code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _A : Dict =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ : Union[str, Any] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) lowerCamelCase__ : Optional[int] = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""" , UpperCamelCase ) if matches: lowerCamelCase__ : Optional[int] = float(matches[1] ) lowerCamelCase__ : Optional[int] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCamelCase__ : List[Any] = 1001 lowerCamelCase__ : Any = """imagenet-1k-id2label.json""" lowerCamelCase__ : Union[str, Any] = """huggingface/label-files""" lowerCamelCase__ : List[Any] = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : str = {int(UpperCamelCase ) + 1: v for k, v in idalabel.items()} lowerCamelCase__ : Dict = """background""" lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ () -> Union[str, Any]: lowerCamelCase__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase__ : List[str] = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> Tuple: lowerCamelCase__ : Union[str, Any] = get_mobilenet_va_config(UpperCamelCase ) # Load 🤗 model lowerCamelCase__ : Optional[Any] = MobileNetVaForImageClassification(UpperCamelCase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCamelCase__ : Optional[Any] = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) lowerCamelCase__ : Any = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCamelCase__ : str = model(**UpperCamelCase ) lowerCamelCase__ : Dict = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowerCamelCase__ : Optional[Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": lowerCamelCase__ : Union[str, Any] = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: lowerCamelCase__ : Tuple = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase , atol=1E-4 ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) lowerCamelCase__ : Optional[Any] = """google/""" + model_name image_processor.push_to_hub(UpperCamelCase ) model.push_to_hub(UpperCamelCase ) if __name__ == "__main__": _A : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _A : Optional[Any] =parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
41
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy""" def __magic_name__ ( self : Tuple ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Tuple=(4, 4, 6_4, 6_4) , lowerCAmelCase_ : List[str]=False ): """simple docstring""" _A: List[str] = jnp.bfloataa if fpaa else jnp.floataa _A: Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return image def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" ): """simple docstring""" _A: Tuple = jnp.bfloataa if fpaa else jnp.floataa _A: str = '''bf16''' if fpaa else None _A , _A: Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder='''unet''' , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ ) return model, params def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : str=(4, 7_7, 7_6_8) , lowerCAmelCase_ : Dict=False ): """simple docstring""" _A: Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _A: Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ): """simple docstring""" _A , _A: Optional[Any] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCAmelCase_ ) _A: List[str] = self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: List[str] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: Tuple = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __magic_name__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A , _A: Union[str, Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_latents(lowerCAmelCase_ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase_ ) _A: Optional[int] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: List[str] = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
121
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Dict ): snake_case__ : int = OmegaConf.load(snake_case_ ) snake_case__ : List[Any] = torch.load(snake_case_ , map_location="cpu" )["model"] snake_case__ : str = list(state_dict.keys() ) # extract state_dict for VQVAE snake_case__ : Union[str, Any] = {} snake_case__ : Dict = "first_stage_model." for key in keys: if key.startswith(snake_case_ ): snake_case__ : List[str] = state_dict[key] # extract state_dict for UNetLDM snake_case__ : str = {} snake_case__ : Any = "model.diffusion_model." for key in keys: if key.startswith(snake_case_ ): snake_case__ : List[Any] = state_dict[key] snake_case__ : List[Any] = config.model.params.first_stage_config.params snake_case__ : List[Any] = config.model.params.unet_config.params snake_case__ : Any = VQModel(**snake_case_ ).eval() vqvae.load_state_dict(snake_case_ ) snake_case__ : Optional[Any] = UNetLDMModel(**snake_case_ ).eval() unet.load_state_dict(snake_case_ ) snake_case__ : List[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case_ , ) snake_case__ : str = LDMPipeline(snake_case_ , snake_case_ , snake_case_ ) pipeline.save_pretrained(snake_case_ ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) __lowerCamelCase : List[Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
354
__lowerCamelCase : Optional[int] = """Tobias Carryer""" from time import time class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : List[Any] , __A : Optional[int] , __A : List[str] , __A : Dict=int(time() ) ): # noqa: B008 snake_case__ : List[Any] = multiplier snake_case__ : Optional[int] = increment snake_case__ : Optional[int] = modulo snake_case__ : Union[str, Any] = seed def _lowercase ( self : str ): snake_case__ : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __lowerCamelCase : int = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
286
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) lowerCamelCase__ : str = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCAmelCase ( __a): __a : int = """poolformer""" def __init__( self , _A=3 , _A=16 , _A=16 , _A=3 , _A=4.0 , _A=[2, 2, 6, 2] , _A=[64, 1_28, 3_20, 5_12] , _A=[7, 3, 3, 3] , _A=[4, 2, 2, 2] , _A=[2, 1, 1, 1] , _A=4 , _A=0.0 , _A="gelu" , _A=True , _A=1e-5 , _A=0.02 , **_A , ) -> Any: '''simple docstring''' _UpperCAmelCase : int = num_channels _UpperCAmelCase : Union[str, Any] = patch_size _UpperCAmelCase : Dict = stride _UpperCAmelCase : int = padding _UpperCAmelCase : Optional[Any] = pool_size _UpperCAmelCase : Any = hidden_sizes _UpperCAmelCase : Any = mlp_ratio _UpperCAmelCase : List[Any] = depths _UpperCAmelCase : Dict = patch_sizes _UpperCAmelCase : int = strides _UpperCAmelCase : str = num_encoder_blocks _UpperCAmelCase : str = drop_path_rate _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Union[str, Any] = use_layer_scale _UpperCAmelCase : Dict = layer_scale_init_value _UpperCAmelCase : str = initializer_range super().__init__(**_A ) class _UpperCAmelCase ( __a): __a : List[Any] = version.parse("""1.11""") @property def __snake_case ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __snake_case ( self ) -> float: '''simple docstring''' return 2e-3
246
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : int=(), _lowerCAmelCase : Union[str, Any]=None, _lowerCAmelCase : Union[str, Any]="no", _lowerCAmelCase : Optional[int]="29500" ) -> Any: _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): _UpperCAmelCase : Union[str, Any] = True elif "IPython" in sys.modules: _UpperCAmelCase : Dict = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: _UpperCAmelCase : int = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""", _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : int = PrepareForLaunch(_lowerCAmelCase, distributed_type="""TPU""" ) print(f'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase, master_addr="""127.0.01""", master_port=_lowerCAmelCase, mixed_precision=_lowerCAmelCase ): _UpperCAmelCase : Any = PrepareForLaunch(_lowerCAmelCase, distributed_type="""MULTI_GPU""" ) print(f'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : Union[str, Any] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[str]=(), _lowerCAmelCase : Optional[int]=2 ) -> Tuple: from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase, master_addr="""127.0.01""", master_port="""29500""", accelerate_mixed_precision="""no""", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="""yes""", ): _UpperCAmelCase : Tuple = PrepareForLaunch(_lowerCAmelCase, debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase, args=_lowerCAmelCase, nprocs=_lowerCAmelCase, start_method="""fork""" )
246
1
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , """r""" ) as fh: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_EX ) try: print(*SCREAMING_SNAKE_CASE__ ) finally: fcntl.flock(SCREAMING_SNAKE_CASE__ , fcntl.LOCK_UN ) UpperCAmelCase_ = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) UpperCAmelCase_ = torch.device('cuda', local_rank) UpperCAmelCase_ = socket.gethostname() UpperCAmelCase_ = f"[{hostname}-{local_rank}]" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank UpperCAmelCase_ = dist.get_rank() UpperCAmelCase_ = dist.get_world_size() printflock(f"{gpu} is OK (global rank: {rank}/{world_size})") dist.barrier() if rank == 0: printflock(f"pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}") except Exception: printflock(f"{gpu} is broken") raise
61
'''simple docstring''' from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'nielsr/canine-s': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” UpperCAmelCase_ = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py UpperCAmelCase_ = 0 UpperCAmelCase_ = 0Xe000 UpperCAmelCase_ = 0Xe001 UpperCAmelCase_ = 0Xe002 UpperCAmelCase_ = 0Xe003 UpperCAmelCase_ = 0Xe004 # Maps special codepoints to human-readable names. UpperCAmelCase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. UpperCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , _UpperCAmelCase : Dict=chr(_UpperCAmelCase ) , _UpperCAmelCase : int=chr(_UpperCAmelCase ) , _UpperCAmelCase : List[Any]=chr(_UpperCAmelCase ) , _UpperCAmelCase : Any=chr(_UpperCAmelCase ) , _UpperCAmelCase : Dict=chr(_UpperCAmelCase ) , _UpperCAmelCase : List[Any]=chr(_UpperCAmelCase ) , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=20_48 , **_UpperCAmelCase : Union[str, Any] , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else bos_token UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else sep_token UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else cls_token UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , model_max_length=_UpperCAmelCase , **_UpperCAmelCase , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase__ = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase__ = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase__ = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase__ = UNICODE_VOCAB_SIZE UpperCAmelCase__ = len(self._special_codepoints ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self._unicode_vocab_size def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : str ): """simple docstring""" return list(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str ): """simple docstring""" try: return ord(_UpperCAmelCase ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_UpperCAmelCase ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ): """simple docstring""" return "".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = [1] + ([0] * len(_UpperCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(_UpperCAmelCase )) + [1] return result def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" return ()
61
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowerCamelCase : List[str] = parser.parse_args() lowerCamelCase : Optional[int] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
2
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _A = """bart""" _A = True @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> Optional[Any]: if LOAD_DENSE_INDEX: lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowerCAmelCase__ : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowerCAmelCase__ : List[str] = qar_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = (None, None) if MODEL_TYPE == "bart": lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowerCAmelCase__ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowerCAmelCase__ : List[str] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowerCAmelCase__ : Dict = sas_model.eval() else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: lowerCAmelCase__ : Union[str, Any] = faiss.StandardGpuResources() lowerCAmelCase__ : List[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowerCAmelCase__ : Dict = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) lowerCAmelCase__ : str = faiss.IndexFlatIP(128 ) lowerCAmelCase__ : Optional[int] = faiss.index_cpu_to_gpu(__UpperCAmelCase , 1 , __UpperCAmelCase ) wikiaab_gpu_index_flat.add(__UpperCAmelCase ) # TODO fix for larger GPU else: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (None, None) lowerCAmelCase__ : Optional[int] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: lowerCAmelCase__ : List[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowerCAmelCase__ : Tuple = elia["""train_eli5"""] lowerCAmelCase__ : Dict = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) lowerCAmelCase__ : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(__UpperCAmelCase ) return (elia_train, eli5_train_q_index) _A , _A , _A = load_indexes() _A , _A , _A , _A = load_models() _A , _A = load_train_data() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=10 ) -> Optional[Any]: lowerCAmelCase__ : str = embed_questions_for_retrieval([question] , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = eli5_train_q_index.search(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[Any] = [elia_train[int(__UpperCAmelCase )] for i in I[0]] return nn_examples def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase="wiki40b" , __UpperCAmelCase="dense" , __UpperCAmelCase=10 ) -> List[str]: if source == "none": lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = query_qa_dense_index( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: lowerCAmelCase__ , lowerCAmelCase__ : int = query_es_index( __UpperCAmelCase , __UpperCAmelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=__UpperCAmelCase , ) lowerCAmelCase__ : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowerCAmelCase__ : Optional[Any] = """question: {} context: {}""".format(__UpperCAmelCase , __UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCAmelCase : None), } ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=64 , __UpperCAmelCase=256 , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=0.95 , __UpperCAmelCase=0.8 ) -> Optional[int]: with torch.no_grad(): lowerCAmelCase__ : List[Any] = qa_sas_generate( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_answers=1 , num_beams=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase , do_sample=__UpperCAmelCase , temp=__UpperCAmelCase , top_p=__UpperCAmelCase , top_k=__UpperCAmelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar _A = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" _A = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _A = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) _A = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] _A = st.sidebar.checkbox("""Demo options""") if demo_options: _A = st.sidebar.selectbox( """""", action_list, index=3, ) _A = action_list.index(action_st) _A = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) _A = show_type == """Show full text of passages""" else: _A = 3 _A = True _A = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: _A = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) _A = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) _A = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: _A = """wiki40b""" _A = """dense""" _A = """beam""" _A = 2 _A = 6_4 _A = 2_5_6 _A = None _A = None _A = st.sidebar.checkbox("""Generation options""") if generate_options: _A = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) _A = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) _A = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None ) _A = st.sidebar.slider( """Maximum generation length""", min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None ) if sampled == "beam": _A = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _A = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) _A = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) _A = None # start main text _A = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] _A = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": _A = st.text_input("""Enter your question here:""", """""") else: _A = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": _A , _A = make_support(question, source=wiki_source, method="""dense""", n_results=1_0) _A , _A = make_support(question, source=wiki_source, method="""sparse""", n_results=1_0) _A = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _A = support_list[:1_0] _A = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: _A , _A = make_support(question, source=wiki_source, method=index_type, n_results=1_0) if action in [0, 3]: _A , _A = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): _A = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) _A = res[1].strip() if sec_titles == "": _A = """[{}]({})""".format(res[0], wiki_url) else: _A = sec_titles.split(""" & """) _A = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: _A = find_nearest_training(question) _A = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) _A = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) _A = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
242
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __UpperCAmelCase = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def _snake_case ( lowercase__ : List[str]=True ) -> List[str]: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=A__ ) ) class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Union[str, Any] = None UpperCAmelCase_ :Optional[Any] = None def __lowerCAmelCase ( self , __A , __A ) -> Dict: with TemporaryDirectory() as tmp_dir: lowerCAmelCase_ :Dict = dataset_module_factory(__A , cache_dir=__A ) lowerCAmelCase_ :List[str] = import_main_class(dataset_module.module_path , dataset=__A ) lowerCAmelCase_ :DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) lowerCAmelCase_ :Any = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) lowerCAmelCase_ :Dict = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def _snake_case ( lowercase__ : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Dict = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" lowerCAmelCase_ :List[Any] = dataset_module_factory("""wikipedia""" , cache_dir=lowercase__ ) lowerCAmelCase_ :Optional[int] = import_main_class(dataset_module.module_path ) lowerCAmelCase_ :DatasetBuilder = builder_cls( cache_dir=lowercase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam lowerCAmelCase_ :Optional[int] = None builder_instance.download_and_prepare() lowerCAmelCase_ :Tuple = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( lowercase__ : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ :Dict = dataset_module_factory("""wikipedia""" , cache_dir=lowercase__ ) lowerCAmelCase_ :Any = import_main_class(dataset_module.module_path , dataset=lowercase__ ) lowerCAmelCase_ :DatasetBuilder = builder_cls( cache_dir=lowercase__ , config_name="""20220301.frr""" , hash=dataset_module.hash , ) lowerCAmelCase_ :Dict = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowercase__ , lowercase__ ) assert "train" in ds assert isinstance(ds["""train"""] , lowercase__ ) assert next(iter(ds["""train"""] ) )
355
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __UpperCAmelCase = get_tests_dir('fixtures/dummy-config.json') class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :int = 0 def __lowerCAmelCase ( self ) -> List[str]: self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Tuple = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :int = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Any = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :int = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(__A , __A ) def __lowerCAmelCase ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase_ :int = os.path.join(__A , """fake-roberta""" ) os.makedirs(__A , exist_ok=__A ) with open(os.path.join(__A , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) lowerCAmelCase_ :Any = AutoConfig.from_pretrained(__A ) self.assertEqual(type(__A ) , __A ) def __lowerCAmelCase ( self ) -> Optional[int]: try: AutoConfig.register("""custom""" , __A ) # Wrong model type will raise an error with self.assertRaises(__A ): AutoConfig.register("""model""" , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoConfig.register("""bert""" , __A ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase_ :Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) lowerCAmelCase_ :Optional[int] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): lowerCAmelCase_ :List[str] = AutoConfig.from_pretrained("""bert-base""" ) def __lowerCAmelCase ( self ) -> Any: with self.assertRaisesRegex( __A , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCAmelCase_ :Dict = AutoConfig.from_pretrained(__A , revision="""aaaaaa""" ) def __lowerCAmelCase ( self ) -> int: with self.assertRaisesRegex( __A , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): lowerCAmelCase_ :Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def __lowerCAmelCase ( self ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): lowerCAmelCase_ :Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): lowerCAmelCase_ :List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) lowerCAmelCase_ :str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) lowerCAmelCase_ :Dict = AutoConfig.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def __lowerCAmelCase ( self ) -> int: class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :int = "new-model" try: AutoConfig.register("""new-model""" , __A ) # If remote code is not set, the default is to use local lowerCAmelCase_ :Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. lowerCAmelCase_ :Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub lowerCAmelCase_ :Optional[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
1
0
import numpy as np lowercase : List[Any] = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class __snake_case : def __init__( self ): '''simple docstring''' lowercase : int = np.array(snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase , lowercase : Tuple = np.where(letter == self.SQUARE ) lowercase : List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : str = self.SQUARE[indexa - 1, indexa - 1] return letter def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = message.lower() lowercase : str = message.replace(""" """ ,"""""" ) lowercase : Tuple = message.replace("""j""" ,"""i""" ) lowercase : List[str] = np.empty((2, len(snake_case )) ) for letter_index in range(len(snake_case ) ): lowercase : List[str] = self.letter_to_numbers(message[letter_index] ) lowercase : List[str] = numbers[0] lowercase : Union[str, Any] = numbers[1] lowercase : str = first_step.reshape(2 * len(snake_case ) ) lowercase : Dict = """""" for numbers_index in range(len(snake_case ) ): lowercase : Any = int(second_step[numbers_index * 2] ) lowercase : Optional[int] = int(second_step[(numbers_index * 2) + 1] ) lowercase : List[str] = self.numbers_to_letter(snake_case ,snake_case ) lowercase : Tuple = encoded_message + letter return encoded_message def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = message.lower() message.replace(""" """ ,"""""" ) lowercase : Dict = np.empty(2 * len(snake_case ) ) for letter_index in range(len(snake_case ) ): lowercase : Optional[int] = self.letter_to_numbers(message[letter_index] ) lowercase : List[str] = numbers[0] lowercase : Any = numbers[1] lowercase : Optional[int] = first_step.reshape((2, len(snake_case )) ) lowercase : Tuple = """""" for numbers_index in range(len(snake_case ) ): lowercase : Any = int(second_step[0, numbers_index] ) lowercase : Optional[int] = int(second_step[1, numbers_index] ) lowercase : List[str] = self.numbers_to_letter(snake_case ,snake_case ) lowercase : Any = decoded_message + letter return decoded_message
20
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = """bridgetower_vision_model""" def __init__( self , lowerCAmelCase=7_68 , lowerCAmelCase=12 , lowerCAmelCase=3 , lowerCAmelCase=16 , lowerCAmelCase=2_88 , lowerCAmelCase=1 , lowerCAmelCase=1E-05 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , **lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCAmelCase ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_channels snake_case = patch_size snake_case = image_size snake_case = initializer_factor snake_case = layer_norm_eps snake_case = stop_gradient snake_case = share_layernorm snake_case = remove_last_layer @classmethod def snake_case ( cls , lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" snake_case ,snake_case = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) if config_dict.get('model_type' ) == "bridgetower": snake_case = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = """bridgetower_text_model""" def __init__( self , lowerCAmelCase=5_02_65 , lowerCAmelCase=7_68 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=1 , lowerCAmelCase=30_72 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_14 , lowerCAmelCase=1 , lowerCAmelCase=1E-05 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , **lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCAmelCase ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = initializer_factor snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = pad_token_id snake_case = bos_token_id snake_case = eos_token_id @classmethod def snake_case ( cls , lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" snake_case ,snake_case = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) if config_dict.get('model_type' ) == "bridgetower": snake_case = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = """bridgetower""" def __init__( self , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=7_68 , lowerCAmelCase=1 , lowerCAmelCase=1E-05 , lowerCAmelCase=False , lowerCAmelCase="add" , lowerCAmelCase=12 , lowerCAmelCase=6 , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): """simple docstring""" snake_case = kwargs.pop('text_config_dict' , lowerCAmelCase ) snake_case = kwargs.pop('vision_config_dict' , lowerCAmelCase ) super().__init__(**lowerCAmelCase ) snake_case = share_cross_modal_transformer_layers snake_case = hidden_act snake_case = hidden_size snake_case = initializer_factor snake_case = layer_norm_eps snake_case = share_link_tower_layers snake_case = link_tower_type snake_case = num_attention_heads snake_case = num_hidden_layers snake_case = tie_word_embeddings snake_case = init_layernorm_from_vision_encoder if text_config is None: snake_case = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: snake_case = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) snake_case = BridgeTowerTextConfig(**lowerCAmelCase ) snake_case = BridgeTowerVisionConfig(**lowerCAmelCase ) @classmethod def snake_case ( cls , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.text_config.to_dict() snake_case = self.vision_config.to_dict() snake_case = self.__class__.model_type return output
149
"""simple docstring""" import os import sys import unittest SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE__ = os.path.join(git_repo_path, "src", "transformers") SCREAMING_SNAKE_CASE__ = "\n{0} = None\n" SCREAMING_SNAKE_CASE__ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" SCREAMING_SNAKE_CASE__ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" snake_case = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(lowerCAmelCase ) snake_case = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(lowerCAmelCase , 'tokenizers' ) snake_case = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(lowerCAmelCase , 'tensorflow_text' ) snake_case = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(lowerCAmelCase , 'sentencepiece_and_tokenizers' ) snake_case = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(lowerCAmelCase , 'sentencepiece_and_tensorflow_text' ) snake_case = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(lowerCAmelCase , 'sentencepiece_and_tokenizers_and_vision' ) def snake_case ( self ): """simple docstring""" snake_case = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , lowerCAmelCase ) self.assertIn('tensorflow_text' , lowerCAmelCase ) self.assertIn('sentencepiece_and_tokenizers' , lowerCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def snake_case ( self ): """simple docstring""" snake_case = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(lowerCAmelCase , '\nCONSTANT = None\n' ) snake_case = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( lowerCAmelCase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , lowerCAmelCase )
149
1
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=13 , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : List[Any]=16 , lowerCAmelCase__ : int=[1, 2, 1] , lowerCAmelCase__ : Optional[Any]=[2, 2, 4] , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=2.0 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : List[str]=1E-5 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Tuple=10 , lowerCAmelCase__ : Any=8 , lowerCAmelCase__ : List[str]=["stage1", "stage2", "stage3"] , lowerCAmelCase__ : Optional[int]=[1, 2, 3] , ): SCREAMING_SNAKE_CASE_: Optional[int] = parent SCREAMING_SNAKE_CASE_: Optional[int] = batch_size SCREAMING_SNAKE_CASE_: List[str] = image_size SCREAMING_SNAKE_CASE_: int = patch_size SCREAMING_SNAKE_CASE_: Optional[int] = num_channels SCREAMING_SNAKE_CASE_: Optional[Any] = embed_dim SCREAMING_SNAKE_CASE_: List[str] = depths SCREAMING_SNAKE_CASE_: Any = num_heads SCREAMING_SNAKE_CASE_: Any = window_size SCREAMING_SNAKE_CASE_: str = mlp_ratio SCREAMING_SNAKE_CASE_: Optional[Any] = qkv_bias SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE_: int = use_absolute_embeddings SCREAMING_SNAKE_CASE_: Tuple = patch_norm SCREAMING_SNAKE_CASE_: Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_: Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_: Optional[Any] = is_training SCREAMING_SNAKE_CASE_: List[str] = scope SCREAMING_SNAKE_CASE_: List[Any] = use_labels SCREAMING_SNAKE_CASE_: Any = type_sequence_label_size SCREAMING_SNAKE_CASE_: int = encoder_stride SCREAMING_SNAKE_CASE_: List[str] = out_features SCREAMING_SNAKE_CASE_: Optional[Any] = out_indices def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any]): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Optional[int] = MaskFormerSwinModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) SCREAMING_SNAKE_CASE_: Dict = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: List[Any] = MaskFormerSwinBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [13, 16, 16, 16]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [16, 32, 64]) # verify ValueError with self.parent.assertRaises(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = ["stem"] SCREAMING_SNAKE_CASE_: Dict = MaskFormerSwinBackbone(config=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _UpperCAmelCase : List[Any] = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} _UpperCAmelCase : str = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[int] = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = MaskFormerSwinModelTester(self) SCREAMING_SNAKE_CASE_: Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Any): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__) @unittest.skip("Swin does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass @unittest.skip("Swin does not support feedforward chunking") def _SCREAMING_SNAKE_CASE ( self : List[str]): pass def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _SCREAMING_SNAKE_CASE ( self : Tuple): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE_: int = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # Swin has a different seq_length SCREAMING_SNAKE_CASE_: Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: int = 3 SCREAMING_SNAKE_CASE_: Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_: Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_: Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _SCREAMING_SNAKE_CASE ( self : Any): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _SCREAMING_SNAKE_CASE ( self : str): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _SCREAMING_SNAKE_CASE ( self : Any): pass def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = 0 return t def check_equivalence(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]={}): with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__).to_tuple() def recursive_check(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int]): if isinstance(lowerCAmelCase__ , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__): recursive_check(lowerCAmelCase__ , lowerCAmelCase__) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(lowerCAmelCase__ , lowerCAmelCase__) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(lowerCAmelCase__) , set_nan_tensor_to_zero(lowerCAmelCase__) , atol=1E-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(lowerCAmelCase__).any()} and `inf`: {torch.isinf(lowerCAmelCase__)}. Dict has" F" `nan`: {torch.isnan(lowerCAmelCase__).any()} and `inf`: {torch.isinf(lowerCAmelCase__)}." ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"output_hidden_states": True}) SCREAMING_SNAKE_CASE_: List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"output_hidden_states": True}) @require_torch class __lowercase ( unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () _UpperCAmelCase : str = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: List[Any] = MaskFormerSwinModelTester(self) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Any = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = backbone_class(lowerCAmelCase__) backbone.to(lowerCAmelCase__) backbone.eval() SCREAMING_SNAKE_CASE_: Any = backbone(**lowerCAmelCase__) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , lowerCAmelCase__) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True SCREAMING_SNAKE_CASE_: str = backbone(**lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE_: Dict = backbone(**lowerCAmelCase__ , output_attentions=lowerCAmelCase__) self.assertIsNotNone(outputs.attentions)
13
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : List[str] = ShapEPipeline _UpperCAmelCase : Tuple = ['''prompt'''] _UpperCAmelCase : Dict = ['''prompt'''] _UpperCAmelCase : Any = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCAmelCase : Optional[int] = False @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : List[str]): return 32 @property def _SCREAMING_SNAKE_CASE ( self : int): return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return 8 @property def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCAmelCase__) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Tuple = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } SCREAMING_SNAKE_CASE_: Any = PriorTransformer(**lowerCAmelCase__) return model @property def _SCREAMING_SNAKE_CASE ( self : Dict): torch.manual_seed(0) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE_: Optional[int] = ShapERenderer(**lowerCAmelCase__) return model def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Dict = self.dummy_prior SCREAMING_SNAKE_CASE_: Optional[Any] = self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Union[str, Any] = self.dummy_tokenizer SCREAMING_SNAKE_CASE_: List[str] = self.dummy_renderer SCREAMING_SNAKE_CASE_: Any = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCAmelCase__ , clip_sample=lowerCAmelCase__ , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE_: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=0): if str(lowerCAmelCase__).startswith("mps"): SCREAMING_SNAKE_CASE_: Optional[Any] = torch.manual_seed(lowerCAmelCase__) else: SCREAMING_SNAKE_CASE_: Any = torch.Generator(device=lowerCAmelCase__).manual_seed(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = "cpu" SCREAMING_SNAKE_CASE_: Tuple = self.get_dummy_components() SCREAMING_SNAKE_CASE_: Dict = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[Any] = output.images[0] SCREAMING_SNAKE_CASE_: Any = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE_: Union[str, Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Dict = torch_device == "cpu" SCREAMING_SNAKE_CASE_: List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase__ , relax_max_difference=lowerCAmelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE_: str = self.pipeline_class(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = 1 SCREAMING_SNAKE_CASE_: Any = 2 SCREAMING_SNAKE_CASE_: Dict = self.get_dummy_inputs(lowerCAmelCase__) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE_: List[Any] = batch_size * [inputs[key]] SCREAMING_SNAKE_CASE_: Tuple = pipe(**lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy") SCREAMING_SNAKE_CASE_: List[str] = ShapEPipeline.from_pretrained("openai/shap-e") SCREAMING_SNAKE_CASE_: Optional[int] = pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = torch.Generator(device=lowerCAmelCase__).manual_seed(0) SCREAMING_SNAKE_CASE_: int = pipe( "a shark" , generator=lowerCAmelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__)
13
1
