torch.FloatTensor, PIL.Image.Image] , lowercase : Optional[str] = None , lowercase : Optional[str] = None , lowercase : Optional[int] = 512 , lowercase : Optional[int] = 512 , lowercase : float = 0.6 , lowercase : Optional[int] = 50 , lowercase : Optional[float] = 7.5 , lowercase : Optional[int] = 1 , lowercase : float = 0.0 , lowercase : Optional[float] = 100 , lowercase : Optional[torch.Generator] = None , lowercase : Optional[str] = "pil" , lowercase : bool = True , lowercase : float = 0.8 , lowercase : float = 0.1 , lowercase : float = 0.1 , ): '''simple docstring''' if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(lowercase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(lowercase , torch.Generator ) and batch_size > 1: _snake_case = [generator] + [None] * (batch_size - 1) _snake_case = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _snake_case = [x[0] for x in coca_is_none if x[1]] _snake_case = ', '.join(lowercase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowercase ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _snake_case = self.get_image_description(lowercase ) if style_prompt is None: if len(lowercase ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) _snake_case = self.get_image_description(lowercase ) # get prompt text embeddings for content and style _snake_case = self.tokenizer( lowercase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) _snake_case = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] _snake_case = self.tokenizer( lowercase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=lowercase , return_tensors='pt' , ) _snake_case = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] _snake_case = slerp(lowercase , lowercase , lowercase ) # duplicate text embeddings for each generation per prompt _snake_case = text_embeddings.repeat_interleave(lowercase , dim=0 ) # set timesteps _snake_case = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) _snake_case = {} if accepts_offset: _snake_case = 1 self.scheduler.set_timesteps(lowercase , **lowercase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) _snake_case , _snake_case = self.get_timesteps(lowercase , lowercase , self.device ) _snake_case = timesteps[:1].repeat(lowercase ) # Preprocess image _snake_case = preprocess(lowercase , lowercase , lowercase ) _snake_case = self.prepare_latents( lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase ) _snake_case = preprocess(lowercase , lowercase , lowercase ) _snake_case = self.prepare_latents( lowercase , lowercase , lowercase , text_embeddings.dtype , self.device , lowercase ) _snake_case = slerp(lowercase , lowercase , lowercase ) if clip_guidance_scale > 0: _snake_case = self.get_clip_image_embeddings(lowercase , lowercase ) _snake_case = self.get_clip_image_embeddings(lowercase , lowercase ) _snake_case = slerp( lowercase , lowercase , lowercase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _snake_case = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _snake_case = content_text_input.input_ids.shape[-1] _snake_case = self.tokenizer([''] , padding='max_length' , max_length=lowercase , return_tensors='pt' ) _snake_case = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt _snake_case = uncond_embeddings.repeat_interleave(lowercase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _snake_case = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _snake_case = (batch_size, self.unet.config.in_channels, height // 8, width // 8) _snake_case = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _snake_case = torch.randn(lowercase , generator=lowercase , device='cpu' , dtype=lowercase ).to( self.device ) else: _snake_case = torch.randn(lowercase , generator=lowercase , device=self.device , dtype=lowercase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) _snake_case = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _snake_case = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _snake_case = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _snake_case = {} if accepts_eta: _snake_case = eta # check if the scheduler accepts generator _snake_case = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: _snake_case = generator with self.progress_bar(total=lowercase ): for i, t in enumerate(lowercase ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = self.scheduler.scale_model_input(lowercase , lowercase ) # predict the noise residual _snake_case = self.unet(lowercase , lowercase , encoder_hidden_states=lowercase ).sample # perform classifier free guidance if do_classifier_free_guidance: _snake_case , _snake_case = noise_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _snake_case = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) _snake_case , _snake_case = self.cond_fn( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(lowercase , lowercase , lowercase , **lowercase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _snake_case = 1 / 0.18215 * latents _snake_case = self.vae.decode(lowercase ).sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(lowercase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowercase , nsfw_content_detected=lowercase )
130
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a__ ( unittest.TestCase ): def __init__( self , _A , _A = True , _A = None , _A = 3_2 , _A = True , _A = 1 / 2_5_5 , _A = True , _A = True , _A = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _A = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _A = True , _A=7 , _A=3_0 , _A=4_0_0 , _A=3 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = do_resize __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_8_8} __lowerCAmelCase = size_divisor __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = do_pad __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __SCREAMING_SNAKE_CASE( self , _A , _A=False ): """simple docstring""" if not batched: __lowerCAmelCase = self.size['shortest_edge'] __lowerCAmelCase = image_inputs[0] if isinstance(_A , Image.Image ): __lowerCAmelCase = image.size else: __lowerCAmelCase = image.shape[1], image.shape[2] __lowerCAmelCase = size / min(_A , _A ) if h < w: __lowerCAmelCase = size, scale * w else: __lowerCAmelCase = scale * h, size __lowerCAmelCase = int((1_3_3_3 / 8_0_0) * size ) if max(_A , _A ) > max_size: __lowerCAmelCase = max_size / max(_A , _A ) __lowerCAmelCase = newh * scale __lowerCAmelCase = neww * scale __lowerCAmelCase = int(newh + 0.5 ), int(neww + 0.5 ) __lowerCAmelCase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(_A , key=lambda _A : item[0] )[0] __lowerCAmelCase = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _a : int = BridgeTowerImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = BridgeTowerImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , "image_mean" ) ) self.assertTrue(hasattr(_A , "image_std" ) ) self.assertTrue(hasattr(_A , "do_normalize" ) ) self.assertTrue(hasattr(_A , "do_resize" ) ) self.assertTrue(hasattr(_A , "size" ) ) self.assertTrue(hasattr(_A , "size_divisor" ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCAmelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(_A , return_tensors="pt" ).pixel_values __lowerCAmelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCAmelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(_A , return_tensors="pt" ).pixel_values __lowerCAmelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __lowerCAmelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase = image_processing(_A , return_tensors="pt" ).pixel_values __lowerCAmelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
92
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Optional[Any]=13, lowerCAmelCase : str=7, lowerCAmelCase : Union[str, Any]=True, lowerCAmelCase : Optional[int]=True, lowerCAmelCase : Dict=True, lowerCAmelCase : List[str]=True, lowerCAmelCase : List[Any]=99, lowerCAmelCase : Tuple=32, lowerCAmelCase : int=2, lowerCAmelCase : Dict=4, lowerCAmelCase : List[str]=37, lowerCAmelCase : Any="gelu", lowerCAmelCase : Optional[int]=0.1, lowerCAmelCase : Tuple=0.1, lowerCAmelCase : Optional[int]=512, lowerCAmelCase : Dict=16, lowerCAmelCase : Tuple=2, lowerCAmelCase : Union[str, Any]=0.02, lowerCAmelCase : str=3, lowerCAmelCase : Any=4, lowerCAmelCase : List[str]=None, lowerCAmelCase : Union[str, Any]=1000, ) -> Dict: lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : List[Any] = seq_length lowercase : List[str] = is_training lowercase : Optional[Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : List[Any] = use_labels lowercase : Optional[Any] = vocab_size lowercase : int = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : str = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Optional[int] = type_sequence_label_size lowercase : str = initializer_range lowercase : Any = num_labels lowercase : List[Any] = num_choices lowercase : Optional[int] = scope lowercase : str = range_bbox def lowercase ( self : str ) -> Optional[int]: lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : str = bbox[i, j, 3] lowercase : Tuple = bbox[i, j, 1] lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Optional[int] = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : Union[str, Any] = t lowercase : Any = tf.convert_to_tensor(lowerCAmelCase ) lowercase : Optional[Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase : Dict = None lowercase : List[str] = None lowercase : List[Any] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowercase : Tuple = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : int, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[Any] ) -> Dict: lowercase : Dict = TFLayoutLMModel(config=lowerCAmelCase ) lowercase : str = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Union[str, Any] = model(lowerCAmelCase, lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Any = model(lowerCAmelCase, lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Tuple, lowerCAmelCase : List[str] ) -> Any: lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=lowerCAmelCase ) lowercase : List[Any] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Any, lowerCAmelCase : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : int ) -> List[str]: lowercase : Optional[Any] = self.num_labels lowercase : Optional[int] = TFLayoutLMForSequenceClassification(config=lowerCAmelCase ) lowercase : Tuple = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple, lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : List[str], lowerCAmelCase : int, lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict ) -> Dict: lowercase : Optional[int] = self.num_labels lowercase : int = TFLayoutLMForTokenClassification(config=lowerCAmelCase ) lowercase : List[str] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Any, lowerCAmelCase : Optional[Any], lowerCAmelCase : List[str], lowerCAmelCase : List[Any], lowerCAmelCase : List[Any], lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple ) -> Optional[Any]: lowercase : List[str] = TFLayoutLMForQuestionAnswering(config=lowerCAmelCase ) lowercase : Optional[int] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _lowerCamelCase = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = 10 def lowercase ( self : Tuple ) -> int: lowercase : int = TFLayoutLMModelTester(self ) lowercase : int = ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : str ) -> List[Any]: lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase ( self : List[Any] ) -> Tuple: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase ( self : int ) -> List[str]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase ( self : Dict ) -> int: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) def lowercase ( self : List[str] ) -> Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) @slow def lowercase ( self : Dict ) -> List[Any]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFLayoutLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def lowercase ( self : List[Any] ) -> List[Any]: pass def lowercase__ ( ) -> str: '''simple docstring''' lowercase : Any = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 lowercase : List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : List[str] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 lowercase : Dict = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ) -> str: lowercase : Any = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the sequence output on [0, :3, :3] lowercase : Dict = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], lowerCAmelCase, atol=1e-3 ) ) # test the pooled output on [1, :3] lowercase : Any = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], lowerCAmelCase, atol=1e-3 ) ) @slow def lowercase ( self : List[Any] ) -> Any: # initialize model with randomly initialized sequence classification head lowercase : List[str] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=tf.convert_to_tensor([1, 1] ), ) # test whether we get a loss as a scalar lowercase : List[str] = outputs.loss lowercase : List[Any] = (2,) self.assertEqual(loss.shape, lowerCAmelCase ) # test the shape of the logits lowercase : str = outputs.logits lowercase : List[str] = (2, 2) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : List[Any] ) -> str: # initialize model with randomly initialized token classification head lowercase : Tuple = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) # test the shape of the logits lowercase : Union[str, Any] = outputs.logits lowercase : Union[str, Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : Union[str, Any] ) -> int: # initialize model with randomly initialized token classification head lowercase : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : int = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the shape of the logits lowercase : str = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape, lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape, lowerCAmelCase )
255
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : """simple docstring""" @staticmethod def __lowercase ( *_a : Optional[int] ,**_a : Optional[int] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def __lowercase ( self : Dict ,_a : int ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Dict = ObjectDetectionPipeline(model=_a ,image_processor=_a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __lowercase ( self : Union[str, Any] ,_a : List[Any] ,_a : List[Any] ): '''simple docstring''' _a : List[str] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' ,threshold=0.0 ) self.assertGreater(len(_a ) ,0 ) for detected_object in outputs: self.assertEqual( _a ,{ 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } ,) import datasets _a : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' ,'image' ,split='test' ) _a : List[Any] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _a : str = object_detector(_a ,threshold=0.0 ) self.assertEqual(len(_a ) ,len(_a ) ) for outputs in batch_outputs: self.assertGreater(len(_a ) ,0 ) for detected_object in outputs: self.assertEqual( _a ,{ 'score': ANY(_a ), 'label': ANY(_a ), 'box': {'xmin': ANY(_a ), 'ymin': ANY(_a ), 'xmax': ANY(_a ), 'ymax': ANY(_a )}, } ,) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __lowercase ( self : int ): '''simple docstring''' pass @require_torch def __lowercase ( self : Any ): '''simple docstring''' _a : List[Any] = 'hf-internal-testing/tiny-detr-mobilenetsv3' _a : int = AutoModelForObjectDetection.from_pretrained(_a ) _a : Optional[Any] = AutoFeatureExtractor.from_pretrained(_a ) _a : int = ObjectDetectionPipeline(model=_a ,feature_extractor=_a ) _a : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=0.0 ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] ,) _a : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ,threshold=0.0 ,) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] ,) @require_torch @slow def __lowercase ( self : Any ): '''simple docstring''' _a : Any = 'facebook/detr-resnet-50' _a : List[str] = AutoModelForObjectDetection.from_pretrained(_a ) _a : str = AutoFeatureExtractor.from_pretrained(_a ) _a : Union[str, Any] = ObjectDetectionPipeline(model=_a ,feature_extractor=_a ) _a : int = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _a : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Tuple = 'facebook/detr-resnet-50' _a : List[Any] = pipeline('object-detection' ,model=_a ) _a : List[str] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) _a : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] ,) @require_torch @slow def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = 0.9985 _a : List[str] = 'facebook/detr-resnet-50' _a : List[Any] = pipeline('object-detection' ,model=_a ) _a : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ,threshold=_a ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] ,) @require_torch @require_pytesseract @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[int] = 'Narsil/layoutlmv3-finetuned-funsd' _a : Tuple = 0.9993 _a : Optional[Any] = pipeline('object-detection' ,model=_a ,threshold=_a ) _a : List[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] ,)
5
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self : int ,_a : List[str] ,_a : Optional[Any]=13 ,_a : str=30 ,_a : str=2 ,_a : Union[str, Any]=3 ,_a : Optional[Any]=True ,_a : int=True ,_a : Union[str, Any]=32 ,_a : List[Any]=5 ,_a : Union[str, Any]=4 ,_a : int=37 ,_a : Any="gelu" ,_a : Union[str, Any]=0.1 ,_a : str=0.1 ,_a : List[str]=10 ,_a : Dict=0.02 ,_a : Tuple=None ,): '''simple docstring''' _a : Any = parent _a : int = batch_size _a : List[Any] = image_size _a : Optional[int] = patch_size _a : List[str] = num_channels _a : Dict = is_training _a : Dict = use_labels _a : Optional[Any] = hidden_size _a : str = num_hidden_layers _a : Optional[int] = num_attention_heads _a : Dict = intermediate_size _a : Union[str, Any] = hidden_act _a : List[str] = hidden_dropout_prob _a : Any = attention_probs_dropout_prob _a : List[str] = type_sequence_label_size _a : int = initializer_range _a : List[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a : Union[str, Any] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Any ): '''simple docstring''' _a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : str = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_a : Any ,_a : List[Any] ,_a : int ): '''simple docstring''' _a : str = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] ,_a : str ,_a : Tuple ,_a : Dict ): '''simple docstring''' _a : Tuple = self.type_sequence_label_size _a : int = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Dict = model(_a ,labels=_a ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a : int = 1 _a : Optional[Any] = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _a : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a : Optional[int] = model(_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[int] = self.prepare_config_and_inputs() _a, _a, _a : int = config_and_inputs _a : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[Any] = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : str = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = False def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : List[str] = ViTMSNModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a, _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a ,nn.Linear ) ) def __lowercase ( self : Any ): '''simple docstring''' _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[str] = model_class(_a ) _a : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : List[Any] = [*signature.parameters.keys()] _a : int = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __lowercase ( self : int ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(2 ) _a : List[str] = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(_a ) _a : List[str] = self.default_image_processor _a : int = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Optional[int] = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : List[Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
5
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a__ ( _UpperCAmelCase ): """simple docstring""" @slow @require_torch def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) A__ = BertTokenizer.from_pretrained("bert-base-uncased" ) A__ = bertabert.config.encoder.vocab_size A__ = tokenizer.sep_token_id A__ = tokenizer.cls_token_id A__ = 128 A__ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) A__ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) A__ = train_dataset.select(range(32 ) ) A__ = val_dataset.select(range(16 ) ) A__ = 4 def _map_to_encoder_decoder_inputs(lowercase ): # Tokenizer will automatically set [BOS] <text> [EOS] A__ = tokenizer(batch["article"] , padding="max_length" , truncation=__UpperCAmelCase , max_length=512 ) A__ = tokenizer(batch["highlights"] , padding="max_length" , truncation=__UpperCAmelCase , max_length=128 ) A__ = inputs.input_ids A__ = inputs.attention_mask A__ = outputs.input_ids A__ = outputs.input_ids.copy() A__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] A__ = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(lowercase ): A__ = pred.label_ids A__ = pred.predictions # all unnecessary tokens are removed A__ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) A__ = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) A__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset A__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset A__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) A__ = self.get_auto_remove_tmp_dir() A__ = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy="steps" , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
68