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp _A = 5 _A = 10 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = SpeechaTextTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True def _a (self ): """simple docstring""" super().setUp() UpperCAmelCase__ : str = sp.SentencePieceProcessor() spm_model.Load(_lowerCamelCase ) UpperCAmelCase__ : List[str] = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowerCamelCase ) )] UpperCAmelCase__ : Dict = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCAmelCase__ : int = Path(self.tmpdirname ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) UpperCAmelCase__ : str = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = """<pad>""" UpperCAmelCase__ : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(_lowerCamelCase ) , 1001 ) def _a (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) UpperCAmelCase__ : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [289, 50, 14, 174, 386] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) UpperCAmelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) UpperCAmelCase__ : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = {"""input_ids""": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""facebook/s2t-small-mustc-en-de-st""" , revision="""a14f04cf0776c02f62a8cb800cf7909e15ea23ad""" , ) @require_sentencepiece class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'valhalla/s2t_mustc_multilinguial_medium' SCREAMING_SNAKE_CASE = 'C\'est trop cool' SCREAMING_SNAKE_CASE = 'Esto es genial' @classmethod def _a (cls ): """simple docstring""" UpperCAmelCase__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _a (self ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id["""pt"""] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["""ru"""] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["""it"""] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["""de"""] , 11 ) def _a (self ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 10000 ) def _a (self ): """simple docstring""" self.assertIn(_lowerCamelCase , self.tokenizer.all_special_ids ) UpperCAmelCase__ : Optional[Any] = [ES_CODE, 4, 1601, 47, 7647, 2] UpperCAmelCase__ : Optional[int] = self.tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = """fr""" UpperCAmelCase__ : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowerCamelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) UpperCAmelCase__ : Tuple = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
355
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ): """simple docstring""" UpperCAmelCase__ : int = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Union[str, Any] = image_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : Optional[int] = num_stages UpperCAmelCase__ : Optional[Any] = hidden_sizes UpperCAmelCase__ : Any = depths UpperCAmelCase__ : str = is_training UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : Optional[Any] = intermediate_size UpperCAmelCase__ : Optional[Any] = hidden_act UpperCAmelCase__ : Tuple = type_sequence_label_size UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Tuple = out_features UpperCAmelCase__ : Dict = num_labels UpperCAmelCase__ : Tuple = scope UpperCAmelCase__ : Optional[int] = num_stages def _a (self ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : List[Any] = None if self.use_labels: UpperCAmelCase__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Dict = self.get_config() return config, pixel_values, labels def _a (self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _a (self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Any = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase__ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = UperNetModelTester(self ) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a (self ): """simple docstring""" return def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _a (self ): """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def _a (self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _a (self ): """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCAmelCase__ : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) UpperCAmelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Any = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[Any] = _config_zero_init(_lowerCamelCase ) UpperCAmelCase__ : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def _a (self ): """simple docstring""" pass @slow def _a (self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : str = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ) -> List[Any]: UpperCAmelCase__ : List[str] = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) UpperCAmelCase__ : str = Image.open(lowerCAmelCase ).convert("""RGB""" ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) UpperCAmelCase__ : Any = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = prepare_img() UpperCAmelCase__ : int = processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) with torch.no_grad(): UpperCAmelCase__ : Any = model(**_lowerCamelCase ) UpperCAmelCase__ : List[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) UpperCAmelCase__ : List[str] = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(_lowerCamelCase ) UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : int = processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) with torch.no_grad(): UpperCAmelCase__ : int = model(**_lowerCamelCase ) UpperCAmelCase__ : str = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCAmelCase__ : int = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
166
0
import enum import shutil import sys _snake_case , _snake_case = shutil.get_terminal_size() _snake_case = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"} class lowercase ( enum.Enum ): _a = 0 _a = 1 def lowerCAmelCase_ ( snake_case_,snake_case_="" ): sys.stdout.write(str(snake_case_ ) + end ) sys.stdout.flush() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_="" ): forceWrite(f'''\u001b[{color}m{content}\u001b[0m''',snake_case_ ) def lowerCAmelCase_ ( ): forceWrite("""\r""" ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): forceWrite(f'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def lowerCAmelCase_ ( ): forceWrite(""" """ * TERMINAL_WIDTH ) reset_cursor() def lowerCAmelCase_ ( ): reset_cursor() forceWrite("""-""" * TERMINAL_WIDTH )
26
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case_,snake_case_="",snake_case_="." ): _A : Union[str, Any] = [] for k, v in d.items(): _A : Optional[int] = parent_key + sep + k if parent_key else k if isinstance(snake_case_,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_,snake_case_,sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) _A : List[Any] = argparse.Namespace() with open(snake_case_,"""r""" ) as yaml_file: try: _A : List[Any] = yaml.load(snake_case_,Loader=yaml.FullLoader ) _A : Optional[int] = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_,snake_case_,snake_case_ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case_,str(snake_case_ ) ) ) return config def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : Optional[Any] = MobileViTVaConfig() _A : Tuple = False # dataset if task_name.startswith("""imagenet1k_""" ): _A : Dict = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : int = 384 else: _A : int = 256 _A : List[str] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _A : Union[str, Any] = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _A : str = 384 else: _A : List[Any] = 256 _A : List[str] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _A : int = 151 _A : int = 512 _A : Optional[int] = """ade20k-id2label.json""" _A : Any = True elif task_name.startswith("""voc_""" ): _A : List[Any] = 21 _A : Dict = 512 _A : Dict = """pascal-voc-id2label.json""" _A : int = True # orig_config _A : Any = load_orig_config_file(snake_case_ ) assert getattr(snake_case_,"""model.classification.name""",-1 ) == "mobilevit_v2", "Invalid model" _A : List[Any] = getattr(snake_case_,"""model.classification.mitv2.width_multiplier""",1.0 ) assert ( getattr(snake_case_,"""model.classification.mitv2.attn_norm_layer""",-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _A : str = getattr(snake_case_,"""model.classification.activation.name""","""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _A : Optional[int] = getattr(snake_case_,"""model.segmentation.output_stride""",16 ) if "_deeplabv3" in task_name: _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_rates""",[12, 24, 36] ) _A : int = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_out_channels""",512 ) _A : str = getattr(snake_case_,"""model.segmentation.deeplabv3.aspp_dropout""",0.1 ) # id2label _A : List[Any] = """huggingface/label-files""" _A : List[Any] = json.load(open(hf_hub_download(snake_case_,snake_case_,repo_type="""dataset""" ),"""r""" ) ) _A : str = {int(snake_case_ ): v for k, v in idalabel.items()} _A : str = idalabel _A : Dict = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Any = dct.pop(snake_case_ ) _A : Union[str, Any] = val def lowerCAmelCase_ ( snake_case_,snake_case_=False ): if base_model: _A : Optional[int] = """""" else: _A : Dict = """mobilevitv2.""" _A : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": _A : Any = k[8:] else: _A : List[str] = k if ".block." in k: _A : Any = k_new.replace(""".block.""",""".""" ) if ".conv." in k: _A : List[Any] = k_new.replace(""".conv.""",""".convolution.""" ) if ".norm." in k: _A : Any = k_new.replace(""".norm.""",""".normalization.""" ) if "conv_1." in k: _A : int = k_new.replace("""conv_1.""",f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.''',f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _A : Tuple = k_new.replace(""".exp_1x1.""",""".expand_1x1.""" ) if ".red_1x1." in k: _A : Optional[int] = k_new.replace(""".red_1x1.""",""".reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: _A : Optional[int] = k_new.replace(f'''layer_{i}.0.''',f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: _A : Union[str, Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''',f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: _A : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''',f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _A : Optional[int] = [0, 1] elif i == 4: _A : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _A : Optional[Any] = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: _A : Union[str, Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''',f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: _A : List[str] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''',f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: _A : Optional[Any] = k_new.replace(f'''layer_{i}.1.conv_proj.''',f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_attn.0.""","""layernorm_before.""" ) if "pre_norm_attn.1." in k: _A : str = k_new.replace("""pre_norm_attn.1.""","""attention.""" ) if "pre_norm_ffn.0." in k: _A : Optional[Any] = k_new.replace("""pre_norm_ffn.0.""","""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _A : Dict = k_new.replace("""pre_norm_ffn.1.""","""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _A : List[str] = k_new.replace("""pre_norm_ffn.3.""","""ffn.conv2.""" ) if "classifier.1." in k: _A : List[str] = k_new.replace("""classifier.1.""","""classifier.""" ) if "seg_head." in k: _A : List[Any] = k_new.replace("""seg_head.""","""segmentation_head.""" ) if ".aspp_layer." in k: _A : List[Any] = k_new.replace(""".aspp_layer.""",""".""" ) if ".aspp_pool." in k: _A : Optional[Any] = k_new.replace(""".aspp_pool.""",""".""" ) rename_keys.append((k, k_new) ) return rename_keys def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _A : List[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : List[Any] = get_mobilevitva_config(snake_case_,snake_case_ ) # load original state_dict _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _A : Optional[Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() _A : str = False else: _A : int = MobileViTVaForImageClassification(snake_case_ ).eval() _A : List[Any] = False # remove and rename some keys of load the original model _A : List[Any] = checkpoint remove_unused_keys(snake_case_ ) _A : Optional[Any] = create_rename_keys(snake_case_,base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_,snake_case_,snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _A : str = MobileViTImageProcessor(crop_size=config.image_size,size=config.image_size + 32 ) _A : List[Any] = image_processor(images=prepare_img(),return_tensors="""pt""" ) _A : Optional[Any] = model(**snake_case_ ) # verify classification model if task_name.startswith("""imagenet""" ): _A : List[Any] = outputs.logits _A : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""",model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _A : int = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3],snake_case_,atol=1e-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) _snake_case = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
26
1
import mpmath # for roots of unity import numpy as np class __A : """simple docstring""" def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" __UpperCamelCase : str =list(poly_a or [0] )[:] __UpperCamelCase : Optional[int] =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __UpperCamelCase : int =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __UpperCamelCase : List[Any] =len(self.polyB ) # Add 0 to make lengths equal a power of 2 __UpperCamelCase : str =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __UpperCamelCase : str =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __UpperCamelCase : int =self.__multiply() def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =[[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(lowerCamelCase__ ) <= 1: return dft[0] # __UpperCamelCase : Union[str, Any] =self.c_max_length // 2 while next_ncol > 0: __UpperCamelCase : Any =[[] for i in range(lowerCamelCase__ )] __UpperCamelCase : Any =self.root**next_ncol # First half of next step __UpperCamelCase : int =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __UpperCamelCase : str =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __UpperCamelCase : int =new_dft __UpperCamelCase : Optional[Any] =next_ncol // 2 return dft[0] def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.__dft('A' ) __UpperCamelCase : Tuple =self.__dft('B' ) __UpperCamelCase : Dict =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __UpperCamelCase : Optional[int] =2 while next_ncol <= self.c_max_length: __UpperCamelCase : Optional[Any] =[[] for i in range(lowerCamelCase__ )] __UpperCamelCase : int =self.root ** (next_ncol // 2) __UpperCamelCase : Tuple =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __UpperCamelCase : Tuple =new_inverse_c next_ncol *= 2 # Unpack __UpperCamelCase : List[Any] =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): """simple docstring""" __UpperCamelCase : List[str] ='A = ' + ' + '.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __UpperCamelCase : int ='B = ' + ' + '.join( f'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __UpperCamelCase : int ='A*B = ' + ' + '.join( f'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return f'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
245
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ :List[str] = { '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } A_ :int = logging.get_logger(__name__) class __A ( a ): """simple docstring""" UpperCamelCase__ : Union[str, Any] ="""mask2former""" UpperCamelCase__ : Tuple =["""swin"""] UpperCamelCase__ : Dict ={"""hidden_size""": """hidden_dim"""} def __init__( self , lowerCamelCase__ = None , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 1024 , lowerCamelCase__ = "relu" , lowerCamelCase__ = 6 , lowerCamelCase__ = 10 , lowerCamelCase__ = 8 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = 2048 , lowerCamelCase__ = False , lowerCamelCase__ = False , lowerCamelCase__ = 4 , lowerCamelCase__ = 255 , lowerCamelCase__ = 100 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 2.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 5.0 , lowerCamelCase__ = 12544 , lowerCamelCase__ = 3.0 , lowerCamelCase__ = 0.75 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = True , lowerCamelCase__ = [4, 8, 16, 32] , lowerCamelCase__ = None , **lowerCamelCase__ , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __UpperCamelCase : Optional[int] =CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCamelCase : List[str] =backbone_config.pop('model_type' ) __UpperCamelCase : str =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase : List[Any] =config_class.from_dict(lowerCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) __UpperCamelCase : Dict =backbone_config __UpperCamelCase : Optional[int] =feature_size __UpperCamelCase : Union[str, Any] =mask_feature_size __UpperCamelCase : Tuple =hidden_dim __UpperCamelCase : Optional[int] =encoder_feedforward_dim __UpperCamelCase : Optional[int] =activation_function __UpperCamelCase : Dict =encoder_layers __UpperCamelCase : List[Any] =decoder_layers __UpperCamelCase : int =num_attention_heads __UpperCamelCase : Optional[Any] =dropout __UpperCamelCase : int =dim_feedforward __UpperCamelCase : Any =pre_norm __UpperCamelCase : Union[str, Any] =enforce_input_projection __UpperCamelCase : str =common_stride __UpperCamelCase : List[str] =ignore_value __UpperCamelCase : Optional[int] =num_queries __UpperCamelCase : Any =no_object_weight __UpperCamelCase : int =class_weight __UpperCamelCase : str =mask_weight __UpperCamelCase : Dict =dice_weight __UpperCamelCase : str =train_num_points __UpperCamelCase : str =oversample_ratio __UpperCamelCase : int =importance_sample_ratio __UpperCamelCase : List[str] =init_std __UpperCamelCase : Union[str, Any] =init_xavier_std __UpperCamelCase : Any =use_auxiliary_loss __UpperCamelCase : Tuple =feature_strides __UpperCamelCase : Dict =output_auxiliary_logits __UpperCamelCase : Union[str, Any] =decoder_layers super().__init__(**lowerCamelCase__ ) @classmethod def __lowercase ( cls , lowerCamelCase__ , **lowerCamelCase__ ): """simple docstring""" return cls( backbone_config=lowerCamelCase__ , **lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =copy.deepcopy(self.__dict__ ) __UpperCamelCase : List[Any] =self.backbone_config.to_dict() __UpperCamelCase : Union[str, Any] =self.__class__.model_type return output
245
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __UpperCamelCase : Optional[Any] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE( UpperCamelCase__ ): def __init__( self: str , *UpperCamelCase: Optional[int] , UpperCamelCase: Optional[Any]=None , UpperCamelCase: Optional[int]=None , UpperCamelCase: Tuple=None , **UpperCamelCase: Any ) -> Union[str, Any]: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) snake_case__ = eval_examples snake_case__ = post_process_function snake_case__ = quant_trainer_args snake_case__ = 1_28 # default number of calibration samples def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Optional[Any]=None ) -> Any: if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) snake_case__ = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case__ = self._remove_unused_columns(UpperCamelCase_ , description='Calibration' ) return DataLoader( UpperCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase_ , ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: str=None ) -> Dict: snake_case__ = self.train_dataset if calib_dataset is None else calib_dataset snake_case__ = self.get_calib_dataloader(UpperCamelCase_ ) snake_case__ = self.model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args , calib=UpperCamelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase_ ) logger.info('***** Running calibration *****' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(UpperCamelCase_ ): # Prediction step snake_case__ , snake_case__ , snake_case__ = self.prediction_step(UpperCamelCase_ , UpperCamelCase_ , prediction_loss_only=UpperCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase_ , self.quant_trainer_args ) snake_case__ = model def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Union[str, Any]=None , UpperCamelCase: List[Any]=None , UpperCamelCase: List[str]=None , UpperCamelCase: str = "eval" ) -> Tuple: snake_case__ = self.eval_dataset if eval_dataset is None else eval_dataset snake_case__ = self.get_eval_dataloader(UpperCamelCase_ ) snake_case__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case__ = self.compute_metrics snake_case__ = None snake_case__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case__ = eval_loop( UpperCamelCase_ , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: snake_case__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) snake_case__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case__ = metrics.pop(UpperCamelCase_ ) self.log(UpperCamelCase_ ) else: snake_case__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCAmelCase_ ( self: int , UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple , UpperCamelCase: List[Any]=None , UpperCamelCase: str = "test" ) -> Optional[int]: snake_case__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. snake_case__ = self.compute_metrics snake_case__ = None snake_case__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case__ = eval_loop( UpperCamelCase_ , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: snake_case__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , 'predict' ) snake_case__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case__ = metrics.pop(UpperCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ ) def lowerCAmelCase_ ( self: int , UpperCamelCase: Tuple="./" ) -> str: snake_case__ = self.eval_dataset snake_case__ = self.get_eval_dataloader(UpperCamelCase_ ) snake_case__ = next(iter(UpperCamelCase_ ) ) # saving device - to make it consistent snake_case__ = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple snake_case__ = tuple(v.to(UpperCamelCase_ ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer snake_case__ = True snake_case__ = self.model.to(UpperCamelCase_ ) model.eval() model.float() snake_case__ = model.module if hasattr(UpperCamelCase_ , 'module' ) else model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args ) snake_case__ = os.path.join(UpperCamelCase_ , 'model.onnx' ) logger.info(F'''exporting model to {output_model_file}''' ) snake_case__ = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , export_params=UpperCamelCase_ , opset_version=13 , do_constant_folding=UpperCamelCase_ , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=UpperCamelCase_ , ) logger.info('onnx export finished' )
307
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCAmelCase = logging.getLogger(__name__) class _a ( UpperCamelCase__ ): _lowercase : Union[str, Any] = '''token-classification''' def __init__( self: int , UpperCamelCase_: Optional[Any] ) -> Dict: """simple docstring""" if type(UpperCamelCase_ ) == dict: lowercase__ = Namespace(**UpperCamelCase_ ) lowercase__ = import_module('''tasks''' ) try: lowercase__ = getattr(UpperCamelCase_ , hparams.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) lowercase__ = self.token_classification_task.get_labels(hparams.labels ) lowercase__ = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def lowerCamelCase_ ( self: Tuple , **UpperCamelCase_: Optional[int] ) -> str: """simple docstring""" return self.model(**UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[Any] , UpperCamelCase_: int ) -> int: """simple docstring""" lowercase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowercase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ = self(**UpperCamelCase_ ) lowercase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.hparams for mode in ["train", "dev", "test"]: lowercase__ = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowercase__ = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowercase__ = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) lowercase__ = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: bool = False ) -> DataLoader: """simple docstring""" lowercase__ = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowercase__ = torch.load(UpperCamelCase_ ) lowercase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: int , UpperCamelCase_: List[Any] ) -> Union[str, Any]: """simple docstring""" """Compute validation""" "" lowercase__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowercase__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase__ = self(**UpperCamelCase_ ) lowercase__ , lowercase__ = outputs[:2] lowercase__ = logits.detach().cpu().numpy() lowercase__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase_ ( self: Dict , UpperCamelCase_: List[str] ) -> int: """simple docstring""" lowercase__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean() lowercase__ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) lowercase__ = np.argmax(UpperCamelCase_ , axis=2 ) lowercase__ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowercase__ = dict(enumerate(self.labels ) ) lowercase__ = [[] for _ in range(out_label_ids.shape[0] )] lowercase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase__ = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } lowercase__ = dict(results.items() ) lowercase__ = results return ret, preds_list, out_label_list def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._eval_end(UpperCamelCase_ ) lowercase__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Dict ) -> Dict: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase_ ( UpperCamelCase_: Optional[Any] , UpperCamelCase_: str ) -> Optional[Any]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase = parser.parse_args() lowerCAmelCase = NERTransformer(args) lowerCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
110
0
from __future__ import annotations def __A ( __lowerCamelCase ) -> str: if len(lowerCamelCase__ ) == 0: return [] a , a = min(lowerCamelCase__ ), max(lowerCamelCase__ ) a = int(max_value - min_value ) + 1 a = [[] for _ in range(lowerCamelCase__ )] for i in my_list: buckets[int(i - min_value )].append(lowerCamelCase__ ) return [v for bucket in buckets for v in sorted(lowerCamelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
350
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCamelCase : Any = datasets.utils.logging.get_logger(__name__) @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): UpperCamelCase__ = None UpperCamelCase__ = "utf-8" UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = True # deprecated UpperCamelCase__ = None # deprecated UpperCamelCase__ = 10 << 20 # 10MB UpperCamelCase__ = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): UpperCamelCase__ = JsonConfig def lowerCamelCase__ ( self :str ): '''simple docstring''' if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) a = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :str ): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__magic_name__ , (str, list, tuple) ): a = data_files if isinstance(__magic_name__ , __magic_name__ ): a = [files] a = [dl_manager.iter_files(__magic_name__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] a = [] for split_name, files in data_files.items(): if isinstance(__magic_name__ , __magic_name__ ): a = [files] a = [dl_manager.iter_files(__magic_name__ ) for file in files] splits.append(datasets.SplitGenerator(name=__magic_name__ , gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ ( self :List[str] , __magic_name__ :pa.Table ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): a = self.config.features.arrow_schema.field(__magic_name__ ).type a = pa_table.append_column(__magic_name__ , pa.array([None] * len(__magic_name__ ) , type=__magic_name__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example a = table_cast(__magic_name__ , self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Union[str, Any] ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__magic_name__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a = json.load(__magic_name__ ) # We keep only the field we are interested in a = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__magic_name__ , (list, tuple) ): a = set().union(*[row.keys() for row in dataset] ) a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} else: a = dataset a = pa.Table.from_pydict(__magic_name__ ) yield file_idx, self._cast_table(__magic_name__ ) # If the file has one json object per line else: with open(__magic_name__ , """rb""" ) as f: a = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small a = max(self.config.chunksize // 32 , 16 << 10 ) a = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: a = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__magic_name__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": a = batch.decode(self.config.encoding , errors=__magic_name__ ).encode("""utf-8""" ) try: while True: try: a = paj.read_json( io.BytesIO(__magic_name__ ) , read_options=paj.ReadOptions(block_size=__magic_name__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__magic_name__ , pa.ArrowInvalid ) and "straddling" not in str(__magic_name__ ) or block_size > len(__magic_name__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'Batch of {len(__magic_name__ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __magic_name__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: a = json.load(__magic_name__ ) except json.JSONDecodeError: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__magic_name__ , __magic_name__ ): # list is the only sequence type supported in JSON try: a = set().union(*[row.keys() for row in dataset] ) a = {col: [row.get(__magic_name__ ) for row in dataset] for col in keys} a = pa.Table.from_pydict(__magic_name__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise ValueError(F'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(__magic_name__ ) break else: logger.error(F'Failed to read file \'{file}\' with error {type(__magic_name__ )}: {e}' ) raise ValueError( F'Not able to read records in the JSON file at {file}. ' F'You should probably indicate the field of the JSON file containing your records. ' F'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' F'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__magic_name__ ) batch_idx += 1
347
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() lowerCAmelCase : List[str] =logging.get_logger(__name__) lowerCAmelCase : Any ='''Hello, World!''' lowerCAmelCase : Any ='''en_XX''' def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ): lowercase_ :Tuple = Path("data_bin" ) lowercase_ :str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ) ,checkpoint_file=Path(__snake_case ).name ,_name="xmod_base" ,arch="xmod_base" ,task="multilingual_masked_lm" ,data_name_or_path=str(__snake_case ) ,bpe="sentencepiece" ,sentencepiece_model=str(Path(__snake_case ).parent / "sentencepiece.bpe.model" ) ,src_dict=str(data_dir / "dict.txt" ) ,) xmod.eval() # disable dropout print(__snake_case ) lowercase_ :List[str] = xmod.model.encoder.sentence_encoder lowercase_ :int = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings ,hidden_size=xmod.cfg.model.encoder_embed_dim ,num_hidden_layers=xmod.cfg.model.encoder_layers ,num_attention_heads=xmod.cfg.model.encoder_attention_heads ,intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=5_14 ,type_vocab_size=1 ,layer_norm_eps=1e-5 ,pre_norm=xmod.cfg.model.encoder_normalize_before ,adapter_reduction_factor=getattr(xmod.cfg.model ,"bottleneck" ,2 ) ,adapter_layer_norm=xmod.cfg.model.adapter_layer_norm ,adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm ,ln_before_adapter=xmod.cfg.model.ln_before_adapter ,languages=xmod.cfg.model.languages ,) if classification_head: lowercase_ :Any = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" ,__snake_case ) lowercase_ :Optional[int] = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings lowercase_ :Tuple = xmod_sent_encoder.embed_tokens.weight lowercase_ :int = xmod_sent_encoder.embed_positions.weight lowercase_ :Any = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowercase_ :List[str] = xmod_sent_encoder.layernorm_embedding.weight lowercase_ :List[str] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase_ :Optional[Any] = model.roberta.encoder.layer[i] lowercase_ :str = xmod_sent_encoder.layers[i] # self attention lowercase_ :Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) lowercase_ :Any = xmod_layer.self_attn.q_proj.weight lowercase_ :Optional[int] = xmod_layer.self_attn.q_proj.bias lowercase_ :Optional[int] = xmod_layer.self_attn.k_proj.weight lowercase_ :int = xmod_layer.self_attn.k_proj.bias lowercase_ :Union[str, Any] = xmod_layer.self_attn.v_proj.weight lowercase_ :Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowercase_ :Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) lowercase_ :Union[str, Any] = xmod_layer.self_attn.out_proj.weight lowercase_ :Union[str, Any] = xmod_layer.self_attn.out_proj.bias lowercase_ :Any = xmod_layer.self_attn_layer_norm.weight lowercase_ :str = xmod_layer.self_attn_layer_norm.bias # intermediate lowercase_ :Union[str, Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) lowercase_ :int = xmod_layer.fca.weight lowercase_ :List[str] = xmod_layer.fca.bias # output lowercase_ :Optional[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) lowercase_ :Any = xmod_layer.fca.weight lowercase_ :Optional[Any] = xmod_layer.fca.bias lowercase_ :Dict = xmod_layer.final_layer_norm.weight lowercase_ :Union[str, Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowercase_ :List[str] = xmod_layer.adapter_layer_norm.weight lowercase_ :List[Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowercase_ :Dict = bert_output.adapter_modules[lang_code] lowercase_ :List[str] = xmod_layer.adapter_modules[lang_code] lowercase_ :List[Any] = from_adapter.fca.weight lowercase_ :Optional[Any] = from_adapter.fca.bias lowercase_ :Any = from_adapter.fca.weight lowercase_ :int = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowercase_ :Dict = xmod_sent_encoder.layer_norm.weight lowercase_ :str = xmod_sent_encoder.layer_norm.bias if classification_head: lowercase_ :Union[str, Any] = xmod.model.classification_heads["mnli"].dense.weight lowercase_ :List[str] = xmod.model.classification_heads["mnli"].dense.bias lowercase_ :Optional[Any] = xmod.model.classification_heads["mnli"].out_proj.weight lowercase_ :str = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head lowercase_ :List[Any] = xmod.model.encoder.lm_head.dense.weight lowercase_ :Dict = xmod.model.encoder.lm_head.dense.bias lowercase_ :Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight lowercase_ :int = xmod.model.encoder.lm_head.layer_norm.bias lowercase_ :int = xmod.model.encoder.lm_head.weight lowercase_ :Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase_ :Optional[Any] = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) lowercase_ :Optional[Any] = model(__snake_case )[0] if classification_head: lowercase_ :Dict = xmod.model.classification_heads["mnli"](xmod.extract_features(__snake_case ) ) else: lowercase_ :Dict = xmod.model(__snake_case ,lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape ,their_output.shape ) lowercase_ :List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowercase_ :Union[str, Any] = torch.allclose(__snake_case ,__snake_case ,atol=1e-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__snake_case ).mkdir(parents=__snake_case ,exist_ok=__snake_case ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) lowerCAmelCase : List[str] =parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
223
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets _a = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ _a = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ _a = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32'''), '''references''': datasets.Value('''int32'''), }) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def UpperCAmelCase ( self , __a , __a , __a=None) -> Dict: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__a , __a , sample_weight=__a)), }
194
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
244
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=_SCREAMING_SNAKE_CASE , all_configs=_SCREAMING_SNAKE_CASE , save_infos=_SCREAMING_SNAKE_CASE ) UpperCamelCase = TestCommand(*_SCREAMING_SNAKE_CASE ) test_command.run() UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "README.md" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict.from_directory(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_351_563, "num_examples": 10_000, }, { "name": "validation", "num_bytes": 238_418, "num_examples": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["default"] , _SCREAMING_SNAKE_CASE ), getattr(expected_dataset_infos["default"] , _SCREAMING_SNAKE_CASE ) if key == "num_bytes": assert is_apercent_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif key == "splits": assert list(_SCREAMING_SNAKE_CASE ) == list(_SCREAMING_SNAKE_CASE ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
244
1
import os def _SCREAMING_SNAKE_CASE ( ): A_ : Optional[int] = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , '''num.txt''' ) with open(SCREAMING_SNAKE_CASE ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
186
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = "t5" snake_case = ["past_key_values"] snake_case = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _SCREAMING_SNAKE_CASE=3_2128 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=128 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-6 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : List[Any] = vocab_size A_ : int = d_model A_ : Optional[Any] = d_kv A_ : str = d_ff A_ : int = num_layers A_ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Optional[Any] = num_heads A_ : Union[str, Any] = relative_attention_num_buckets A_ : Dict = relative_attention_max_distance A_ : List[str] = dropout_rate A_ : Dict = layer_norm_epsilon A_ : str = initializer_factor A_ : Dict = feed_forward_proj A_ : int = use_cache A_ : Optional[int] = self.feed_forward_proj.split('''-''' ) A_ : Optional[Any] = act_info[-1] A_ : Optional[Any] = act_info[0] == '''gated''' if len(_SCREAMING_SNAKE_CASE ) > 1 and act_info[0] != "gated" or len(_SCREAMING_SNAKE_CASE ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": A_ : Tuple = '''gelu_new''' super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" @property def _snake_case ( self )->Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ : Union[str, Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : List[str] = '''past_encoder_sequence + sequence''' A_ : Optional[int] = {0: '''batch'''} A_ : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs @property def _snake_case ( self )->int: '''simple docstring''' return 13
186
1
from __future__ import annotations def A ( lowercase , lowercase = None ) -> list[list[str]]: '''simple docstring''' UpperCamelCase = word_bank or [] # create a table UpperCamelCase = len(lowercase ) + 1 UpperCamelCase = [] for _ in range(lowercase ): table.append([] ) # seed value UpperCamelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: UpperCamelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
365
from __future__ import annotations class lowercase : def __init__( self , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = text, pattern UpperCamelCase , UpperCamelCase = len(A_ ), len(A_ ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCamelCase ( self ) -> list[int]: """simple docstring""" # searches pattern in text and returns index positions UpperCamelCase = [] for i in range(self.textLen - self.patLen + 1 ): UpperCamelCase = self.mismatch_in_text(A_ ) if mismatch_index == -1: positions.append(A_ ) else: UpperCamelCase = self.match_in_pattern(self.text[mismatch_index] ) UpperCamelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _UpperCAmelCase : Union[str, Any] = "ABAABA" _UpperCAmelCase : Any = "AB" _UpperCAmelCase : Dict = BoyerMooreSearch(text, pattern) _UpperCAmelCase : Optional[int] = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