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__ ( _UpperCAmelCase ): def __init__( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __UpperCAmelCase , **__UpperCAmelCase )-> int: '''simple docstring''' return super().__call__(__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> List[str]: '''simple docstring''' lowerCAmelCase__ = {} if "candidate_labels" in kwargs: lowerCAmelCase__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCAmelCase__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="This is a photo of {}." )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = load_image(__UpperCAmelCase ) lowerCAmelCase__ = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ = candidate_labels lowerCAmelCase__ = [hypothesis_template.format(__UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase__ = self.tokenizer(__UpperCAmelCase , return_tensors=self.framework , padding=__UpperCAmelCase ) lowerCAmelCase__ = [text_inputs] return inputs def UpperCAmelCase ( self , __UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = model_inputs.pop("candidate_labels" ) lowerCAmelCase__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __UpperCAmelCase ): lowerCAmelCase__ = text_inputs[0] else: # Batching case. lowerCAmelCase__ = text_inputs[0][0] lowerCAmelCase__ = self.model(**__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def UpperCAmelCase ( self , __UpperCAmelCase )-> Tuple: '''simple docstring''' lowerCAmelCase__ = model_outputs.pop("candidate_labels" ) lowerCAmelCase__ = model_outputs["logits"][0] if self.framework == "pt": lowerCAmelCase__ = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ = probs.tolist() if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ = [scores] elif self.framework == "tf": lowerCAmelCase__ = stable_softmax(__UpperCAmelCase , axis=-1 ) lowerCAmelCase__ = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) lowerCAmelCase__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__UpperCAmelCase , __UpperCAmelCase ) , key=lambda __UpperCAmelCase : -x[0] ) ] return result
340
0
from __future__ import annotations def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> list[str]: if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) A_ : Optional[Any] = number_of_bytes // partitions A_ : Any = [] for i in range(_lowerCAmelCase ): A_ : Any = i * bytes_per_partition + 1 A_ : Optional[Any] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
70
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger('''transformers.models.speecht5''') _lowerCAmelCase : int = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } _lowerCAmelCase : str = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } _lowerCAmelCase : int = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } _lowerCAmelCase : Union[str, Any] = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } _lowerCAmelCase : Union[str, Any] = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } _lowerCAmelCase : int = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } _lowerCAmelCase : Any = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } _lowerCAmelCase : List[str] = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } _lowerCAmelCase : Optional[Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCAmelCase : Dict = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Union[str, Any] = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Tuple = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] _lowerCAmelCase : Tuple = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] _lowerCAmelCase : int = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] _lowerCAmelCase : Optional[int] = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ) -> Optional[Any]: for attribute in key.split("." ): A_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : Dict = value elif weight_type == "weight_g": A_ : int = value elif weight_type == "weight_v": A_ : str = value elif weight_type == "bias": A_ : int = value elif weight_type == "running_mean": A_ : str = value elif weight_type == "running_var": A_ : Any = value elif weight_type == "num_batches_tracked": A_ : str = value else: A_ : int = value logger.info(f"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int ) -> Union[str, Any]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_ , A_ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: A_ : Tuple = [] if task == "s2t": A_ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder A_ : str = MAPPING_S2T A_ : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": A_ : Optional[int] = None A_ : Dict = MAPPING_T2S A_ : Any = IGNORE_KEYS_T2S elif task == "s2s": A_ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder A_ : Dict = MAPPING_S2S A_ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(f"Unsupported task: {task}" ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase , _lowerCAmelCase ): logger.info(f"{name} was ignored" ) continue A_ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: A_ , A_ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: A_ : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: A_ : str = True if "*" in mapped_key: A_ : List[str] = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : Optional[int] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : Union[str, Any] = "weight_g" elif "weight_v" in name: A_ : List[Any] = "weight_v" elif "bias" in name: A_ : Tuple = "bias" elif "weight" in name: A_ : List[Any] = "weight" elif "running_mean" in name: A_ : Union[str, Any] = "running_mean" elif "running_var" in name: A_ : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: A_ : List[Any] = "num_batches_tracked" else: A_ : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> List[Any]: A_ : int = full_name.split("conv_layers." )[-1] A_ : Optional[Any] = name.split("." ) A_ : List[Any] = int(items[0] ) A_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : Optional[int] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) A_ : Tuple = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : int=None , ) -> Optional[Any]: if config_path is not None: A_ : Dict = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: A_ : Optional[int] = SpeechTaConfig() if task == "s2t": A_ : Optional[Any] = config.max_text_positions A_ : Optional[int] = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": A_ : str = 1876 A_ : List[str] = 600 A_ : List[str] = config.max_speech_positions A_ : Tuple = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": A_ : Optional[int] = 1876 A_ : int = config.max_speech_positions A_ : Union[str, Any] = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f"Unknown task name: {task}" ) if vocab_path: A_ : int = SpeechTaTokenizer(_lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it A_ : str = AddedToken("<mask>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) A_ : int = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) A_ : int = SpeechTaFeatureExtractor() A_ : Optional[Any] = SpeechTaProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) A_ : Union[str, Any] = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _lowerCAmelCase , _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _lowerCAmelCase : Tuple = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
70
1
from collections import deque def _a ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = deque() UpperCamelCase__ : str = [False for _ in range(SCREAMING_SNAKE_CASE )] UpperCamelCase__ : List[Any] = [-1 for _ in range(SCREAMING_SNAKE_CASE )] UpperCamelCase__ : Optional[int] = index_of[:] def strong_connect(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): UpperCamelCase__ : Any = index # the number when this node is seen UpperCamelCase__ : Any = index # lowest rank node reachable from here index += 1 stack.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = True for w in g[v]: if index_of[w] == -1: UpperCamelCase__ : Union[str, Any] = strong_connect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: UpperCamelCase__ : Tuple = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: UpperCamelCase__ : Any = [] UpperCamelCase__ : List[str] = stack.pop() UpperCamelCase__ : Optional[int] = False component.append(SCREAMING_SNAKE_CASE ) while w != v: UpperCamelCase__ : Tuple = stack.pop() UpperCamelCase__ : Optional[int] = False component.append(SCREAMING_SNAKE_CASE ) components.append(SCREAMING_SNAKE_CASE ) return index UpperCamelCase__ : Optional[Any] = [] for v in range(SCREAMING_SNAKE_CASE ): if index_of[v] == -1: strong_connect(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE ) return components def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = [[] for _ in range(SCREAMING_SNAKE_CASE )] for u, v in edges: g[u].append(SCREAMING_SNAKE_CASE ) return g if __name__ == "__main__": # Test __UpperCamelCase : List[str] = 7 __UpperCamelCase : Dict = [0, 0, 1, 2, 3, 3, 4, 4, 6] __UpperCamelCase : Any = [1, 3, 2, 0, 1, 4, 5, 6, 5] __UpperCamelCase : Union[str, Any] = [(u, v) for u, v in zip(source, target)] __UpperCamelCase : int = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
146
import os import sys __UpperCamelCase : Optional[Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCamelCase : Tuple = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ): """simple docstring""" return AutoConfig.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return AutoTokenizer.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModel.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return AutoModel.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Any ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _a ( *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
146
1
_snake_case : str = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) _snake_case : int = frozenset(['prompt', 'negative_prompt']) _snake_case : List[Any] = frozenset([]) _snake_case : Optional[Any] = frozenset(['image']) _snake_case : List[str] = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) _snake_case : List[str] = frozenset(['image']) _snake_case : Optional[int] = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) _snake_case : Union[str, Any] = frozenset(['prompt', 'image', 'negative_prompt']) _snake_case : List[str] = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) _snake_case : int = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) _snake_case : Optional[Any] = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) _snake_case : Optional[Any] = frozenset(['image', 'mask_image']) _snake_case : Tuple = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) _snake_case : List[Any] = frozenset(['example_image', 'image', 'mask_image']) _snake_case : Optional[int] = frozenset(['class_labels']) _snake_case : Tuple = frozenset(['class_labels']) _snake_case : Optional[int] = frozenset(['batch_size']) _snake_case : Dict = frozenset([]) _snake_case : Optional[int] = frozenset(['batch_size']) _snake_case : str = frozenset([]) _snake_case : Union[str, Any] = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) _snake_case : Union[str, Any] = frozenset(['prompt', 'negative_prompt']) _snake_case : Tuple = frozenset(['input_tokens']) _snake_case : List[str] = frozenset(['input_tokens'])
207
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = 1_0 def lowercase ( self : int ) -> Union[str, Any]: __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Optional[Any] ) -> List[str]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : Any ) -> Optional[Any]: __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(lowerCAmelCase_ , self.block_size , 0 ) , lowerCAmelCase_ ) def lowercase ( self : List[str] ) -> Any: __lowerCAmelCase = 'It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = '' __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , [] ) self.assertEqual(lowerCAmelCase_ , [] ) def lowercase ( self : int ) -> int: __lowerCAmelCase = ( 'It was the year of Our Lord one thousand seven hundred and ' 'seventy-five\n\nSpiritual revelations were conceded to England ' 'at that favoured period, as at this.\n@highlight\n\nIt was the best of times' ) __lowerCAmelCase , __lowerCAmelCase = process_story(lowerCAmelCase_ ) __lowerCAmelCase = [ 'It was the year of Our Lord one thousand seven hundred and seventy-five.', 'Spiritual revelations were conceded to England at that favoured period, as at this.', ] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = ['It was the best of times.'] self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 0 ).numpy() , expected.numpy() ) def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 2_3 ).numpy() , expected.numpy() ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCAmelCase_ , 1 ).numpy() , expected.numpy() ) def lowercase ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = 1_0_1 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(lowerCAmelCase_ , lowerCAmelCase_ ) np.testing.assert_array_equal(lowerCAmelCase_ , lowerCAmelCase_ )
207
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Any ={ '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _lowercase ( _lowercase ): a = """pegasus""" a = ["""past_key_values"""] a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self: Optional[Any] , UpperCamelCase__: Dict=50_265 , UpperCamelCase__: Tuple=1_024 , UpperCamelCase__: Dict=12 , UpperCamelCase__: List[Any]=4_096 , UpperCamelCase__: Any=16 , UpperCamelCase__: Optional[int]=12 , UpperCamelCase__: Optional[Any]=4_096 , UpperCamelCase__: List[str]=16 , UpperCamelCase__: List[str]=0.0 , UpperCamelCase__: List[Any]=0.0 , UpperCamelCase__: Tuple=True , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: Dict="gelu" , UpperCamelCase__: Optional[Any]=1_024 , UpperCamelCase__: int=0.1 , UpperCamelCase__: List[Any]=0.0 , UpperCamelCase__: List[Any]=0.0 , UpperCamelCase__: Union[str, Any]=0.02 , UpperCamelCase__: List[Any]=0 , UpperCamelCase__: Any=False , UpperCamelCase__: Any=0 , UpperCamelCase__: str=1 , UpperCamelCase__: Union[str, Any]=1 , **UpperCamelCase__: Any , ): lowerCamelCase__ : int = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : List[Any] = d_model lowerCamelCase__ : Union[str, Any] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Optional[int] = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : Tuple = decoder_layers lowerCamelCase__ : Optional[int] = decoder_attention_heads lowerCamelCase__ : Any = dropout lowerCamelCase__ : str = attention_dropout lowerCamelCase__ : str = activation_dropout lowerCamelCase__ : Dict = activation_function lowerCamelCase__ : int = init_std lowerCamelCase__ : Union[str, Any] = encoder_layerdrop lowerCamelCase__ : List[Any] = decoder_layerdrop lowerCamelCase__ : List[str] = use_cache lowerCamelCase__ : Optional[int] = encoder_layers lowerCamelCase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) @property def lowerCamelCase_ ( self: str ): return self.encoder_attention_heads @property def lowerCamelCase_ ( self: str ): return self.d_model
41
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( snake_case__ ): _UpperCAmelCase :torch.FloatTensor class lowercase__ ( snake_case__, snake_case__ ): @register_to_config def __init__( self : Optional[int] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 256 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18_215 , snake_case__ : str = "group" , ): super().__init__() # pass init params to Encoder lowerCamelCase_ : List[str] =Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) lowerCamelCase_ : Union[str, Any] =vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCamelCase_ : List[Any] =nn.Convad(snake_case__ , snake_case__ , 1 ) lowerCamelCase_ : int =VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) lowerCamelCase_ : int =nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder lowerCamelCase_ : Union[str, Any] =Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : int =self.encoder(snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict =self.quantize(snake_case__ ) else: lowerCamelCase_ : List[Any] =h lowerCamelCase_ : List[Any] =self.post_quant_conv(snake_case__ ) lowerCamelCase_ : Dict =self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCAmelCase__ ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): lowerCamelCase_ : Dict =sample lowerCamelCase_ : Optional[Any] =self.encode(snake_case__ ).latents lowerCamelCase_ : str =self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
144
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase_ = float('''nan''') class __lowerCAmelCase : def __init__(self , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = sys.stdout snake_case_ : Tuple = open(__magic_name__ , '''a''' ) def __getattr__(self , __magic_name__ ) -> List[str]: '''simple docstring''' return getattr(self.stdout , __magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> List[str]: '''simple docstring''' self.stdout.write(__magic_name__ ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , __magic_name__ , 0 , re.M ) ) def lowerCamelCase_ ( _UpperCamelCase=80 , _UpperCamelCase=False ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = [] # deal with critical env vars snake_case_ : List[str] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: snake_case_ : List[str] = os.environ.get(_UpperCamelCase , _UpperCamelCase ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) snake_case_ : List[Any] = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(_UpperCamelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes snake_case_ : Optional[Any] = [] snake_case_ : Dict = '''''' while len(_UpperCamelCase ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCamelCase ) snake_case_ : Tuple = '''''' return "\\\n".join(_UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" snake_case_ : Dict = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own snake_case_ : List[str] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir snake_case_ : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) snake_case_ : Optional[int] = subprocess.run(_UpperCamelCase , capture_output=_UpperCamelCase , text=_UpperCamelCase ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams snake_case_ : Tuple = variation.replace(''' ''' , '''-''' ) with open(Path(_UpperCamelCase ) / f'''log.{prefix}.stdout.txt''' , '''w''' ) as f: f.write(result.stdout ) with open(Path(_UpperCamelCase ) / f'''log.{prefix}.stderr.txt''' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''' ) as f: snake_case_ : Optional[int] = json.load(_UpperCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Optional[int]: """simple docstring""" snake_case_ : List[Any] = [] snake_case_ : Optional[int] = [] snake_case_ : Dict = f'''{id}: {variation:<{longest_variation_len}}''' snake_case_ : List[str] = f'''{preamble}: ''' snake_case_ : str = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCamelCase ) , desc=_UpperCamelCase , leave=_UpperCamelCase ): snake_case_ : Optional[int] = process_run_single( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) snake_case_ : List[str] = single_run_metrics[target_metric_key] if not math.isnan(_UpperCamelCase ): metrics.append(_UpperCamelCase ) results.append(_UpperCamelCase ) outcome += "✓" else: outcome += "✘" snake_case_ : Tuple = f'''\33[2K\r{outcome}''' if len(_UpperCamelCase ) > 0: snake_case_ : int = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} snake_case_ : int = round(mean_metrics[target_metric_key] , 2 ) snake_case_ : Optional[Any] = f'''{outcome} {mean_target}''' if len(_UpperCamelCase ) > 1: results_str += f''' {tuple(round(_UpperCamelCase , 2 ) for x in results )}''' print(_UpperCamelCase ) snake_case_ : Optional[int] = variation return mean_metrics else: print(_UpperCamelCase ) return {variation_key: variation, target_metric_key: nan} def lowerCamelCase_ ( ) -> Optional[Any]: """simple docstring""" snake_case_ : str = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: """simple docstring""" snake_case_ : str = pd.DataFrame(_UpperCamelCase ) snake_case_ : str = '''variation''' snake_case_ : int = '''diff_%''' snake_case_ : List[Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan snake_case_ : Dict = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCamelCase ): # as a fallback, use the minimal value as the sentinel snake_case_ : int = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCamelCase ): snake_case_ : List[str] = df.apply( lambda _UpperCamelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns snake_case_ : List[Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] snake_case_ : Optional[int] = df.reindex(_UpperCamelCase , axis='''columns''' ) # reorder cols # capitalize snake_case_ : Tuple = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible snake_case_ : Tuple = df.rename(lambda _UpperCamelCase : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) snake_case_ : Dict = df.rename(lambda _UpperCamelCase : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) snake_case_ : Dict = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCamelCase , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCamelCase , floatfmt='''.2f''' )] print('''\n\n'''.join(_UpperCamelCase ) ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=_UpperCamelCase , type=_UpperCamelCase , nargs='''+''' , required=_UpperCamelCase , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=_UpperCamelCase , type=_UpperCamelCase , required=_UpperCamelCase , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=_UpperCamelCase , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=_UpperCamelCase , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=_UpperCamelCase , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=_UpperCamelCase , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) snake_case_ : Union[str, Any] = parser.parse_args() snake_case_ : str = args.output_dir Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) snake_case_ : Optional[int] = get_base_command(_UpperCamelCase , _UpperCamelCase ) # split each dimension into its --foo variations snake_case_ : Tuple = [list(map(str.strip , re.split(R'''\|''' , _UpperCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty snake_case_ : Dict = list(map(str.strip , map(''' '''.join , itertools.product(*_UpperCamelCase ) ) ) ) snake_case_ : int = max(len(_UpperCamelCase ) for x in variations ) # split wanted keys snake_case_ : Optional[Any] = args.report_metric_keys.split() # capture prints into a log file for convenience snake_case_ : Optional[int] = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) snake_case_ : List[str] = Tee(_UpperCamelCase ) print(f'''\n*** Running {len(_UpperCamelCase )} benchmarks:''' ) print(f'''Base command: {" ".join(_UpperCamelCase )}''' ) snake_case_ : Dict = '''variation''' snake_case_ : Optional[int] = [] for id, variation in enumerate(tqdm(_UpperCamelCase , desc='''Total completion: ''' , leave=_UpperCamelCase ) ): snake_case_ : Optional[int] = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , args.target_metric_key , _UpperCamelCase , args.repeat_times , _UpperCamelCase , args.verbose , ) ) process_results(_UpperCamelCase , args.target_metric_key , _UpperCamelCase , args.base_variation , _UpperCamelCase ) if __name__ == "__main__": main()
279
from math import isclose, sqrt def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> tuple[float, float, float]: """simple docstring""" snake_case_ : Dict = point_y / 4 / point_x snake_case_ : List[str] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) snake_case_ : Union[str, Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) snake_case_ : Tuple = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 snake_case_ : Union[str, Any] = outgoing_gradient**2 + 4 snake_case_ : Tuple = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) snake_case_ : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 snake_case_ : Dict = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) snake_case_ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point snake_case_ : Any = x_minus if isclose(_UpperCamelCase , _UpperCamelCase ) else x_plus snake_case_ : int = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCamelCase_ ( _UpperCamelCase = 1.4 , _UpperCamelCase = -9.6 ) -> int: """simple docstring""" snake_case_ : int = 0 snake_case_ : float = first_x_coord snake_case_ : float = first_y_coord snake_case_ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): snake_case_ , snake_case_ , snake_case_ : str = next_point(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
279
1
from collections import defaultdict from math import ceil, sqrt def _snake_case ( lowerCAmelCase : int = 1_0_0_0_0_0_0 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : defaultdict = defaultdict(lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: SCREAMING_SNAKE_CASE_ : str = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f'''{solution() = }''')
18
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' while a != 0: _UpperCAmelCase , _UpperCAmelCase = b % a, a return b def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if gcd(_lowerCAmelCase , _lowerCAmelCase ) != 1: _UpperCAmelCase = f'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0, 1, m while va != 0: _UpperCAmelCase = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
354
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
0
"""simple docstring""" import logging from transformers import PretrainedConfig a : Tuple = logging.getLogger(__name__) a : Dict = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[Any] ="""bertabs""" def __init__( self , lowerCAmelCase__=3_0522 , lowerCAmelCase__=512 , lowerCAmelCase__=6 , lowerCAmelCase__=512 , lowerCAmelCase__=8 , lowerCAmelCase__=512 , lowerCAmelCase__=0.2 , lowerCAmelCase__=6 , lowerCAmelCase__=768 , lowerCAmelCase__=8 , lowerCAmelCase__=2048 , lowerCAmelCase__=0.2 , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) a : Dict = vocab_size a : str = max_pos a : str = enc_layers a : int = enc_hidden_size a : Tuple = enc_heads a : Dict = enc_ff_size a : List[Any] = enc_dropout a : str = dec_layers a : Dict = dec_hidden_size a : Union[str, Any] = dec_heads a : Union[str, Any] = dec_ff_size a : List[Any] = dec_dropout
105
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : Optional[Any] = 32 def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return int(x / 2**20 ) class __lowercase : """simple docstring""" def __enter__( self ) -> Optional[Any]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *A ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() lowerCamelCase = torch.cuda.memory_allocated() lowerCamelCase = torch.cuda.max_memory_allocated() lowerCamelCase = bamb(self.end - self.begin ) lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __lowerCamelCase ( lowerCamelCase__ : Accelerator , lowerCamelCase__ : int = 16 , lowerCamelCase__ : str = "bert-base-cased" , lowerCamelCase__ : int = 320 , lowerCamelCase__ : int = 160 , ): '''simple docstring''' lowerCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowerCamelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(lowerCamelCase__ : str ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ): '''simple docstring''' lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase = config["""lr"""] lowerCamelCase = int(config["""num_epochs"""] ) lowerCamelCase = int(config["""seed"""] ) lowerCamelCase = int(config["""batch_size"""] ) lowerCamelCase = args.model_name_or_path set_seed(lowerCamelCase__ ) lowerCamelCase , lowerCamelCase = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , return_dict=lowerCamelCase__ ) # Instantiate optimizer lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase = optimizer_cls(params=model.parameters() , lr=lowerCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCamelCase = 1 lowerCamelCase = (len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=0 , num_training_steps=lowerCamelCase__ , ) else: lowerCamelCase = DummyScheduler(lowerCamelCase__ , total_num_steps=lowerCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase = 0 # Now we train the model lowerCamelCase = {} for epoch in range(lowerCamelCase__ , lowerCamelCase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase__ ): lowerCamelCase = model(**lowerCamelCase__ ) lowerCamelCase = outputs.loss lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCamelCase__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCamelCase__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=1 , help="""Number of train epochs.""" , ) lowerCamelCase = parser.parse_args() lowerCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
252
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' return x + 2 class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """x = 3""" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result == 3 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3} ) SCREAMING_SNAKE_CASE = """x = y""" SCREAMING_SNAKE_CASE = {"""y""": 5} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 5, """y""": 5} ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """y = add_two(x)""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{"""add_two""": add_two} ,state=lowerCamelCase__ ) assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result is None assert "tried to execute add_two" in out.out def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """x = 3""" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result == 3 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3} ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{"""add_two""": add_two} ,state=lowerCamelCase__ ) self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """y""": 5} ) self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """x = 3\ny = 5""" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """y""": 5} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = """text = f'This is x: {x}.'""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """text""": """This is x: 3."""} ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """if x <= 3:\n y = 2\nelse:\n y = 5""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """y""": 2} ) SCREAMING_SNAKE_CASE = {"""x""": 8} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 8, """y""": 5} ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{"""add_two""": add_two} ,state=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,[3, 5] ) self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """test_list""": [3, 5]} ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = """y = x""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{} ,state=lowerCamelCase__ ) assert result == 3 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """y""": 3} ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = """test_list = [x, add_two(x)]\ntest_list[1]""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{"""add_two""": add_two} ,state=lowerCamelCase__ ) assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """test_list""": [3, 5]} ) SCREAMING_SNAKE_CASE = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" SCREAMING_SNAKE_CASE = {"""x""": 3} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{"""add_two""": add_two} ,state=lowerCamelCase__ ) assert result == 5 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = """x = 0\nfor i in range(3):\n x = i""" SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = evaluate(lowerCamelCase__ ,{"""range""": range} ,state=lowerCamelCase__ ) assert result == 2 self.assertDictEqual(lowerCamelCase__ ,{"""x""": 2, """i""": 2} )
362
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Any = BertTokenizer __snake_case : Dict = BertTokenizerFast __snake_case : Tuple = True __snake_case : List[Any] = True __snake_case : Optional[Any] = filter_non_english def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = """a\n'll !!to?'d of, can't.""" SCREAMING_SNAKE_CASE = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,return_offsets_mapping=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ ,"""do_lower_case""" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
193
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( a__ ): __UpperCAmelCase = ['image_processor', 'tokenizer'] __UpperCAmelCase = 'ViltImageProcessor' __UpperCAmelCase = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , a=None , a=None , **a ): UpperCamelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) UpperCamelCase__ = kwargs.pop("feature_extractor" ) UpperCamelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a , a ) UpperCamelCase__ = self.image_processor def __call__( self , a , a = None , a = True , a = False , a = None , a = None , a = 0 , a = None , a = None , a = None , a = False , a = False , a = False , a = False , a = True , a = None , **a , ): UpperCamelCase__ = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel_values + pixel_mask UpperCamelCase__ = self.image_processor(a , return_tensors=a ) encoding.update(a ) return encoding def __a ( self , *a , **a ): return self.tokenizer.batch_decode(*a , **a ) def __a ( self , *a , **a ): return self.tokenizer.decode(*a , **a ) @property def __a ( self ): UpperCamelCase__ = self.tokenizer.model_input_names UpperCamelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __a ( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class @property def __a ( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a , ) return self.image_processor
80
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A ={ '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowerCAmelCase ( __lowerCamelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = params __UpperCamelCase = np.array(__lowercase ) __UpperCamelCase = np.array([len(__lowercase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def UpperCAmelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.params.max_model_input_size __UpperCamelCase = self.lengths > max_len logger.info(F'Splitting {sum(__lowercase )} too long sequences.' ) def divide_chunks(__UpperCAmelCase , __UpperCAmelCase ): return [l[i : i + n] for i in range(0 , len(__lowercase ) , __lowercase )] __UpperCamelCase = [] __UpperCamelCase = [] if self.params.mlm: __UpperCamelCase = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token'''] else: __UpperCamelCase = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token'''] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __UpperCamelCase = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __UpperCamelCase = np.insert(__lowercase , 0 , __lowercase ) if sub_s[-1] != sep_id: __UpperCamelCase = np.insert(__lowercase , len(__lowercase ) , __lowercase ) assert len(__lowercase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase ) new_tok_ids.extend(__lowercase ) new_lengths.extend([len(__lowercase ) for l in sub_seqs] ) __UpperCamelCase = np.array(__lowercase ) __UpperCamelCase = np.array(__lowercase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self ) __UpperCamelCase = self.lengths > 11 __UpperCamelCase = self.token_ids[indices] __UpperCamelCase = self.lengths[indices] __UpperCamelCase = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def UpperCAmelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __UpperCamelCase = self.params.special_tok_ids['''unk_token'''] __UpperCamelCase = len(self ) __UpperCamelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __UpperCamelCase = (unk_occs / self.lengths) < 0.5 __UpperCamelCase = self.token_ids[indices] __UpperCamelCase = self.lengths[indices] __UpperCamelCase = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [t[0] for t in batch] __UpperCamelCase = [t[1] for t in batch] assert len(__lowercase ) == len(__lowercase ) # Max for paddings __UpperCamelCase = max(__lowercase ) # Pad token ids if self.params.mlm: __UpperCamelCase = self.params.special_tok_ids['''pad_token'''] else: __UpperCamelCase = self.params.special_tok_ids['''unk_token'''] __UpperCamelCase = [list(t.astype(__lowercase ) ) + [pad_idx] * (max_seq_len_ - len(__lowercase )) for t in token_ids] assert len(tk_ ) == len(__lowercase ) assert all(len(__lowercase ) == max_seq_len_ for t in tk_ ) __UpperCamelCase = torch.tensor(tk_ ) # (bs, max_seq_len_) __UpperCamelCase = torch.tensor(__lowercase ) # (bs) return tk_t, lg_t
316
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''spiece.model'''} A__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class a ( __lowerCamelCase ): def __init__( self :Union[str, Any] ,__lowercase :Optional[Any] ,__lowercase :int=False ,__lowercase :int=True ,__lowercase :Optional[int]=False ,__lowercase :List[str]="<s>" ,__lowercase :str="</s>" ,__lowercase :Dict="<unk>" ,__lowercase :Optional[int]="<sep>" ,__lowercase :Tuple="<pad>" ,__lowercase :Union[str, Any]="<cls>" ,__lowercase :Dict="<mask>" ,__lowercase :List[Any]=["<eop>", "<eod>"] ,__lowercase :Optional[Dict[str, Any]] = None ,**__lowercase :int ,): snake_case__ : Any = AddedToken(__lowercase ,lstrip=__lowercase ,rstrip=__lowercase ) if isinstance(__lowercase ,__lowercase ) else mask_token snake_case__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowercase ,remove_space=__lowercase ,keep_accents=__lowercase ,bos_token=__lowercase ,eos_token=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,additional_special_tokens=__lowercase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowercase ,) snake_case__ : Optional[Any] = 3 snake_case__ : List[str] = do_lower_case snake_case__ : Union[str, Any] = remove_space snake_case__ : Tuple = keep_accents snake_case__ : List[str] = vocab_file snake_case__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) snake_case__ : List[Any] = jieba snake_case__ : Union[str, Any] = str.maketrans(''' \n''' ,'''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCamelCase ( self :Union[str, Any] ): return len(self.sp_model ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[Any] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :List[str] ): snake_case__ : Optional[Any] = self.__dict__.copy() snake_case__ : Optional[int] = None return state def __setstate__( self :int ,__lowercase :str ): snake_case__ : Tuple = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): snake_case__ : List[Any] = {} snake_case__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self :Dict ,__lowercase :Optional[int] ): if self.remove_space: snake_case__ : int = ''' '''.join(inputs.strip().split() ) else: snake_case__ : Tuple = inputs snake_case__ : List[Any] = outputs.replace('''``''' ,'''"''' ).replace('''\'\'''' ,'''"''' ) if not self.keep_accents: snake_case__ : Any = unicodedata.normalize('''NFKD''' ,__lowercase ) snake_case__ : Dict = ''''''.join([c for c in outputs if not unicodedata.combining(__lowercase )] ) if self.do_lower_case: snake_case__ : str = outputs.lower() return outputs def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ): snake_case__ : Dict = self.preprocess_text(__lowercase ) snake_case__ : Any = self.sp_model.encode(__lowercase ,out_type=__lowercase ) snake_case__ : List[str] = [] for piece in pieces: if len(__lowercase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): snake_case__ : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowercase ,'''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case__ : Optional[Any] = cur_pieces[1:] else: snake_case__ : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowercase ) else: new_pieces.append(__lowercase ) return new_pieces def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Dict ): return self.sp_model.PieceToId(__lowercase ) def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ): return self.sp_model.IdToPiece(__lowercase ) def __lowerCamelCase ( self :Tuple ,__lowercase :List[Any] ): snake_case__ : Union[str, Any] = ''''''.join(__lowercase ).replace(__lowercase ,''' ''' ).strip() return out_string def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self :str ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) if token_ids_a is not None: return ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1, 1] return ([0] * len(__lowercase )) + [1, 1] def __lowerCamelCase ( self :List[str] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self :Optional[int] ,__lowercase :str ,__lowercase :Optional[str] = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Union[str, Any] = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase ,'''wb''' ) as fi: snake_case__ : str = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def __lowerCamelCase ( self :Union[str, Any] ,*__lowercase :Optional[int] ,**__lowercase :Dict ): snake_case__ : Dict = super()._decode(*__lowercase ,**__lowercase ) snake_case__ : List[Any] = text.replace(''' ''' ,'''''' ).replace('''\u2582''' ,''' ''' ).replace('''\u2583''' ,'''\n''' ) return text
230
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase = logging.get_logger(__name__) __lowercase = {"""tokenizer_file""": """tokenizer.json"""} __lowercase = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class _A ( _a ): """simple docstring""" UpperCAmelCase : Dict = VOCAB_FILES_NAMES UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : Any = None def __init__( self : List[Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : str="<pad>" , __UpperCAmelCase : Any=False , __UpperCAmelCase : Tuple=False , **__UpperCAmelCase : Tuple , ): super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , ) a : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase) != add_prefix_space: a : Union[str, Any] = getattr(__UpperCAmelCase , pre_tok_state.pop("type")) a : str = add_prefix_space a : Tuple = pre_tok_class(**__UpperCAmelCase) a : Union[str, Any] = add_prefix_space def __snake_case ( self : Any , *__UpperCAmelCase : Any , **__UpperCAmelCase : List[str]): a : str = kwargs.get("is_split_into_words" , __UpperCAmelCase) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs.") return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Optional[int] , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : str): a : int = kwargs.get("is_split_into_words" , __UpperCAmelCase) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs.") return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): a : str = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase) return tuple(__UpperCAmelCase) def __snake_case ( self : List[str] , __UpperCAmelCase : "Conversation"): a : Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase) + [self.eos_token_id]) if len(__UpperCAmelCase) > self.model_max_length: a : Any = input_ids[-self.model_max_length :] return input_ids
226
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_=False )-> int: '''simple docstring''' a : List[str] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowercase ( A_ , A_ , A_=False )-> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: a : Tuple = "" else: a : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a : str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a : Optional[int] = in_proj_weight[ : config.hidden_size, : ] a : Tuple = in_proj_bias[: config.hidden_size] a : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a : int = in_proj_weight[ -config.hidden_size :, : ] a : int = in_proj_bias[-config.hidden_size :] def lowercase ( A_ )-> Dict: '''simple docstring''' a : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(A_ , A_ ) def lowercase ( A_ , A_ , A_ )-> List[Any]: '''simple docstring''' a : List[Any] = dct.pop(A_ ) a : str = val def lowercase ( )-> List[Any]: '''simple docstring''' a : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" a : Tuple = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def lowercase ( A_ , A_ , A_=False )-> Union[str, Any]: '''simple docstring''' a : Optional[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=A_ , ) a : Union[str, Any] = ViTHybridConfig(backbone_config=A_ , image_size=384 , num_labels=1_000 ) a : Optional[Any] = False # load original model from timm a : Any = timm.create_model(A_ , pretrained=A_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys a : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(A_ ) a : int = create_rename_keys(A_ , A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_q_k_v(A_ , A_ , A_ ) a : Union[str, Any] = "huggingface/label-files" a : Optional[int] = "imagenet-1k-id2label.json" a : str = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) a : Optional[Any] = {int(A_ ): v for k, v in idalabel.items()} a : str = idalabel a : Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": a : List[Any] = ViTHybridModel(A_ ).eval() else: a : Optional[int] = ViTHybridForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # create image processor a : Tuple = create_transform(**resolve_data_config({} , model=A_ ) ) a : List[Any] = transform.transforms a : int = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } a : str = ViTHybridImageProcessor( do_resize=A_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=A_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) a : List[Any] = prepare_img() a : Optional[Any] = transform(A_ ).unsqueeze(0 ) a : str = processor(A_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(A_ , A_ ) # verify logits with torch.no_grad(): a : Dict = model(A_ ) a : Tuple = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: a : str = timm_model.forward_features(A_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A_ , outputs.pooler_output , atol=1e-3 ) else: a : int = timm_model(A_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) __lowercase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