110
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off lowerCamelCase__ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): __lowerCamelCase : List[Any] =VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict =['input_ids', 'attention_mask'] __lowerCamelCase : Union[str, Any] =NllbTokenizer __lowerCamelCase : str =[] __lowerCamelCase : Dict =[] def __init__( self : Optional[int] , __lowercase : Optional[int]=None , __lowercase : List[Any]=None , __lowercase : Any="<s>" , __lowercase : str="</s>" , __lowercase : List[str]="</s>" , __lowercase : List[str]="<s>" , __lowercase : Dict="<unk>" , __lowercase : Optional[int]="<pad>" , __lowercase : Optional[int]="<mask>" , __lowercase : List[str]=None , __lowercase : List[Any]=None , __lowercase : Any=None , __lowercase : Union[str, Any]=False , **__lowercase : Tuple , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it __a = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __a = legacy_behaviour super().__init__( vocab_file=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __a = vocab_file __a = False if not self.vocab_file else True __a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __a = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __a = src_lang if src_lang is not None else """eng_Latn""" __a = self.convert_tokens_to_ids(self._src_lang ) __a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : str , __lowercase : str ): '''simple docstring''' __a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : List[Any] , __lowercase : Tuple , __lowercase : Tuple = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : List[Any] , __lowercase : str , __lowercase : Any = None ): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : str , __lowercase : str , __lowercase : str , __lowercase : str , __lowercase : Union[str, Any] , **__lowercase : Tuple ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __a = src_lang __a = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __a = self.convert_tokens_to_ids(lowerCAmelCase__ ) __a = tgt_lang_id return inputs def UpperCamelCase_ ( self : Tuple , __lowercase : Any , __lowercase : Any = "eng_Latn" , __lowercase : Union[str, Any] = None , __lowercase : List[Any] = "fra_Latn" , **__lowercase : int , ): '''simple docstring''' __a = src_lang __a = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : int ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : Any , __lowercase : Optional[Any] ): '''simple docstring''' __a = self.convert_tokens_to_ids(lowerCAmelCase__ ) if self.legacy_behaviour: __a = [] __a = [self.eos_token_id, self.cur_lang_code] else: __a = [self.cur_lang_code] __a = [self.eos_token_id] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : List[Any] ): '''simple docstring''' __a = self.convert_tokens_to_ids(lowerCAmelCase__ ) if self.legacy_behaviour: __a = [] __a = [self.eos_token_id, self.cur_lang_code] else: __a = [self.cur_lang_code] __a = [self.eos_token_id] __a = self.convert_ids_to_tokens(self.prefix_tokens ) __a = self.convert_ids_to_tokens(self.suffix_tokens ) __a = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def UpperCamelCase_ ( self : List[str] , __lowercase : int , __lowercase : Union[str, Any] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return __a = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
302
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
69
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( A__ , unittest.TestCase ): A_ = KandinskyVaaControlnetPipeline A_ = ["image_embeds", "negative_image_embeds", "hint"] A_ = ["image_embeds", "negative_image_embeds", "hint"] A_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A_ = False @property def __UpperCAmelCase ( self ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 32 @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self ): '''simple docstring''' return 100 @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Tuple = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __a : Optional[int] = UNetaDConditionModel(**__snake_case ) return model @property def __UpperCAmelCase ( self ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __a : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = self.dummy_unet __a : Optional[Any] = self.dummy_movq __a : Dict = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=__snake_case , ) __a : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __UpperCAmelCase ( self , __a , __a=0 ): '''simple docstring''' __a : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) __a : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create hint __a : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('mps' ): __a : Union[str, Any] = torch.manual_seed(__snake_case ) else: __a : int = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a : List[str] = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = 'cpu' __a : Any = self.get_dummy_components() __a : str = self.pipeline_class(**__snake_case ) __a : str = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a : Optional[int] = pipe(**self.get_dummy_inputs(__snake_case ) ) __a : Optional[Any] = output.images __a : Any = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __a : int = image[0, -3:, -3:, -1] __a : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a : List[Any] = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) __a : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) __a : Tuple = torch.from_numpy(np.array(__snake_case ) ).float() / 255.0 __a : Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __a : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __a : Any = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) __a : int = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __a : List[str] = 'A robot, 4k photo' __a : Any = torch.Generator(device='cuda' ).manual_seed(0 ) __a , __a : Any = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __a : List[str] = torch.Generator(device='cuda' ).manual_seed(0 ) __a : Optional[Any] = pipeline( image_embeds=__snake_case , negative_image_embeds=__snake_case , hint=__snake_case , generator=__snake_case , num_inference_steps=100 , output_type='np' , ) __a : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
353
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowercase : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowercase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
294
0
from __future__ import annotations __a = [] def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" for i in range(len(snake_case_ ) ): if board[row][i] == 1: return False for i in range(len(snake_case_ ) ): if board[i][column] == 1: return False for i, j in zip(range(snake_case_, -1, -1 ), range(snake_case_, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(snake_case_, -1, -1 ), range(snake_case_, len(snake_case_ ) ) ): if board[i][j] == 1: return False return True def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->bool: """simple docstring""" if row >= len(snake_case_ ): solution.append(snake_case_ ) printboard(snake_case_ ) print() return True for i in range(len(snake_case_ ) ): if is_safe(snake_case_, snake_case_, snake_case_ ): lowercase : Union[str, Any] = 1 solve(snake_case_, row + 1 ) lowercase : int = 0 return False def __lowercase ( _UpperCamelCase ) ->None: """simple docstring""" for i in range(len(snake_case_ ) ): for j in range(len(snake_case_ ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) __a = 8 __a = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
337
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: Optional[int] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __A = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" __A = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" __A = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" return float((preds == labels).mean() ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]="binary" ) -> Any: """simple docstring""" __lowerCamelCase = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = float(fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ , average=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowerCamelCase = {} for id_pred, label in zip(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" __lowerCamelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowerCamelCase = [(pred, label)] __lowerCamelCase , __lowerCamelCase = [], [] for question, preds_labels in question_map.items(): __lowerCamelCase , __lowerCamelCase = zip(*UpperCamelCase__ ) __lowerCamelCase = fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ , average='macro' ) fas.append(UpperCamelCase__ ) __lowerCamelCase = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase__ ) ) ems.append(UpperCamelCase__ ) __lowerCamelCase = float(sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) ) __lowerCamelCase = sum(UpperCamelCase__ ) / len(UpperCamelCase__ ) __lowerCamelCase = float(fa_score(y_true=UpperCamelCase__ , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def lowercase_ ( self ) -> Any: '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name == "cb": return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ , fa_avg='macro' ) elif self.config_name == "record": __lowerCamelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] __lowerCamelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(lowerCamelCase__ , lowerCamelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
348
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = ["model.decoder.embed_positions.weights"] def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" if "emb" in name: __lowerCamelCase = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __lowerCamelCase = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __lowerCamelCase = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __lowerCamelCase = name.replace('linear1' , 'fc1' ) if "linear2" in name: __lowerCamelCase = name.replace('linear2' , 'fc2' ) if "norm1" in name: __lowerCamelCase = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __lowerCamelCase = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __lowerCamelCase = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __lowerCamelCase = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __lowerCamelCase = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def lowerCamelCase_ ( UpperCamelCase__ : OrderedDict , UpperCamelCase__ : int ) -> Tuple[Dict, Dict]: """simple docstring""" __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(UpperCamelCase__ ) __lowerCamelCase = rename_keys(UpperCamelCase__ ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def lowerCamelCase_ ( UpperCamelCase__ : str ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values __lowerCamelCase = 1024 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 1536 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 2048 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=UpperCamelCase__ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase__ , num_attention_heads=UpperCamelCase__ , ) return config @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]="cpu" ) -> List[Any]: """simple docstring""" __lowerCamelCase = MusicGen.get_pretrained(UpperCamelCase__ , device=UpperCamelCase__ ) __lowerCamelCase = decoder_config_from_checkpoint(UpperCamelCase__ ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase , __lowerCamelCase = rename_state_dict( UpperCamelCase__ , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('t5-base' ) __lowerCamelCase = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __lowerCamelCase = MusicgenForCausalLM(UpperCamelCase__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase , __lowerCamelCase = decoder.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(UpperCamelCase__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase__ , audio_encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase__ ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('t5-base' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) # set the appropriate bos/pad token ids __lowerCamelCase = 2048 __lowerCamelCase = 2048 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(UpperCamelCase__ ) processor.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __A = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
348
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _A = logging.get_logger(__name__) class _lowerCAmelCase ( __a ): _lowercase =['''pixel_values'''] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) lowerCAmelCase_ = size if size is not None else {"shortest_edge": 256} lowerCAmelCase_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase_ = get_size_dict(_UpperCamelCase , param_name="crop_size" ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = resample lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BICUBIC , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase_ = get_resize_output_image_size(_UpperCamelCase , size=size["shortest_edge"] , default_to_square=_UpperCamelCase ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_UpperCamelCase , size=(size["height"], size["width"]) , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase ) -> np.ndarray: return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> Dict: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ = get_size_dict(_UpperCamelCase , param_name="crop_size" ) lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = [to_numpy_array(_UpperCamelCase ) for image in images] if do_resize: lowerCAmelCase_ = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_center_crop: lowerCAmelCase_ = [self.center_crop(image=_UpperCamelCase , size=_UpperCamelCase ) for image in images] if do_rescale: lowerCAmelCase_ = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: lowerCAmelCase_ = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] lowerCAmelCase_ = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] lowerCAmelCase_ = {"pixel_values": images} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Union[str, Any]: lowerCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_UpperCamelCase ): lowerCAmelCase_ = target_sizes.numpy() lowerCAmelCase_ = [] for idx in range(len(_UpperCamelCase ) ): lowerCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_UpperCamelCase ) lowerCAmelCase_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_UpperCamelCase ) else: lowerCAmelCase_ = logits.argmax(dim=1 ) lowerCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
231
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class _lowerCAmelCase : def __init__( self , _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=64 , _UpperCamelCase=None ) -> Optional[Any]: lowerCAmelCase_ = np.random.default_rng(_UpperCamelCase ) lowerCAmelCase_ = length lowerCAmelCase_ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase_ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> int: return self.length def __getitem__( self , _UpperCamelCase ) -> Dict: return {"x": self.x[i], "y": self.y[i]} class _lowerCAmelCase ( torch.nn.Module ): def __init__( self , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=False ) -> List[Any]: super().__init__() lowerCAmelCase_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase_ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase_ = True def __a ( self , _UpperCamelCase=None ) -> Any: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase_ = False return x * self.a[0] + self.b[0] class _lowerCAmelCase ( torch.nn.Module ): def __init__( self , _UpperCamelCase=0 , _UpperCamelCase=0 , _UpperCamelCase=False ) -> Optional[int]: super().__init__() lowerCAmelCase_ = torch.nn.Parameter(torch.tensor(_UpperCamelCase ).float() ) lowerCAmelCase_ = torch.nn.Parameter(torch.tensor(_UpperCamelCase ).float() ) lowerCAmelCase_ = True def __a ( self , _UpperCamelCase=None ) -> int: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase_ = False return x * self.a + self.b def lowerCamelCase__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase_ = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} lowerCAmelCase_ = load_dataset("csv" , data_files=__lowerCAmelCase ) lowerCAmelCase_ = datasets["train"].unique("label" ) lowerCAmelCase_ = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase : List[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" ) if "label" in examples: lowerCAmelCase_ = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(__lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader(tokenized_datasets["train"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) lowerCAmelCase_ = DataLoader(tokenized_datasets["validation"] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
231
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : List[str] = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
'''simple docstring''' class __lowerCamelCase : # Public class to implement a graph """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): _A : List[Any] = row _A : Union[str, Any] = col _A : List[str] = graph def A ( self : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def A ( self : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[list[bool]]): # Checking all 8 elements surrounding nth element _A : Tuple = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _A : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] _A : List[Any] = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE) def A ( self : int): # And finally, count all islands. _A : Dict = [[False for j in range(self.COL)] for i in range(self.ROW)] _A : Union[str, Any] = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) count += 1 return count
227
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'big_bird' def __init__( self , lowercase=50358 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=4096 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=True , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=66 , lowercase="block_sparse" , lowercase=True , lowercase=False , lowercase=64 , lowercase=3 , lowercase=None , **lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , sep_token_id=lowercase , **lowercase , ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_cache A__ = rescale_embeddings A__ = attention_type A__ = use_bias A__ = block_size A__ = num_random_blocks A__ = classifier_dropout class a__ ( snake_case ): """simple docstring""" @property def UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
68
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> list: '''simple docstring''' A__ = int(SCREAMING_SNAKE_CASE_ ) if n_element < 1: A__ = ValueError("a should be a positive number" ) raise my_error A__ = [1] A__ , A__ , A__ = (0, 0, 0) A__ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase__ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase__ = hamming(int(n)) print("""-----------------------------------------------------""") print(f"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
68
1
'''simple docstring''' from copy import deepcopy class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __lowercase : list[int] | None = None , __lowercase : int | None = None ) -> None: if arr is None and size is not None: SCREAMING_SNAKE_CASE__ : int =size SCREAMING_SNAKE_CASE__ : Optional[int] =[0] * size elif arr is not None: self.init(__lowercase ) else: raise ValueError('''Either arr or size must be specified''' ) def __magic_name__ ( self : Any , __lowercase : list[int] ) -> None: SCREAMING_SNAKE_CASE__ : int =len(__lowercase ) SCREAMING_SNAKE_CASE__ : int =deepcopy(__lowercase ) for i in range(1 , self.size ): SCREAMING_SNAKE_CASE__ : str =self.next_(__lowercase ) if j < self.size: self.tree[j] += self.tree[i] def __magic_name__ ( self : Dict ) -> list[int]: SCREAMING_SNAKE_CASE__ : Tuple =self.tree[:] for i in range(self.size - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.next_(__lowercase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __magic_name__ ( __lowercase : int ) -> int: return index + (index & (-index)) @staticmethod def __magic_name__ ( __lowercase : int ) -> int: return index - (index & (-index)) def __magic_name__ ( self : int , __lowercase : int , __lowercase : int ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value SCREAMING_SNAKE_CASE__ : Optional[int] =self.next_(__lowercase ) def __magic_name__ ( self : str , __lowercase : int , __lowercase : int ) -> None: self.add(__lowercase , value - self.get(__lowercase ) ) def __magic_name__ ( self : Optional[int] , __lowercase : int ) -> int: if right == 0: return 0 SCREAMING_SNAKE_CASE__ : List[str] =self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] SCREAMING_SNAKE_CASE__ : Optional[int] =self.prev(__lowercase ) return result def __magic_name__ ( self : Union[str, Any] , __lowercase : int , __lowercase : int ) -> int: return self.prefix(__lowercase ) - self.prefix(__lowercase ) def __magic_name__ ( self : Optional[Any] , __lowercase : int ) -> int: return self.query(__lowercase , index + 1 ) def __magic_name__ ( self : Tuple , __lowercase : int ) -> int: value -= self.tree[0] if value < 0: return -1 SCREAMING_SNAKE_CASE__ : Any =1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 SCREAMING_SNAKE_CASE__ : int =0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
222
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a_ = {'facebook/blenderbot_small-90M': 5_1_2} def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =set() SCREAMING_SNAKE_CASE__ : Optional[Any] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Optional[Any] =char SCREAMING_SNAKE_CASE__ : Any =set(UpperCamelCase__ ) return pairs class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __lowercase : int , __lowercase : Optional[int] , __lowercase : List[str]="__start__" , __lowercase : Union[str, Any]="__end__" , __lowercase : str="__unk__" , __lowercase : Union[str, Any]="__null__" , **__lowercase : List[str] , ) -> Optional[int]: super().__init__(unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , **__lowercase ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Any =json.load(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict ={v: k for k, v in self.encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ : int =merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE__ : List[Any] =[tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE__ : int =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Dict ={} @property def __magic_name__ ( self : Any ) -> int: return len(self.encoder ) def __magic_name__ ( self : Tuple ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Optional[Any] , __lowercase : str ) -> str: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Union[str, Any] =re.sub('''([.,!?()])''' , r''' \1''' , __lowercase ) SCREAMING_SNAKE_CASE__ : int =re.sub('''(\')''' , r''' \1 ''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =re.sub(r'''\s{2,}''' , ''' ''' , __lowercase ) if "\n" in token: SCREAMING_SNAKE_CASE__ : List[str] =token.replace('''\n''' , ''' __newln__''' ) SCREAMING_SNAKE_CASE__ : Dict =token.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Dict =[] for token in tokens: if not len(__lowercase ): continue SCREAMING_SNAKE_CASE__ : Union[str, Any] =token.lower() SCREAMING_SNAKE_CASE__ : Optional[Any] =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] =get_pairs(__lowercase ) if not pairs: words.append(__lowercase ) continue while True: SCREAMING_SNAKE_CASE__ : int =min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =bigram SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Tuple =0 while i < len(__lowercase ): try: SCREAMING_SNAKE_CASE__ : Optional[Any] =word.index(__lowercase , __lowercase ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : Optional[int] =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : int =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : int =new_word if len(__lowercase ) == 1: break else: SCREAMING_SNAKE_CASE__ : Any =get_pairs(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ='''@@ '''.join(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =word[:-4] SCREAMING_SNAKE_CASE__ : str =word words.append(__lowercase ) return " ".join(__lowercase ) def __magic_name__ ( self : str , __lowercase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : List[Any] =re.findall(r'''\S+\n?''' , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : List[Any] , __lowercase : str ) -> int: SCREAMING_SNAKE_CASE__ : int =token.lower() return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , __lowercase : int ) -> str: return self.decoder.get(__lowercase , self.unk_token ) def __magic_name__ ( self : List[Any] , __lowercase : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] =''' '''.join(__lowercase ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE__ : str =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : int =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE__ : List[str] =0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : Any =token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file
222
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a__ ( ): '''simple docstring''' __magic_name__ , __magic_name__ = 9, 14 # noqa: F841 __magic_name__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __magic_name__ = defaultdict(A_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __magic_name__ = mst(A_ ) __magic_name__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __magic_name__ = tuple(answer[:2] ) __magic_name__ = tuple(edge[::-1] ) assert edge in result or reverse in result
88
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ (A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(__lowercase , """depth_multiplier""" ) ) class snake_case__ : """simple docstring""" def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=3 , __lowercase=3_2 , __lowercase=0.2_5 , __lowercase=8 , __lowercase=True , __lowercase=1_0_2_4 , __lowercase=3_2 , __lowercase="relu6" , __lowercase=0.1 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=1_0 , __lowercase=None , ) -> List[Any]: """simple docstring""" a__ : Tuple = parent a__ : Dict = batch_size a__ : Optional[int] = num_channels a__ : int = image_size a__ : Union[str, Any] = depth_multiplier a__ : int = min_depth a__ : List[str] = tf_padding a__ : Tuple = int(last_hidden_size * depth_multiplier ) a__ : Union[str, Any] = output_stride a__ : List[Any] = hidden_act a__ : int = classifier_dropout_prob a__ : str = use_labels a__ : Dict = is_training a__ : Dict = num_labels a__ : int = initializer_range a__ : List[Any] = scope def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : str = None a__ : List[str] = None if self.use_labels: a__ : Any = ids_tensor([self.batch_size] , self.num_labels ) a__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : str = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Dict = MobileNetVaModel(config=__lowercase ) model.to(__lowercase ) model.eval() a__ : List[Any] = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : int = self.num_labels a__ : Dict = MobileNetVaForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() a__ : List[str] = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Dict = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Dict = config_and_inputs a__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ (A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Any = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () __lowerCAmelCase :int = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase :List[Any] = False __lowerCAmelCase :Optional[Any] = False __lowerCAmelCase :Optional[Any] = False __lowerCAmelCase :Dict = False def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : List[Any] = MobileNetVaModelTester(self ) a__ : Tuple = MobileNetVaConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" pass def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(__lowercase ) a__ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" def check_hidden_states_output(__lowercase , __lowercase , __lowercase ): a__ : Dict = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(__lowercase , __lowercase ) ) a__ : List[Any] = outputs.hidden_states a__ : List[Any] = 2_6 self.assertEqual(len(__lowercase ) , __lowercase ) a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : Union[str, Any] = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Dict = MobileNetVaModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class snake_case__ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : List[str] = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(__lowercase ) a__ : Union[str, Any] = self.default_image_processor a__ : Optional[Any] = prepare_img() a__ : List[str] = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): a__ : Tuple = model(**__lowercase ) # verify the logits a__ : Tuple = torch.Size((1, 1_0_0_1) ) self.assertEqual(outputs.logits.shape , __lowercase ) a__ : Tuple = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
170
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP SCREAMING_SNAKE_CASE_ = False try: SCREAMING_SNAKE_CASE_ = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class UpperCamelCase__ : '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : str = None ,lowerCamelCase__ : list = [] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = choices SCREAMING_SNAKE_CASE = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE = """*""" else: SCREAMING_SNAKE_CASE = """➔ """ def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str = "" ) -> Any: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] ,32 ,lowerCamelCase__ ) else: forceWrite(self.choices[index] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : int ) -> Dict: '''simple docstring''' if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(lowerCamelCase__ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Direction ,lowerCamelCase__ : int = 1 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(lowerCamelCase__ ) move_cursor(lowerCamelCase__ ,direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: '''simple docstring''' move_cursor(len(self.choices ) - self.position ,"""DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: '''simple docstring''' move_cursor(len(self.choices ) - self.position ,"""DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(lowerCamelCase__ )] for number in range(10 )] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP ,-movement ) elif self.position < index: self.move_direction(Direction.DOWN ,lowerCamelCase__ ) else: return else: return def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : int = 0 ) -> Any: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt ,"""\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" ,"""\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" ,"""\n""" ) SCREAMING_SNAKE_CASE = default_choice for i in range(len(self.choices ) ): self.print_choice(lowerCamelCase__ ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position ,"""UP""" ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE = default_choice else: SCREAMING_SNAKE_CASE = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 ,"""UP""" ) clear_line() self.write_choice(lowerCamelCase__ ,"""\n""" ) return choice
193
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=3 ,lowerCamelCase__ : List[str]=32 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : str=10 ,lowerCamelCase__ : Any=[10, 20, 30, 40] ,lowerCamelCase__ : Optional[Any]=[1, 1, 2, 1] ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Tuple="relu" ,lowerCamelCase__ : Dict=3 ,lowerCamelCase__ : Optional[int]=None ,) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModel(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __snake_case : Tuple = False __snake_case : int = False __snake_case : Tuple = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: '''simple docstring''' return def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> int: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) ,expected_num_stages + 1 ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ : Dict ,**lowerCamelCase__ : Optional[Any] ): return model(pixel_values=lowerCamelCase__ ,**lowerCamelCase__ ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ ,lowerCamelCase__ ): self.assertEqual(jitted_output.shape ,output.shape ) def __lowercase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCamelCase__ ,return_tensors="""np""" ) SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = (1, 1000) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1e-4 ) )
193
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "data2vec-vision" def __init__( self, lowerCAmelCase__=768, lowerCAmelCase__=12, lowerCAmelCase__=12, lowerCAmelCase__=3072, lowerCAmelCase__="gelu", lowerCAmelCase__=0.0, lowerCAmelCase__=0.0, lowerCAmelCase__=0.02, lowerCAmelCase__=1e-12, lowerCAmelCase__=224, lowerCAmelCase__=16, lowerCAmelCase__=3, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=False, lowerCAmelCase__=0.1, lowerCAmelCase__=0.1, lowerCAmelCase__=True, lowerCAmelCase__=[3, 5, 7, 11], lowerCAmelCase__=[1, 2, 3, 6], lowerCAmelCase__=True, lowerCAmelCase__=0.4, lowerCAmelCase__=256, lowerCAmelCase__=1, lowerCAmelCase__=False, lowerCAmelCase__=255, **lowerCAmelCase__, ) -> Optional[int]: super().__init__(**lowerCAmelCase__) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = use_mask_token snake_case_ = use_absolute_position_embeddings snake_case_ = use_relative_position_bias snake_case_ = use_shared_relative_position_bias snake_case_ = layer_scale_init_value snake_case_ = drop_path_rate snake_case_ = use_mean_pooling # decode head attributes (semantic segmentation) snake_case_ = out_indices snake_case_ = pool_scales # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = semantic_loss_ignore_index class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = version.parse("1.11" ) @property def a_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def a_ ( self) -> float: return 1e-4
69
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''T5Config''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "mt5" SCREAMING_SNAKE_CASE_ = MTaConfig class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "mt5" SCREAMING_SNAKE_CASE_ = MTaConfig class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "mt5" SCREAMING_SNAKE_CASE_ = MTaConfig
69
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : List[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase =UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def UpperCAmelCase_ ( self : Any ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase =UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase =AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) __UpperCamelCase =UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' __UpperCamelCase ='''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __UpperCamelCase =DDPMScheduler() __UpperCamelCase =AudioDiffusionPipeline(vqvae=UpperCamelCase__ , unet=self.dummy_unet , mel=UpperCamelCase__ , scheduler=UpperCamelCase__ ) __UpperCamelCase =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) __UpperCamelCase =pipe(generator=UpperCamelCase__ , steps=4 ) __UpperCamelCase =output.audios[0] __UpperCamelCase =output.images[0] __UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) __UpperCamelCase =pipe(generator=UpperCamelCase__ , steps=4 , return_dict=UpperCamelCase__ ) __UpperCamelCase =output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __UpperCamelCase =np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __UpperCamelCase =np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] __UpperCamelCase =np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase =Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __UpperCamelCase =DDIMScheduler() __UpperCamelCase =self.dummy_vqvae_and_unet __UpperCamelCase =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=UpperCamelCase__ , scheduler=UpperCamelCase__ ) __UpperCamelCase =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) np.random.seed(0 ) __UpperCamelCase =np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) __UpperCamelCase =pipe(raw_audio=UpperCamelCase__ , generator=UpperCamelCase__ , start_step=5 , steps=10 ) __UpperCamelCase =output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __UpperCamelCase =np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __UpperCamelCase =np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __UpperCamelCase =self.dummy_unet_condition __UpperCamelCase =AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=UpperCamelCase__ , mel=UpperCamelCase__ , scheduler=UpperCamelCase__ ) __UpperCamelCase =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) np.random.seed(0 ) __UpperCamelCase =torch.rand((1, 1, 10) ) __UpperCamelCase =pipe(generator=UpperCamelCase__ , encoding=UpperCamelCase__ ) __UpperCamelCase =output.images[0] __UpperCamelCase =np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __UpperCamelCase =np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =torch_device __UpperCamelCase =DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) __UpperCamelCase =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(42 ) __UpperCamelCase =pipe(generator=UpperCamelCase__ ) __UpperCamelCase =output.audios[0] __UpperCamelCase =output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __UpperCamelCase =np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] __UpperCamelCase =np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
85
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } __lowercase = { '''gpt-neox-20b''': 2_048, } class _lowercase ( __a ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[int]="<|endoftext|>" , UpperCamelCase__ : Optional[int]=False , **UpperCamelCase__ : str , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase__ ) != add_prefix_space: __UpperCamelCase =getattr(UpperCamelCase__ , pre_tok_state.pop('''type''' ) ) __UpperCamelCase =add_prefix_space __UpperCamelCase =pre_tok_class(**UpperCamelCase__ ) __UpperCamelCase =add_prefix_space def UpperCAmelCase_ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __UpperCamelCase =self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , UpperCamelCase__ : "Conversation" ) -> List[int]: '''simple docstring''' __UpperCamelCase =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: __UpperCamelCase =input_ids[-self.model_max_length :] return input_ids
85
1