226
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : @staticmethod def __A (*UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase__ ( unittest.TestCase): SCREAMING_SNAKE_CASE__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =ObjectDetectionPipeline(model=UpperCAmelCase , image_processor=UpperCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __A (self , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase , { '''score''': ANY(UpperCAmelCase ), '''label''': ANY(UpperCAmelCase ), '''box''': {'''xmin''': ANY(UpperCAmelCase ), '''ymin''': ANY(UpperCAmelCase ), '''xmax''': ANY(UpperCAmelCase ), '''ymax''': ANY(UpperCAmelCase )}, } , ) import datasets _lowercase =datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) _lowercase =[ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] _lowercase =object_detector(UpperCAmelCase , threshold=0.0 ) self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( UpperCAmelCase , { '''score''': ANY(UpperCAmelCase ), '''label''': ANY(UpperCAmelCase ), '''box''': {'''xmin''': ANY(UpperCAmelCase ), '''ymin''': ANY(UpperCAmelCase ), '''xmax''': ANY(UpperCAmelCase ), '''ymax''': ANY(UpperCAmelCase )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def __A (self ) -> Union[str, Any]: pass @require_torch def __A (self ) -> Union[str, Any]: _lowercase ='''hf-internal-testing/tiny-detr-mobilenetsv3''' _lowercase =AutoModelForObjectDetection.from_pretrained(UpperCAmelCase ) _lowercase =AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) _lowercase =ObjectDetectionPipeline(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ] , ) _lowercase =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], [ {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, {'''score''': 0.3376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 1_5_9, '''ymin''': 1_2_0, '''xmax''': 4_8_0, '''ymax''': 3_5_9}}, ], ] , ) @require_torch @slow def __A (self ) -> Optional[int]: _lowercase ='''facebook/detr-resnet-50''' _lowercase =AutoModelForObjectDetection.from_pretrained(UpperCAmelCase ) _lowercase =AutoFeatureExtractor.from_pretrained(UpperCAmelCase ) _lowercase =ObjectDetectionPipeline(model=UpperCAmelCase , feature_extractor=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) _lowercase =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def __A (self ) -> Dict: _lowercase ='''facebook/detr-resnet-50''' _lowercase =pipeline('''object-detection''' , model=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) _lowercase =object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], [ {'''score''': 0.9982, '''label''': '''remote''', '''box''': {'''xmin''': 4_0, '''ymin''': 7_0, '''xmax''': 1_7_5, '''ymax''': 1_1_7}}, {'''score''': 0.9960, '''label''': '''remote''', '''box''': {'''xmin''': 3_3_3, '''ymin''': 7_2, '''xmax''': 3_6_8, '''ymax''': 1_8_7}}, {'''score''': 0.9955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 6_3_9, '''ymax''': 4_7_3}}, {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ], ] , ) @require_torch @slow def __A (self ) -> Any: _lowercase =0.9985 _lowercase ='''facebook/detr-resnet-50''' _lowercase =pipeline('''object-detection''' , model=UpperCAmelCase ) _lowercase =object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=UpperCAmelCase ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9988, '''label''': '''cat''', '''box''': {'''xmin''': 1_3, '''ymin''': 5_2, '''xmax''': 3_1_4, '''ymax''': 4_7_0}}, {'''score''': 0.9987, '''label''': '''cat''', '''box''': {'''xmin''': 3_4_5, '''ymin''': 2_3, '''xmax''': 6_4_0, '''ymax''': 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def __A (self ) -> Tuple: _lowercase ='''Narsil/layoutlmv3-finetuned-funsd''' _lowercase =0.9993 _lowercase =pipeline('''object-detection''' , model=UpperCAmelCase , threshold=UpperCAmelCase ) _lowercase =object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(UpperCAmelCase , decimals=4 ) , [ {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, {'''score''': 0.9993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 2_9_4, '''ymin''': 2_5_4, '''xmax''': 3_4_3, '''ymax''': 2_6_4}}, ] , )
5
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
5
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Dict = ["image_processor", "tokenizer"] __UpperCAmelCase : Any = "Pix2StructImageProcessor" __UpperCAmelCase : Union[str, Any] = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : int ) -> str: __snake_case : List[str] = False super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self : str , lowerCamelCase : Dict=None , lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase : bool = True , lowerCamelCase : Union[bool, str, PaddingStrategy] = False , lowerCamelCase : Union[bool, str, TruncationStrategy] = None , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[int] = 2048 , lowerCamelCase : int = 0 , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : bool = True , lowerCamelCase : Optional[Union[str, TensorType]] = None , **lowerCamelCase : Dict , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: __snake_case : Any = self.tokenizer __snake_case : int = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values __snake_case : Optional[Any] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , max_patches=lowerCamelCase , **lowerCamelCase ) else: # add pixel_values and bbox __snake_case : List[str] = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , max_patches=lowerCamelCase , header_text=lowerCamelCase , **lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: __snake_case : int = self.tokenizer( text=lowerCamelCase , add_special_tokens=lowerCamelCase , padding=lowerCamelCase , truncation=lowerCamelCase , max_length=lowerCamelCase , stride=lowerCamelCase , pad_to_multiple_of=lowerCamelCase , return_attention_mask=lowerCamelCase , return_overflowing_tokens=lowerCamelCase , return_special_tokens_mask=lowerCamelCase , return_offsets_mapping=lowerCamelCase , return_token_type_ids=lowerCamelCase , return_length=lowerCamelCase , verbose=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase , ) if "attention_mask" in text_encoding: __snake_case : Dict = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: __snake_case : List[str] = text_encoding.pop("input_ids" ) else: __snake_case : str = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase ) return encoding_image_processor def __snake_case ( self : str , *lowerCamelCase : Any , **lowerCamelCase : Optional[Any] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def __snake_case ( self : Dict , *lowerCamelCase : int , **lowerCamelCase : str ) -> Optional[Any]: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Any ) -> List[Any]: __snake_case : Optional[int] = self.tokenizer.model_input_names __snake_case : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
134
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _snake_case : Union[str, Any] = datasets.load_iris() _snake_case : Tuple = np.array(data["data"]) _snake_case : int = np.array(data["target"]) _snake_case : int = data["target_names"] _snake_case , _snake_case , _snake_case , _snake_case : Any = train_test_split(X, y) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return np.linalg.norm(np.array(__lowerCamelCase ) - np.array(__lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=5 ): __snake_case : Optional[Any] = zip(__lowerCamelCase , __lowerCamelCase ) # List of distances of all points from the point to be classified __snake_case : Optional[int] = [] for data_point in data: __snake_case : Union[str, Any] = euclidean_distance(data_point[0] , __lowerCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __snake_case : Dict = [i[1] for i in sorted(__lowerCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __snake_case : Any = Counter(__lowerCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
134
1
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
324
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase : List[Any] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
263
"""simple docstring""" from math import factorial UpperCamelCase : List[Any] = {str(d): factorial(d) for d in range(1_0)} def A ( snake_case :int ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(snake_case ) ) def A ( ) -> int: __UpperCamelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case ) if sum_of_digit_factorial(snake_case ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
263
1
def A ( _lowerCamelCase = 1_000 ): '''simple docstring''' _lowerCAmelCase : str = 1, 1 _lowerCAmelCase : Any = 2 while True: _lowerCAmelCase : str = 0 _lowerCAmelCase : Tuple = fa + fa _lowerCAmelCase : Tuple = fa, f index += 1 for _ in str(__lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
36
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Optional[Any] ={ '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
223
0
from timeit import timeit def lowerCamelCase__ ( a ) -> int: if number < 0: raise ValueError('''the value of input must not be negative''' ) _A: List[str] = 0 while number: number &= number - 1 result += 1 return result def lowerCamelCase__ ( a ) -> int: if number < 0: raise ValueError('''the value of input must not be negative''' ) _A: Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def lowerCamelCase__ ( ) -> None: def do_benchmark(a ) -> None: _A: Tuple = '''import __main__ as z''' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(a ) = }""" ) _A: List[Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=a ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(a ) = }""" ) _A: str = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=a , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
301
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = '''mobilenet_v1''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : str=2_2_4 , lowerCAmelCase_ : List[str]=1.0 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple="relu6" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=0.999 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[Any]=0.001 , **lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _A: Any = num_channels _A: Optional[int] = image_size _A: Optional[Any] = depth_multiplier _A: Tuple = min_depth _A: Any = hidden_act _A: Dict = tf_padding _A: List[Any] = classifier_dropout_prob _A: Tuple = initializer_range _A: Tuple = layer_norm_eps class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Dict = version.parse('''1.11''' ) @property def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __magic_name__ ( self : Dict ): """simple docstring""" return 1e-4
301
1
"""simple docstring""" from __future__ import annotations def _A (__a , __a ) -> list[list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE_ : list[list[int]] = [] create_all_state(1 , __a , __a , [] , __a ) return result def _A (__a , __a , __a , __a , __a , ) -> None: """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(__a , total_number - level + 2 ): current_list.append(__a ) create_all_state(i + 1 , __a , level - 1 , __a , __a ) current_list.pop() def _A (__a ) -> None: """simple docstring""" for i in total_list: print(*__a ) if __name__ == "__main__": UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : int = 2 UpperCAmelCase_ : str = generate_all_combinations(n, k) print_all_state(total_list)
91
'''simple docstring''' from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : int , __a : Any=None , __a : Optional[int]=20_48 ): _a = config.__dict__ _a = modal_hidden_size if num_labels: _a = num_labels
63
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class UpperCamelCase_ : lowerCAmelCase_ = BlenderbotConfig lowerCAmelCase_ = {} lowerCAmelCase_ = '''gelu''' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=20 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = eos_token_id _snake_case = pad_token_id _snake_case = bos_token_id def lowerCAmelCase ( self ) -> Dict: _snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _snake_case = prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = TFBlenderbotModel(config=lowerCAmelCase_ ).get_decoder() _snake_case = inputs_dict['input_ids'] _snake_case = input_ids[:1, :] _snake_case = inputs_dict['attention_mask'][:1, :] _snake_case = inputs_dict['head_mask'] _snake_case = 1 # first forward pass _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _snake_case , _snake_case = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case = output_from_no_past[:, -3:, random_slice_idx] _snake_case = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1E-3 ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: _snake_case = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFBlenderbotModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowerCAmelCase_ = ['''My friends are cool but they eat too many carbs.'''] lowerCAmelCase_ = '''facebook/blenderbot-400M-distill''' @cached_property def lowerCAmelCase ( self ) -> Dict: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase ( self ) -> int: _snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCAmelCase ( self ) -> Dict: _snake_case = self.tokenizer(self.src_text , return_tensors='tf' ) _snake_case = self.model.generate( model_inputs.input_ids , ) _snake_case = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
295
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
1
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowercase__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase : Any = fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , _UpperCAmelCase ).groups()[0] class a__ ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Tuple=None, lowerCAmelCase : List[Any]=None ) -> Optional[Any]: lowercase : str = file_names lowercase : Optional[Any] = image_transform lowercase : int = label_to_id def __len__( self : List[Any] ) -> Any: return len(self.file_names ) def __getitem__( self : str, lowerCAmelCase : Optional[int] ) -> Optional[Any]: lowercase : List[Any] = self.file_names[idx] lowercase : Tuple = PIL.Image.open(lowerCAmelCase ) lowercase : Tuple = raw_image.convert('RGB' ) if self.image_transform is not None: lowercase : Optional[Any] = self.image_transform(lowerCAmelCase ) lowercase : Any = extract_label(lowerCAmelCase ) if self.label_to_id is not None: lowercase : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: '''simple docstring''' if args.with_tracking: lowercase : Optional[int] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowercase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase : Union[str, Any] = config['lr'] lowercase : Any = int(config['num_epochs'] ) lowercase : Union[str, Any] = int(config['seed'] ) lowercase : List[Any] = int(config['batch_size'] ) lowercase : str = config['image_size'] if not isinstance(_UpperCAmelCase , (list, tuple) ): lowercase : Dict = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowercase : Dict = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase : Dict = int(args.checkpointing_steps ) else: raise ValueError( f'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowercase : Tuple = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase : Optional[int] = os.path.split(_UpperCAmelCase )[-1].split('.' )[0] accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase ) # Grab all the image filenames lowercase : Optional[Any] = [os.path.join(args.data_dir , _UpperCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowercase : str = [extract_label(_UpperCAmelCase ) for fname in file_names] lowercase : List[Any] = list(set(_UpperCAmelCase ) ) id_to_label.sort() lowercase : Optional[Any] = {lbl: i for i, lbl in enumerate(_UpperCAmelCase )} # Set the seed before splitting the data. np.random.seed(_UpperCAmelCase ) torch.manual_seed(_UpperCAmelCase ) torch.cuda.manual_seed_all(_UpperCAmelCase ) # Split our filenames between train and validation lowercase : List[Any] = np.random.permutation(len(_UpperCAmelCase ) ) lowercase : Optional[Any] = int(0.8 * len(_UpperCAmelCase ) ) lowercase : int = random_perm[:cut] lowercase : Any = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase : Dict = Compose([RandomResizedCrop(_UpperCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) lowercase : List[Any] = PetsDataset( [file_names[i] for i in train_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # For evaluation, we use a deterministic Resize lowercase : List[Any] = Compose([Resize(_UpperCAmelCase ), ToTensor()] ) lowercase : List[str] = PetsDataset([file_names[i] for i in eval_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase ) # Instantiate dataloaders. lowercase : Dict = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) lowercase : Any = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase : List[Any] = create_model('resnet50d' , pretrained=_UpperCAmelCase , num_classes=len(_UpperCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase : Union[str, Any] = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase : Dict = False for param in model.get_classifier().parameters(): lowercase : Dict = True # We normalize the batches of images to be a bit faster. lowercase : int = torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowercase : Dict = torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase : Any = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowercase : List[Any] = OneCycleLR(optimizer=_UpperCAmelCase , max_lr=_UpperCAmelCase , epochs=_UpperCAmelCase , steps_per_epoch=len(_UpperCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase : Optional[int] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase : Tuple = 0 # We also need to keep track of the starting epoch so files are named properly lowercase : List[str] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowercase : Any = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase : Dict = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase : Any = os.path.splitext(_UpperCAmelCase )[0] if "epoch" in training_difference: lowercase : List[Any] = int(training_difference.replace('epoch_' , '' ) ) + 1 lowercase : List[Any] = None else: lowercase : Optional[Any] = int(training_difference.replace('step_' , '' ) ) lowercase : int = resume_step // len(_UpperCAmelCase ) resume_step -= starting_epoch * len(_UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() if args.with_tracking: lowercase : str = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase : Any = accelerator.skip_first_batches(_UpperCAmelCase , _UpperCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase : Union[str, Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : Any = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : List[str] = (batch['image'] - mean) / std lowercase : Union[str, Any] = model(_UpperCAmelCase ) lowercase : Optional[int] = torch.nn.functional.cross_entropy(_UpperCAmelCase , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowercase : Union[str, Any] = f'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase : Optional[Any] = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) model.eval() lowercase : int = 0 lowercase : List[Any] = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase : List[str] = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase : Optional[Any] = (batch['image'] - mean) / std with torch.no_grad(): lowercase : int = model(_UpperCAmelCase ) lowercase : Tuple = outputs.argmax(dim=-1 ) lowercase , lowercase : Optional[Any] = accelerator.gather_for_metrics((predictions, batch['label']) ) lowercase : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase : List[str] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}: {1_00 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { 'accuracy': 1_00 * eval_metric, 'train_loss': total_loss.item() / len(_UpperCAmelCase ), 'epoch': epoch, } , step=_UpperCAmelCase , ) if checkpointing_steps == "epoch": lowercase : str = f'''epoch_{epoch}''' if args.output_dir is not None: lowercase : Any = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) if args.with_tracking: accelerator.end_training() def lowercase__ ( ) -> Tuple: '''simple docstring''' lowercase : str = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=_UpperCAmelCase , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=_UpperCAmelCase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowercase : int = parser.parse_args() lowercase : List[Any] = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 2_24} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
255
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase: List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Union[str, Any] = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase: Optional[int] = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _UpperCamelCase: Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
255