from itertools import product def a ( snake_case__: int , snake_case__: int ): '''simple docstring''' lowercase_ = sides_number lowercase_ = max_face_number * dice_number lowercase_ = [0] * (max_total + 1) lowercase_ = 1 lowercase_ = range(snake_case__ , max_face_number + 1 ) for dice_numbers in product(snake_case__ , repeat=snake_case__ ): lowercase_ = sum(snake_case__ ) totals_frequencies[total] += 1 return totals_frequencies def a ( ): '''simple docstring''' lowercase_ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase_ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase_ = 0 lowercase_ = 9 lowercase_ = 4 * 9 lowercase_ = 6 for peter_total in range(snake_case__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase_ = (4**9) * (6**6) lowercase_ = peter_wins_count / total_games_number lowercase_ = round(snake_case__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"{solution() = }")
30
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __a : def __init__( self : str , __magic_name__ : Any , __magic_name__ : Union[str, Any]=13 , __magic_name__ : int=7 , __magic_name__ : int=False , __magic_name__ : str=True , __magic_name__ : int=False , __magic_name__ : Optional[int]=False , __magic_name__ : List[Any]=19 , __magic_name__ : Any=32 , __magic_name__ : List[Any]=5 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=37 , __magic_name__ : str="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Union[str, Any]=0.0_2 , __magic_name__ : int=3 , __magic_name__ : Dict=4 , __magic_name__ : str=None , ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Tuple = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : Tuple = type_vocab_size UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Tuple = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Tuple = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[Any] = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__magic_name__ , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[str] = EsmForProteinFolding(config=__magic_name__ ).float() model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ ) UpperCAmelCase_ : List[Any] = model(__magic_name__ ) UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Any = False __a : Any = (EsmForProteinFolding,) if is_torch_available() else () __a : Any = () __a : Optional[Any] = {} if is_torch_available() else {} __a : List[str] = False def UpperCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = EsmFoldModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) @unittest.skip('''Does not support attention outputs''' ) def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''Esm does not support embedding resizing''' ) def UpperCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold does not support head pruning.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" pass @unittest.skip('''ESMFold only has one output format.''' ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def UpperCAmelCase__ ( self : Any ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold does not support input chunking.''' ) def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" pass @require_torch class __a (lowerCamelCase ): @slow def UpperCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCAmelCase_ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ : Tuple = model(__magic_name__ )['''positions'''] UpperCAmelCase_ : Dict = torch.tensor([2.5_8_2_8, 0.7_9_9_3, -1_0.9_3_3_4] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __magic_name__ , atol=1E-4 ) )
125
0
from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_ ( __a , __a , __a ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__a , 2 ) - pow(__a , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__a , 2 ) - pow(__a , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__a , 2 ) + pow(__a , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
273
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __A = ["text", "image", "audio"] def lowerCAmelCase_ ( __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Tuple =[] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__a , __a ): inputs.append(create_inputs(__a ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =[] for output in outputs: if isinstance(__a , (str, AgentText) ): output_types.append("text" ) elif isinstance(__a , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(__a , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _SCREAMING_SNAKE_CASE : '''simple docstring''' def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs")) self.assertTrue(hasattr(self.tool , "outputs")) lowerCamelCase__: Tuple =self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) lowerCamelCase__: Optional[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->str: '''simple docstring''' lowerCamelCase__: List[str] =create_inputs(self.tool.inputs) lowerCamelCase__: str =self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: lowerCamelCase__: Optional[Any] =[outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def SCREAMING_SNAKE_CASE_ (self : Dict) ->Any: '''simple docstring''' self.assertTrue(hasattr(self.tool , "description")) self.assertTrue(hasattr(self.tool , "default_checkpoint")) self.assertTrue(self.tool.description.startswith("This is a tool that")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: str =create_inputs(self.tool.inputs) lowerCamelCase__: Dict =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Tuple =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): lowerCamelCase__: Any =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' lowerCamelCase__: Any =create_inputs(self.tool.inputs) lowerCamelCase__: int =[] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error lowerCamelCase__: Union[str, Any] =self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: str =[outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
273
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : bool = True ,lowercase__ : bool = False ): __lowercase = scheduler __lowercase = optimizers if isinstance(lowercase__ ,(list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def SCREAMING_SNAKE_CASE ( self : Any ,*lowercase__ : str ,**lowercase__ : str ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowercase__ ,**lowercase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowercase__ ,**lowercase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(lowercase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler ,'''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowercase__ ,**lowercase__ ) else: self.scheduler.step(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.scheduler.get_last_lr() def SCREAMING_SNAKE_CASE ( self : int ): return self.scheduler.state_dict() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Tuple ): self.scheduler.load_state_dict(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): return self.scheduler.get_lr() def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[Any] ,**lowercase__ : List[str] ): return self.scheduler.print_lr(*lowercase__ ,**lowercase__ )
104
"""simple docstring""" lowerCamelCase_ : int = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Union[str, Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
81
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case( lowerCamelCase__ ): '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=False , A_=True , A_="None" , A_=3 , A_=4 , A_=None , ) -> Union[str, Any]: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = relative_attention lowerCAmelCase = position_biased_input lowerCAmelCase = pos_att_type lowerCAmelCase = scope def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ) -> Union[str, Any]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __snake_case ( self , A_ ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = DebertaVaModel(config=__A ) model.to(__A ) model.eval() lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A )[0] lowerCAmelCase = model(__A , token_type_ids=__A )[0] lowerCAmelCase = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: lowerCAmelCase = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() lowerCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: lowerCAmelCase = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() lowerCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( lowerCAmelCase ) = config_and_inputs lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase : int = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Dict = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[str] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Optional[int] = False def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = DebertaVaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=__A , hidden_size=37 ) def __snake_case ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def __snake_case ( self ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __snake_case ( self ) -> int: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def __snake_case ( self ) -> Tuple: pass @slow def __snake_case ( self ) -> List[str]: lowerCAmelCase = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) lowerCAmelCase = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase = model(__A , attention_mask=__A )[0] # compare the actual values for a slice. lowerCAmelCase = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
361
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> List[str]: lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(A_ ) from datasets import load_dataset lowerCAmelCase = load_dataset("""nielsr/rvlcdip-demo""" ) lowerCAmelCase = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase = image_processor(A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**A_ ) lowerCAmelCase = outputs.logits lowerCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , A_ ) lowerCAmelCase = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=A_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
187
0
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : list ): '''simple docstring''' if not nums: raise ValueError('List is empty' ) return sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
77
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = CTRLTokenizer lowercase__ = False lowercase__ = False def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ = dict(zip(lowerCamelCase, range(len(lowerCamelCase ) ) ) ) lowercase__ = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase ) + '''\n''' ) with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase ) ) def lowercase__ ( self : Union[str, Any], **lowerCamelCase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase ) def lowercase__ ( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowercase__ = '''adapt react readapt apt''' lowercase__ = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase, lowerCamelCase ) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ), lowerCamelCase )
207
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=10 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , a_=None , ): '''simple docstring''' __snake_case : List[str] = size if size is not None else {'shortest_edge': 18} __snake_case : Union[str, Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} __snake_case : List[str] = parent __snake_case : Dict = batch_size __snake_case : Tuple = num_channels __snake_case : Optional[Any] = num_frames __snake_case : List[Any] = image_size __snake_case : Optional[int] = min_resolution __snake_case : Dict = max_resolution __snake_case : Dict = do_resize __snake_case : Any = size __snake_case : int = do_normalize __snake_case : Optional[int] = image_mean __snake_case : List[str] = image_std __snake_case : Optional[int] = crop_size def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCAmelCase ( __UpperCamelCase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = VivitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __snake_case : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=a_ ) for video in video_inputs: self.assertIsInstance(a_ , a_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __snake_case : int = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Any = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : str = prepare_video_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for video in video_inputs: self.assertIsInstance(a_ , a_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __snake_case : Optional[int] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for video in video_inputs: self.assertIsInstance(a_ , a_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __snake_case : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
350
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( UpperCamelCase , unittest.TestCase): a_ = DDIMPipeline a_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } a_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS a_ = False def A ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : int = {'''unet''': unet, '''scheduler''': scheduler} return components def A ( self : List[Any] , _A : str , _A : List[Any]=0 ) -> Optional[int]: if str(_A ).startswith('''mps''' ): UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(_A ) else: UpperCAmelCase_ : str = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase_ : Optional[int] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A ( self : int ) -> int: UpperCAmelCase_ : Optional[int] = '''cpu''' UpperCAmelCase_ : Union[str, Any] = self.get_dummy_components() UpperCAmelCase_ : Union[str, Any] = self.pipeline_class(**_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : int = self.get_dummy_inputs(_A ) UpperCAmelCase_ : Tuple = pipe(**_A ).images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) UpperCAmelCase_ : Optional[Any] = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) UpperCAmelCase_ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_A , 1e-3 ) def A ( self : List[Any] ) -> List[str]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def A ( self : Any ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def A ( self : Optional[Any] ) -> Dict: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def A ( self : Dict ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case__ ( unittest.TestCase): def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_ : Any = '''google/ddpm-cifar10-32''' UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(_A ) UpperCAmelCase_ : int = DDIMScheduler() UpperCAmelCase_ : Optional[int] = DDIMPipeline(unet=_A , scheduler=_A ) ddim.to(_A ) ddim.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Any = ddim(generator=_A , eta=0.0 , output_type='''numpy''' ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : List[str] = np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = '''google/ddpm-ema-bedroom-256''' UpperCAmelCase_ : Any = UNetaDModel.from_pretrained(_A ) UpperCAmelCase_ : Optional[Any] = DDIMScheduler.from_pretrained(_A ) UpperCAmelCase_ : int = DDIMPipeline(unet=_A , scheduler=_A ) ddpm.to(_A ) ddpm.set_progress_bar_config(disable=_A ) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ddpm(generator=_A , output_type='''numpy''' ).images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ : int = np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
304
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ ( UpperCamelCase): def A ( self : List[str] ) -> List[Any]: UpperCAmelCase_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_A , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(_A , '''num_heads''' ) ) class snake_case__ : def __init__( self : List[Any] , _A : List[str] , _A : Optional[Any]=13 , _A : List[str]=64 , _A : Tuple=3 , _A : int=[16, 48, 96] , _A : int=[1, 3, 6] , _A : Union[str, Any]=[1, 2, 10] , _A : List[Any]=[7, 3, 3] , _A : Optional[Any]=[4, 2, 2] , _A : List[Any]=[2, 1, 1] , _A : Union[str, Any]=[2, 2, 2] , _A : Tuple=[False, False, True] , _A : str=[0.0, 0.0, 0.0] , _A : List[Any]=0.02 , _A : int=1e-12 , _A : Optional[int]=True , _A : List[str]=True , _A : Union[str, Any]=2 , ) -> List[Any]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : int = patch_stride UpperCAmelCase_ : Any = patch_padding UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Tuple = stride_kv UpperCAmelCase_ : Optional[Any] = depth UpperCAmelCase_ : Dict = cls_token UpperCAmelCase_ : Dict = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps def A ( self : int ) -> List[str]: UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels def A ( self : List[str] ) -> int: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Dict , _A : List[Any] , _A : Tuple , _A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = CvtModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase_ : Tuple = model(_A ) UpperCAmelCase_ : List[str] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : Any , _A : int , _A : str , _A : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : str = CvtForImageClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase_ : int = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Dict ) -> Any: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): a_ = (CvtModel, CvtForImageClassification) if is_torch_available() else () a_ = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def A ( self : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = CvtModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=37 ) def A ( self : Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : int ) -> List[str]: return @unittest.skip(reason='''Cvt does not output attentions''' ) def A ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def A ( self : Any ) -> Optional[Any]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def A ( self : List[Any] ) -> Any: pass def A ( self : int ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(_A ) UpperCAmelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Tuple = [*signature.parameters.keys()] UpperCAmelCase_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def A ( self : Tuple ) -> int: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def A ( self : Dict ) -> List[str]: def check_hidden_states_output(_A : Dict , _A : str , _A : int ): UpperCAmelCase_ : str = model_class(_A ) model.to(_A ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(_A , _A ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : Any = len(self.model_tester.depth ) self.assertEqual(len(_A ) , _A ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Dict = True check_hidden_states_output(_A , _A , _A ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : List[Any] ) -> Optional[Any]: pass @slow def A ( self : Optional[int] ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[Any] = CvtModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case__ ( unittest.TestCase): @cached_property def A ( self : Union[str, Any] ) -> Union[str, Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ) -> str: UpperCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_A ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : List[str] = prepare_img() UpperCAmelCase_ : List[Any] = image_processor(images=_A , return_tensors='''pt''' ).to(_A ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Any = model(**_A ) # verify the logits UpperCAmelCase_ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1e-4 ) )
304
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _A ): SCREAMING_SNAKE_CASE = (DDPMParallelScheduler,) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any] , **__SCREAMING_SNAKE_CASE : Tuple): A = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__SCREAMING_SNAKE_CASE) return config def SCREAMING_SNAKE_CASE__ (self : Dict): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2]): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Any): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict): self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Dict): for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0_0_9_7_9)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.0_2)) < 1E-5 def SCREAMING_SNAKE_CASE__ (self : Union[str, Any]): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = len(__SCREAMING_SNAKE_CASE) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] , dim=0) A = torch.arange(__SCREAMING_SNAKE_CASE)[0:3, None].repeat(1 , __SCREAMING_SNAKE_CASE) A = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) A = scheduler.batch_step_no_noise(__SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1) , samples.flatten(0 , 1)) A = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) A = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3) < 1E-2 assert abs(result_mean.item() - 0.5_0_0_5) < 1E-3 def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = len(__SCREAMING_SNAKE_CASE) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0) for t in reversed(range(__SCREAMING_SNAKE_CASE)): # 1. predict noise residual A = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # 2. predict previous mean of sample x_t-1 A = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) A = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 2_5_8.9_6_0_6) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2) < 1E-3 def SCREAMING_SNAKE_CASE__ (self : Any): A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type="v_prediction") A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = len(__SCREAMING_SNAKE_CASE) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0) for t in reversed(range(__SCREAMING_SNAKE_CASE)): # 1. predict noise residual A = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # 2. predict previous mean of sample x_t-1 A = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE)) A = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE)) assert abs(result_sum.item() - 2_0_2.0_2_9_6) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1) < 1E-3 def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE) A = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE): if i == len(__SCREAMING_SNAKE_CASE) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE) A = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : str): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="`custom_timesteps` must be in descending order."): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[str]): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = [1_0_0, 8_7, 5_0, 1, 0] A = len(__SCREAMING_SNAKE_CASE) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Any): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**__SCREAMING_SNAKE_CASE) A = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE)
57
"""simple docstring""" import numpy as np import datasets __A : Optional[int] = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __A : Any = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __A : List[str] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Dict): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence") , id="X"), }) , ) def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): # convert to numpy arrays A = np.array(__SCREAMING_SNAKE_CASE) A = np.array(__SCREAMING_SNAKE_CASE) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension") # Get mahalanobis distance for each prediction A = X - np.mean(__SCREAMING_SNAKE_CASE) A = np.cov(reference_distribution.T) try: A = np.linalg.inv(__SCREAMING_SNAKE_CASE) except np.linalg.LinAlgError: A = np.linalg.pinv(__SCREAMING_SNAKE_CASE) A = np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = np.dot(__SCREAMING_SNAKE_CASE , X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
57
1
from __future__ import annotations class __A : def __init__( self : Any , UpperCAmelCase_ : Optional[int]=None ): lowerCAmelCase : Dict = data lowerCAmelCase : List[Any] = None def __repr__( self : Tuple ): lowerCAmelCase : Any = [] lowerCAmelCase : Dict = self while temp: string_rep.append(f"{temp.data}" ) lowerCAmelCase : Any = temp.next return "->".join(UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if not elements_list: raise Exception('The Elements List is empty' ) lowerCAmelCase : Dict = Node(elements_list[0] ) for i in range(1, len(_UpperCAmelCase ) ): lowerCAmelCase : Union[str, Any] = Node(elements_list[i] ) lowerCAmelCase : Union[str, Any] = current.next return head def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> None: '''simple docstring''' if head_node is not None and isinstance(_UpperCAmelCase, _UpperCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[int] = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(_UpperCAmelCase ) print('Elements in Reverse:' ) print_reverse(_UpperCAmelCase ) if __name__ == "__main__": main()
138
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
1
'''simple docstring''' lowerCAmelCase: str = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
96
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a__( lowerCamelCase__ ): lowercase__ = 42 @flax_register_to_config class a__( nn.Module , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = 32 lowercase__ = 4 lowercase__ = 4 lowercase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowercase__ = False lowercase__ = (3_20, 6_40, 12_80, 12_80) lowercase__ = 2 lowercase__ = 8 lowercase__ = None lowercase__ = 12_80 lowercase__ = 0.0 lowercase__ = False lowercase__ = jnp.floataa lowercase__ = True lowercase__ = 0 lowercase__ = False def lowercase_ ( self : List[Any] , __snake_case : jax.random.KeyArray ): # init input tensors a : Dict = (1, self.in_channels, self.sample_size, self.sample_size) a : str = jnp.zeros(__snake_case , dtype=jnp.floataa ) a : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) a : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a , a : Optional[int] = jax.random.split(__snake_case ) a : Any = {'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def lowercase_ ( self : Union[str, Any] ): a : int = self.block_out_channels a : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a : str = self.num_attention_heads or self.attention_head_dim # input a : List[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a : Optional[int] = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) a : Optional[Any] = self.only_cross_attention if isinstance(__snake_case , __snake_case ): a : int = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): a : str = (num_attention_heads,) * len(self.down_block_types ) # down a : int = [] a : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): a : List[Any] = output_channel a : Dict = block_out_channels[i] a : Union[str, Any] = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": a : Dict = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : List[str] = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) a : Dict = down_blocks # mid a : Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up a : List[Any] = [] a : Dict = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : List[str] = list(reversed(__snake_case ) ) a : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): a : Dict = output_channel a : Dict = reversed_block_out_channels[i] a : Dict = reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] a : List[Any] = i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": a : List[Any] = FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: a : Dict = FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) a : Dict = output_channel a : int = up_blocks # out a : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) a : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Dict=None , __snake_case : Any=None , __snake_case : bool = True , __snake_case : bool = False , ): # 1. time if not isinstance(__snake_case , jnp.ndarray ): a : Tuple = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: a : Tuple = timesteps.astype(dtype=jnp.floataa ) a : Optional[int] = jnp.expand_dims(__snake_case , 0 ) a : Optional[Any] = self.time_proj(__snake_case ) a : Optional[int] = self.time_embedding(__snake_case ) # 2. pre-process a : str = jnp.transpose(__snake_case , (0, 2, 3, 1) ) a : Optional[int] = self.conv_in(__snake_case ) # 3. down a : Optional[Any] = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): a , a : Any = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: a , a : Optional[Any] = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: a : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) a : Tuple = new_down_block_res_samples # 4. mid a : int = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: a : int = down_block_res_samples[-(self.layers_per_block + 1) :] a : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): a : Optional[int] = up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: a : Optional[Any] = up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process a : Any = self.conv_norm_out(__snake_case ) a : List[str] = nn.silu(__snake_case ) a : Optional[int] = self.conv_out(__snake_case ) a : Any = jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
96
1
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase_ = get_logger() UpperCamelCase_ = None class a_ (TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__( self , snake_case_=None , snake_case_=None , **snake_case_ ): super().__init__(features=SCREAMING_SNAKE_CASE__ ) import jax from jaxlib.xla_client import Device if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError( f'Expected {device} to be a `str` not {type(SCREAMING_SNAKE_CASE__ )}, as `jaxlib.xla_extension.Device` ' """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _lowerCAmelCase : Dict = device if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Union[str, Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) _lowerCAmelCase : List[Any] = str(jax.devices()[0] ) _lowerCAmelCase : List[str] = jnp_array_kwargs @staticmethod def __UpperCamelCase ( ): import jax return {str(SCREAMING_SNAKE_CASE__ ): device for device in jax.devices()} def __UpperCamelCase ( self , snake_case_ ): import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and column: if all( isinstance(SCREAMING_SNAKE_CASE__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) return column def __UpperCamelCase ( self , snake_case_ ): import jax import jax.numpy as jnp if isinstance(SCREAMING_SNAKE_CASE__ , (str, bytes, type(SCREAMING_SNAKE_CASE__ )) ): return value elif isinstance(SCREAMING_SNAKE_CASE__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _lowerCAmelCase : Optional[int] = {} if isinstance(SCREAMING_SNAKE_CASE__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : int = {'''dtype''': jnp.intaa} else: _lowerCAmelCase : List[Any] = {'''dtype''': jnp.intaa} elif isinstance(SCREAMING_SNAKE_CASE__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _lowerCAmelCase : List[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): _lowerCAmelCase : Tuple = np.asarray(SCREAMING_SNAKE_CASE__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Tuple = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(SCREAMING_SNAKE_CASE__ , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCamelCase ( self , snake_case_ ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(SCREAMING_SNAKE_CASE__ , """__array__""" ) and not isinstance(SCREAMING_SNAKE_CASE__ , jax.Array ): _lowerCAmelCase : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE__ ) for substruct in data_struct] ) elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(SCREAMING_SNAKE_CASE__ ) for substruct in data_struct] ) return self._tensorize(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self , snake_case_ ): return map_nested(self._recursive_tensorize , SCREAMING_SNAKE_CASE__ , map_list=SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Any = self.numpy_arrow_extractor().extract_row(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(SCREAMING_SNAKE_CASE__ ) return self.recursive_tensorize(SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : int = self.numpy_arrow_extractor().extract_column(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : Any = self.python_features_decoder.decode_column(SCREAMING_SNAKE_CASE__ , pa_table.column_names[0] ) _lowerCAmelCase : Tuple = self.recursive_tensorize(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : List[str] = self._consolidate(SCREAMING_SNAKE_CASE__ ) return column def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_batch(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : Optional[int] = self.python_features_decoder.decode_batch(SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : List[Any] = self.recursive_tensorize(SCREAMING_SNAKE_CASE__ ) for column_name in batch: _lowerCAmelCase : Dict = self._consolidate(batch[column_name] ) return batch
309
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __lowerCamelCase ( a_ : str , a_ : Dict , a_ : Any , a_ : str ) -> str: __SCREAMING_SNAKE_CASE :int = s.rsplit(a_ , a_ ) return new.join(a_ ) def __lowerCamelCase ( a_ : List[str] ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __lowerCamelCase ( a_ : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE :Optional[int] = {} __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __SCREAMING_SNAKE_CASE :Optional[Any] = key.replace(f'''{group_key}.''' , f'''{group_key}.group.''' ) if "res_path" in key: __SCREAMING_SNAKE_CASE :str = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): __SCREAMING_SNAKE_CASE :List[Any] = rreplace(a_ , '''.b''' , '''.bias''' , 1 ) __SCREAMING_SNAKE_CASE :Optional[Any] = value.float() return upgrade @torch.no_grad() def __lowerCamelCase ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int]=None , a_ : Dict=True ) -> Union[str, Any]: from dall_e import Encoder __SCREAMING_SNAKE_CASE :int = Encoder() if os.path.exists(a_ ): __SCREAMING_SNAKE_CASE :Dict = torch.load(a_ ) else: __SCREAMING_SNAKE_CASE :List[str] = torch.hub.load_state_dict_from_url(a_ ) if isinstance(a_ , a_ ): __SCREAMING_SNAKE_CASE :List[str] = ckpt.state_dict() encoder.load_state_dict(a_ ) if config_path is not None: __SCREAMING_SNAKE_CASE :Any = FlavaImageCodebookConfig.from_pretrained(a_ ) else: __SCREAMING_SNAKE_CASE :Optional[int] = FlavaImageCodebookConfig() __SCREAMING_SNAKE_CASE :Tuple = FlavaImageCodebook(a_ ).eval() __SCREAMING_SNAKE_CASE :List[str] = encoder.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = upgrade_state_dict(a_ ) hf_model.load_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = hf_model.state_dict() __SCREAMING_SNAKE_CASE :Union[str, Any] = count_parameters(a_ ) __SCREAMING_SNAKE_CASE :Any = count_parameters(a_ ) assert torch.allclose(a_ , a_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(a_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") lowerCamelCase_ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
191
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { """configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""LlamaTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""LlamaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """LlamaForCausalLM""", """LlamaModel""", """LlamaPreTrainedModel""", """LlamaForSequenceClassification""", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __UpperCAmelCase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __UpperCAmelCase = concatenate_datasets __UpperCAmelCase = DownloadConfig __UpperCAmelCase = DownloadManager __UpperCAmelCase = DownloadMode __UpperCAmelCase = DownloadConfig __UpperCAmelCase = DownloadMode __UpperCAmelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
139
0
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function a : Tuple = 1.0_5_4_5_7_1_8_1_7E-3_4 # unit of ℏ : J * s a : Dict = 3E8 # unit of c : m * s^-1 def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float , _lowercase : float ) ->dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: a : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: a : Any = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a : str = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
105
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCamelCase : @staticmethod def __a ( *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: pass def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Dict: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a : Optional[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = pipeline( "document-question-answering" , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a : Optional[int] = INVOICE_URL a : str = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) a : Union[str, Any] = "What is the placebo?" a : Dict = [ { "image": load_image(lowerCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Tuple = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, {"score": ANY(lowerCAmelCase__ ), "answer": ANY(lowerCAmelCase__ ), "start": ANY(lowerCAmelCase__ ), "end": ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> List[Any]: a : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) a : Dict = INVOICE_URL a : List[str] = "How many cats are there?" a : Tuple = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a : Optional[int] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) a : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a : List[Any] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes a : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" a : Tuple = [] a : Optional[int] = [] a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Tuple: a : int = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a : List[str] = INVOICE_URL a : List[Any] = "What is the invoice number?" a : int = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __a ( self ) -> Optional[int]: a : List[str] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : str = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> str: a : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : int = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , ) a : List[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a : List[Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Optional[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __a ( self ) -> Tuple: a : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase__ ) a : Tuple = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase__ , revision="3dc6de3" , max_seq_len=50 , ) a : List[str] = INVOICE_URL a : Union[str, Any] = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a : List[str] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a : List[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , "" ) ) ) # This model should also work if `image` is set to None a : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __a ( self ) -> int: a : Tuple = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a : Optional[Any] = INVOICE_URL a : Tuple = "What is the invoice number?" a : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __a ( self ) -> int: pass
105
1
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() _a : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> str: print("""Loading config file...""" ) def flatten_yaml_as_dict(_lowerCamelCase : List[Any] ,_lowerCamelCase : Tuple="" ,_lowerCamelCase : List[Any]="." ): _lowerCAmelCase : Union[str, Any] = [] for k, v in d.items(): _lowerCAmelCase : List[str] = parent_key + sep + k if parent_key else k if isinstance(_lowerCamelCase ,collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(_lowerCamelCase ,_lowerCamelCase ,sep=_lowerCamelCase ).items() ) else: items.append((new_key, v) ) return dict(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = argparse.Namespace() with open(_lowerCamelCase ,"""r""" ) as yaml_file: try: _lowerCAmelCase : int = yaml.load(_lowerCamelCase ,Loader=yaml.FullLoader ) _lowerCAmelCase : Optional[int] = flatten_yaml_as_dict(_lowerCamelCase ) for k, v in flat_cfg.items(): setattr(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(_lowerCamelCase ,str(_lowerCamelCase ) ) ) return config def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: _lowerCAmelCase : int = MobileViTVaConfig() _lowerCAmelCase : Optional[Any] = False # dataset if task_name.startswith("""imagenet1k_""" ): _lowerCAmelCase : Union[str, Any] = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _lowerCAmelCase : Any = 384 else: _lowerCAmelCase : Dict = 256 _lowerCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _lowerCAmelCase : Tuple = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: _lowerCAmelCase : List[str] = 384 else: _lowerCAmelCase : str = 256 _lowerCAmelCase : Any = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _lowerCAmelCase : Any = 151 _lowerCAmelCase : Optional[Any] = 512 _lowerCAmelCase : Tuple = """ade20k-id2label.json""" _lowerCAmelCase : List[str] = True elif task_name.startswith("""voc_""" ): _lowerCAmelCase : Optional[int] = 21 _lowerCAmelCase : Union[str, Any] = 512 _lowerCAmelCase : str = """pascal-voc-id2label.json""" _lowerCAmelCase : List[Any] = True # orig_config _lowerCAmelCase : List[Any] = load_orig_config_file(_lowerCamelCase ) assert getattr(_lowerCamelCase ,"""model.classification.name""" ,-1 ) == "mobilevit_v2", "Invalid model" _lowerCAmelCase : str = getattr(_lowerCamelCase ,"""model.classification.mitv2.width_multiplier""" ,1.0 ) assert ( getattr(_lowerCamelCase ,"""model.classification.mitv2.attn_norm_layer""" ,-1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _lowerCAmelCase : Union[str, Any] = getattr(_lowerCamelCase ,"""model.classification.activation.name""" ,"""swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _lowerCAmelCase : List[Any] = getattr(_lowerCamelCase ,"""model.segmentation.output_stride""" ,16 ) if "_deeplabv3" in task_name: _lowerCAmelCase : Optional[Any] = getattr(_lowerCamelCase ,"""model.segmentation.deeplabv3.aspp_rates""" ,[12, 24, 36] ) _lowerCAmelCase : List[str] = getattr(_lowerCamelCase ,"""model.segmentation.deeplabv3.aspp_out_channels""" ,512 ) _lowerCAmelCase : Optional[int] = getattr(_lowerCamelCase ,"""model.segmentation.deeplabv3.aspp_dropout""" ,0.1 ) # id2label _lowerCAmelCase : Dict = """huggingface/label-files""" _lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowerCamelCase ,_lowerCamelCase ,repo_type="""dataset""" ) ,"""r""" ) ) _lowerCAmelCase : Optional[Any] = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCAmelCase : Optional[Any] = idalabel _lowerCAmelCase : str = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Any ) -> Optional[Any]: _lowerCAmelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCAmelCase : List[Any] = val def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Optional[int]=False ) -> str: if base_model: _lowerCAmelCase : List[Any] = """""" else: _lowerCAmelCase : Optional[Any] = """mobilevitv2.""" _lowerCAmelCase : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _lowerCAmelCase : Tuple = k[8:] else: _lowerCAmelCase : Any = k if ".block." in k: _lowerCAmelCase : Any = k_new.replace(""".block.""" ,""".""" ) if ".conv." in k: _lowerCAmelCase : Any = k_new.replace(""".conv.""" ,""".convolution.""" ) if ".norm." in k: _lowerCAmelCase : List[Any] = k_new.replace(""".norm.""" ,""".normalization.""" ) if "conv_1." in k: _lowerCAmelCase : Dict = k_new.replace("""conv_1.""" ,f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: _lowerCAmelCase : List[Any] = k_new.replace(f"layer_{i}." ,f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _lowerCAmelCase : List[Any] = k_new.replace(""".exp_1x1.""" ,""".expand_1x1.""" ) if ".red_1x1." in k: _lowerCAmelCase : str = k_new.replace(""".red_1x1.""" ,""".reduce_1x1.""" ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: _lowerCAmelCase : List[Any] = k_new.replace(f"layer_{i}.0." ,f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: _lowerCAmelCase : str = k_new.replace(f"layer_{i}.1.local_rep.0." ,f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: _lowerCAmelCase : Dict = k_new.replace(f"layer_{i}.1.local_rep.1." ,f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _lowerCAmelCase : Any = [0, 1] elif i == 4: _lowerCAmelCase : Dict = [0, 1, 2, 3] elif i == 5: _lowerCAmelCase : Optional[Any] = [0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: _lowerCAmelCase : List[Any] = k_new.replace( f"layer_{i}.1.global_rep.{j}." ,f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: _lowerCAmelCase : Union[str, Any] = k_new.replace( f"layer_{i}.1.global_rep.{j+1}." ,f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: _lowerCAmelCase : Any = k_new.replace(f"layer_{i}.1.conv_proj." ,f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _lowerCAmelCase : int = k_new.replace("""pre_norm_attn.0.""" ,"""layernorm_before.""" ) if "pre_norm_attn.1." in k: _lowerCAmelCase : int = k_new.replace("""pre_norm_attn.1.""" ,"""attention.""" ) if "pre_norm_ffn.0." in k: _lowerCAmelCase : int = k_new.replace("""pre_norm_ffn.0.""" ,"""layernorm_after.""" ) if "pre_norm_ffn.1." in k: _lowerCAmelCase : Optional[Any] = k_new.replace("""pre_norm_ffn.1.""" ,"""ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _lowerCAmelCase : Any = k_new.replace("""pre_norm_ffn.3.""" ,"""ffn.conv2.""" ) if "classifier.1." in k: _lowerCAmelCase : Optional[Any] = k_new.replace("""classifier.1.""" ,"""classifier.""" ) if "seg_head." in k: _lowerCAmelCase : List[Any] = k_new.replace("""seg_head.""" ,"""segmentation_head.""" ) if ".aspp_layer." in k: _lowerCAmelCase : int = k_new.replace(""".aspp_layer.""" ,""".""" ) if ".aspp_pool." in k: _lowerCAmelCase : Dict = k_new.replace(""".aspp_pool.""" ,""".""" ) rename_keys.append((k, k_new) ) return rename_keys def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Tuple: _lowerCAmelCase : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(_lowerCamelCase ) for k in keys_to_ignore: state_dict.pop(_lowerCamelCase ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: _lowerCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _lowerCAmelCase : List[Any] = Image.open(requests.get(_lowerCamelCase ,stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Dict ,_lowerCamelCase : Any ) -> Optional[Any]: _lowerCAmelCase : List[Any] = get_mobilevitva_config(_lowerCamelCase ,_lowerCamelCase ) # load original state_dict _lowerCAmelCase : Tuple = torch.load(_lowerCamelCase ,map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _lowerCAmelCase : Optional[int] = MobileViTVaForSemanticSegmentation(_lowerCamelCase ).eval() _lowerCAmelCase : int = False else: _lowerCAmelCase : Any = MobileViTVaForImageClassification(_lowerCamelCase ).eval() _lowerCAmelCase : Any = False # remove and rename some keys of load the original model _lowerCAmelCase : List[Any] = checkpoint remove_unused_keys(_lowerCamelCase ) _lowerCAmelCase : Tuple = create_rename_keys(_lowerCamelCase ,base_model=_lowerCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # load modified state_dict model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor _lowerCAmelCase : str = MobileViTImageProcessor(crop_size=config.image_size ,size=config.image_size + 32 ) _lowerCAmelCase : Union[str, Any] = image_processor(images=prepare_img() ,return_tensors="""pt""" ) _lowerCAmelCase : Tuple = model(**_lowerCamelCase ) # verify classification model if task_name.startswith("""imagenet""" ): _lowerCAmelCase : List[str] = outputs.logits _lowerCAmelCase : List[Any] = logits.argmax(-1 ).item() print("""Predicted class:""" ,model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _lowerCAmelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] ,_lowerCamelCase ,atol=1e-4 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) _a : List[Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
369
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __A : def __init__( self , a__ , a__=2 , a__=3 , a__=4 , a__=2 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=36 , a__=3 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=6 , a__=6 , a__=3 , a__=4 , a__=None , a__=1000 , ): _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Optional[Any] = batch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : str = image_size _lowerCAmelCase : str = patch_size _lowerCAmelCase : str = text_seq_length _lowerCAmelCase : List[Any] = is_training _lowerCAmelCase : List[str] = use_input_mask _lowerCAmelCase : List[Any] = use_token_type_ids _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Any = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : Tuple = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Dict = coordinate_size _lowerCAmelCase : Optional[int] = shape_size _lowerCAmelCase : str = num_labels _lowerCAmelCase : Optional[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCAmelCase : Optional[int] = text_seq_length _lowerCAmelCase : Any = (image_size // patch_size) ** 2 + 1 _lowerCAmelCase : Any = self.text_seq_length + self.image_seq_length def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Optional[Any] = bbox[i, j, 3] _lowerCAmelCase : List[str] = bbox[i, j, 1] _lowerCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : int = bbox[i, j, 2] _lowerCAmelCase : Optional[int] = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_input_mask: _lowerCAmelCase : int = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCAmelCase : str = None if self.use_token_type_ids: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCAmelCase : int = None _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCAmelCase : str = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = LayoutLMvaModel(config=a__ ) model.to(a__ ) model.eval() # text + image _lowerCAmelCase : Optional[Any] = model(a__ , pixel_values=a__ ) _lowerCAmelCase : Any = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : List[Any] = model(a__ , bbox=a__ , pixel_values=a__ , token_type_ids=a__ ) _lowerCAmelCase : Tuple = model(a__ , bbox=a__ , pixel_values=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCAmelCase : Dict = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCAmelCase : Optional[Any] = model(pixel_values=a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = self.num_labels _lowerCAmelCase : int = LayoutLMvaForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : str = LayoutLMvaForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[str] = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Dict = LayoutLMvaForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : str = model( a__ , bbox=a__ , pixel_values=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = config_and_inputs _lowerCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False _UpperCamelCase : Any = False _UpperCamelCase : int = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Union[str, Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __A ( self , a__ , a__ , a__ , a__ , a__ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __A ( self ): _lowerCAmelCase : Any = LayoutLMvaModelTester(self ) _lowerCAmelCase : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self , a__ , a__ , a__=False ): _lowerCAmelCase : List[str] = copy.deepcopy(a__ ) if model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a__ ): _lowerCAmelCase : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in get_values(a__ ): _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) _lowerCAmelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) elif model_class in [ *get_values(a__ ), ]: _lowerCAmelCase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a__ , ) return inputs_dict def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : int = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __A ( self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LayoutLMvaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __A ( unittest.TestCase ): @cached_property def __A ( self ): return LayoutLMvaImageProcessor(apply_ocr=a__ ) if is_vision_available() else None @slow def __A ( self ): _lowerCAmelCase : Optional[int] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(a__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Dict = image_processor(images=a__ , return_tensors="""pt""" ).pixel_values.to(a__ ) _lowerCAmelCase : Optional[Any] = torch.tensor([[1, 2]] ) _lowerCAmelCase : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCAmelCase : str = model( input_ids=input_ids.to(a__ ) , bbox=bbox.to(a__ ) , pixel_values=pixel_values.to(a__ ) , ) # verify the logits _lowerCAmelCase : Optional[int] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4 ) )
126
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _snake_case ( lowercase_ ): def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a__ , "width_multiplier" ) ) class _snake_case : def __init__( self , a__ , a__=13 , a__=64 , a__=2 , a__=3 , a__="swish" , a__=3 , a__=32 , a__=0.1 , a__=0.0_2 , a__=True , a__=True , a__=10 , a__=None , a__=0.2_5 , a__=0.0 , a__=0.0 , ) -> Dict: '''simple docstring''' snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = make_divisible(512 * width_multiplier , divisor=8 ) snake_case_ = hidden_act snake_case_ = conv_kernel_size snake_case_ = output_stride snake_case_ = classifier_dropout_prob snake_case_ = use_labels snake_case_ = is_training snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = scope snake_case_ = width_multiplier snake_case_ = ffn_dropout snake_case_ = attn_dropout def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> int: '''simple docstring''' snake_case_ = MobileViTVaModel(config=a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = MobileViTVaForImageClassification(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> List[str]: '''simple docstring''' snake_case_ = self.num_labels snake_case_ = MobileViTVaForSemanticSegmentation(a__ ) model.to(a__ ) model.eval() snake_case_ = model(a__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ = model(a__ , labels=a__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( lowercase_ , lowercase_ , unittest.TestCase ): lowerCAmelCase_ : int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ : Dict = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : int = False def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = MobileViTVaModelTester(self ) snake_case_ = MobileViTVaConfigTester(self , config_class=a__ , has_text_modality=a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(a__ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' def check_hidden_states_output(a__ , a__ , a__ ): snake_case_ = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(a__ , a__ ) ) snake_case_ = outputs.hidden_states snake_case_ = 5 self.assertEqual(len(a__ ) , a__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case_ = 2 for i in range(len(a__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(a__ , a__ , a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a__ ) @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MobileViTVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase_( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( a__ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): snake_case_ = model(**a__ ) # verify the logits snake_case_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a__ ) snake_case_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = model.to(a__ ) snake_case_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): snake_case_ = model(**a__ ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , a__ ) snake_case_ = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=a__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , a__ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = model.to(a__ ) snake_case_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) snake_case_ = prepare_img() snake_case_ = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): snake_case_ = model(**a__ ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=a__ , target_sizes=[(50, 60)] ) snake_case_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , a__ ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=a__ ) snake_case_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , a__ )
85
'''simple docstring''' import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _SCREAMING_SNAKE_CASE : Any = False try: _SCREAMING_SNAKE_CASE : Optional[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _snake_case : def __init__( self , a__ = None , a__ = [] ) -> List[str]: '''simple docstring''' snake_case_ = 0 snake_case_ = choices snake_case_ = prompt if sys.platform == "win32": snake_case_ = "*" else: snake_case_ = "➔ " def lowerCAmelCase__ ( self , a__ , a__ = "" ) -> int: '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , a__ ) else: forceWrite(self.choices[index] , a__ ) def lowerCAmelCase__ ( self , a__ ) -> Tuple: '''simple docstring''' if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(a__ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def lowerCAmelCase__ ( self , a__ , a__ = 1 ) -> List[str]: '''simple docstring''' snake_case_ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(a__ ) move_cursor(a__ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(a__ )] for number in range(10 )] ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = int(chr(self.current_selection ) ) snake_case_ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , a__ ) else: return else: return def lowerCAmelCase__ ( self , a__ = 0 ) -> List[str]: '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) snake_case_ = default_choice for i in range(len(self.choices ) ): self.print_choice(a__ ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: snake_case_ = int(builtins.input() ) except ValueError: snake_case_ = default_choice else: snake_case_ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(a__ , "\n" ) return choice
85
1
from typing import Union import fire import torch from tqdm import tqdm def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = "cpu" , __lowerCAmelCase = None ): """simple docstring""" snake_case__ : Union[str, Any] = torch.load(__SCREAMING_SNAKE_CASE , map_location=__SCREAMING_SNAKE_CASE ) for k, v in tqdm(state_dict.items() ): if not isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) snake_case__ : Union[str, Any] = v.half() if save_path is None: # overwrite src_path snake_case__ : Tuple = src_path torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": fire.Fire(convert)
369
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: """simple docstring""" snake_case__ : Optional[int] = len(__lowerCAmelCase ) + 1 snake_case__ : Tuple = len(__lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. snake_case__ : str = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )] # since string of zero length match pattern of zero length snake_case__ : int = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowerCAmelCase ): snake_case__ : Dict = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowerCAmelCase ): snake_case__ : str = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowerCAmelCase ): for j in range(1 , __lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": snake_case__ : Dict = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: snake_case__ : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): snake_case__ : List[str] = dp[i - 1][j] else: snake_case__ : Union[str, Any] = 0 else: snake_case__ : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A__ = '''aab''' A__ = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
44
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __A : str = logging.get_logger(__name__) @add_end_docstrings( a_ , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class A_ (a_ ): def _lowercase ( self , _A ): '''simple docstring''' if self.framework == "tf": UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_A ) else: raise ValueError('''Unsupported framework''' ) return masked_index def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = self.get_masked_index(_A ) UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , F"""No mask_token ({self.tokenizer.mask_token}) found on the input""" , ) def _lowercase ( self , _A ): '''simple docstring''' if isinstance(_A , _A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_A ) def _lowercase ( self , _A , _A=None , **_A ): '''simple docstring''' if return_tensors is None: UpperCAmelCase = self.framework UpperCAmelCase = self.tokenizer(_A , return_tensors=_A ) self.ensure_exactly_one_mask_token(_A ) return model_inputs def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = self.model(**_A ) UpperCAmelCase = model_inputs['''input_ids'''] return model_outputs def _lowercase ( self , _A , _A=5 , _A=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase = target_ids.shape[0] UpperCAmelCase = model_outputs['''input_ids'''][0] UpperCAmelCase = model_outputs['''logits'''] if self.framework == "tf": UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase = outputs.numpy() UpperCAmelCase = outputs[0, masked_index, :] UpperCAmelCase = stable_softmax(_A , axis=-1 ) if target_ids is not None: UpperCAmelCase = tf.gather_nd(tf.squeeze(_A , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase = tf.expand_dims(_A , 0 ) UpperCAmelCase = tf.math.top_k(_A , k=_A ) UpperCAmelCase , UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase = outputs[0, masked_index, :] UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase = probs[..., target_ids] UpperCAmelCase , UpperCAmelCase = probs.topk(_A ) UpperCAmelCase = [] UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase = target_ids[p].tolist() UpperCAmelCase = p # Filter padding out: UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase = self.tokenizer.decode(_A , skip_special_tokens=_A ) UpperCAmelCase = {'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_A ) result.append(_A ) if single_mask: return result[0] return result def _lowercase ( self , _A , _A=None ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase = [targets] try: UpperCAmelCase = self.tokenizer.get_vocab() except Exception: UpperCAmelCase = {} UpperCAmelCase = [] for target in targets: UpperCAmelCase = vocab.get(_A , _A ) if id_ is None: UpperCAmelCase = self.tokenizer( _A , add_special_tokens=_A , return_attention_mask=_A , return_token_type_ids=_A , max_length=1 , truncation=_A , )['''input_ids'''] if len(_A ) == 0: logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ '''We cannot replace it with anything meaningful, ignoring it''' ) continue UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"""The specified target token `{target}` does not exist in the model vocabulary. """ F"""Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.""" ) target_ids.append(id_ ) UpperCAmelCase = list(set(_A ) ) if len(_A ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) UpperCAmelCase = np.array(_A ) return target_ids def _lowercase ( self , _A=None , _A=None ): '''simple docstring''' UpperCAmelCase = {} if targets is not None: UpperCAmelCase = self.get_target_ids(_A , _A ) UpperCAmelCase = target_ids if top_k is not None: UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , _A , *_A , **_A ): '''simple docstring''' UpperCAmelCase = super().__call__(_A , **_A ) if isinstance(_A , _A ) and len(_A ) == 1: return outputs[0] return outputs
273
from datetime import datetime import requests def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bytes: '''simple docstring''' UpperCAmelCase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' UpperCAmelCase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(UpperCamelCase__ ).content if __name__ == "__main__": __A : Union[str, Any] = input("Enter Video/IGTV url: ").strip() __A : Tuple = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, "wb") as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
273
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = model.config __UpperCAmelCase : int = DonutSwinConfig( image_size=original_config.input_size, patch_size=4, depths=original_config.encoder_layer, num_heads=[4, 8, 16, 32], window_size=original_config.window_size, embed_dim=128, ) __UpperCAmelCase : List[str] = MBartConfig( is_decoder=snake_case__, is_encoder_decoder=snake_case__, add_cross_attention=snake_case__, decoder_layers=original_config.decoder_layer, max_position_embeddings=original_config.max_position_embeddings, vocab_size=len( model.decoder.tokenizer ), scale_embedding=snake_case__, add_final_layer_norm=snake_case__, ) return encoder_config, decoder_config def _UpperCamelCase ( snake_case__ ) -> Any: if "encoder.model" in name: __UpperCAmelCase : Optional[Any] = name.replace("encoder.model", "encoder" ) if "decoder.model" in name: __UpperCAmelCase : Optional[int] = name.replace("decoder.model", "decoder" ) if "patch_embed.proj" in name: __UpperCAmelCase : List[str] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __UpperCAmelCase : Optional[Any] = name.replace("patch_embed.norm", "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: __UpperCAmelCase : Tuple = "encoder." + name if "attn.proj" in name: __UpperCAmelCase : List[str] = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name and "mask" not in name: __UpperCAmelCase : Optional[Any] = name.replace("attn", "attention.self" ) if "norm1" in name: __UpperCAmelCase : Dict = name.replace("norm1", "layernorm_before" ) if "norm2" in name: __UpperCAmelCase : int = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase : List[Any] = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase : List[Any] = name.replace("mlp.fc2", "output.dense" ) if name == "encoder.norm.weight": __UpperCAmelCase : Any = "encoder.layernorm.weight" if name == "encoder.norm.bias": __UpperCAmelCase : Any = "encoder.layernorm.bias" return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Union[str, Any] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __UpperCAmelCase : Union[str, Any] = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[3] ) __UpperCAmelCase : str = int(key_split[5] ) __UpperCAmelCase : List[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCAmelCase : Optional[Any] = val[:dim, :] __UpperCAmelCase : List[Any] = val[dim : dim * 2, :] __UpperCAmelCase : Optional[Any] = val[-dim:, :] else: __UpperCAmelCase : str = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : Optional[int] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCAmelCase : int = val return orig_state_dict def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> Dict: # load original model __UpperCAmelCase : int = DonutModel.from_pretrained(snake_case__ ).eval() # load HuggingFace model __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = get_configs(snake_case__ ) __UpperCAmelCase : Dict = DonutSwinModel(snake_case__ ) __UpperCAmelCase : Tuple = MBartForCausalLM(snake_case__ ) __UpperCAmelCase : str = VisionEncoderDecoderModel(encoder=snake_case__, decoder=snake_case__ ) model.eval() __UpperCAmelCase : str = original_model.state_dict() __UpperCAmelCase : int = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify results on scanned document __UpperCAmelCase : List[Any] = load_dataset("hf-internal-testing/example-documents" ) __UpperCAmelCase : str = dataset["test"][0]["image"].convert("RGB" ) __UpperCAmelCase : Dict = XLMRobertaTokenizerFast.from_pretrained(snake_case__, from_slow=snake_case__ ) __UpperCAmelCase : List[str] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1] ) __UpperCAmelCase : List[str] = DonutProcessor(snake_case__, snake_case__ ) __UpperCAmelCase : int = processor(snake_case__, return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCAmelCase : Optional[Any] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" __UpperCAmelCase : int = "When is the coffee break?" __UpperCAmelCase : Union[str, Any] = task_prompt.replace("{user_input}", snake_case__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCAmelCase : List[Any] = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCAmelCase : Union[str, Any] = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCAmelCase : int = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCAmelCase : Dict = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCAmelCase : Tuple = "hello world" else: raise ValueError("Model name not supported" ) __UpperCAmelCase : int = original_model.decoder.tokenizer(snake_case__, add_special_tokens=snake_case__, return_tensors="pt" )[ "input_ids" ] __UpperCAmelCase : Any = original_model.encoder.model.patch_embed(snake_case__ ) __UpperCAmelCase , __UpperCAmelCase : int = model.encoder.embeddings(snake_case__ ) assert torch.allclose(snake_case__, snake_case__, atol=1e-3 ) # verify encoder hidden states __UpperCAmelCase : int = original_model.encoder(snake_case__ ) __UpperCAmelCase : Union[str, Any] = model.encoder(snake_case__ ).last_hidden_state assert torch.allclose(snake_case__, snake_case__, atol=1e-2 ) # verify decoder hidden states __UpperCAmelCase : List[Any] = original_model(snake_case__, snake_case__, snake_case__ ).logits __UpperCAmelCase : List[Any] = model(snake_case__, decoder_input_ids=snake_case__ ).logits assert torch.allclose(snake_case__, snake_case__, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1], commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1], commit_message="Update model" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) _snake_case = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
1
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests UpperCamelCase__: Optional[int] = open # noqa: we just need to have a builtin inside this module to test it properly
23
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _UpperCAmelCase : List[Any] = get_logger(__name__) _UpperCAmelCase : Tuple = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase : @add_start_docstrings(A_ ) def __call__( self , A_ , A_ ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , A_ , **A_ ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase = inspect.signature(processor.__call__ ).parameters if len(A_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' F'''{processor.__class__} are passed to the logits processor.''' ) UpperCamelCase = processor(A_ , A_ , A_ , **A_ ) else: UpperCamelCase = processor(A_ , A_ , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Tuple: """simple docstring""" if not isinstance(A_ , A_ ) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''' ) UpperCamelCase = temperature def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores / self.temperature return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(A_ , A_ ) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) UpperCamelCase = top_p UpperCamelCase = filter_value UpperCamelCase = min_tokens_to_keep def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = lax.top_k(A_ , scores.shape[-1] ) UpperCamelCase = jnp.full_like(A_ , self.filter_value ) UpperCamelCase = jax.nn.softmax(A_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase = jnp.roll(A_ , 1 ) score_mask |= score_mask.at[:, 0].set(A_ ) # min tokens to keep UpperCamelCase = score_mask.at[:, : self.min_tokens_to_keep].set(A_ ) UpperCamelCase = jnp.where(A_ , A_ , A_ ) UpperCamelCase = jax.lax.sort_key_val(A_ , A_ )[-1] return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = -float('Inf' ) , A_ = 1 ) -> List[str]: """simple docstring""" if not isinstance(A_ , A_ ) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) UpperCamelCase = max(A_ , A_ ) UpperCamelCase = filter_value def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase , UpperCamelCase = scores.shape UpperCamelCase = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase , UpperCamelCase = lax.top_k(A_ , A_ ) UpperCamelCase = jnp.broadcast_to((jnp.arange(A_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase = topk_scores.flatten() UpperCamelCase = topk_indices.flatten() + shift UpperCamelCase = next_scores_flat.at[topk_indices_flat].set(A_ ) UpperCamelCase = next_scores_flat.reshape(A_ , A_ ) return next_scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = bos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.bos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = max_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = jnp.full(scores.shape , -float('inf' ) ) UpperCamelCase = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase = jnp.where(A_ , new_scores.at[:, self.eos_token_id].set(0 ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(A_ , A_ ) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) UpperCamelCase = min_length UpperCamelCase = eos_token_id def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" # create boolean flag to decide if min length penalty should be applied UpperCamelCase = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = list(A_ ) UpperCamelCase = begin_index def __call__( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase = jnp.where(A_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , A_ ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = list(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" UpperCamelCase = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = dict(A_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase = force_token_array.at[index].set(A_ ) UpperCamelCase = jnp.intaa(A_ ) def __call__( self , A_ , A_ , A_ ) -> jnp.ndarray: """simple docstring""" def _force_token(A_ ): UpperCamelCase = scores.shape[0] UpperCamelCase = self.force_token_array[generation_idx] UpperCamelCase = jnp.ones_like(A_ , dtype=scores.dtype ) * -float('inf' ) UpperCamelCase = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase = lax.dynamic_update_slice(A_ , A_ , (0, current_token) ) return new_scores UpperCamelCase = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(A_ ) , lambda: scores , ) , ) return scores class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = generate_config.eos_token_id UpperCamelCase = generate_config.no_timestamps_token_id UpperCamelCase = generate_config.no_timestamps_token_id + 1 UpperCamelCase = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(A_ , 'max_initial_timestamp_index' ): UpperCamelCase = generate_config.max_initial_timestamp_index else: UpperCamelCase = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase = model_config.vocab_size def __call__( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" # suppress <|notimestamps|> which is handled by without_timestamps UpperCamelCase = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(A_ , A_ ): UpperCamelCase = jnp.where((cur_len - self.begin_index) >= 1 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , A_ , ) UpperCamelCase = jnp.where((cur_len - self.begin_index) < 2 , A_ , A_ ) UpperCamelCase = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , A_ , A_ , ) return jnp.where( A_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) UpperCamelCase = jnp.where(cur_len == self.begin_index , A_ , A_ ) UpperCamelCase = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , A_ , ) UpperCamelCase = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase = jnp.where( A_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , A_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase = jax.nn.log_softmax(A_ , axis=-1 ) def handle_cumulative_probs(A_ , A_ ): UpperCamelCase = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , A_ , ) UpperCamelCase = jax.vmap(A_ )(A_ , A_ ) return scores
222
0
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): try: __UpperCAmelCase : Union[str, Any] = float(_UpperCAmelCase ) except ValueError: raise ValueError("Please enter a valid number" ) __UpperCAmelCase : str = decimal - int(_UpperCAmelCase ) if fractional_part == 0: return int(_UpperCAmelCase ), 1 else: __UpperCAmelCase : Dict = len(str(_UpperCAmelCase ).split("." )[1] ) __UpperCAmelCase : List[Any] = int(decimal * (10**number_of_frac_digits) ) __UpperCAmelCase : Any = 10**number_of_frac_digits __UpperCAmelCase , __UpperCAmelCase : Tuple = denominator, numerator while True: __UpperCAmelCase : Dict = dividend % divisor if remainder == 0: break __UpperCAmelCase , __UpperCAmelCase : str = divisor, remainder __UpperCAmelCase , __UpperCAmelCase : List[str] = numerator / divisor, denominator / divisor return int(_UpperCAmelCase ), int(_UpperCAmelCase ) if __name__ == "__main__": print(f"{decimal_to_fraction(2) = }") print(f"{decimal_to_fraction(89.0) = }") print(f"{decimal_to_fraction('67') = }") print(f"{decimal_to_fraction('45.0') = }") print(f"{decimal_to_fraction(1.5) = }") print(f"{decimal_to_fraction('6.25') = }") print(f"{decimal_to_fraction('78td') = }")
37
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _UpperCAmelCase ): if not nums: raise ValueError("List is empty" ) return sum(_UpperCAmelCase ) / len(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
37
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : str = logging.get_logger(__name__) _a : Optional[Any] = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "vit_msn" def __init__( self , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=1e-06 , a__=224 , a__=16 , a__=3 , a__=True , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : Union[str, Any] = qkv_bias
44