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : str ) -> str: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =1 A__ : Optional[Any] =3 A__ : int =(32, 32) A__ : Union[str, Any] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase_ ) return image @property def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) A__ : Union[str, Any] =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=lowerCAmelCase_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ : int =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) A__ : Any =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) return CLIPTextModel(lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Optional[int] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Dict =self.dummy_cond_unet_upscale A__ : List[str] =DDPMScheduler() A__ : Union[str, Any] =DDIMScheduler(prediction_type="""v_prediction""" ) A__ : Union[str, Any] =self.dummy_vae A__ : Any =self.dummy_text_encoder A__ : Tuple =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : List[Any] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Tuple =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A__ : int =StableDiffusionUpscalePipeline( unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , max_noise_level=3_50 , ) A__ : int =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger""" A__ : List[str] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : Union[str, Any] =sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) A__ : List[Any] =output.images A__ : Dict =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : Union[str, Any] =sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase_ , )[0] A__ : int =image[0, -3:, -3:, -1] A__ : Dict =image_from_tuple[0, -3:, -3:, -1] A__ : Optional[int] =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A__ : int =np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Optional[int] =self.dummy_cond_unet_upscale A__ : Optional[int] =DDPMScheduler() A__ : List[Any] =DDIMScheduler(prediction_type="""v_prediction""" ) A__ : List[Any] =self.dummy_vae A__ : Dict =self.dummy_text_encoder A__ : Union[str, Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : List[str] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A__ : Union[str, Any] =StableDiffusionUpscalePipeline( unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , max_noise_level=3_50 , ) A__ : Tuple =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger""" A__ : Optional[Any] =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) A__ : List[Any] =output.images assert image.shape[0] == 2 A__ : Optional[int] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : Optional[int] =sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) A__ : Union[str, Any] =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Any =self.dummy_cond_unet_upscale A__ : Any =DDPMScheduler() A__ : Optional[Any] =DDIMScheduler(prediction_type="""v_prediction""" ) A__ : Tuple =self.dummy_vae A__ : str =self.dummy_text_encoder A__ : List[str] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Optional[Any] =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : str =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A__ : List[str] =unet.half() A__ : List[str] =text_encoder.half() # make sure here that pndm scheduler skips prk A__ : List[Any] =StableDiffusionUpscalePipeline( unet=lowerCAmelCase_ , low_res_scheduler=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , max_noise_level=3_50 , ) A__ : int =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Any ="""A painting of a squirrel eating a burger""" A__ : Tuple =torch.manual_seed(0 ) A__ : Tuple =sd_pipe( [prompt] , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type="""np""" , ).images A__ : int =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A__ : List[str] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) A__ : Optional[Any] ="""stabilityai/stable-diffusion-x4-upscaler""" A__ : Tuple =StableDiffusionUpscalePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[int] ="""a cat sitting on a park bench""" A__ : Optional[int] =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : Any =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Tuple =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A__ : Tuple =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) A__ : List[Any] ="""stabilityai/stable-diffusion-x4-upscaler""" A__ : Any =StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict ="""a cat sitting on a park bench""" A__ : Union[str, Any] =torch.manual_seed(0 ) A__ : Union[str, Any] =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , output_type="""np""" , ) A__ : str =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : int ) -> str: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : int =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) A__ : Union[str, Any] ="""stabilityai/stable-diffusion-x4-upscaler""" A__ : Optional[int] =StableDiffusionUpscalePipeline.from_pretrained( lowerCAmelCase_ , torch_dtype=torch.floataa , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : Dict ="""a cat sitting on a park bench""" A__ : int =torch.manual_seed(0 ) A__ : Optional[Any] =pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , output_type="""np""" , ) A__ : Any =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
353
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if tokenize_kwargs is None: A__ : List[Any] ={} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) A__ : str =truncation A__ : Optional[int] =tokenize_kwargs A__ : List[Any] ={} if return_tensors is not None: A__ : Any =return_tensors return preprocess_params, {}, postprocess_params def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Dict ) -> Dict[str, GenericTensor]: '''simple docstring''' A__ : List[str] =self.framework A__ : Union[str, Any] =self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) return model_inputs def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.model(**lowerCAmelCase_ ) return model_outputs def lowercase__ ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False ) -> List[Any]: '''simple docstring''' # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self : int , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return super().__call__(*lowerCAmelCase_ , **lowerCAmelCase_ )
136
0
'''simple docstring''' import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : List[str]=5_6 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=9_9 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : Union[str, Any]="gelu_new" , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[str]=5_1_2 , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Any="block_sparse" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Dict=3 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Optional[int] = batch_size __SCREAMING_SNAKE_CASE : Optional[Any] = seq_length __SCREAMING_SNAKE_CASE : str = is_training __SCREAMING_SNAKE_CASE : Dict = use_attention_mask __SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids __SCREAMING_SNAKE_CASE : List[Any] = use_labels __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : str = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : int = max_position_embeddings __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : List[Any] = num_choices __SCREAMING_SNAKE_CASE : Tuple = rescale_embeddings __SCREAMING_SNAKE_CASE : Dict = attention_type __SCREAMING_SNAKE_CASE : Dict = use_bias __SCREAMING_SNAKE_CASE : List[Any] = block_size __SCREAMING_SNAKE_CASE : Dict = num_random_blocks def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None if self.use_attention_mask: __SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : List[str] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : int = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : List[str] = config_and_inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class _UpperCamelCase ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) _A : Any = False _A : str = False def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self : int ): """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self : Tuple ): """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" super().test_hidden_states_output() @slow def UpperCamelCase__ ( self : str ): """simple docstring""" for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Tuple ): return model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("""JIT Enabled""" ): __SCREAMING_SNAKE_CASE : str = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : Dict = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]=1E-5 , lowerCAmelCase__ : Tuple="outputs" , lowerCAmelCase__ : Any=None ): """simple docstring""" if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
112
import math def snake_case_ ( snake_case , snake_case ) -> float: return math.pow(snake_case , 2 ) - a def snake_case_ ( snake_case ) -> float: return 2 * x def snake_case_ ( snake_case ) -> float: lowercase__: Dict = 2.0 while start <= a: lowercase__: str = math.pow(snake_case , 2 ) return start def snake_case_ ( snake_case , snake_case = 99_99 , snake_case = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: if a < 0: raise ValueError('math domain error' ) lowercase__: Tuple = get_initial_point(snake_case ) for _ in range(snake_case ): lowercase__: List[Any] = value lowercase__: Any = value - fx(snake_case , snake_case ) / fx_derivative(snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
196
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case ( UpperCAmelCase ): def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : Dict = tempfile.mkdtemp() a : Tuple = 8 # DPR tok a : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] a : Union[str, Any] = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(A , exist_ok=A ) a : Optional[Any] = os.path.join(A , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok a : int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] a : List[Any] = dict(zip(A , range(len(A ) ) ) ) a : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] a : List[str] = {'unk_token': '<unk>'} a : List[Any] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(A , exist_ok=A ) a : List[Any] = os.path.join(A , BART_VOCAB_FILES_NAMES['vocab_file'] ) a : Tuple = os.path.join(A , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : Optional[int] = self.get_dummy_dataset() a : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: a : str = dataset a : Optional[int] = RagRetriever( A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCamelCase__ ( self : Optional[Any] , A : bool ): '''simple docstring''' a : Tuple = self.get_dummy_dataset() a : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: a : Any = os.path.join(self.tmpdirname , 'dataset' ) a : str = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset a : int = RagRetriever( A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: a : Dict = RagRetriever( A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , A ) , ) return retriever def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Any = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) a : List[str] = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) a : Any = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) a : Union[str, Any] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(A , open(A , 'wb' ) ) a : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) a : List[str] = RagRetriever( A , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : Union[str, Any] = 1 a : Tuple = self.get_dummy_canonical_hf_index_retriever() a : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Dict = retriever.retrieve(A , n_docs=A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : Dict = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: a : Optional[int] = self.get_dummy_dataset() retriever.save_pretrained(A ) a : Dict = RagRetriever.from_pretrained(A ) self.assertIsInstance(A , A ) a : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Optional[int] = retriever.retrieve(A , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : int = 1 a : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=A ) a : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : List[str] = retriever.retrieve(A , n_docs=A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' a : str = self.get_dummy_custom_hf_index_retriever(from_disk=A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(A ) a : Dict = RagRetriever.from_pretrained(A ) self.assertIsInstance(A , A ) a : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Union[str, Any] = retriever.retrieve(A , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' a : Tuple = 1 a : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=A ) a : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Dict = retriever.retrieve(A , n_docs=A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , A ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=A ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(A ) a : Dict = RagRetriever.from_pretrained(A ) self.assertIsInstance(A , A ) a : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : List[str] = retriever.retrieve(A , n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' a : Any = 1 a : Union[str, Any] = self.get_dummy_legacy_index_retriever() a : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Optional[Any] = retriever.retrieve(A , n_docs=A ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(A ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , A ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' a : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(A ) a : int = RagRetriever.from_pretrained(A ) self.assertIsInstance(A , A ) a : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Dict = retriever.retrieve(A , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase__ ( self : Any ): '''simple docstring''' import torch a : Tuple = 1 a : str = self.get_dummy_canonical_hf_index_retriever() a : List[str] = [[5, 7], [1_0, 1_1]] a : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Dict = retriever(A , A , prefix=retriever.config.generator.prefix , n_docs=A ) a : Any = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(A , A ) self.assertIsInstance(A , A ) self.assertIsInstance(A , np.ndarray ) a : Union[str, Any] = retriever( A , A , prefix=retriever.config.generator.prefix , n_docs=A , return_tensors='pt' , ) a : Dict = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(A , torch.Tensor ) self.assertIsInstance(A , torch.Tensor ) self.assertIsInstance(A , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() a : int = 1 a : Any = self.get_dummy_custom_hf_index_retriever(from_disk=A ) retriever.set_ctx_encoder_tokenizer(A ) a : Any = [[5, 7], [1_0, 1_1]] a : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) a : Optional[Any] = retriever(A , A , prefix=retriever.config.generator.prefix , n_docs=A ) self.assertEqual( len(A ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , A ) # check for doc token related keys in dictionary.
357
"""simple docstring""" import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class snake_case ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Optional[int] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) a : int = AutoTokenizer.from_pretrained('xlm-roberta-base' ) a : int = 'The dog is cute and lives in the garden house' a : List[Any] = jnp.array([tokenizer.encode(A )] ) a : int = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim a : Dict = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) a : Any = model(A )['last_hidden_state'] self.assertEqual(output.shape , A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , A , atol=1E-3 ) )
186
0
from __future__ import annotations from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: if not postfix_notation: return 0 lowercase : int = {"""+""", """-""", """*""", """/"""} lowercase : list[Any] = [] for token in postfix_notation: if token in operations: lowercase , lowercase : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
20
'''simple docstring''' from collections import defaultdict class lowercase : """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :List[Any] = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 UpperCamelCase__ :Union[str, Any] = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) ) ] UpperCamelCase__ :str = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 UpperCamelCase__ :Optional[int] = (1 << len(UpperCamelCase_ )) - 1 def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement UpperCamelCase__ :str = self.count_ways_until(UpperCamelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. UpperCamelCase__ :Optional[int] = total_ways_util return self.dp[mask][task_no] def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): for j in task_performed[i]: self.task[j].append(UpperCamelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
97
0
import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _snake_case ( _snake_case : Any ) -> List[str]: '''simple docstring''' _A = botoa.client('iam' ) _A = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A_ , AssumeRolePolicyDocument=json.dumps(A_ , indent=2 ) ) _A = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=A_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def _snake_case ( _snake_case : Any ) -> List[Any]: '''simple docstring''' _A = botoa.client('iam' ) return iam_client.get_role(RoleName=A_ )["Role"]["Arn"] def _snake_case ( ) -> Any: '''simple docstring''' _A = _ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , A_ , ) _A = None if credentials_configuration == 0: _A = _ask_field('Enter your AWS Profile name: [default] ' , default='default' ) _A = aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) _A = _ask_field('AWS Access Key ID: ' ) _A = aws_access_key_id _A = _ask_field('AWS Secret Access Key: ' ) _A = aws_secret_access_key _A = _ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) _A = aws_region _A = _ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , A_ , ) if role_management == 0: _A = _ask_field('Enter your IAM role name: ' ) else: _A = '''accelerate_sagemaker_execution_role''' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A_ ) _A = _ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) _A = None if is_custom_docker_image: _A = _ask_field('Enter your Docker image: ' , lambda _snake_case : str(A_ ).lower() ) _A = _ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) _A = None if is_sagemaker_inputs_enabled: _A = _ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda _snake_case : str(A_ ).lower() , ) _A = _ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) _A = None if is_sagemaker_metrics_enabled: _A = _ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda _snake_case : str(A_ ).lower() , ) _A = _ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) _A = {} _A = _ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) if use_dynamo: _A = '''dynamo_''' _A = _ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _A = _ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) if use_custom_options: _A = _ask_options( 'Which mode do you want to use?' , A_ , lambda _snake_case : TORCH_DYNAMO_MODES[int(A_ )] , default='default' , ) _A = _ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) _A = _ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=A_ , error_message='Please enter yes or no.' , ) _A = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: _A = _ask_options( A_ , A_ , lambda _snake_case : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _A = _ask_field(A_ , lambda _snake_case : str(A_ ).lower() , default='ml.p3.2xlarge' ) _A = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _A = _ask_field( 'How many machines do you want use? [1]: ' , A_ , default=1 , ) _A = _ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=A_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A_ , use_cpu=A_ , dynamo_config=A_ , eca_instance_type=A_ , profile=A_ , region=A_ , iam_role_name=A_ , mixed_precision=A_ , num_machines=A_ , sagemaker_inputs_file=A_ , sagemaker_metrics_file=A_ , )
358
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : "DiagonalGaussianDistribution" class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[Any] = True @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase : Tuple[int] = (64,) , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = "silu" , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : float = 0.1_8215 , ): super().__init__() # pass init params to Encoder _A = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) # pass init params to Decoder _A = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , act_fn=_UpperCAmelCase , ) _A = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _A = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1 ) _A = False _A = False # only relevant if vae tiling is enabled _A = self.config.sample_size _A = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _A = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _A = 0.25 def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ): if isinstance(_UpperCAmelCase , (Encoder, Decoder) ): _A = value def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : bool = True ): _A = use_tiling def lowerCAmelCase_ ( self : Union[str, Any] ): self.enable_tiling(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = True def lowerCAmelCase_ ( self : str ): _A = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self : str ): _A = {} def fn_recursive_add_processors(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : Dict[str, AttentionProcessor] ): if hasattr(_UpperCAmelCase , 'set_processor' ): _A = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return processors def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): _A = len(self.attn_processors.keys() ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_UpperCAmelCase )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_UpperCAmelCase : str , _UpperCAmelCase : torch.nn.Module , _UpperCAmelCase : int ): if hasattr(_UpperCAmelCase , 'set_processor' ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): module.set_processor(_UpperCAmelCase ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _UpperCAmelCase , _UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: _A = [self.encoder(_UpperCAmelCase ) for x_slice in x.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCAmelCase , return_dict=_UpperCAmelCase ) _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) @apply_forward_hook def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): if self.use_slicing and z.shape[0] > 1: _A = [self._decode(_UpperCAmelCase ).sample for z_slice in z.split(1 )] _A = torch.cat(_UpperCAmelCase ) else: _A = self._decode(_UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): _A = min(a.shape[2] , b.shape[2] , _UpperCAmelCase ) for y in range(_UpperCAmelCase ): _A = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): _A = min(a.shape[3] , b.shape[3] , _UpperCAmelCase ) for x in range(_UpperCAmelCase ): _A = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_latent_min_size * self.tile_overlap_factor ) _A = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A = [] for i in range(0 , x.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , x.shape[3] , _UpperCAmelCase ): _A = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A = self.encoder(_UpperCAmelCase ) _A = self.quant_conv(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) _A = DiagonalGaussianDistribution(_UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ): _A = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _A = int(self.tile_sample_min_size * self.tile_overlap_factor ) _A = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A = [] for i in range(0 , z.shape[2] , _UpperCAmelCase ): _A = [] for j in range(0 , z.shape[3] , _UpperCAmelCase ): _A = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A = self.post_quant_conv(_UpperCAmelCase ) _A = self.decoder(_UpperCAmelCase ) row.append(_UpperCAmelCase ) rows.append(_UpperCAmelCase ) _A = [] for i, row in enumerate(_UpperCAmelCase ): _A = [] for j, tile in enumerate(_UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A = self.blend_v(rows[i - 1][j] , _UpperCAmelCase , _UpperCAmelCase ) if j > 0: _A = self.blend_h(row[j - 1] , _UpperCAmelCase , _UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCAmelCase , dim=3 ) ) _A = torch.cat(_UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[torch.Generator] = None , ): _A = sample _A = self.encode(_UpperCAmelCase ).latent_dist if sample_posterior: _A = posterior.sample(generator=_UpperCAmelCase ) else: _A = posterior.mode() _A = self.decode(_UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase )