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__(self : Any , a__ : Union[str, Any] , a__ : int=13 , a__ : int=7 , a__ : Optional[Any]=True , a__ : Optional[int]=True , a__ : Any=True , a__ : str=True , a__ : List[Any]=99 , a__ : Any=24 , a__ : List[str]=2 , a__ : Optional[int]=6 , a__ : int=37 , a__ : List[str]="gelu" , a__ : List[Any]=0.1 , a__ : Optional[int]=0.1 , a__ : Union[str, Any]=512 , a__ : List[str]=16 , a__ : Optional[int]=2 , a__ : Union[str, Any]=0.0_2 , a__ : str=3 , a__ : Optional[Any]=None , a__ : Any=1000 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = scope __snake_case = range_bbox def a (self : Optional[int] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case = bbox[i, j, 3] __snake_case = bbox[i, j, 1] __snake_case = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case = bbox[i, j, 2] __snake_case = bbox[i, j, 0] __snake_case = t __snake_case = None if self.use_input_mask: __snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def a (self : List[str] ): """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a (self : List[Any] , a__ : List[Any] , a__ : Optional[Any] , a__ : List[str] , a__ : int , a__ : Optional[int] , a__ : str , a__ : Optional[int] , ): """simple docstring""" __snake_case = LiltModel(config=a__ ) model.to(a__ ) model.eval() __snake_case = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ , token_type_ids=a__ ) __snake_case = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a (self : Any , a__ : Tuple , a__ : Dict , a__ : Optional[int] , a__ : Dict , a__ : Union[str, Any] , a__ : str , a__ : Tuple , ): """simple docstring""" __snake_case = self.num_labels __snake_case = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a (self : int , a__ : Optional[Any] , a__ : int , a__ : int , a__ : Optional[Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : str , ): """simple docstring""" __snake_case = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __snake_case = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a (self : Tuple ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) A_ : Any = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) A_ : Optional[int] = False A_ : List[Any] = False def a (self : Dict , a__ : Tuple , a__ : Tuple , a__ : Tuple , a__ : Union[str, Any] , a__ : Any ): """simple docstring""" return True def a (self : Union[str, Any] ): """simple docstring""" __snake_case = LiltModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a (self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a (self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a (self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case = type self.model_tester.create_and_check_model(*a__ ) def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def a (self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def a (self : Optional[int] ): """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple ): """simple docstring""" __snake_case = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a__ ) __snake_case = torch.tensor([[1, 2]] , device=a__ ) __snake_case = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): __snake_case = model(input_ids=a__ , bbox=a__ ) __snake_case = torch.Size([1, 2, 768] ) __snake_case = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1E-3 ) )
24
0
import math import flax.linen as nn import jax.numpy as jnp def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Union[str, Any] , lowercase : Tuple = 1 , lowercase : Any = 1 , lowercase : int = 1.0e4 , lowercase : List[str] = False , lowercase : Optional[Any] = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" lowerCamelCase_ = float(embedding_dim // 2 ) lowerCamelCase_ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCamelCase_ = min_timescale * jnp.exp(jnp.arange(lowercase__ , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCamelCase_ = jnp.expand_dims(lowercase__ , 1 ) * jnp.expand_dims(lowercase__ , 0 ) # scale embeddings lowerCamelCase_ = scale * emb if flip_sin_to_cos: lowerCamelCase_ = jnp.concatenate([jnp.cos(lowercase__ ), jnp.sin(lowercase__ )] , axis=1 ) else: lowerCamelCase_ = jnp.concatenate([jnp.sin(lowercase__ ), jnp.cos(lowercase__ )] , axis=1 ) lowerCamelCase_ = jnp.reshape(lowercase__ , [jnp.shape(lowercase__ )[0], embedding_dim] ) return signal class A( nn.Module ): '''simple docstring''' UpperCamelCase = 32 UpperCamelCase = jnp.floataa @nn.compact def __call__( self : Tuple , A_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.silu(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(__SCREAMING_SNAKE_CASE ) return temb class A( nn.Module ): '''simple docstring''' UpperCamelCase = 32 UpperCamelCase = False UpperCamelCase = 1 @nn.compact def __call__( self : Optional[int] , A_ : str ) -> List[Any]: """simple docstring""" return get_sinusoidal_embeddings( __SCREAMING_SNAKE_CASE , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
363
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : str , lowercase : int , lowercase : List[Any] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCamelCase_ = TOKENIZER_CLASSES else: lowerCamelCase_ = {tokenizer_name: getattr(lowercase , tokenizer_name + 'Fast' )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCamelCase_ = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase_ = True if checkpoint_name is None: lowerCamelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase_ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCamelCase_ = tokenizer_class.from_pretrained(lowercase , force_download=lowercase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase_ , lowerCamelCase_ = checkpoint.split('/' ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) elif add_prefix: lowerCamelCase_ = checkpoint lowerCamelCase_ = dump_path else: lowerCamelCase_ = None lowerCamelCase_ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase_ = file_path.split(lowercase )[-1][0] if next_char == "/": lowerCamelCase_ = os.path.join(lowercase , lowercase ) lowerCamelCase_ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCamelCase_ = tokenizer.save_pretrained( lowercase , legacy_format=lowercase , filename_prefix=lowercase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowercase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
208
0
def a__ ( A_ = 600851475143 ): '''simple docstring''' try: __magic_name__ = int(A_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __magic_name__ = 2 __magic_name__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __magic_name__ = i while n % i == 0: __magic_name__ = n // i i += 1 return int(A_ ) if __name__ == "__main__": print(F'''{solution() = }''')
88
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowerCAmelCase : Optional[int] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=1 ) -> str: """simple docstring""" __magic_name__ = tokenizer __magic_name__ = dataset __magic_name__ = len(UpperCamelCase__ ) if n_tasks is None else n_tasks __magic_name__ = n_copies def __iter__( self : List[Any] ) -> List[str]: """simple docstring""" __magic_name__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() ) __magic_name__ = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="""pt""" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str ) -> List[str]: """simple docstring""" __magic_name__ = start_length __magic_name__ = eof_strings __magic_name__ = tokenizer def __call__( self : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" __magic_name__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __magic_name__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCamelCase__ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ = re.split("""(%s)""" % """|""".join(A_ ), A_ ) # last string should be "" return "".join(string_list[:-2] ) def a__ ( A_, A_, A_, A_, A_, A_=20, **A_ ): '''simple docstring''' __magic_name__ = defaultdict(A_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(A_ ) ): with torch.no_grad(): __magic_name__ = batch["""ids"""].shape[-1] __magic_name__ = accelerator.unwrap_model(A_ ).generate( input_ids=batch["""ids"""][:, : batch["""input_len"""]], num_return_sequences=A_, **A_ ) # each task is generated batch_size times __magic_name__ = batch["""task_id"""].repeat(A_ ) __magic_name__ = accelerator.pad_across_processes( A_, dim=1, pad_index=tokenizer.pad_token_id ) __magic_name__ , __magic_name__ = accelerator.gather((generated_tokens, generated_tasks) ) __magic_name__ = generated_tokens.cpu().numpy() __magic_name__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(A_, A_ ): gen_token_dict[task].append(A_ ) __magic_name__ = [[] for _ in range(A_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __magic_name__ = tokenizer.decode(A_, skip_special_tokens=A_, clean_up_tokenization_spaces=A_ ) code_gens[task].append(remove_last_block(A_ ) ) return code_gens def a__ ( ): '''simple docstring''' __magic_name__ = HfArgumentParser(A_ ) __magic_name__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __magic_name__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __magic_name__ = """false""" if args.num_workers is None: __magic_name__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __magic_name__ = Accelerator() set_seed(args.seed, device_specific=A_ ) # Load model and tokenizer __magic_name__ = AutoTokenizer.from_pretrained(args.model_ckpt ) __magic_name__ = tokenizer.eos_token __magic_name__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __magic_name__ = { """do_sample""": args.do_sample, """temperature""": args.temperature, """max_new_tokens""": args.max_new_tokens, """top_p""": args.top_p, """top_k""": args.top_k, """stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0, A_, A_ )] ), } # Load evaluation dataset and metric __magic_name__ = load_dataset("""openai_humaneval""" ) __magic_name__ = load_metric("""code_eval""" ) __magic_name__ = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] ) __magic_name__ = args.n_samples // args.batch_size __magic_name__ = TokenizedDataset(A_, human_eval["""test"""], n_copies=A_, n_tasks=A_ ) # do not confuse args.batch_size, which is actually the num_return_sequences __magic_name__ = DataLoader(A_, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __magic_name__ = code_eval_metric.compute(references=[""""""], predictions=[[""""""]] ) except ValueError as exception: print( """Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`""" """ flag to enable code evaluation.""" ) raise exception __magic_name__ , __magic_name__ = accelerator.prepare(A_, A_ ) __magic_name__ = complete_code( A_, A_, A_, A_, n_tasks=A_, batch_size=args.batch_size, **A_, ) if accelerator.is_main_process: __magic_name__ = [] for task in tqdm(range(A_ ) ): __magic_name__ = human_eval["""test"""][task]["""test"""] __magic_name__ = f'''check({human_eval['test'][task]['entry_point']})''' references.append("""\n""" + test_func + """\n""" + entry_point ) # Evaluate completions with "code_eval" metric __magic_name__ , __magic_name__ = code_eval_metric.compute( references=A_, predictions=A_, num_workers=args.num_workers ) print(f'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file, """w""" ) as fp: json.dump(A_, A_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
88
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = AlbertTokenizer __UpperCAmelCase : Any = AlbertTokenizerFast __UpperCAmelCase : Dict = True __UpperCAmelCase : str = True __UpperCAmelCase : Union[str, Any] = True def _lowercase ( self : int ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = AlbertTokenizer(UpperCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict ): __lowercase = "this is a test" __lowercase = "this is a test" return input_text, output_text def _lowercase ( self : str ): __lowercase = "<pad>" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__ ), UpperCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : List[str] ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "<pad>" ) self.assertEqual(vocab_keys[1], "<unk>" ) self.assertEqual(vocab_keys[-1], "▁eloquent" ) self.assertEqual(len(UpperCAmelCase__ ), 3_0_0_0_0 ) def _lowercase ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size, 3_0_0_0_0 ) def _lowercase ( self : Optional[Any] ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = "I was born in 92000, and this is falsé." __lowercase = tokenizer.tokenize(UpperCAmelCase__ ) __lowercase = rust_tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = tokenizer.encode(UpperCAmelCase__, add_special_tokens=UpperCAmelCase__ ) __lowercase = rust_tokenizer.encode(UpperCAmelCase__, add_special_tokens=UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(UpperCAmelCase__ ) __lowercase = rust_tokenizer.encode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = AlbertTokenizer(UpperCAmelCase__, keep_accents=UpperCAmelCase__ ) __lowercase = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase__, ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ), [4_8, 2_5, 2_1, 1_2_8_9] ) __lowercase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase__, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __lowercase = tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__, [3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) __lowercase = tokenizer.convert_ids_to_tokens(UpperCAmelCase__ ) self.assertListEqual( UpperCAmelCase__, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."], ) def _lowercase ( self : List[str] ): __lowercase = AlbertTokenizer(UpperCAmelCase__ ) __lowercase = tokenizer.encode("sequence builders" ) __lowercase = tokenizer.encode("multi-sequence build" ) __lowercase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) __lowercase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__, UpperCAmelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowercase ( self : Union[str, Any] ): # fmt: off __lowercase = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__, model_name="albert-base-v2", revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e", )
144
"""simple docstring""" import numpy # List of input, output pairs _a = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _a = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _a = [2, 4, 1, 5] _a = len(train_data) _a = 0.009 def _A ( UpperCamelCase_ : str, UpperCamelCase_ : List[Any]="train") -> Optional[Any]: '''simple docstring''' return calculate_hypothesis_value(UpperCamelCase_, UpperCamelCase_) - output( UpperCamelCase_, UpperCamelCase_) def _A ( UpperCamelCase_ : List[Any]) -> Union[str, Any]: '''simple docstring''' __lowercase = 0 for i in range(len(UpperCamelCase_) - 1): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : Optional[int]) -> Dict: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : List[str]) -> int: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0]) elif data_set == "test": return _hypothesis_value(test_data[example_no][0]) return None def _A ( UpperCamelCase_ : Any, UpperCamelCase_ : Tuple=m) -> int: '''simple docstring''' __lowercase = 0 for i in range(UpperCamelCase_): if index == -1: summation_value += _error(UpperCamelCase_) else: summation_value += _error(UpperCamelCase_) * train_data[i][0][index] return summation_value def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' __lowercase = summation_of_cost_derivative(UpperCamelCase_, UpperCamelCase_) / m return cost_derivative_value def _A ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output __lowercase = 0.000_002 __lowercase = 0 __lowercase = 0 while True: j += 1 __lowercase = [0, 0, 0, 0] for i in range(0, len(UpperCamelCase_)): __lowercase = get_cost_derivative(i - 1) __lowercase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_, UpperCamelCase_, atol=UpperCamelCase_, rtol=UpperCamelCase_, ): break __lowercase = temp_parameter_vector print(("Number of iterations:", j)) def _A ( ) -> int: '''simple docstring''' for i in range(len(UpperCamelCase_)): print(("Actual output value:", output(UpperCamelCase_, "test"))) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_, "test"))) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
144
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Dict ="BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] ="AutoTokenizer" def __init__( self : int , __A : List[str] , __A : Tuple ): __UpperCamelCase = False super().__init__(__A , __A ) __UpperCamelCase = self.image_processor def __call__( self : Union[str, Any] , __A : ImageInput = None , __A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = None , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : Optional[int] , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __UpperCamelCase = self.tokenizer __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding # add pixel_values __UpperCamelCase = self.image_processor(__A , return_tensors=__A ) if text is not None: __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) else: __UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def _lowerCamelCase ( self : Optional[Any] , *__A : List[str] , **__A : List[str] ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowerCamelCase ( self : Union[str, Any] , *__A : Dict , **__A : Optional[Any] ): return self.tokenizer.decode(*__A , **__A ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
53
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : Tuple ='''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
53
1
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right _a = 5_00_03 _a = 5_00_02 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = PLBartTokenizer __UpperCAmelCase : Any = None __UpperCAmelCase : List[Any] = False def _lowercase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = PLBartTokenizer(__A, language_codes="base", keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self : int ): __lowercase = PLBartTokenizer(__A, language_codes="base", keep_accents=__A ) __lowercase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A, ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ), [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]], ) __lowercase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) __lowercase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A, [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ], ) __lowercase = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) __lowercase = tokenizer.vocab_size __lowercase = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 4, __A )] self.assertListEqual(__A, ["__java__", "__python__", "__en_XX__", "<mask>"] ) __lowercase = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" __lowercase = tokenizer(__A ).input_ids self.assertEqual( tokenizer.decode(__A, skip_special_tokens=__A, clean_up_tokenization_spaces=__A ), __A, ) def _lowercase ( self : Any ): __lowercase = PLBartTokenizer(__A, language_codes="multi", keep_accents=__A ) __lowercase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A, ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ), [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]], ) __lowercase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ], ) __lowercase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A, [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ], ) __lowercase = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ], ) __lowercase = tokenizer.vocab_size __lowercase = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 7, __A )] self.assertListEqual( __A, ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) __lowercase = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" __lowercase = tokenizer(__A ).input_ids self.assertEqual( tokenizer.decode(__A, skip_special_tokens=__A, clean_up_tokenization_spaces=__A ), __A, ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = "uclanlp/plbart-python-en_XX" __UpperCAmelCase : Any = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] __UpperCAmelCase : Any = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] __UpperCAmelCase : Any = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _lowercase ( cls : int ): __lowercase = PLBartTokenizer.from_pretrained( cls.checkpoint_name, language_codes="base", src_lang="python", tgt_lang="en_XX" ) __lowercase = 1 return cls def _lowercase ( self : Optional[int] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"], 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"], 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"], 5_0_0_0_3 ) def _lowercase ( self : Union[str, Any] ): __lowercase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, __A ) def _lowercase ( self : Tuple ): self.assertIn(__A, self.tokenizer.all_special_ids ) __lowercase = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] __lowercase = self.tokenizer.decode(__A, skip_special_tokens=__A ) __lowercase = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=__A ) self.assertEqual(__A, __A ) self.assertNotIn(self.tokenizer.eos_token, __A ) def _lowercase ( self : Tuple ): __lowercase = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 2_0] self.assertIsInstance(src_text[0], __A ) __lowercase = 1_0 __lowercase = self.tokenizer(__A, max_length=__A, truncation=__A ).input_ids[0] self.assertEqual(ids[-2], 2 ) self.assertEqual(ids[-1], __A ) self.assertEqual(len(__A ), __A ) def _lowercase ( self : Union[str, Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ), [5_0_0_0_4, 5_0_0_0_1] ) def _lowercase ( self : Tuple ): __lowercase = tempfile.mkdtemp() __lowercase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) __lowercase = PLBartTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, __A ) @require_torch def _lowercase ( self : Dict ): __lowercase = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=__A, return_tensors="pt" ) __lowercase = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist(), [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0], __A ) self.assertEqual(batch.decoder_input_ids[1][-1], 2 ) self.assertEqual(batch.labels[1][-2:].tolist(), [2, EN_CODE] ) @require_torch def _lowercase ( self : Any ): __lowercase = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=__A, truncation=__A, max_length=len(self.expected_src_tokens ), return_tensors="pt", ) __lowercase = shift_tokens_right(batch["labels"], self.tokenizer.pad_token_id ) self.assertIsInstance(__A, __A ) self.assertEqual((2, 2_6), batch.input_ids.shape ) self.assertEqual((2, 2_6), batch.attention_mask.shape ) __lowercase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, __A ) self.assertEqual(2, batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowercase ( self : Any ): __lowercase = self.tokenizer(self.src_text, padding=__A, truncation=__A, max_length=3, return_tensors="pt" ) __lowercase = self.tokenizer( text_target=self.tgt_text, padding=__A, truncation=__A, max_length=1_0, return_tensors="pt" ) __lowercase = targets["""input_ids"""] __lowercase = shift_tokens_right(__A, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 1_0 ) @require_torch def _lowercase ( self : Tuple ): __lowercase = self.tokenizer._build_translation_inputs( "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="java" ) self.assertEqual( nested_simplify(__A ), { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, }, )
351
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _A ( ) -> None: '''simple docstring''' print("Making key files...") make_key_files("rsa", 1024) print("Key files generation successful.") def _A ( UpperCamelCase_ : int) -> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p...") __lowercase = rabinMiller.generate_large_prime(UpperCamelCase_) print("Generating prime q...") __lowercase = rabinMiller.generate_large_prime(UpperCamelCase_) __lowercase = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)...") while True: __lowercase = random.randrange(2 ** (key_size - 1), 2 ** (key_size)) if cryptoMath.gcd(UpperCamelCase_, (p - 1) * (q - 1)) == 1: break print("Calculating d that is mod inverse of e...") __lowercase = cryptoMath.find_mod_inverse(UpperCamelCase_, (p - 1) * (q - 1)) __lowercase = (n, e) __lowercase = (n, d) return (public_key, private_key) def _A ( UpperCamelCase_ : str, UpperCamelCase_ : int) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""") or os.path.exists(F"""{name}_privkey.txt"""): print("\nWARNING:") print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program.") sys.exit() __lowercase ,__lowercase = generate_key(UpperCamelCase_) print(F"""\nWriting public key to file {name}_pubkey.txt...""") with open(F"""{name}_pubkey.txt""", "w") as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""") print(F"""Writing private key to file {name}_privkey.txt...""") with open(F"""{name}_privkey.txt""", "w") as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""") if __name__ == "__main__": main()
144
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = LongformerTokenizer _a = True _a = LongformerTokenizerFast _a = True def lowerCAmelCase__ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ :Any = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCamelCase__ :Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCamelCase__ :int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase__ :Any = {'''unk_token''': '''<unk>'''} UpperCamelCase__ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Optional[int] = '''lower newer''' UpperCamelCase__ :List[str] = '''lower newer''' return input_text, output_text def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ :List[str] = '''lower newer''' UpperCamelCase__ :Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase__ :str = tokenizer.tokenize(UpperCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :int = tokens + [tokenizer.unk_token] UpperCamelCase__ :Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=UpperCamelCase_ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=UpperCamelCase_ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' ) UpperCamelCase__ :Any = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) UpperCamelCase__ :Tuple = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.get_tokenizer() UpperCamelCase__ :List[str] = '''Encode this sequence.''' UpperCamelCase__ :Any = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]] # Testing encoder arguments UpperCamelCase__ :Optional[int] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) UpperCamelCase__ :List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} ) UpperCamelCase__ :Any = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing spaces after special tokens UpperCamelCase__ :Any = '''<mask>''' tokenizer.add_special_tokens( {'''mask_token''': AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ )} ) # mask token has a left space UpperCamelCase__ :Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) UpperCamelCase__ :int = '''Encode <mask> sequence''' UpperCamelCase__ :Tuple = '''Encode <mask>sequence''' UpperCamelCase__ :List[Any] = tokenizer.encode(UpperCamelCase_ ) UpperCamelCase__ :List[str] = encoded.index(UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer.encode(UpperCamelCase_ ) UpperCamelCase__ :Dict = encoded.index(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase__ :List[Any] = '''A, <mask> AllenNLP sentence.''' UpperCamelCase__ :Union[str, Any] = tokenizer_r.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) UpperCamelCase__ :Tuple = tokenizer_p.encode_plus(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_token_type_ids=UpperCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCamelCase__ :Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCamelCase__ :Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCamelCase_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) def lowerCAmelCase__ ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase__ :Optional[int] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase__ :List[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , UpperCamelCase_ ) self.assertEqual(post_processor_state['''add_prefix_space'''] , UpperCamelCase_ ) self.assertEqual(post_processor_state['''trim_offsets'''] , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ :Tuple = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ :str = F'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase__ :str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :Optional[int] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ) + 1, len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :Optional[int] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :int = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase_ ), len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :str = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ) + 1, 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , ) UpperCamelCase__ :Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase_ , use_fast=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = tokenizer_r(UpperCamelCase_ , return_offsets_mapping=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase_ ), 1 + len(UpperCamelCase_ ) + 1 + len(UpperCamelCase_ )) , )
97
'''simple docstring''' from datetime import datetime as dt import os from github import Github __snake_case = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def a ( ) -> List[str]: '''simple docstring''' UpperCamelCase__ :List[str] = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCamelCase__ :Tuple = g.get_repo('''huggingface/transformers''' ) UpperCamelCase__ :Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCamelCase__ :List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __a : i.created_at , reverse=__a ) UpperCamelCase__ :List[Any] = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
97
1
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE__ : Union[str, Any] = False if num < 0: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = -num SCREAMING_SNAKE_CASE__ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
191
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=13_37 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def _a ( SCREAMING_SNAKE_CASE__ : SplitDict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = split_dict._to_yaml_list() assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = SplitDict._from_yaml_list(SCREAMING_SNAKE_CASE__ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump SCREAMING_SNAKE_CASE__ : str = None # the split name of split_dict takes over the name of the split info object SCREAMING_SNAKE_CASE__ : Union[str, Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=SCREAMING_SNAKE_CASE__ ), SplitInfo(dataset_name="my_dataset" )] ) def _a ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
191
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> List[Any]: if length <= 0 or not isinstance(__A , __A ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(__A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
42
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase_ = logging.getLogger(__name__) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case , default='''data/dump''' , help='''The dump file prefix.''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() logger.info(F'''Loading Tokenizer ({args.tokenizer_name})''' ) if args.tokenizer_type == "bert": __SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __SCREAMING_SNAKE_CASE : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __SCREAMING_SNAKE_CASE : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'''Loading text from {args.file_path}''' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __SCREAMING_SNAKE_CASE : str = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'''{len(snake_case )} examples to process.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : List[str] = 10_000 __SCREAMING_SNAKE_CASE : Dict = time.time() for text in data: __SCREAMING_SNAKE_CASE : Optional[int] = F'''{bos} {text.strip()} {sep}''' __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(snake_case , add_special_tokens=snake_case ) rslt.append(snake_case ) iter += 1 if iter % interval == 0: __SCREAMING_SNAKE_CASE : List[str] = time.time() logger.info(F'''{iter} examples processed. - {(end-start):.2f}s/{interval}expl''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = time.time() logger.info('''Finished binarization''' ) logger.info(F'''{len(snake_case )} examples processed.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = F'''{args.dump_file}.{args.tokenizer_name}.pickle''' __SCREAMING_SNAKE_CASE : str = tokenizer.vocab_size if vocab_size < (1 << 16): __SCREAMING_SNAKE_CASE : List[str] = [np.uintaa(snake_case ) for d in rslt] else: __SCREAMING_SNAKE_CASE : Optional[int] = [np.intaa(snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'''Dump to {dp_file}''' ) with open(snake_case , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
303
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) SCREAMING_SNAKE_CASE_ = '''The dog is cute and lives in the garden house''' SCREAMING_SNAKE_CASE_ = jnp.array([tokenizer.encode(_A )] ) SCREAMING_SNAKE_CASE_ = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) SCREAMING_SNAKE_CASE_ = model(_A )['''last_hidden_state'''] self.assertEqual(output.shape , _A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _A , atol=1E-3 ) )
257
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ = BigBirdConfig.from_json_file(__lowerCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: SCREAMING_SNAKE_CASE_ = BigBirdForQuestionAnswering(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE_ = BigBirdForPreTraining(__lowerCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCamelCase, __lowerCamelCase, is_trivia_qa=__lowerCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
257
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __lowerCAmelCase : List[Any] = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __magic_name__ ( A : Optional[Any], A : Tuple, A : Optional[int]=None, A : Dict=None, A : Tuple=None, A : Any=None, A : str=None, A : Optional[Any]=None, ): '''simple docstring''' if attention_mask is None: a = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: a = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: a = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case__ : """simple docstring""" def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any]=13 , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=False , __lowerCamelCase : Tuple=99 , __lowerCamelCase : Any=16 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : int=4 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Any=0.02 , ) -> Optional[int]: a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id a = initializer_range def __UpperCAmelCase ( self : Dict ) -> List[str]: a = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) a = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) a = shift_tokens_right(__lowerCamelCase , 1 , 2 ) a = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , ) a = prepare_blenderbot_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def __UpperCAmelCase ( self : List[str] ) -> Dict: a , a = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = 20 a = model_class_name(__lowerCamelCase ) a = model.encode(inputs_dict["input_ids"] ) a , a = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) a = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) a = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) a = model.decode(__lowerCamelCase , __lowerCamelCase ) a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int ) -> Any: a = 20 a = model_class_name(__lowerCamelCase ) a = model.encode(inputs_dict["input_ids"] ) a , a = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) a = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) a = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase ) a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class snake_case__ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 99 def __UpperCAmelCase ( self : Optional[int] ) -> Any: a = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) a = input_ids.shape[0] a = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: a , a , a = self._get_config_and_data() a = FlaxBlenderbotSmallForConditionalGeneration(__lowerCamelCase ) a = lm_model(input_ids=__lowerCamelCase ) a = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: a = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) a = FlaxBlenderbotSmallForConditionalGeneration(__lowerCamelCase ) a = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) a = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) a = lm_model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) a = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> Tuple: a = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) a = shift_tokens_right(__lowerCamelCase , 1 , 2 ) a = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() a = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class snake_case__ (_UpperCamelCase , unittest.TestCase , _UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE_ : int = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: a = FlaxBlenderbotSmallModelTester(self ) def __UpperCAmelCase ( self : List[str] ) -> Any: a , a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: a , a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) a = model_class(__lowerCamelCase ) @jax.jit def encode_jitted(__lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] ): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) with self.subTest("JIT Enabled" ): a = encode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a = encode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a = model_class(__lowerCamelCase ) a = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) a = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict ): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled" ): a = decode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): a = decode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCAmelCase ( self : List[str] ) -> str: for model_class_name in self.all_model_classes: a = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids a = np.ones((1, 1) ) * model.config.eos_token_id a = model(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase )
107