271
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: if any(not isinstance(a__ , a__ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(a__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
212
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->Any: SCREAMING_SNAKE_CASE : str = scheduler SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(_lowerCamelCase , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Union[str, Any] = split_batches SCREAMING_SNAKE_CASE : List[Any] = step_with_optimizer SCREAMING_SNAKE_CASE : List[str] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : List[str] = AcceleratorState().num_processes for _ in range(_lowerCamelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) else: self.scheduler.step(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->List[str]: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: self.scheduler.load_state_dict(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: return self.scheduler.print_lr(*_lowerCamelCase , **_lowerCamelCase )
313
0
from __future__ import annotations from typing import Generic, TypeVar _UpperCAmelCase : str = TypeVar("""T""") class lowercase ( Generic[T] ): def __init__( self , snake_case ): snake_case_ = data snake_case_ = self snake_case_ = 0 class lowercase ( Generic[T] ): def __init__( self ): # map from node name to the node object snake_case_ = {} def a ( self , snake_case ): # create a new set with x as its member snake_case_ = DisjointSetTreeNode(snake_case ) def a ( self , snake_case ): # find the set x belongs to (with path-compression) snake_case_ = self.map[data] if elem_ref != elem_ref.parent: snake_case_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def a ( self , snake_case , snake_case ): # helper function for union operation if nodea.rank > nodea.rank: snake_case_ = nodea else: snake_case_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def a ( self , snake_case , snake_case ): # merge 2 disjoint sets self.link(self.find_set(snake_case ) , self.find_set(snake_case ) ) class lowercase ( Generic[T] ): def __init__( self ): # connections: map from the node to the neighbouring nodes (with weights) snake_case_ = {} def a ( self , snake_case ): # add a node ONLY if its not present in the graph if node not in self.connections: snake_case_ = {} def a ( self , snake_case , snake_case , snake_case ): # add an edge with the given weight self.add_node(snake_case ) self.add_node(snake_case ) snake_case_ = weight snake_case_ = weight def a ( self ): snake_case_ = [] snake_case_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case : x[2] ) # creating the disjoint set snake_case_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(snake_case ) # MST generation snake_case_ = 0 snake_case_ = 0 snake_case_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case_ , snake_case_ , snake_case_ = edges[index] index += 1 snake_case_ = disjoint_set.find_set(snake_case ) snake_case_ = disjoint_set.find_set(snake_case ) if parent_u != parent_v: num_edges += 1 graph.add_edge(snake_case , snake_case , snake_case ) disjoint_set.union(snake_case , snake_case ) return graph
200
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) snake_case_ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(snake_case ) from datasets import load_dataset snake_case_ = load_dataset('nielsr/rvlcdip-demo' ) snake_case_ = dataset['train'][0]['image'].convert('RGB' ) snake_case_ = image_processor(snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): snake_case_ = model(**snake_case ) snake_case_ = outputs.logits snake_case_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , snake_case ) snake_case_ = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=snake_case , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case , atol=1e-4 ) )
200
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __A : '''simple docstring''' lowerCAmelCase : List[Any] = MBartConfig lowerCAmelCase : int = {} lowerCAmelCase : Optional[int] = "gelu" def __init__( self : str ,_snake_case : Any ,_snake_case : Optional[int]=13 ,_snake_case : str=7 ,_snake_case : Any=True ,_snake_case : Union[str, Any]=False ,_snake_case : List[str]=99 ,_snake_case : Any=32 ,_snake_case : Optional[int]=2 ,_snake_case : Dict=4 ,_snake_case : str=37 ,_snake_case : Optional[int]=0.1 ,_snake_case : Dict=0.1 ,_snake_case : List[str]=20 ,_snake_case : Optional[Any]=2 ,_snake_case : Optional[Any]=1 ,_snake_case : Optional[int]=0 ,) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Union[str, Any] = seq_length lowercase__ : Tuple = is_training lowercase__ : Optional[Any] = use_labels lowercase__ : Any = vocab_size lowercase__ : Tuple = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Any = intermediate_size lowercase__ : Any = hidden_dropout_prob lowercase__ : Optional[int] = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : Union[str, Any] = eos_token_id lowercase__ : List[Any] = pad_token_id lowercase__ : Tuple = bos_token_id def UpperCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) lowercase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) lowercase__ : Optional[int] = tf.concat([input_ids, eos_tensor] ,axis=1 ) lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase__ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) lowercase__ : Tuple = prepare_mbart_inputs_dict(_snake_case ,_snake_case ,_snake_case ) return config, inputs_dict def UpperCAmelCase ( self : int ,_snake_case : Dict ,_snake_case : Optional[Any] ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = TFMBartModel(config=_snake_case ).get_decoder() lowercase__ : List[str] = inputs_dict['''input_ids'''] lowercase__ : Dict = input_ids[:1, :] lowercase__ : Any = inputs_dict['''attention_mask'''][:1, :] lowercase__ : List[Any] = inputs_dict['''head_mask'''] lowercase__ : List[Any] = 1 # first forward pass lowercase__ : Any = model(_snake_case ,attention_mask=_snake_case ,head_mask=_snake_case ,use_cache=_snake_case ) lowercase__ , lowercase__ : int = outputs.to_tuple() lowercase__ : Dict = past_key_values[1] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> int: if attention_mask is None: lowercase__ : int = tf.cast(tf.math.not_equal(__lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase__ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase__ : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __A ( A_ ,A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Optional[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase : Any = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase : Optional[Any] = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase : Optional[int] = True lowerCAmelCase : Optional[Any] = False lowerCAmelCase : str = False def UpperCAmelCase ( self : Optional[Any] ,_snake_case : List[Any] ,_snake_case : Dict ,_snake_case : int ,_snake_case : List[Any] ,_snake_case : List[Any] ) -> List[str]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase ( self : int ) -> List[str]: """simple docstring""" lowercase__ : Dict = TFMBartModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self ,config_class=_snake_case ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_snake_case ) @require_sentencepiece @require_tokenizers @require_tf class __A ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase : Dict = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase : str = "facebook/mbart-large-en-ro" @cached_property def UpperCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase ( self : List[Any] ,**_snake_case : str ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = self.translate_src_text(**_snake_case ) self.assertListEqual(self.expected_text ,_snake_case ) def UpperCAmelCase ( self : Any ,**_snake_case : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : str = self.tokenizer(self.src_text ,**_snake_case ,return_tensors='''tf''' ) lowercase__ : Dict = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ) lowercase__ : List[str] = self.tokenizer.batch_decode(_snake_case ,skip_special_tokens=_snake_case ) return generated_words @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self._assert_generated_batch_equal_expected()
16
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : str = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
54
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Optional[Any] = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
159
def _UpperCAmelCase (UpperCamelCase_ : str , UpperCamelCase_ : str ): '''simple docstring''' _lowerCAmelCase : str = len(UpperCamelCase_ ) + 1 _lowerCAmelCase : List[Any] = len(UpperCamelCase_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _lowerCAmelCase : List[Any] = [[0 for i in range(UpperCamelCase_ )] for j in range(UpperCamelCase_ )] # since string of zero length match pattern of zero length _lowerCAmelCase : Optional[int] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , UpperCamelCase_ ): _lowerCAmelCase : Optional[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , UpperCamelCase_ ): _lowerCAmelCase : Tuple = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , UpperCamelCase_ ): for j in range(1 , UpperCamelCase_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _lowerCAmelCase : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _lowerCAmelCase : List[str] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _lowerCAmelCase : int = dp[i - 1][j] else: _lowerCAmelCase : List[str] = 0 else: _lowerCAmelCase : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCamelCase : Any = "aab" _lowerCamelCase : List[str] = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'''{input_string} matches the given pattern {pattern}''') else: print(F'''{input_string} does not match with the given pattern {pattern}''')
159
1
"""simple docstring""" import numpy as np def lowerCamelCase_ (UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : float = 1E-1_2 , UpperCamelCase__ : int = 100 , ): assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[1] # Ensure proper dimensionality. assert np.shape(UpperCamelCase__ )[0] == np.shape(UpperCamelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCamelCase__ ) == np.iscomplexobj(UpperCamelCase__ ) _UpperCAmelCase : Tuple = np.iscomplexobj(UpperCamelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCamelCase__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : int = 0 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = 1E1_2 while not convergence: # Multiple matrix by the vector. _UpperCAmelCase : Optional[Any] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) # Normalize the resulting output vector. _UpperCAmelCase : Optional[Any] = w / np.linalg.norm(UpperCamelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCAmelCase : str = vector.conj().T if is_complex else vector.T _UpperCAmelCase : Any = np.dot(UpperCamelCase__ , np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # Check convergence. _UpperCAmelCase : Optional[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCAmelCase : Tuple = True _UpperCAmelCase : Optional[int] = lambda_ if is_complex: _UpperCAmelCase : Union[str, Any] = np.real(lambda_ ) return lambda_, vector def lowerCamelCase_ (): _UpperCAmelCase : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCAmelCase : List[str] = np.array([41, 4, 20] ) _UpperCAmelCase : int = real_input_matrix.astype(np.complexaaa ) _UpperCAmelCase : Optional[Any] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCAmelCase : str = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCAmelCase : List[str] = real_input_matrix _UpperCAmelCase : Optional[int] = real_vector elif problem_type == "complex": _UpperCAmelCase : str = complex_input_matrix _UpperCAmelCase : Dict = complex_vector # Our implementation. _UpperCAmelCase , _UpperCAmelCase : str = power_iteration(UpperCamelCase__ , UpperCamelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCAmelCase , _UpperCAmelCase : Optional[int] = np.linalg.eigh(UpperCamelCase__ ) # Last eigenvalue is the maximum one. _UpperCAmelCase : Union[str, Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCAmelCase : List[str] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCamelCase__ ) - np.abs(UpperCamelCase__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
263
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase :str = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Optional[int] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :str = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _lowerCAmelCase :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
1
import os import pytest from transformers.dynamic_module_utils import get_imports __a = ''' import os ''' __a = ''' def foo(): import os return False ''' __a = ''' def foo(): def bar(): if True: import os return False return bar() ''' __a = ''' import os try: import bar except ImportError: raise ValueError() ''' __a = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __a = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __a = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __a = ''' import os try: import bar except: raise ValueError() ''' __a = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __a = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __a = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''', _UpperCamelCase ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Optional[int]: """simple docstring""" lowercase : str = os.path.join(_UpperCamelCase, '''test_file.py''' ) with open(_UpperCamelCase, '''w''' ) as _tmp_file: _tmp_file.write(_UpperCamelCase ) lowercase : str = get_imports(_UpperCamelCase ) assert parsed_imports == ["os"]
350
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCamelCase ( self ): lowercase : int = 0 @slow def __lowerCamelCase ( self ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): lowercase : Optional[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(SCREAMING_SNAKE_CASE__ ) , 0 ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Check that tokenizer_type ≠ model_type lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.txt''' ) ) lowercase : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''bert''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(SCREAMING_SNAKE_CASE__ , '''merges.txt''' ) ) lowercase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , tokenizer_type='''gpt2''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: lowercase : Union[str, Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) else: self.assertEqual(tokenizer.do_lower_case , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __lowerCamelCase ( self ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): lowercase : str = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def __lowerCamelCase ( self ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai lowercase : Any = TOKENIZER_MAPPING.values() lowercase : Tuple = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , SCREAMING_SNAKE_CASE__ ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = '''Hello, world. How are you?''' lowercase : Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def __lowerCamelCase ( self ): lowercase : int = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def __lowerCamelCase ( self ): lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Any = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): # Check we can load the tokenizer config of an online model. lowercase : Optional[Any] = get_tokenizer_config('''bert-base-cased''' ) lowercase : str = config.pop('''_commit_hash''' , SCREAMING_SNAKE_CASE__ ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(SCREAMING_SNAKE_CASE__ , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. lowercase : Union[str, Any] = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = get_tokenizer_config(SCREAMING_SNAKE_CASE__ ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) lowercase : int = CustomTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : str = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __lowerCamelCase ( self ): try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) # Can register in two steps AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) bert_tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = CustomTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowercase : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def __lowerCamelCase ( self ): class __SCREAMING_SNAKE_CASE ( A__ ): A : str = False class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = NewTokenizer A : Optional[int] = False try: AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , slow_tokenizer_class=SCREAMING_SNAKE_CASE__ ) AutoTokenizer.register(SCREAMING_SNAKE_CASE__ , fast_tokenizer_class=SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. lowercase : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) lowercase : List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub lowercase : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) lowercase : List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __lowerCamelCase ( self ): lowercase : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version lowercase : int = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=SCREAMING_SNAKE_CASE__ , use_fast=SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , '''bert-base is not a local folder and is not a valid model identifier''' ): lowercase : List[Any] = AutoTokenizer.from_pretrained('''bert-base''' ) def __lowerCamelCase ( self ): with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='''aaaaaa''' ) def __lowerCamelCase ( self ): # Make sure we have cached the tokenizer. lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: lowercase : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
173
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = torch.device("cpu") def lowerCAmelCase__ ( ) -> int: """simple docstring""" snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0, 8.8_6_8_5e-0_1, 2.4_3_6_0e-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6e-0_1, 2.3_4_7_8e-0_1, -1.6_9_6_3e0_0, -1.7_3_8_1e0_0, -8.6_3_3_7e-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8e-0_1, -4.7_4_2_9e-0_1, -1.0_8_9_7e0_0, -1.0_2_4_8e0_0, 3.5_5_2_3e-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0e-0_1, 2.4_2_1_1e-0_1, -6.0_1_8_5e-0_1, -8.2_7_8_9e-0_1, -6.0_4_4_6e-0_2] ) def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> List[str]: """simple docstring""" snake_case = dct.pop(_UpperCamelCase ) snake_case = val def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case = [] for k in state_dict.keys(): snake_case = k if ".pwconv" in k: snake_case = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: snake_case = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: snake_case = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: snake_case = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: snake_case = k_new.split('.' ) if ls[2].isdigit(): snake_case = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: snake_case = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int ) -> int: """simple docstring""" snake_case = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case = 1_0_0_0 snake_case = 'huggingface/label-files' snake_case = 'imagenet-1k-id2label.json' snake_case = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) snake_case = {int(_UpperCamelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case = [3, 3, 6, 4] snake_case = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": snake_case = [3, 3, 9, 6] snake_case = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": snake_case = [4, 3, 1_0, 5] snake_case = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": snake_case = [4, 4, 1_2, 6] snake_case = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): snake_case = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='cpu' , check_hash=_UpperCamelCase ) else: snake_case = torch.load(_UpperCamelCase , map_location='cpu' ) snake_case = checkpoint snake_case = create_rename_keys(_UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model snake_case = SwiftFormerForImageClassification(_UpperCamelCase ).eval() hf_model.load_state_dict(_UpperCamelCase ) # prepare test inputs snake_case = prepare_img() snake_case = ViTImageProcessor.from_pretrained('preprocessor_config' ) snake_case = processor(images=_UpperCamelCase , return_tensors='pt' ) # compare outputs from both models snake_case = get_expected_output(_UpperCamelCase ) snake_case = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCamelCase , atol=1e-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
150
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } SCREAMING_SNAKE_CASE__ = {"mgp-str": 27} class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase , lowerCAmelCase="[GO]" , lowerCAmelCase="[GO]" , lowerCAmelCase="[s]" , lowerCAmelCase="[GO]" , **lowerCAmelCase ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: snake_case = json.load(lowerCAmelCase ) snake_case = {v: k for k, v in self.vocab.items()} @property def snake_case ( self ): """simple docstring""" return len(self.vocab ) def snake_case ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = [] for s in text: char_tokens.extend(lowerCAmelCase ) return char_tokens def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token ) ) def snake_case ( self , lowerCAmelCase ): """simple docstring""" return self.decoder.get(lowerCAmelCase ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase ) ) return snake_case = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) return (vocab_file,)
150
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _A = logging.getLogger(__name__) @dataclass class lowerCamelCase : UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether tp freeze the encoder."} ) UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowerCamelCase : UpperCAmelCase__ : str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase__ : Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) UpperCAmelCase__ : Optional[int] = field( default=10_24 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=1_28 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=1_42 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) UpperCAmelCase__ : Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) UpperCAmelCase__ : Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "Source language id for translation."} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "Target language id for translation."} ) UpperCAmelCase__ : Optional[int] = field(default=A_ , metadata={"help": "# num_beams to use for evaluation."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def lowercase_ ( A__ , A__ , A__ ) -> Dict: """simple docstring""" logger.info(F'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(F' {key} = {metrics[key]}' ) save_json(A__ , os.path.join(A__ , F'{split}_results.json' ) ) def lowercase_ ( ) -> Tuple: """simple docstring""" snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case , snake_case , snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() check_output_dir(A__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , A__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(A__ , A__ , A__ ): assert hasattr(A__ , A__ ), F'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(A__ , A__ , getattr(A__ , A__ ) ) snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=A__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(A__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(A__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(A__ , A__ ): snake_case = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(A__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case = SeqaSeqDataset # Get datasets snake_case = ( dataset_class( A__ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) snake_case = ( dataset_class( A__ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case = ( dataset_class( A__ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case = ( build_compute_metrics_fn(data_args.task , A__ ) if training_args.predict_with_generate else None ) snake_case = SeqaSeqTrainer( model=A__ , args=A__ , data_args=A__ , train_dataset=A__ , eval_dataset=A__ , data_collator=SeqaSeqDataCollator( A__ , A__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=A__ , tokenizer=A__ , ) snake_case = {} # Training if training_args.do_train: logger.info("*** Train ***" ) snake_case = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case = train_result.metrics snake_case = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , A__ , training_args.output_dir ) all_metrics.update(A__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case = trainer.evaluate(metric_key_prefix="val" ) snake_case = data_args.n_val snake_case = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.do_predict: logger.info("*** Predict ***" ) snake_case = trainer.predict(test_dataset=A__ , metric_key_prefix="test" ) snake_case = test_output.metrics snake_case = data_args.n_test if trainer.is_world_process_zero(): snake_case = round(metrics["test_loss"] , 4 ) handle_metrics("test" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.predict_with_generate: snake_case = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) snake_case = lmap(str.strip , A__ ) write_txt_file(A__ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(A__ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowercase_ ( A__ ) -> Optional[Any]: """simple docstring""" main() if __name__ == "__main__": main()
360
def lowercase_ ( A__ = 1000 ) -> int: """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
137
0
"""simple docstring""" def _snake_case ( _snake_case : list ): def merge(_snake_case : list , _snake_case : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_snake_case ) <= 1: return collection lowerCAmelCase : Union[str, Any] = len(_snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() snake_case__ : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
60
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> str: """simple docstring""" with open(__snake_case ) as metadata_file: _UpperCamelCase = json.load(__snake_case ) _UpperCamelCase = LukeConfig(use_entity_aware_attention=__snake_case, **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _UpperCamelCase = torch.load(__snake_case, map_location='''cpu''' ) # Load the entity vocab file _UpperCamelCase = load_entity_vocab(__snake_case ) _UpperCamelCase = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase = AddedToken('''<ent>''', lstrip=__snake_case, rstrip=__snake_case ) _UpperCamelCase = AddedToken('''<ent2>''', lstrip=__snake_case, rstrip=__snake_case ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(__snake_case ) with open(os.path.join(__snake_case, LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ), '''w''' ) as f: json.dump(__snake_case, __snake_case ) _UpperCamelCase = LukeTokenizer.from_pretrained(__snake_case ) # Initialize the embeddings of the special tokens _UpperCamelCase = state_dict['''embeddings.word_embeddings.weight'''] _UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) _UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) _UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase = state_dict[prefix + matrix_name] _UpperCamelCase = state_dict[prefix + matrix_name] _UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase = state_dict['''entity_embeddings.entity_embeddings.weight'''] _UpperCamelCase = entity_emb[entity_vocab['''[MASK]''']] _UpperCamelCase = LukeModel(config=__snake_case ).eval() _UpperCamelCase , _UpperCamelCase = model.load_state_dict(__snake_case, strict=__snake_case ) if not (len(__snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'''Missing keys {", ".join(__snake_case )}. Expected only missing embeddings.position_ids''' ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' F''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' ) # Check outputs _UpperCamelCase = LukeTokenizer.from_pretrained(__snake_case, task='''entity_classification''' ) _UpperCamelCase = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) _UpperCamelCase = (39, 42) _UpperCamelCase = tokenizer(__snake_case, entity_spans=[span], add_prefix_space=__snake_case, return_tensors='''pt''' ) _UpperCamelCase = model(**__snake_case ) # Verify word hidden states if model_size == "large": _UpperCamelCase = torch.Size((1, 42, 10_24) ) _UpperCamelCase = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _UpperCamelCase = torch.Size((1, 42, 7_68) ) _UpperCamelCase = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], __snake_case, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _UpperCamelCase = torch.Size((1, 1, 10_24) ) _UpperCamelCase = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _UpperCamelCase = torch.Size((1, 1, 7_68) ) _UpperCamelCase = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], __snake_case, atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__snake_case ) ) model.save_pretrained(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = {} with open(__snake_case, '''r''', encoding='''utf-8''' ) as f: for index, line in enumerate(__snake_case ): _UpperCamelCase , _UpperCamelCase = line.rstrip().split('''\t''' ) _UpperCamelCase = index return entity_vocab if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _a = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
194
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase__ = logging.getLogger(__name__) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Optional[int]=None ): __lowercase = self.layer[current_layer](lowercase__ ,lowercase__ ,head_mask[current_layer] ) __lowercase = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ,lowercase__ : Tuple ): super().__init__(lowercase__ ) __lowercase = BertEncoderWithPabee(lowercase__ ) self.init_weights() __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Union[str, Any] ): __lowercase = threshold def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Union[str, Any] ): __lowercase = patience def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = 0 __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.inference_layers_num / self.inference_instances_num __lowercase = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowercase__ ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int=None ,lowercase__ : int=None ,lowercase__ : Optional[Any]=None ,lowercase__ : Dict=None ,lowercase__ : Optional[int]=None ,lowercase__ : List[str]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Tuple=None ,lowercase__ : List[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Optional[int]=False ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: __lowercase = input_ids.size() elif inputs_embeds is not None: __lowercase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) __lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowercase = torch.ones(lowercase__ ,device=lowercase__ ) if token_type_ids is None: __lowercase = torch.zeros(lowercase__ ,dtype=torch.long ,device=lowercase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowercase = self.get_extended_attention_mask(lowercase__ ,lowercase__ ,lowercase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __lowercase , __lowercase , __lowercase = encoder_hidden_states.size() __lowercase = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __lowercase = torch.ones(lowercase__ ,device=lowercase__ ) __lowercase = self.invert_attention_mask(lowercase__ ) else: __lowercase = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowercase = self.get_head_mask(lowercase__ ,self.config.num_hidden_layers ) __lowercase = self.embeddings( input_ids=lowercase__ ,position_ids=lowercase__ ,token_type_ids=lowercase__ ,inputs_embeds=lowercase__ ) __lowercase = embedding_output if self.training: __lowercase = [] for i in range(self.config.num_hidden_layers ): __lowercase = self.encoder.adaptive_forward( lowercase__ ,current_layer=lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ) __lowercase = self.pooler(lowercase__ ) __lowercase = output_layers[i](output_dropout(lowercase__ ) ) res.append(lowercase__ ) elif self.patience == 0: # Use all layers for inference __lowercase = self.encoder( lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ,encoder_hidden_states=lowercase__ ,encoder_attention_mask=lowercase__ ,) __lowercase = self.pooler(encoder_outputs[0] ) __lowercase = [output_layers[self.config.num_hidden_layers - 1](lowercase__ )] else: __lowercase = 0 __lowercase = None __lowercase = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __lowercase = self.encoder.adaptive_forward( lowercase__ ,current_layer=lowercase__ ,attention_mask=lowercase__ ,head_mask=lowercase__ ) __lowercase = self.pooler(lowercase__ ) __lowercase = output_layers[i](lowercase__ ) if regression: __lowercase = logits.detach() if patient_result is not None: __lowercase = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __lowercase = 0 else: __lowercase = logits.detach().argmax(dim=1 ) if patient_result is not None: __lowercase = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowercase__ ) ): patient_counter += 1 else: __lowercase = 0 __lowercase = logits if patient_counter == self.patience: break __lowercase = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , lowerCamelCase__ , ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : Optional[int] ): super().__init__(lowercase__ ) __lowercase = config.num_labels __lowercase = BertModelWithPabee(lowercase__ ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.ModuleList( [nn.Linear(config.hidden_size ,self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str=None ,lowercase__ : Any=None ,lowercase__ : str=None ,lowercase__ : Optional[Any]=None ,lowercase__ : Optional[Any]=None ,lowercase__ : Optional[int]=None ,lowercase__ : int=None ,): __lowercase = self.bert( input_ids=lowercase__ ,attention_mask=lowercase__ ,token_type_ids=lowercase__ ,position_ids=lowercase__ ,head_mask=lowercase__ ,inputs_embeds=lowercase__ ,output_dropout=self.dropout ,output_layers=self.classifiers ,regression=self.num_labels == 1 ,) __lowercase = (logits[-1],) if labels is not None: __lowercase = None __lowercase = 0 for ix, logits_item in enumerate(lowercase__ ): if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits_item.view(-1 ) ,labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits_item.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) if total_loss is None: __lowercase = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __lowercase = (total_loss / total_weights,) + outputs return outputs
365
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : str ,lowercase__ : List[str]=1_3 ,lowercase__ : str=7 ,lowercase__ : Tuple=True ,lowercase__ : Dict=True ,lowercase__ : str=True ,lowercase__ : Optional[Any]=True ,lowercase__ : List[str]=9_9 ,lowercase__ : int=[1, 1, 2] ,lowercase__ : int=1 ,lowercase__ : Tuple=3_2 ,lowercase__ : Union[str, Any]=4 ,lowercase__ : Tuple=8 ,lowercase__ : Any=3_7 ,lowercase__ : Union[str, Any]="gelu_new" ,lowercase__ : Tuple=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Union[str, Any]=5_1_2 ,lowercase__ : Dict=3 ,lowercase__ : Union[str, Any]=0.0_2 ,lowercase__ : Any=3 ,lowercase__ : Tuple=4 ,lowercase__ : Dict=None ,lowercase__ : List[Any]=False ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : str ,): __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,): __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,): __lowercase = TFFunnelForPreTraining(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,): __lowercase = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,): __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Tuple ,): __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : Any ,): __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,): __lowercase = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : int = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFFunnelModelTester(self ,base=lowercase__ ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
52
0
import math def lowerCamelCase_ ( lowerCamelCase__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( lowerCamelCase__ = 0.1 ): lowerCamelCase_ = 3 lowerCamelCase_ = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCamelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : str = {'vocab_file': 'spiece.model'} _lowerCamelCase : Optional[int] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } _lowerCamelCase : str = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Tuple = 1 _lowerCamelCase : int = 2 _lowerCamelCase : Dict = 3 _lowerCamelCase : Union[str, Any] = 4 class lowercase ( __UpperCAmelCase): __lowerCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Any = """left""" def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=False , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : str=False , _lowerCamelCase : Optional[Any]="<s>" , _lowerCamelCase : List[str]="</s>" , _lowerCamelCase : Union[str, Any]="<unk>" , _lowerCamelCase : List[Any]="<sep>" , _lowerCamelCase : str="<pad>" , _lowerCamelCase : Dict="<cls>" , _lowerCamelCase : str="<mask>" , _lowerCamelCase : Optional[int]=["<eop>", "<eod>"] , _lowerCamelCase : Optional[Dict[str, Any]] = None , **_lowerCamelCase : Union[str, Any] , ): """simple docstring""" A_ : Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token A_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) A_ : str = 3 A_ : Union[str, Any] = do_lower_case A_ : Tuple = remove_space A_ : int = keep_accents A_ : Optional[Any] = vocab_file A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def a_ ( self : int ): """simple docstring""" return len(self.sp_model ) def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): """simple docstring""" A_ : str = self.__dict__.copy() A_ : Tuple = None return state def __setstate__( self : Tuple , _lowerCamelCase : int ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : List[Any] = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a_ ( self : List[str] , _lowerCamelCase : Optional[int] ): """simple docstring""" if self.remove_space: A_ : str = ''' '''.join(inputs.strip().split() ) else: A_ : Any = inputs A_ : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: A_ : Any = unicodedata.normalize('''NFKD''' , _lowerCamelCase ) A_ : List[str] = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] ) if self.do_lower_case: A_ : str = outputs.lower() return outputs def a_ ( self : List[str] , _lowerCamelCase : str ): """simple docstring""" A_ : str = self.preprocess_text(_lowerCamelCase ) A_ : int = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) A_ : List[Any] = [] for piece in pieces: if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): A_ : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A_ : Tuple = cur_pieces[1:] else: A_ : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowerCamelCase ) else: new_pieces.append(_lowerCamelCase ) return new_pieces def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.PieceToId(_lowerCamelCase ) def a_ ( self : Any , _lowerCamelCase : List[Any] ): """simple docstring""" return self.sp_model.IdToPiece(_lowerCamelCase ) def a_ ( self : List[Any] , _lowerCamelCase : Any ): """simple docstring""" A_ : Any = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : bool = False , _lowerCamelCase : bool = None , _lowerCamelCase : bool = True , **_lowerCamelCase : int , ): """simple docstring""" A_ : int = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) A_ : List[str] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : Any = [] A_ : List[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) A_ : int = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A_ : Optional[int] = ''''''.join(_lowerCamelCase ) A_ : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Dict = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def a_ ( self : List[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : Optional[int] = [self.sep_token_id] A_ : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a_ ( self : List[str] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None , _lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is not None: return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1] return ([0] * len(_lowerCamelCase )) + [1, 1] def a_ ( self : int , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" A_ : List[Any] = [self.sep_token_id] A_ : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a_ ( self : int , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
167
0
import math def __magic_name__ ( __a : int ): '''simple docstring''' return math.sqrt(__a ) * math.sqrt(__a ) == num def __magic_name__ ( __a : int ): '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = n while left <= right: UpperCamelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCamelCase__ = mid - 1 else: UpperCamelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
178
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = BlipImageProcessor() UpperCamelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCamelCase__ = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def UpperCAmelCase_ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) UpperCamelCase__ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
178
1