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : List[Any] = torch.exp(_lowerCamelCase ) _lowerCAmelCase : List[Any] = torch.sum(_lowerCamelCase ,dim=1 ) # sum of exp(x_i) _lowerCAmelCase : Dict = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase ) - B / A class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : int = config.output_attentions _lowerCAmelCase : Any = config.output_hidden_states _lowerCAmelCase : List[Any] = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : Any = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : str = [-1 for _ in range(config.num_hidden_layers )] def __A ( self , a__ ): if (type(a__ ) is float) or (type(a__ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase : Tuple = x else: _lowerCAmelCase : Optional[int] = x def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __A ( self , a__ , a__=None , a__=None , a__=None , a__=None , ): _lowerCAmelCase : Any = () _lowerCAmelCase : Optional[int] = () _lowerCAmelCase : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase : str = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[str] = layer_module( a__ , a__ , head_mask[i] , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = layer_outputs[0] if self.output_attentions: _lowerCAmelCase : Dict = all_attentions + (layer_outputs[1],) _lowerCAmelCase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : Union[str, Any] = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Optional[int] = current_outputs + (all_attentions,) _lowerCAmelCase : Optional[Any] = self.highway[i](a__ ) # logits, pooled_output if not self.training: _lowerCAmelCase : Tuple = highway_exit[0] _lowerCAmelCase : Any = entropy(a__ ) _lowerCAmelCase : Optional[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a__ , i + 1 ) else: _lowerCAmelCase : Dict = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase : List[Any] = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[Any] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : List[str] = outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Any = outputs + (all_attentions,) _lowerCAmelCase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Any = config _lowerCAmelCase : Tuple = BertEmbeddings(a__ ) _lowerCAmelCase : Tuple = DeeBertEncoder(a__ ) _lowerCAmelCase : List[str] = BertPooler(a__ ) self.init_weights() def __A ( self ): self.encoder.init_highway_pooler(self.pooler ) def __A ( self ): return self.embeddings.word_embeddings def __A ( self , a__ ): _lowerCAmelCase : Dict = value def __A ( self , a__ ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a__ ) @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _lowerCAmelCase : Any = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _lowerCAmelCase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase : List[Any] = torch.ones(a__ , device=a__ ) if encoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = torch.ones(a__ , device=a__ ) if token_type_ids is None: _lowerCAmelCase : Dict = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase : Tuple = encoder_attention_mask[:, None, None, :] _lowerCAmelCase : Union[str, Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase : Optional[Any] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase : Optional[int] = self.get_head_mask(a__ , self.config.num_hidden_layers ) _lowerCAmelCase : Dict = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) _lowerCAmelCase : Union[str, Any] = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Dict = encoder_outputs[0] _lowerCAmelCase : Union[str, Any] = self.pooler(a__ ) _lowerCAmelCase : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ ): _lowerCAmelCase : str = message _lowerCAmelCase : str = exit_layer # start from 1! class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Any = BertPooler(a__ ) _lowerCAmelCase : str = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def __A ( self , a__ ): # Pooler _lowerCAmelCase : Tuple = encoder_outputs[0] _lowerCAmelCase : int = self.pooler(a__ ) # "return" pooler_output # BertModel _lowerCAmelCase : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase : Optional[int] = bmodel_output[1] _lowerCAmelCase : Tuple = self.dropout(a__ ) _lowerCAmelCase : Dict = self.classifier(a__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : List[str] = config.num_labels _lowerCAmelCase : Optional[Any] = config.num_hidden_layers _lowerCAmelCase : str = DeeBertModel(a__ ) _lowerCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ): _lowerCAmelCase : Dict = self.num_layers try: _lowerCAmelCase : str = self.bert( a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase : Any = outputs[1] _lowerCAmelCase : Optional[int] = self.dropout(a__ ) _lowerCAmelCase : List[str] = self.classifier(a__ ) _lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : int = e.exit_layer _lowerCAmelCase : Union[str, Any] = outputs[0] if not self.training: _lowerCAmelCase : Tuple = entropy(a__ ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Tuple = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Dict = highway_exit[0] if not self.training: highway_logits_all.append(a__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Optional[int] = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a__ ) if train_highway: _lowerCAmelCase : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
44
0
from manim import * class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('CPU' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('GPU' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('Model' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for i, rect in enumerate(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = fill.copy().set_fill(_lowerCAmelCase , opacity=0.8 ) target.move_to(_lowerCAmelCase ) model_arr.append(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowerCAmelCase ) self.add(*_lowerCAmelCase , *_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(*_lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = VGroup(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_ = Text('Disk' , font_size=24 ) SCREAMING_SNAKE_CASE_ = Group(_lowerCAmelCase , _lowerCAmelCase ).arrange(_lowerCAmelCase , buff=0.5 , aligned_edge=_lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = MarkupText( F"Now watch as an input is passed through the model\nand how the memory is utilized and handled." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = Square(0.3 ) input.set_fill(_lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowerCAmelCase , buff=0.5 ) self.play(Write(_lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(_lowerCAmelCase ) ) self.play(FadeOut(_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = Arrow(start=_lowerCAmelCase , end=_lowerCAmelCase , color=_lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE_ = MarkupText( F"As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) ) SCREAMING_SNAKE_CASE_ = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_lowerCAmelCase ) , Circumscribe(model_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE_ = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE_ = AnimationGroup( FadeOut(_lowerCAmelCase , run_time=0.5 ) , MoveToTarget(_lowerCAmelCase , run_time=0.5 ) , FadeIn(_lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE_ = 0.7 self.play( Circumscribe(model_arr[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowerCAmelCase , **_lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=_lowerCAmelCase , **_lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE_ = a_c SCREAMING_SNAKE_CASE_ = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowerCAmelCase ) , FadeOut(_lowerCAmelCase , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE_ = MarkupText(F"Inference on a model too large for GPU memory\nis successfully completed." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCAmelCase , run_time=3 ) , MoveToTarget(_lowerCAmelCase ) ) self.wait()
355
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> int: if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE_ = version.parse(accelerate.__version__ ).base_version if version.parse(__UpperCAmelCase ) < version.parse('0.17.0' ): return method def wrapper(self : Optional[int] , *__UpperCAmelCase : Optional[Any] , **__UpperCAmelCase : Optional[Any] ): if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ): self._hf_hook.pre_forward(self ) return method(self , *__UpperCAmelCase , **__UpperCAmelCase ) return wrapper
210
0
from typing import Dict, Optional import numpy as np import datasets lowercase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowercase : Tuple = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowercase : List[Any] = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , ) -> Union[str, Any]: if label_map is not None: for old_id, new_id in label_map.items(): lowercase : Union[str, Any] = new_id # turn into Numpy arrays lowercase : Optional[int] = np.array(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = np.array(SCREAMING_SNAKE_CASE__ ) if reduce_labels: lowercase : Optional[Any] = 255 lowercase : int = label - 1 lowercase : int = 255 lowercase : Tuple = label != ignore_index lowercase : Optional[int] = np.not_equal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = pred_label[mask] lowercase : Dict = np.array(SCREAMING_SNAKE_CASE__ )[mask] lowercase : Union[str, Any] = pred_label[pred_label == label] lowercase : List[Any] = np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] lowercase : Any = np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] lowercase : Tuple = np.histogram(SCREAMING_SNAKE_CASE__ , bins=SCREAMING_SNAKE_CASE__ , range=(0, num_labels - 1) )[0] lowercase : str = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , ) -> List[Any]: lowercase : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowercase : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) lowercase : Optional[int] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase , lowercase , lowercase , lowercase : List[str] = intersect_and_union( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , ) -> Optional[Any]: lowercase , lowercase , lowercase , lowercase : Tuple = total_intersect_and_union( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # compute metrics lowercase : str = {} lowercase : List[Any] = total_area_intersect.sum() / total_area_label.sum() lowercase : List[Any] = total_area_intersect / total_area_union lowercase : Union[str, Any] = total_area_intersect / total_area_label lowercase : Union[str, Any] = np.nanmean(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.nanmean(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = all_acc lowercase : str = iou lowercase : int = acc if nan_to_num is not None: lowercase : Tuple = {metric: np.nan_to_num(SCREAMING_SNAKE_CASE__ , nan=SCREAMING_SNAKE_CASE__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) ,reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case = None ,snake_case = None ,snake_case = False ,): '''simple docstring''' lowercase : Union[str, Any] = mean_iou( results=snake_case ,gt_seg_maps=snake_case ,num_labels=snake_case ,ignore_index=snake_case ,nan_to_num=snake_case ,label_map=snake_case ,reduce_labels=snake_case ,) return iou_result
20
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
53
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : str = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
170
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase_ : int = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
170
1
'''simple docstring''' _lowerCAmelCase = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
37
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''xlm-roberta-xl''' def __init__( self ,__UpperCAmelCase=25_0880 ,__UpperCAmelCase=2560 ,__UpperCAmelCase=36 ,__UpperCAmelCase=32 ,__UpperCAmelCase=1_0240 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=514 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-05 ,__UpperCAmelCase=1 ,__UpperCAmelCase=0 ,__UpperCAmelCase=2 ,__UpperCAmelCase="absolute" ,__UpperCAmelCase=True ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> str: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : int = position_embedding_type lowerCAmelCase__ : Optional[Any] = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase__ : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
37
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
import pprint import requests _A = '''https://zenquotes.io/api''' def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A = random_quotes() pprint.pprint(response)
167
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[Any] , __snake_case : List[Any]=1e-1_2 ) -> Optional[int]: __A : List[str] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__snake_case , axis=1 ) , a_min=__snake_case ) ).T __A : List[str] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__snake_case , axis=1 ) , a_min=__snake_case ) ).T return jnp.matmul(__snake_case , norm_emb_a.T ) class SCREAMING_SNAKE_CASE (nn.Module ): lowerCAmelCase = 42 lowerCAmelCase = jnp.floataa def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = FlaxCLIPVisionModule(self.config.vision_config) __A : int = nn.Dense(self.config.projection_dim , use_bias=_UpperCAmelCase , dtype=self.dtype) __A : str = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim)) __A : Tuple = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim)) __A : Tuple = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,)) __A : List[Any] = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,)) def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = self.vision_model(_UpperCAmelCase)[1] __A : str = self.visual_projection(_UpperCAmelCase) __A : List[str] = jax_cosine_distance(_UpperCAmelCase , self.special_care_embeds) __A : Optional[Any] = jax_cosine_distance(_UpperCAmelCase , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __A : Union[str, Any] = 0.0 __A : int = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __A : Optional[Any] = jnp.round(_UpperCAmelCase , 3) __A : Optional[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCAmelCase) # Use a lower threshold if an image has any special care concept __A : List[Any] = is_special_care * 0.01 __A : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __A : List[Any] = jnp.round(_UpperCAmelCase , 3) __A : int = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = CLIPConfig lowerCAmelCase = '''clip_input''' lowerCAmelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = jnp.floataa , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' if input_shape is None: __A : str = (1, 224, 224, 3) __A : str = self.module_class(config=_UpperCAmelCase , dtype=_UpperCAmelCase , **_UpperCAmelCase) super().__init__(_UpperCAmelCase , _UpperCAmelCase , input_shape=_UpperCAmelCase , seed=_UpperCAmelCase , dtype=_UpperCAmelCase , _do_init=_do_init) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : List[str] = jax.random.normal(_UpperCAmelCase , _UpperCAmelCase) __A ,__A : int = jax.random.split(_UpperCAmelCase) __A : Optional[int] = {'params': params_rng, 'dropout': dropout_rng} __A : int = self.module.init(_UpperCAmelCase , _UpperCAmelCase)['params'] return random_params def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , ): '''simple docstring''' __A : str = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1)) return self.module.apply( {'params': params or self.params} , jnp.array(_UpperCAmelCase , dtype=jnp.floataa) , rngs={} , )
190
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : str = {} class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''llama''' lowerCAmelCase = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=3_2000 , _UpperCAmelCase=4096 , _UpperCAmelCase=1_1008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2048 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = vocab_size __A : Union[str, Any] = max_position_embeddings __A : Any = hidden_size __A : Optional[Any] = intermediate_size __A : str = num_hidden_layers __A : Optional[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: __A : List[Any] = num_attention_heads __A : int = num_key_value_heads __A : List[Any] = hidden_act __A : Union[str, Any] = initializer_range __A : List[Any] = rms_norm_eps __A : Any = pretraining_tp __A : Optional[Any] = use_cache __A : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}') __A : Optional[Any] = self.rope_scaling.get('type' , _UpperCAmelCase) __A : Tuple = self.rope_scaling.get('factor' , _UpperCAmelCase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
190
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __SCREAMING_SNAKE_CASE ( A__ ): A : Tuple = 'pegasus' A : int = ['past_key_values'] A : Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , SCREAMING_SNAKE_CASE__=50265 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=4096 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=4096 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , **SCREAMING_SNAKE_CASE__ , ): lowercase : List[Any] = vocab_size lowercase : List[Any] = max_position_embeddings lowercase : Dict = d_model lowercase : Optional[Any] = encoder_ffn_dim lowercase : int = encoder_layers lowercase : str = encoder_attention_heads lowercase : Tuple = decoder_ffn_dim lowercase : List[str] = decoder_layers lowercase : List[Any] = decoder_attention_heads lowercase : Tuple = dropout lowercase : int = attention_dropout lowercase : Optional[Any] = activation_dropout lowercase : Dict = activation_function lowercase : Optional[Any] = init_std lowercase : Tuple = encoder_layerdrop lowercase : Optional[int] = decoder_layerdrop lowercase : List[Any] = use_cache lowercase : Any = encoder_layers lowercase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model
173
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __a = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __a = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.1_5}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names __a = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __a = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __a = '''allenai''' def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Tuple = dict((re.sub(R'''@@$''', '''''', _UpperCamelCase ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''', '''</w>''', _UpperCamelCase ), v) for k, v in d.items() ) lowercase : List[str] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] lowercase : Union[str, Any] = d[k] # restore return da def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Any: """simple docstring""" assert os.path.exists(_UpperCamelCase ) os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models lowercase : Union[str, Any] = basename(_UpperCamelCase ) lowercase : List[str] = dirname(_UpperCamelCase ) lowercase : Optional[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowercase : List[str] = cls.hub_models() lowercase : Tuple = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} lowercase : List[str] = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) lowercase : int = hub_utils.from_pretrained( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, archive_map=_UpperCamelCase, **_UpperCamelCase ) lowercase : int = vars(chkpt['''args''']['''model'''] ) lowercase : Union[str, Any] = args['''source_lang'''] lowercase : Dict = args['''target_lang'''] lowercase : Optional[int] = dirname(_UpperCamelCase ) lowercase : str = basename(_UpperCamelCase ) # dicts lowercase : Optional[Any] = os.path.join(_UpperCamelCase, f"""dict.{src_lang}.txt""" ) lowercase : Any = os.path.join(_UpperCamelCase, f"""dict.{tgt_lang}.txt""" ) lowercase : Union[str, Any] = Dictionary.load(_UpperCamelCase ) lowercase : List[Any] = rewrite_dict_keys(src_dict.indices ) lowercase : List[str] = len(_UpperCamelCase ) lowercase : Tuple = os.path.join(_UpperCamelCase, '''vocab-src.json''' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowercase : str = True for k in src_vocab.keys(): if not k.islower(): lowercase : Dict = False break lowercase : Union[str, Any] = Dictionary.load(_UpperCamelCase ) lowercase : Any = rewrite_dict_keys(tgt_dict.indices ) lowercase : Tuple = len(_UpperCamelCase ) lowercase : Dict = os.path.join(_UpperCamelCase, '''vocab-tgt.json''' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # merges_file (bpecodes) lowercase : Optional[int] = os.path.join(_UpperCamelCase, VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowercase : str = os.path.join(_UpperCamelCase, _UpperCamelCase ) if os.path.exists(_UpperCamelCase ): break with open(_UpperCamelCase, encoding='''utf-8''' ) as fin: lowercase : List[str] = fin.read() lowercase : Tuple = re.sub(R''' \d+$''', '''''', _UpperCamelCase, 0, re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as fout: fout.write(_UpperCamelCase ) # model config lowercase : Dict = os.path.join(_UpperCamelCase, '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}""" lowercase : Optional[int] = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.0_2, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with lowercase : Dict = 5 lowercase : List[str] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowercase : int = best_score_hparams[model_dir]['''length_penalty'''] else: lowercase : Any = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # tokenizer config lowercase : Any = os.path.join(_UpperCamelCase, _UpperCamelCase ) lowercase : Tuple = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1024, '''do_lower_case''': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(_UpperCamelCase, ensure_ascii=_UpperCamelCase, indent=_UpperCamelCase ) ) # model lowercase : int = chkpt['''models'''][0] lowercase : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowercase : Union[str, Any] = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowercase : int = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(_UpperCamelCase, _UpperCamelCase ) lowercase : str = FSMTConfig.from_pretrained(_UpperCamelCase ) lowercase : str = FSMTForConditionalGeneration(_UpperCamelCase ) # check that it loads ok model_new.load_state_dict(_UpperCamelCase, strict=_UpperCamelCase ) # save lowercase : List[Any] = os.path.join(_UpperCamelCase, _UpperCamelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCamelCase, _UpperCamelCase ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __a = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
173
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str] = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
144
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin A__ : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase__ : def __init__( self : List[Any] , snake_case__ : int , snake_case__ : List[str]=16 , snake_case__ : Tuple=13 , snake_case__ : Dict=7 , snake_case__ : List[Any]=14 , snake_case__ : List[Any]=10 , snake_case__ : Dict=19 , snake_case__ : List[str]=5 , snake_case__ : Union[str, Any]=4 , snake_case__ : str=True , snake_case__ : int=16 , snake_case__ : Union[str, Any]=2 , snake_case__ : Tuple=4 , snake_case__ : Dict=4 , snake_case__ : int="gelu" , snake_case__ : Dict=0.1 , snake_case__ : str=0.1 , snake_case__ : List[str]=[1, 2, 3, 4, 5] , snake_case__ : Optional[int]=25 , snake_case__ : Dict=5 , ): lowerCamelCase_ : Dict =d_model lowerCamelCase_ : int =parent lowerCamelCase_ : Optional[Any] =batch_size lowerCamelCase_ : int =prediction_length lowerCamelCase_ : Optional[int] =context_length lowerCamelCase_ : Any =cardinality lowerCamelCase_ : List[str] =num_time_features lowerCamelCase_ : List[Any] =lags_sequence lowerCamelCase_ : Optional[int] =embedding_dimension lowerCamelCase_ : Union[str, Any] =is_training lowerCamelCase_ : Union[str, Any] =hidden_size lowerCamelCase_ : str =num_hidden_layers lowerCamelCase_ : Any =num_attention_heads lowerCamelCase_ : Any =intermediate_size lowerCamelCase_ : Union[str, Any] =hidden_act lowerCamelCase_ : Optional[int] =hidden_dropout_prob lowerCamelCase_ : Optional[int] =attention_probs_dropout_prob lowerCamelCase_ : List[Any] =context_length lowerCamelCase_ : str =prediction_length + label_length lowerCamelCase_ : int =label_length lowerCamelCase_ : Union[str, Any] =moving_average lowerCamelCase_ : str =autocorrelation_factor def UpperCAmelCase__ ( self : Any ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[Any] ): lowerCamelCase_ : Optional[Any] =config.context_length + max(config.lags_sequence ) lowerCamelCase_ : Any =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase_ : List[Any] =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase_ : List[str] =floats_tensor([self.batch_size, _past_length] ) lowerCamelCase_ : Any =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase_ : Tuple =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase_ : Optional[Any] =floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase_ : Any ={ "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : str =self.get_config() lowerCamelCase_ : List[Any] =self.prepare_autoformer_inputs_dict(snake_case__ ) return config, inputs_dict def UpperCAmelCase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ : List[str] =self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] ): lowerCamelCase_ : str =AutoformerModel(config=snake_case__ ).to(snake_case__ ).eval() lowerCamelCase_ : int =model(**snake_case__ ) lowerCamelCase_ : str =outputs.encoder_last_hidden_state lowerCamelCase_ : Optional[Any] =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : Tuple =model.get_encoder() encoder.save_pretrained(snake_case__ ) lowerCamelCase_ : Any =AutoformerEncoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =model.create_network_inputs(**snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase_ : Dict =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase_ : int =encoder(inputs_embeds=snake_case__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCamelCase_ : str =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase_ : Optional[int] =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase_ : Any =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase_ : Optional[Any] =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ : List[str] =model.get_decoder() decoder.save_pretrained(snake_case__ ) lowerCamelCase_ : str =AutoformerDecoder.from_pretrained(snake_case__ ).to(snake_case__ ) lowerCamelCase_ : List[str] =decoder( trend=snake_case__ , inputs_embeds=snake_case__ , encoder_hidden_states=snake_case__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowercase__ ( snake_case__, snake_case__, unittest.TestCase ): _UpperCAmelCase :Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCAmelCase :Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () _UpperCAmelCase :Optional[int] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _UpperCAmelCase :Tuple = False _UpperCAmelCase :int = False _UpperCAmelCase :int = False _UpperCAmelCase :Optional[int] = False _UpperCAmelCase :Optional[Any] = False _UpperCAmelCase :Dict = False def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : List[str] =AutoformerModelTester(self ) lowerCamelCase_ : List[str] =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ , lowerCamelCase_ : str =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase_ : List[Any] =model_class(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ ) lowerCamelCase_ , lowerCamelCase_ : str =model_class.from_pretrained(snake_case__ , output_loading_info=snake_case__ ) self.assertEqual(info["missing_keys"] , [] ) def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case__ ) @unittest.skip(reason="Model has no tokens embeddings" ) def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : Any =inspect.signature(getattr(snake_case__ , "forward" ) ) # The main input is the name of the argument after `self` lowerCamelCase_ : Optional[Any] =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ , lowerCamelCase_ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Optional[int] =model_class(snake_case__ ) lowerCamelCase_ : Optional[int] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Union[str, Any] =[*signature.parameters.keys()] lowerCamelCase_ : List[Any] =[ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(snake_case__ )] , snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Optional[int] =True lowerCamelCase_ : List[str] =getattr(self.model_tester , "seq_length" , snake_case__ ) lowerCamelCase_ : Dict =getattr(self.model_tester , "decoder_seq_length" , snake_case__ ) lowerCamelCase_ : List[Any] =getattr(self.model_tester , "encoder_seq_length" , snake_case__ ) lowerCamelCase_ : Optional[Any] =getattr(self.model_tester , "d_model" , snake_case__ ) lowerCamelCase_ : List[str] =getattr(self.model_tester , "num_attention_heads" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase_ : str =True lowerCamelCase_ : int =False lowerCamelCase_ : Any =True lowerCamelCase_ : Tuple =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCamelCase_ : str =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ : List[Any] =True lowerCamelCase_ : Optional[int] =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase_ : List[str] =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCamelCase_ : Union[str, Any] =outputs.encoder_attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase_ : Optional[Any] =len(snake_case__ ) lowerCamelCase_ : List[Any] =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case__ , snake_case__ ) # decoder attentions lowerCamelCase_ : Union[str, Any] =outputs.decoder_attentions self.assertIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase_ : Tuple =outputs.cross_attentions self.assertIsInstance(snake_case__ , (list, tuple) ) self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase_ : Tuple =True lowerCamelCase_ : Optional[int] =True lowerCamelCase_ : Tuple =model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCamelCase_ : Dict =model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + 2 , len(snake_case__ ) ) lowerCamelCase_ : Union[str, Any] =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCAmelCase__ ( self : Optional[int] ): super().test_retain_grad_hidden_states_attentions() def _snake_case ( lowerCamelCase__ : Tuple="train-batch.pt" ) -> Any: lowerCamelCase_ : Tuple =hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=lowerCamelCase__ , repo_type="dataset" ) lowerCamelCase_ : List[Any] =torch.load(lowerCamelCase__ , map_location=lowerCamelCase__ ) return batch @require_torch @slow class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : int =AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case__ ) lowerCamelCase_ : List[str] =prepare_batch() with torch.no_grad(): lowerCamelCase_ : List[Any] =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCamelCase_ : Union[str, Any] =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case__ ) lowerCamelCase_ : Dict =torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : str =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case__ ) lowerCamelCase_ : Optional[int] =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCamelCase_ : List[Any] =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case__ ) lowerCamelCase_ : Optional[Any] =torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=snake_case__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : int =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(snake_case__ ) lowerCamelCase_ : Dict =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase_ : Union[str, Any] =model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCamelCase_ : Tuple =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case__ ) lowerCamelCase_ : List[str] =torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=snake_case__ ) lowerCamelCase_ : Any =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case__ , rtol=1E-1 ) )
144
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :str = LayoutLMTokenizer _UpperCAmelCase :int = LayoutLMTokenizerFast _UpperCAmelCase :Union[str, Any] = True _UpperCAmelCase :List[str] = True def _snake_case ( self ): super().setUp() lowercase__: Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_UpperCAmelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Dict = '''UNwant\u00E9d,running''' lowercase__: Optional[Any] = '''unwanted, running''' return input_text, output_text def _snake_case ( self ): lowercase__: Dict = self.tokenizer_class(self.vocab_file ) lowercase__: Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_UpperCAmelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ): pass
2
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Optional[Any] = "beit" def __init__( self , _UpperCAmelCase=8192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) lowercase__: Union[str, Any] = vocab_size lowercase__: List[Any] = hidden_size lowercase__: Optional[int] = num_hidden_layers lowercase__: Optional[int] = num_attention_heads lowercase__: int = intermediate_size lowercase__: List[str] = hidden_act lowercase__: List[Any] = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: List[str] = initializer_range lowercase__: Optional[int] = layer_norm_eps lowercase__: int = image_size lowercase__: Tuple = patch_size lowercase__: int = num_channels lowercase__: Optional[Any] = use_mask_token lowercase__: List[Any] = use_absolute_position_embeddings lowercase__: Optional[int] = use_relative_position_bias lowercase__: Optional[int] = use_shared_relative_position_bias lowercase__: Optional[Any] = layer_scale_init_value lowercase__: Union[str, Any] = drop_path_rate lowercase__: Tuple = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__: Tuple = out_indices lowercase__: Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__: List[str] = use_auxiliary_head lowercase__: Optional[Any] = auxiliary_loss_weight lowercase__: str = auxiliary_channels lowercase__: List[str] = auxiliary_num_convs lowercase__: Tuple = auxiliary_concat_input lowercase__: Dict = semantic_loss_ignore_index class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :Dict = version.parse("1.11" ) @property def _snake_case ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ): return 1e-4
2
1
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Dict = ['''model.decoder.embed_positions.weights'''] def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> int: if "emb" in name: _UpperCAmelCase : Any = name.replace("""emb""", """model.decoder.embed_tokens""" ) if "transformer" in name: _UpperCAmelCase : Any = name.replace("""transformer""", """model.decoder""" ) if "cross_attention" in name: _UpperCAmelCase : List[Any] = name.replace("""cross_attention""", """encoder_attn""" ) if "linear1" in name: _UpperCAmelCase : List[Any] = name.replace("""linear1""", """fc1""" ) if "linear2" in name: _UpperCAmelCase : Optional[Any] = name.replace("""linear2""", """fc2""" ) if "norm1" in name: _UpperCAmelCase : List[Any] = name.replace("""norm1""", """self_attn_layer_norm""" ) if "norm_cross" in name: _UpperCAmelCase : Any = name.replace("""norm_cross""", """encoder_attn_layer_norm""" ) if "norm2" in name: _UpperCAmelCase : str = name.replace("""norm2""", """final_layer_norm""" ) if "out_norm" in name: _UpperCAmelCase : Union[str, Any] = name.replace("""out_norm""", """model.decoder.layer_norm""" ) if "linears" in name: _UpperCAmelCase : str = name.replace("""linears""", """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCAmelCase : Any = name.replace("""condition_provider.conditioners.description.output_proj""", """enc_to_dec_proj""" ) return name def UpperCamelCase ( _lowerCAmelCase : OrderedDict, _lowerCAmelCase : int ) -> Tuple[Dict, Dict]: _UpperCAmelCase : List[Any] = list(state_dict.keys() ) _UpperCAmelCase : Dict = {} for key in keys: _UpperCAmelCase : Dict = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase : Any = rename_keys(_lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj _UpperCAmelCase : Dict = val[:hidden_size, :] _UpperCAmelCase : Dict = val[hidden_size : 2 * hidden_size, :] _UpperCAmelCase : int = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCAmelCase : Dict = val else: _UpperCAmelCase : Optional[int] = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase ( _lowerCAmelCase : str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values _UpperCAmelCase : Optional[int] = 1024 _UpperCAmelCase : str = 24 _UpperCAmelCase : Dict = 16 elif checkpoint == "medium": _UpperCAmelCase : Union[str, Any] = 1536 _UpperCAmelCase : str = 48 _UpperCAmelCase : List[str] = 24 elif checkpoint == "large": _UpperCAmelCase : List[Any] = 2048 _UpperCAmelCase : Optional[Any] = 48 _UpperCAmelCase : Any = 32 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCAmelCase : int = MusicgenDecoderConfig( hidden_size=_lowerCAmelCase, ffn_dim=hidden_size * 4, num_hidden_layers=_lowerCAmelCase, num_attention_heads=_lowerCAmelCase, ) return config @torch.no_grad() def UpperCamelCase ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Any=None, _lowerCAmelCase : List[Any]="cpu" ) -> str: _UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(_lowerCAmelCase, device=_lowerCAmelCase ) _UpperCAmelCase : Tuple = decoder_config_from_checkpoint(_lowerCAmelCase ) _UpperCAmelCase : Any = fairseq_model.lm.state_dict() _UpperCAmelCase , _UpperCAmelCase : str = rename_state_dict( _lowerCAmelCase, hidden_size=decoder_config.hidden_size ) _UpperCAmelCase : Union[str, Any] = TaEncoderModel.from_pretrained("""t5-base""" ) _UpperCAmelCase : List[Any] = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) _UpperCAmelCase : int = MusicgenForCausalLM(_lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCAmelCase , _UpperCAmelCase : str = decoder.load_state_dict(_lowerCAmelCase, strict=_lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(_lowerCAmelCase ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCAmelCase : Tuple = MusicgenForConditionalGeneration(text_encoder=_lowerCAmelCase, audio_encoder=_lowerCAmelCase, decoder=_lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCAmelCase ) # check we can do a forward pass _UpperCAmelCase : List[Any] = torch.arange(0, 8, dtype=torch.long ).reshape(2, -1 ) _UpperCAmelCase : Any = input_ids.reshape(2 * 4, -1 ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(input_ids=_lowerCAmelCase, decoder_input_ids=_lowerCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("""t5-base""" ) _UpperCAmelCase : int = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""", padding_side="""left""" ) _UpperCAmelCase : Optional[int] = MusicgenProcessor(feature_extractor=_lowerCAmelCase, tokenizer=_lowerCAmelCase ) # set the appropriate bos/pad token ids _UpperCAmelCase : Any = 2048 _UpperCAmelCase : Optional[int] = 2048 # set other default generation config params _UpperCAmelCase : int = int(30 * audio_encoder.config.frame_rate ) _UpperCAmelCase : int = True _UpperCAmelCase : List[Any] = 3.0 if pytorch_dump_folder is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(_lowerCAmelCase ) processor.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) lowerCamelCase__ : Optional[int] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
246