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch lowerCamelCase__ = True except ImportError: lowerCamelCase__ = False try: from torch.hub import _get_torch_home lowerCamelCase__ = _get_torch_home() except ImportError: lowerCamelCase__ = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) lowerCamelCase__ = os.path.join(torch_cache_home, """transformers""") lowerCamelCase__ = """https://cdn.huggingface.co""" lowerCamelCase__ = """https://s3.amazonaws.com/models.huggingface.co/bert""" lowerCamelCase__ = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) lowerCamelCase__ = os.path.join(PATH, """config.yaml""") lowerCamelCase__ = os.path.join(PATH, """attributes.txt""") lowerCamelCase__ = os.path.join(PATH, """objects.txt""") lowerCamelCase__ = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) lowerCamelCase__ = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) lowerCamelCase__ = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) lowerCamelCase__ = """pytorch_model.bin""" lowerCamelCase__ = """config.yaml""" def __lowerCAmelCase (_UpperCamelCase=OBJECTS , _UpperCamelCase=ATTRIBUTES ): __lowerCAmelCase : Any = [] with open(_UpperCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __lowerCAmelCase : Union[str, Any] = [] with open(_UpperCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = OrderedDict() with open(_UpperCamelCase , 'rb' ) as f: __lowerCAmelCase : str = pkl.load(_UpperCamelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): __lowerCAmelCase : int = ckp.pop(_UpperCamelCase ) if isinstance(_UpperCamelCase , np.ndarray ): __lowerCAmelCase : List[Any] = torch.tensor(_UpperCamelCase ) else: assert isinstance(_UpperCamelCase , torch.tensor ), type(_UpperCamelCase ) __lowerCAmelCase : Dict = v return r class A__ : A_ : int = {} def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "root" , _SCREAMING_SNAKE_CASE=0 ): __lowerCAmelCase : Optional[Any] = name __lowerCAmelCase : Any = level __lowerCAmelCase : Optional[int] = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowerCAmelCase : int = copy.deepcopy(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = copy.deepcopy(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = Config(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE , level=level + 1 ) __lowerCAmelCase : List[Any] = v setattr(self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = val __lowerCAmelCase : Tuple = val __lowerCAmelCase : List[str] = key.split('.' ) __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) - 1 __lowerCAmelCase : Tuple = self._pointer if len(_SCREAMING_SNAKE_CASE ) > 1: for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if hasattr(self , _SCREAMING_SNAKE_CASE ) and isinstance(getattr(self , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): setattr(getattr(self , _SCREAMING_SNAKE_CASE ) , '.'.join(levels[i:] ) , _SCREAMING_SNAKE_CASE ) if l == last_level: __lowerCAmelCase : Tuple = val else: __lowerCAmelCase : List[str] = pointer[l] def __lowerCamelCase ( self ): return self._pointer def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(f"{file_name}" , 'w' ) as stream: dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with open(f"{file_name}" , 'w' ) as stream: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @staticmethod def __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE ) as stream: __lowerCAmelCase : Dict = load(_SCREAMING_SNAKE_CASE , Loader=_SCREAMING_SNAKE_CASE ) return data def __str__( self ): __lowerCAmelCase : Union[str, Any] = ' ' if self._name != "root": __lowerCAmelCase : int = f"{t * (self._level-1)}{self._name}:\n" else: __lowerCAmelCase : Tuple = '' __lowerCAmelCase : str = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(_SCREAMING_SNAKE_CASE ).__name__})\n" __lowerCAmelCase : List[str] = level return r[:-1] @classmethod def __lowerCamelCase ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase , __lowerCAmelCase : List[str] = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls(_SCREAMING_SNAKE_CASE ) @classmethod def __lowerCamelCase ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = kwargs.pop('cache_dir' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = kwargs.pop('force_download' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = kwargs.pop('resume_download' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = kwargs.pop('proxies' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = kwargs.pop('local_files_only' , _SCREAMING_SNAKE_CASE ) if os.path.isdir(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif os.path.isfile(_SCREAMING_SNAKE_CASE ) or is_remote_url(_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = pretrained_model_name_or_path else: __lowerCAmelCase : List[str] = hf_bucket_url(_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , use_cdn=_SCREAMING_SNAKE_CASE ) try: # Load from URL or cache if already cached __lowerCAmelCase : List[str] = cached_path( _SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowerCAmelCase : int = Config.load_yaml(_SCREAMING_SNAKE_CASE ) except EnvironmentError: __lowerCAmelCase : Tuple = 'Can\'t load config for' raise EnvironmentError(_SCREAMING_SNAKE_CASE ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(_SCREAMING_SNAKE_CASE ), kwargs def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : str = torch.load('dump.pt' , map_location=in_tensor.device ) __lowerCAmelCase : Optional[int] = in_tensor.numpy() __lowerCAmelCase : Dict = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(_UpperCamelCase , _UpperCamelCase , rtol=0.01 , atol=0.1 ), ( F"{sum([1 for x in np.isclose(_UpperCamelCase , _UpperCamelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = urlparse(_UpperCamelCase ) return parsed.scheme in ("http", "https") def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True ): __lowerCAmelCase : str = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowerCAmelCase : Any = '/' not in model_id if legacy_format: return F"{endpoint}/{model_id}-{filename}" else: return F"{endpoint}/{model_id}/{filename}" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=0 , _UpperCamelCase=None , ): __lowerCAmelCase : str = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_UpperCamelCase , _UpperCamelCase ): ua += "; " + "; ".join('{}/{}'.format(_UpperCamelCase , _UpperCamelCase ) for k, v in user_agent.items() ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): ua += "; " + user_agent __lowerCAmelCase : Dict = {'user-agent': ua} if resume_size > 0: __lowerCAmelCase : Any = 'bytes=%d-' % (resume_size,) __lowerCAmelCase : int = requests.get(_UpperCamelCase , stream=_UpperCamelCase , proxies=_UpperCamelCase , headers=_UpperCamelCase ) if response.status_code == 416: # Range not satisfiable return __lowerCAmelCase : Optional[Any] = response.headers.get('Content-Length' ) __lowerCAmelCase : List[str] = resume_size + int(_UpperCamelCase ) if content_length is not None else None __lowerCAmelCase : Tuple = tqdm( unit='B' , unit_scale=_UpperCamelCase , total=_UpperCamelCase , initial=_UpperCamelCase , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_UpperCamelCase ) ) temp_file.write(_UpperCamelCase ) progress.close() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=10 , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=False , ): if cache_dir is None: __lowerCAmelCase : Dict = TRANSFORMERS_CACHE if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Tuple = str(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) __lowerCAmelCase : str = None if not local_files_only: try: __lowerCAmelCase : int = requests.head(_UpperCamelCase , allow_redirects=_UpperCamelCase , proxies=_UpperCamelCase , timeout=_UpperCamelCase ) if response.status_code == 200: __lowerCAmelCase : int = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowerCAmelCase : Any = url_to_filename(_UpperCamelCase , _UpperCamelCase ) # get cache path to put the file __lowerCAmelCase : List[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_UpperCamelCase ): return cache_path else: __lowerCAmelCase : int = [ file for file in fnmatch.filter(os.listdir(_UpperCamelCase ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_UpperCamelCase ) > 0: return os.path.join(_UpperCamelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_UpperCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowerCAmelCase : Tuple = cache_path + '.lock' with FileLock(_UpperCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_UpperCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowerCAmelCase : Tuple = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(_UpperCamelCase , 'a+b' ) as f: yield f __lowerCAmelCase : str = _resumable_file_manager if os.path.exists(_UpperCamelCase ): __lowerCAmelCase : Optional[int] = os.stat(_UpperCamelCase ).st_size else: __lowerCAmelCase : Optional[int] = 0 else: __lowerCAmelCase : Optional[int] = partial(tempfile.NamedTemporaryFile , dir=_UpperCamelCase , delete=_UpperCamelCase ) __lowerCAmelCase : Union[str, Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , _UpperCamelCase , temp_file.name , ) http_get( _UpperCamelCase , _UpperCamelCase , proxies=_UpperCamelCase , resume_size=_UpperCamelCase , user_agent=_UpperCamelCase , ) os.replace(temp_file.name , _UpperCamelCase ) __lowerCAmelCase : Tuple = {'url': url, 'etag': etag} __lowerCAmelCase : List[str] = cache_path + '.json' with open(_UpperCamelCase , 'w' ) as meta_file: json.dump(_UpperCamelCase , _UpperCamelCase ) return cache_path def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=None ): __lowerCAmelCase : int = url.encode('utf-8' ) __lowerCAmelCase : List[Any] = shaaaa(_UpperCamelCase ) __lowerCAmelCase : Optional[int] = url_hash.hexdigest() if etag: __lowerCAmelCase : List[Any] = etag.encode('utf-8' ) __lowerCAmelCase : Any = shaaaa(_UpperCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=None , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=False , ): if cache_dir is None: __lowerCAmelCase : str = TRANSFORMERS_CACHE if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Optional[int] = str(_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = str(_UpperCamelCase ) if is_remote_url(_UpperCamelCase ): # URL, so get it from the cache (downloading if necessary) __lowerCAmelCase : List[str] = get_from_cache( _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , user_agent=_UpperCamelCase , local_files_only=_UpperCamelCase , ) elif os.path.exists(_UpperCamelCase ): # File, and it exists. __lowerCAmelCase : Union[str, Any] = url_or_filename elif urlparse(_UpperCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_UpperCamelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_UpperCamelCase ) ) if extract_compressed_file: if not is_zipfile(_UpperCamelCase ) and not tarfile.is_tarfile(_UpperCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowerCAmelCase , __lowerCAmelCase : Optional[int] = os.path.split(_UpperCamelCase ) __lowerCAmelCase : List[str] = output_file.replace('.' , '-' ) + '-extracted' __lowerCAmelCase : Union[str, Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowerCAmelCase : Dict = output_path + '.lock' with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) os.makedirs(_UpperCamelCase ) if is_zipfile(_UpperCamelCase ): with ZipFile(_UpperCamelCase , 'r' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() elif tarfile.is_tarfile(_UpperCamelCase ): __lowerCAmelCase : Optional[int] = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_UpperCamelCase ) ) return output_path_extracted return output_path def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase="," ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): with open(_UpperCamelCase ) as f: __lowerCAmelCase : Optional[int] = eval(f.read() ) else: __lowerCAmelCase : str = requests.get(_UpperCamelCase ) try: __lowerCAmelCase : Optional[int] = requests.json() except Exception: __lowerCAmelCase : Dict = req.content.decode() assert data is not None, "could not connect" try: __lowerCAmelCase : str = eval(_UpperCamelCase ) except Exception: __lowerCAmelCase : List[Any] = data.split('\n' ) req.close() return data def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : int = requests.get(_UpperCamelCase ) __lowerCAmelCase : Dict = np.array(Image.open(BytesIO(response.content ) ) ) return img def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : List[Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_UpperCamelCase ) with open(_UpperCamelCase , 'rb' ) as stream: __lowerCAmelCase : Optional[int] = pkl.load(_UpperCamelCase ) __lowerCAmelCase : Tuple = weights.pop('model' ) __lowerCAmelCase : str = {} for k, v in model.items(): __lowerCAmelCase : str = torch.from_numpy(_UpperCamelCase ) if "running_var" in k: __lowerCAmelCase : Optional[Any] = torch.tensor([0] ) __lowerCAmelCase : List[str] = k.replace('running_var' , 'num_batches_tracked' ) __lowerCAmelCase : Tuple = zero return new def __lowerCAmelCase (): print(F"{os.path.abspath(os.path.join(_UpperCamelCase , os.pardir ) )}/demo.ipynb" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase="RGB" ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): __lowerCAmelCase : List[str] = cva.imread(_UpperCamelCase ) else: __lowerCAmelCase : str = get_image_from_url(_UpperCamelCase ) assert img is not None, F"could not connect to: {im}" __lowerCAmelCase : Dict = cva.cvtColor(_UpperCamelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowerCAmelCase : Tuple = img[:, :, ::-1] return img def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase=1 ): return (images[i : i + batch] for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase ))
86
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] ) ->str: '''simple docstring''' a, a : str = image.size a, a : Tuple = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a : Union[str, Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) a : int = np.array(_lowercase ).astype(np.floataa ) / 255.0 a : List[str] = image[None].transpose(0 , 3 , 1 , 2 ) a : Dict = torch.from_numpy(_lowercase ) return 2.0 * image - 1.0 class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> str: super().__init__() self.register_modules(vqvae=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCAmelCase__ , PIL.Image.Image ): a : int = 1 elif isinstance(lowerCAmelCase__ , torch.Tensor ): a : str = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCAmelCase__ )}""" ) if isinstance(lowerCAmelCase__ , PIL.Image.Image ): a : Tuple = preprocess(lowerCAmelCase__ ) a, a : Optional[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) a : List[str] = next(self.unet.parameters() ).dtype a : Any = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=lowerCAmelCase__ ) a : Union[str, Any] = image.to(device=self.device , dtype=lowerCAmelCase__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device ) a : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a : str = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a : List[Any] = {} if accepts_eta: a : Any = eta for t in self.progress_bar(lowerCAmelCase__ ): # concat latents and low resolution image in the channel dimension. a : str = torch.cat([latents, image] , dim=1 ) a : int = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) # predict the noise residual a : Union[str, Any] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 a : Tuple = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample # decode the image latents with the VQVAE a : List[Any] = self.vqvae.decode(lowerCAmelCase__ ).sample a : int = torch.clamp(lowerCAmelCase__ , -1.0 , 1.0 ) a : Optional[int] = image / 2 + 0.5 a : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a : Union[str, Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__ )
105
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP snake_case__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case__ : Tuple = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def _lowerCamelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Any=8 ): """simple docstring""" UpperCAmelCase_ : Dict = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 UpperCAmelCase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=snake_case_ , tokenizer=snake_case_ , unet=snake_case_ , scheduler=snake_case_ , movq=snake_case_ , ) UpperCAmelCase_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if latents is None: UpperCAmelCase_ : Tuple = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ , dtype=snake_case_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase_ : Tuple = latents.to(snake_case_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = len(snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else 1 # get prompt text embeddings UpperCAmelCase_ : Optional[Any] = self.tokenizer( snake_case_ , padding='max_length' , truncation=snake_case_ , max_length=7_7 , return_attention_mask=snake_case_ , add_special_tokens=snake_case_ , return_tensors='pt' , ) UpperCAmelCase_ : List[str] = text_inputs.input_ids UpperCAmelCase_ : Optional[int] = self.tokenizer(snake_case_ , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(snake_case_ , snake_case_ ): UpperCAmelCase_ : List[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase_ : Optional[Any] = text_input_ids.to(snake_case_ ) UpperCAmelCase_ : Dict = text_inputs.attention_mask.to(snake_case_ ) UpperCAmelCase_ : int = self.text_encoder( input_ids=snake_case_ , attention_mask=snake_case_ ) UpperCAmelCase_ : str = prompt_embeds.repeat_interleave(snake_case_ , dim=0 ) UpperCAmelCase_ : Dict = text_encoder_hidden_states.repeat_interleave(snake_case_ , dim=0 ) UpperCAmelCase_ : int = text_mask.repeat_interleave(snake_case_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : List[str] if negative_prompt is None: UpperCAmelCase_ : str = [''] * batch_size elif type(snake_case_ ) is not type(snake_case_ ): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(snake_case_ )} !=''' F''' {type(snake_case_ )}.''' ) elif isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Tuple = [negative_prompt] elif batch_size != len(snake_case_ ): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(snake_case_ )}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: UpperCAmelCase_ : Union[str, Any] = negative_prompt UpperCAmelCase_ : Optional[int] = self.tokenizer( snake_case_ , padding='max_length' , max_length=7_7 , truncation=snake_case_ , return_attention_mask=snake_case_ , add_special_tokens=snake_case_ , return_tensors='pt' , ) UpperCAmelCase_ : str = uncond_input.input_ids.to(snake_case_ ) UpperCAmelCase_ : List[str] = uncond_input.attention_mask.to(snake_case_ ) UpperCAmelCase_ : Optional[int] = self.text_encoder( input_ids=snake_case_ , attention_mask=snake_case_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : Union[str, Any] = negative_prompt_embeds.shape[1] UpperCAmelCase_ : str = negative_prompt_embeds.repeat(1 , snake_case_ ) UpperCAmelCase_ : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case_ ) UpperCAmelCase_ : Tuple = uncond_text_encoder_hidden_states.shape[1] UpperCAmelCase_ : int = uncond_text_encoder_hidden_states.repeat(1 , snake_case_ , 1 ) UpperCAmelCase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , snake_case_ , -1 ) UpperCAmelCase_ : Any = uncond_text_mask.repeat_interleave(snake_case_ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) UpperCAmelCase_ : List[Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) UpperCAmelCase_ : Tuple = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def _UpperCamelCase ( self , snake_case_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCAmelCase_ : int = torch.device(F'''cuda:{gpu_id}''' ) UpperCAmelCase_ : Tuple = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case_ , snake_case_ ) def _UpperCamelCase ( self , snake_case_=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCAmelCase_ : Any = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=snake_case_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : str = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: UpperCAmelCase_ : str = cpu_offload_with_hook(snake_case_ , snake_case_ , prev_module_hook=snake_case_ ) if self.safety_checker is not None: UpperCAmelCase_ : List[str] = cpu_offload_with_hook(self.safety_checker , snake_case_ , prev_module_hook=snake_case_ ) # We'll offload the last model manually. UpperCAmelCase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = 5_1_2 , snake_case_ = 5_1_2 , snake_case_ = 1_0_0 , snake_case_ = 4.0 , snake_case_ = 1 , snake_case_ = None , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Tuple = 1 elif isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Tuple = len(snake_case_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(snake_case_ )}''' ) UpperCAmelCase_ : Union[str, Any] = self._execution_device UpperCAmelCase_ : Any = batch_size * num_images_per_prompt UpperCAmelCase_ : Tuple = guidance_scale > 1.0 UpperCAmelCase_ : Optional[int] = self._encode_prompt( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Optional[Any] = torch.cat(snake_case_ , dim=0 ) if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : str = torch.cat(snake_case_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : str = image_embeds.repeat_interleave(snake_case_ , dim=0 ) UpperCAmelCase_ : Any = negative_image_embeds.repeat_interleave(snake_case_ , dim=0 ) UpperCAmelCase_ : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=snake_case_ ) self.scheduler.set_timesteps(snake_case_ , device=snake_case_ ) UpperCAmelCase_ : List[str] = self.scheduler.timesteps UpperCAmelCase_ : List[Any] = self.unet.config.in_channels UpperCAmelCase_ : str = get_new_h_w(snake_case_ , snake_case_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , snake_case_ , snake_case_ , snake_case_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(snake_case_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Dict = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} UpperCAmelCase_ : Union[str, Any] = self.unet( sample=snake_case_ , timestep=snake_case_ , encoder_hidden_states=snake_case_ , added_cond_kwargs=snake_case_ , return_dict=snake_case_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ : Optional[Any] = noise_pred.chunk(2 ) UpperCAmelCase_ : Union[str, Any] = variance_pred.chunk(2 ) UpperCAmelCase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Tuple = self.scheduler.step( snake_case_ , snake_case_ , snake_case_ , generator=snake_case_ , ).prev_sample # post-processing UpperCAmelCase_ : str = self.movq.decode(snake_case_ , force_not_quantize=snake_case_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCAmelCase_ : Union[str, Any] = image * 0.5 + 0.5 UpperCAmelCase_ : str = image.clamp(0 , 1 ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : int = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
354
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : str = nn.Parameter(torch.ones(1 , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : int = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) UpperCAmelCase_ : Tuple = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (embeds * self.std) + self.mean return embeds
274
0