"""simple docstring""" # Lint as: python3 import itertools import os import re lowerCamelCase__ : str = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowerCamelCase__ : List[Any] = re.compile(r'''([a-z\d])([A-Z])''') lowerCamelCase__ : int = re.compile(r'''(?<!_)_(?!_)''') lowerCamelCase__ : List[str] = re.compile(r'''(_{2,})''') lowerCamelCase__ : List[Any] = r'''^\w+(\.\w+)*$''' lowerCamelCase__ : str = r'''<>:/\|?*''' def UpperCamelCase ( _lowerCAmelCase : Optional[int] ) -> str: _UpperCAmelCase : Any = _uppercase_uppercase_re.sub(R"""\1_\2""", _lowerCAmelCase ) _UpperCAmelCase : Tuple = _lowercase_uppercase_re.sub(R"""\1_\2""", _lowerCAmelCase ) return name.lower() def UpperCamelCase ( _lowerCAmelCase : Optional[Any] ) -> Tuple: _UpperCAmelCase : Optional[Any] = _single_underscore_re.split(_lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = [_multiple_underscores_re.split(_lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowerCAmelCase ) if n != """""" ) def UpperCamelCase ( _lowerCAmelCase : Optional[Any] ) -> str: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(_lowerCAmelCase ) def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : Tuple ) -> int: if os.path.basename(_lowerCAmelCase ) != name: raise ValueError(f'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, _lowerCAmelCase ): raise ValueError(f'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return f'''{filename_prefix_for_name(_lowerCAmelCase )}-{split}''' def UpperCamelCase ( _lowerCAmelCase : Dict, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple=None ) -> List[Any]: _UpperCAmelCase : Optional[int] = filename_prefix_for_split(_lowerCAmelCase, _lowerCAmelCase ) if filetype_suffix: prefix += f'''.{filetype_suffix}''' _UpperCAmelCase : int = os.path.join(_lowerCAmelCase, _lowerCAmelCase ) return f'''{filepath}*''' def UpperCamelCase ( _lowerCAmelCase : str, _lowerCAmelCase : str, _lowerCAmelCase : List[Any], _lowerCAmelCase : Any=None, _lowerCAmelCase : int=None ) -> str: _UpperCAmelCase : Union[str, Any] = filename_prefix_for_split(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = os.path.join(_lowerCAmelCase, _lowerCAmelCase ) if shard_lengths: _UpperCAmelCase : List[str] = len(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = [f'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(_lowerCAmelCase )] if filetype_suffix: _UpperCAmelCase : Union[str, Any] = [filename + f'''.{filetype_suffix}''' for filename in filenames] return filenames else: _UpperCAmelCase : Any = prefix if filetype_suffix: filename += f'''.{filetype_suffix}''' return [filename]
246
1
import operator as op UpperCAmelCase_ = 'scaler.pt' UpperCAmelCase_ = 'pytorch_model' UpperCAmelCase_ = 'random_states' UpperCAmelCase_ = 'optimizer' UpperCAmelCase_ = 'scheduler' UpperCAmelCase_ = 'pytorch_model.bin' UpperCAmelCase_ = 'pytorch_model.bin.index.json' UpperCAmelCase_ = 'model.safetensors' UpperCAmelCase_ = 'model.safetensors.index.json' UpperCAmelCase_ = '1.10.2' UpperCAmelCase_ = 'py38' UpperCAmelCase_ = '4.17.0' UpperCAmelCase_ = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] UpperCAmelCase_ = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] UpperCAmelCase_ = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] UpperCAmelCase_ = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] UpperCAmelCase_ = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] UpperCAmelCase_ = '2.0.1' UpperCAmelCase_ = ['pdsh', 'standard', 'openmpi', 'mvapich'] UpperCAmelCase_ = ['default', 'reduce-overhead', 'max-autotune'] UpperCAmelCase_ = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase_ = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] UpperCAmelCase_ = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] UpperCAmelCase_ = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
369
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> str: """simple docstring""" # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. UpperCamelCase__ : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]] UpperCamelCase__ : str = DisjunctiveConstraint(__magic_name__ ) self.assertTrue(isinstance(dc.token_ids, __magic_name__ ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__magic_name__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). UpperCamelCase__ : str = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__magic_name__ ): DisjunctiveConstraint(__magic_name__ ) # fails here def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : str = [[1, 2, 3], [1, 2, 4]] UpperCamelCase__ : Union[str, Any] = DisjunctiveConstraint(__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = dc.update(1 ) UpperCamelCase__ : Any = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = dc.update(2 ) UpperCamelCase__ : Dict = stepped is True and completed is False and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = dc.update(3 ) UpperCamelCase__ : Dict = stepped is True and completed is True and reset is False self.assertTrue(__magic_name__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] UpperCamelCase__ : Union[str, Any] = DisjunctiveConstraint(__magic_name__ ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
247
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
'''simple docstring''' def a__ ( a__ ): """simple docstring""" if isinstance(a__ , a__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(a__ , a__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" __SCREAMING_SNAKE_CASE = False if num < 0: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = -num __SCREAMING_SNAKE_CASE = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(a__ ) for e in binary ) return "0b" + "".join(str(a__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
267
0
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __A : Dict = logging.get_logger(__name__) @add_end_docstrings(_A ) class __UpperCamelCase ( _A ): def __init__(self : Optional[Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : int): super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING) def SCREAMING_SNAKE_CASE__ (self : str , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int=None): A = {} A = {} if prompt is not None: A = prompt if generate_kwargs is not None: A = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one") A = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__SCREAMING_SNAKE_CASE : Union[str, Any]): return super().__call__(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str=None): A = load_image(__SCREAMING_SNAKE_CASE) if prompt is not None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): raise ValueError( F"""Received an invalid text input, got - {type(__SCREAMING_SNAKE_CASE)} - but expected a single string. """ "Note also that one single text can be provided for conditional image to text generation.") A = self.model.config.model_type if model_type == "git": A = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) A = self.tokenizer(text=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE).input_ids A = [self.tokenizer.cls_token_id] + input_ids A = torch.tensor(__SCREAMING_SNAKE_CASE).unsqueeze(0) model_inputs.update({"input_ids": input_ids}) elif model_type == "pix2struct": A = self.image_processor(images=__SCREAMING_SNAKE_CASE , header_text=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) A = self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=self.framework) model_inputs.update(__SCREAMING_SNAKE_CASE) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""") else: A = self.image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors=self.framework) if self.model.config.model_type == "git" and prompt is None: A = None return model_inputs def SCREAMING_SNAKE_CASE__ (self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str=None): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , __SCREAMING_SNAKE_CASE) and all(x is None for x in model_inputs["input_ids"]) ): A = None if generate_kwargs is None: A = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A = model_inputs.pop(self.model.main_input_name) A = self.model.generate(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) return model_outputs def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : str): A = [] for output_ids in model_outputs: A = { "generated_text": self.tokenizer.decode( __SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , ) } records.append(__SCREAMING_SNAKE_CASE) return records
57
"""simple docstring""" __A : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
57
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class _A ( __magic_name__): SCREAMING_SNAKE_CASE : torch.FloatTensor class _A ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , _SCREAMING_SNAKE_CASE=(64,) , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="silu" , _SCREAMING_SNAKE_CASE=True , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Dict = layers_per_block SCREAMING_SNAKE_CASE_ : int = torch.nn.Convad( _SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Any = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE_ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = output_channel SCREAMING_SNAKE_CASE_ : Any = block_out_channels[i] SCREAMING_SNAKE_CASE_ : str = i == len(_SCREAMING_SNAKE_CASE ) - 1 SCREAMING_SNAKE_CASE_ : Dict = get_down_block( _SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=_SCREAMING_SNAKE_CASE , resnet_groups=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , ) self.down_blocks.append(_SCREAMING_SNAKE_CASE ) # mid SCREAMING_SNAKE_CASE_ : Any = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , ) # out SCREAMING_SNAKE_CASE_ : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=_SCREAMING_SNAKE_CASE , eps=1e-6 ) SCREAMING_SNAKE_CASE_ : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE_ : Tuple = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE_ : str = nn.Convad(block_out_channels[-1] , _SCREAMING_SNAKE_CASE , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ : List[Any] = False def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = x SCREAMING_SNAKE_CASE_ : int = self.conv_in(_SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(_SCREAMING_SNAKE_CASE ): def custom_forward(*_SCREAMING_SNAKE_CASE ): return module(*_SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) # middle SCREAMING_SNAKE_CASE_ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : int = torch.utils.checkpoint.checkpoint(create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # middle SCREAMING_SNAKE_CASE_ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : List[Any] = down_block(_SCREAMING_SNAKE_CASE ) # middle SCREAMING_SNAKE_CASE_ : List[str] = self.mid_block(_SCREAMING_SNAKE_CASE ) # post-process SCREAMING_SNAKE_CASE_ : List[Any] = self.conv_norm_out(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = self.conv_act(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = self.conv_out(_SCREAMING_SNAKE_CASE ) return sample class _A ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , _SCREAMING_SNAKE_CASE=(64,) , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="silu" , _SCREAMING_SNAKE_CASE="group" , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = layers_per_block SCREAMING_SNAKE_CASE_ : str = nn.Convad( _SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE_ : int = None SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.ModuleList([] ) SCREAMING_SNAKE_CASE_ : str = in_channels if norm_type == 'spatial' else None # mid SCREAMING_SNAKE_CASE_ : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=_SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , ) # up SCREAMING_SNAKE_CASE_ : List[Any] = list(reversed(_SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = output_channel SCREAMING_SNAKE_CASE_ : List[Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE_ : Union[str, Any] = i == len(_SCREAMING_SNAKE_CASE ) - 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_up_block( _SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , prev_output_channel=_SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=_SCREAMING_SNAKE_CASE , resnet_groups=_SCREAMING_SNAKE_CASE , attention_head_dim=_SCREAMING_SNAKE_CASE , temb_channels=_SCREAMING_SNAKE_CASE , resnet_time_scale_shift=_SCREAMING_SNAKE_CASE , ) self.up_blocks.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE_ : Tuple = SpatialNorm(block_out_channels[0] , _SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : str = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=_SCREAMING_SNAKE_CASE , eps=1e-6 ) SCREAMING_SNAKE_CASE_ : int = nn.SiLU() SCREAMING_SNAKE_CASE_ : Dict = nn.Convad(block_out_channels[0] , _SCREAMING_SNAKE_CASE , 3 , padding=1 ) SCREAMING_SNAKE_CASE_ : List[Any] = False def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = z SCREAMING_SNAKE_CASE_ : str = self.conv_in(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(_SCREAMING_SNAKE_CASE ): def custom_forward(*_SCREAMING_SNAKE_CASE ): return module(*_SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle SCREAMING_SNAKE_CASE_ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = sample.to(_SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , use_reentrant=_SCREAMING_SNAKE_CASE ) else: # middle SCREAMING_SNAKE_CASE_ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = sample.to(_SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.utils.checkpoint.checkpoint(create_custom_forward(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # middle SCREAMING_SNAKE_CASE_ : int = self.mid_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = sample.to(_SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE_ : str = up_block(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE_ : Dict = self.conv_norm_out(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : List[Any] = self.conv_norm_out(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = self.conv_act(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = self.conv_out(_SCREAMING_SNAKE_CASE ) return sample class _A ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="random" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = n_e SCREAMING_SNAKE_CASE_ : List[Any] = vq_embed_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = beta SCREAMING_SNAKE_CASE_ : Union[str, Any] = legacy SCREAMING_SNAKE_CASE_ : Optional[int] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE_ : List[str] = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE_ : List[str] = self.used.shape[0] SCREAMING_SNAKE_CASE_ : List[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE_ : List[str] = self.re_embed SCREAMING_SNAKE_CASE_ : Optional[int] = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: SCREAMING_SNAKE_CASE_ : int = n_e SCREAMING_SNAKE_CASE_ : Any = sane_index_shape def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = inds.shape assert len(_SCREAMING_SNAKE_CASE ) > 1 SCREAMING_SNAKE_CASE_ : List[Any] = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.used.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE_ : List[str] = match.argmax(-1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE_ : Dict = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE_ : int = self.unknown_index return new.reshape(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = inds.shape assert len(_SCREAMING_SNAKE_CASE ) > 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.used.to(_SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE_ : Optional[int] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , _SCREAMING_SNAKE_CASE ) return back.reshape(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE_ : List[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE_ : Tuple = torch.argmin(torch.cdist(_SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE_ : List[Any] = self.embedding(_SCREAMING_SNAKE_CASE ).view(z.shape ) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : int = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE_ : Dict = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE_ : Any = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE_ : Dict = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ : Optional[int] = self.remap_to_used(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE_ : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.remap is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.unmap_to_all(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE_ : int = self.embedding(_SCREAMING_SNAKE_CASE ) if shape is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = z_q.view(_SCREAMING_SNAKE_CASE ) # reshape back to match original input shape SCREAMING_SNAKE_CASE_ : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parameters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = torch.chunk(_SCREAMING_SNAKE_CASE , 2 , dim=1 ) SCREAMING_SNAKE_CASE_ : int = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE_ : Dict = deterministic SCREAMING_SNAKE_CASE_ : Dict = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE_ : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE_ : Dict = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = randn_tensor( self.mean.shape , generator=_SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.mean + self.std * sample return x def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=[1, 2, 3] ): """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" return self.mean
253
lowerCAmelCase : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
253
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
60
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self , _lowercase , _lowercase=2 , _lowercase=32 , _lowercase=16 , _lowercase=3 , _lowercase=True , _lowercase=True , _lowercase=32 , _lowercase=4 , _lowercase=[0, 1, 2, 3] , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=3 , _lowercase=[1, 384, 24, 24] , _lowercase=True , _lowercase=None , )-> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = backbone_out_indices UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = backbone_featmap_shape UpperCamelCase_ = scope UpperCamelCase_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_ = (image_size // patch_size) ** 2 UpperCamelCase_ = num_patches + 1 def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_lowercase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Any: UpperCamelCase_ = DPTModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> Union[str, Any]: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForDepthEstimation(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase )-> str: UpperCamelCase_ = self.num_labels UpperCamelCase_ = DPTForSemanticSegmentation(_lowercase ) model.to(_lowercase ) model.eval() UpperCamelCase_ = model(_lowercase , labels=_lowercase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( snake_case , snake_case , unittest.TestCase ): UpperCamelCase_ :Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ :Any = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ :List[Any] = False UpperCamelCase_ :Dict = False UpperCamelCase_ :Tuple = False def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = DPTModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_lowercase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase_ ( self )-> int: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_lowercase ) def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True if model_class in get_values(_lowercase ): continue UpperCamelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.train() UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCamelCase_ = model(**_lowercase ).loss loss.backward() def UpperCAmelCase_ ( self )-> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = False UpperCamelCase_ = True if model_class in get_values(_lowercase ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase_ = model_class(_lowercase ) model.to(_lowercase ) model.gradient_checkpointing_enable() model.train() UpperCamelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) UpperCamelCase_ = model(**_lowercase ).loss loss.backward() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = _config_zero_init(_lowercase ) for model_class in self.all_model_classes: UpperCamelCase_ = model_class(config=_lowercase ) # Skip the check for the backbone UpperCamelCase_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase_ = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase_ ( self )-> int: pass @slow def UpperCAmelCase_ ( self )-> List[Any]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase_ = DPTModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase_ ( self )-> List[str]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = "add" with self.assertRaises(_lowercase ): UpperCamelCase_ = DPTForDepthEstimation(_lowercase ) def lowerCAmelCase( )-> Any: """simple docstring""" UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) UpperCamelCase_ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(_lowercase ) UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_lowercase , return_tensors="pt" ).to(_lowercase ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_lowercase ) UpperCamelCase_ = outputs.predicted_depth # verify the predicted depth UpperCamelCase_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _lowercase ) UpperCamelCase_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _lowercase , atol=1e-4 ) )
60
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , ) -> int: UpperCamelCase : List[str] = {} if train_file is not None: UpperCamelCase : List[Any] = [train_file] if eval_file is not None: UpperCamelCase : Dict = [eval_file] if test_file is not None: UpperCamelCase : Any = [test_file] UpperCamelCase : str = datasets.load_dataset("csv" , data_files=_lowerCAmelCase ) UpperCamelCase : Dict = list(ds[list(files.keys() )[0]].features.keys() ) UpperCamelCase : Union[str, Any] = features_name.pop(_lowerCAmelCase ) UpperCamelCase : str = list(set(ds[list(files.keys() )[0]][label_name] ) ) UpperCamelCase : Any = {label: i for i, label in enumerate(_lowerCAmelCase )} UpperCamelCase : Union[str, Any] = tokenizer.model_input_names UpperCamelCase : Any = {} if len(_lowerCAmelCase ) == 1: for k in files.keys(): UpperCamelCase : Dict = ds[k].map( lambda _lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) , batched=_lowerCAmelCase , ) elif len(_lowerCAmelCase ) == 2: for k in files.keys(): UpperCamelCase : Any = ds[k].map( lambda _lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" , ) , batched=_lowerCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: UpperCamelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: UpperCamelCase : str = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: UpperCamelCase : str = {k: v for k, v in ex.items() if k in input_names} UpperCamelCase : List[str] = labelaid[ex[label_name]] yield (d, label) UpperCamelCase : Dict = ( tf.data.Dataset.from_generator( _lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: UpperCamelCase : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) UpperCamelCase : Optional[int] = ( tf.data.Dataset.from_generator( _lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: UpperCamelCase : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) UpperCamelCase : Tuple = ( tf.data.Dataset.from_generator( _lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: UpperCamelCase : List[str] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __lowerCamelCase : Tuple = logging.getLogger(__name__) @dataclass class A__ : _UpperCAmelCase :int = field(metadata={'help': 'Which column contains the label'} ) _UpperCAmelCase :str = field(default=__snake_case , metadata={'help': 'The path of the training file'} ) _UpperCAmelCase :Optional[str] = field(default=__snake_case , metadata={'help': 'The path of the development file'} ) _UpperCAmelCase :Optional[str] = field(default=__snake_case , metadata={'help': 'The path of the test file'} ) _UpperCAmelCase :int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _UpperCAmelCase :bool = field( default=__snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : _UpperCAmelCase :str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _UpperCAmelCase :Optional[str] = field( default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCAmelCase :Optional[str] = field( default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _UpperCAmelCase :bool = field(default=__snake_case , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase :Optional[str] = field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def A_ ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) UpperCamelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCAmelCase ) , labelaid=_lowerCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): UpperCamelCase : Union[str, Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCAmelCase ) -> Dict: UpperCamelCase : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer UpperCamelCase : List[Any] = TFTrainer( model=_lowerCAmelCase , args=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , compute_metrics=_lowerCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase : Optional[Any] = trainer.evaluate() UpperCamelCase : Optional[int] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCAmelCase ) return results if __name__ == "__main__": main()
52
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase :int = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :Any = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCAmelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
263
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import cmath import math def lowerCAmelCase__ ( _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float , _UpperCamelCase : float ) -> complex: """simple docstring""" snake_case = math.radians(_UpperCamelCase ) snake_case = math.radians(_UpperCamelCase ) # Convert voltage and current to rectangular form snake_case = cmath.rect(_UpperCamelCase , _UpperCamelCase ) snake_case = cmath.rect(_UpperCamelCase , _UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
149
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase__ ( _A , _A , **_A ): '''simple docstring''' snake_case_ = AutoConfig.from_pretrained(_A , **_A ) snake_case_ = AutoModelForSeqaSeqLM.from_config(_A ) model.save_pretrained(_A ) AutoTokenizer.from_pretrained(_A ).save_pretrained(_A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
187
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): lowercase__ : List[Any] = True from torch.cuda.amp import autocast lowercase__ : List[Any] = logging.getLogger(__name__) def lowerCamelCase__ ( _A=None , _A=None ): '''simple docstring''' return field(default_factory=lambda: default , metadata=_A ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCAmelCase_ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) lowerCAmelCase_ = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) lowerCAmelCase_ = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) lowerCAmelCase_ = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) lowerCAmelCase_ = field( default=0.05 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) lowerCAmelCase_ = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase_ = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase_ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase_ = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = True lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None def __call__( self : Optional[int] , __lowercase : List[Dict[str, Union[List[int], torch.Tensor]]] ): """simple docstring""" snake_case_ = [{"input_values": feature["input_values"]} for feature in features] snake_case_ = [{"input_ids": feature["labels"]} for feature in features] snake_case_ = self.processor.pad( __lowercase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) snake_case_ = self.processor.pad( labels=__lowercase , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="pt" , ) # replace padding with -100 to ignore loss correctly snake_case_ = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1 ) , -1_00 ) snake_case_ = labels return batch class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self : str , __lowercase : nn.Module , __lowercase : Dict[str, Union[torch.Tensor, Any]] ): """simple docstring""" model.train() snake_case_ = self._prepare_inputs(__lowercase ) if self.use_amp: with autocast(): snake_case_ = self.compute_loss(__lowercase , __lowercase ) else: snake_case_ = self.compute_loss(__lowercase , __lowercase ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": snake_case_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case_ = loss.sum() / (inputs["labels"] >= 0).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: snake_case_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowercase ).backward() elif self.use_apex: with amp.scale_loss(__lowercase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowercase ) else: loss.backward() return loss.detach() def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. snake_case_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , _A ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: snake_case_ = datasets.load_dataset( "common_voice" , data_args.dataset_config_name , split=data_args.train_split_name ) snake_case_ = datasets.load_dataset("common_voice" , data_args.dataset_config_name , split="test" ) # Create and save tokenizer snake_case_ = f"[{''.join(data_args.chars_to_ignore )}]" def remove_special_characters(_A ): snake_case_ = re.sub(_A , "" , batch["sentence"] ).lower() + " " return batch snake_case_ = train_dataset.map(_A , remove_columns=["sentence"] ) snake_case_ = eval_dataset.map(_A , remove_columns=["sentence"] ) def extract_all_chars(_A ): snake_case_ = " ".join(batch["text"] ) snake_case_ = list(set(_A ) ) return {"vocab": [vocab], "all_text": [all_text]} snake_case_ = train_dataset.map( _A , batched=_A , batch_size=-1 , keep_in_memory=_A , remove_columns=train_dataset.column_names , ) snake_case_ = train_dataset.map( _A , batched=_A , batch_size=-1 , keep_in_memory=_A , remove_columns=eval_dataset.column_names , ) snake_case_ = list(set(vocab_train["vocab"][0] ) | set(vocab_test["vocab"][0] ) ) snake_case_ = {v: k for k, v in enumerate(_A )} snake_case_ = vocab_dict[" "] del vocab_dict[" "] snake_case_ = len(_A ) snake_case_ = len(_A ) with open("vocab.json" , "w" ) as vocab_file: json.dump(_A , _A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = WavaVecaCTCTokenizer( "vocab.json" , unk_token="[UNK]" , pad_token="[PAD]" , word_delimiter_token="|" , ) snake_case_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=_A , return_attention_mask=_A ) snake_case_ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) snake_case_ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="mean" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: snake_case_ = min(len(_A ) , data_args.max_train_samples ) snake_case_ = train_dataset.select(range(_A ) ) if data_args.max_val_samples is not None: snake_case_ = eval_dataset.select(range(data_args.max_val_samples ) ) snake_case_ = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(_A ): snake_case_ , snake_case_ = torchaudio.load(batch["path"] ) snake_case_ = resampler(_A ).squeeze().numpy() snake_case_ = 16000 snake_case_ = batch["text"] return batch snake_case_ = train_dataset.map( _A , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) snake_case_ = eval_dataset.map( _A , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(_A ): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"] ) ) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." snake_case_ = processor( audio=batch["speech"] , text=batch["target_text"] , sampling_rate=batch["sampling_rate"][0] ) batch.update(_A ) return batch snake_case_ = train_dataset.map( _A , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_A , num_proc=data_args.preprocessing_num_workers , ) snake_case_ = eval_dataset.map( _A , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=_A , num_proc=data_args.preprocessing_num_workers , ) # Metric snake_case_ = datasets.load_metric("wer" ) def compute_metrics(_A ): snake_case_ = pred.predictions snake_case_ = np.argmax(_A , axis=-1 ) snake_case_ = processor.tokenizer.pad_token_id snake_case_ = processor.batch_decode(_A ) # we do not want to group tokens when computing the metrics snake_case_ = processor.batch_decode(pred.label_ids , group_tokens=_A ) snake_case_ = wer_metric.compute(predictions=_A , references=_A ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator snake_case_ = DataCollatorCTCWithPadding(processor=_A , padding=_A ) # Initialize our Trainer snake_case_ = CTCTrainer( model=_A , data_collator=_A , args=_A , compute_metrics=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: snake_case_ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): snake_case_ = model_args.model_name_or_path else: snake_case_ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) snake_case_ = trainer.train(resume_from_checkpoint=_A ) trainer.save_model() snake_case_ = train_result.metrics snake_case_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) snake_case_ = min(_A , len(_A ) ) trainer.log_metrics("train" , _A ) trainer.save_metrics("train" , _A ) trainer.save_state() # Evaluation snake_case_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case_ = trainer.evaluate() snake_case_ = data_args.max_val_samples if data_args.max_val_samples is not None else len(_A ) snake_case_ = min(_A , len(_A ) ) trainer.log_metrics("eval" , _A ) trainer.save_metrics("eval" , _A ) return results if __name__ == "__main__": main()
187
1
def lowerCamelCase_ ( UpperCamelCase__ : int = 1000 ) -> int: """simple docstring""" __lowerCamelCase = -1 __lowerCamelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowerCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowerCamelCase = n - a - b if c * c == (a * a + b * b): __lowerCamelCase = a * b * c if candidate >= product: __lowerCamelCase = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
348
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") __A = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } __A = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } __A = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } __A = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } __A = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } __A = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } __A = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } __A = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __A = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __A = [] __A = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] __A = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Dict: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value elif weight_type == "running_mean": __lowerCamelCase = value elif weight_type == "running_var": __lowerCamelCase = value elif weight_type == "num_batches_tracked": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict ) -> Any: """simple docstring""" for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCamelCase_ ( UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] if task == "s2t": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2T __lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": __lowerCamelCase = None __lowerCamelCase = MAPPING_T2S __lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": __lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder __lowerCamelCase = MAPPING_S2S __lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F"""Unsupported task: {task}""" ) for name, value in fairseq_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(F"""{name} was ignored""" ) continue __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: __lowerCamelCase , __lowerCamelCase = key.split('.*.' ) if prefix in name and suffix in name: __lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' elif "running_mean" in name: __lowerCamelCase = 'running_mean' elif "running_var" in name: __lowerCamelCase = 'running_var' elif "num_batches_tracked" in name: __lowerCamelCase = 'num_batches_tracked' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ) -> Tuple: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : str=None , UpperCamelCase__ : List[str]=None , ) -> Tuple: """simple docstring""" if config_path is not None: __lowerCamelCase = SpeechTaConfig.from_pretrained(UpperCamelCase__ ) else: __lowerCamelCase = SpeechTaConfig() if task == "s2t": __lowerCamelCase = config.max_text_positions __lowerCamelCase = SpeechTaForSpeechToText(UpperCamelCase__ ) elif task == "t2s": __lowerCamelCase = 1876 __lowerCamelCase = 600 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForTextToSpeech(UpperCamelCase__ ) elif task == "s2s": __lowerCamelCase = 1876 __lowerCamelCase = config.max_speech_positions __lowerCamelCase = SpeechTaForSpeechToSpeech(UpperCamelCase__ ) else: raise ValueError(F"""Unknown task name: {task}""" ) if vocab_path: __lowerCamelCase = SpeechTaTokenizer(UpperCamelCase__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it __lowerCamelCase = AddedToken('<mask>' , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) __lowerCamelCase = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) __lowerCamelCase = SpeechTaFeatureExtractor() __lowerCamelCase = SpeechTaProcessor(tokenizer=UpperCamelCase__ , feature_extractor=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = torch.load(UpperCamelCase__ ) recursively_load_weights(fairseq_checkpoint['model'] , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
348
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowerCamelCase : Dict = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
167
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase ( unittest.TestCase): def __init__( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any]=13 , _lowerCamelCase : Optional[Any]=3 , _lowerCamelCase : List[Any]=2_24 , _lowerCamelCase : Tuple=30 , _lowerCamelCase : List[str]=4_00 , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : int=True , _lowerCamelCase : Any=[0.5, 0.5, 0.5] , _lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , ): """simple docstring""" A_ : int = size if size is not None else {'''height''': 18, '''width''': 18} A_ : Optional[int] = parent A_ : Any = batch_size A_ : List[str] = num_channels A_ : List[str] = image_size A_ : List[Any] = min_resolution A_ : str = max_resolution A_ : Dict = do_resize A_ : Dict = size A_ : str = do_normalize A_ : List[str] = image_mean A_ : List[str] = image_std def a_ ( self : Optional[Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None def a_ ( self : Dict ): """simple docstring""" A_ : Union[str, Any] = EfficientFormerImageProcessorTester(self ) @property def a_ ( self : List[Any] ): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def a_ ( self : List[Any] ): """simple docstring""" A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def a_ ( self : str ): """simple docstring""" pass def a_ ( self : Optional[Any] ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : Dict = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : List[Any] ): """simple docstring""" A_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : str = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def a_ ( self : str ): """simple docstring""" A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched A_ : List[str] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
167
1
'''simple docstring''' import os def UpperCamelCase_( ): '''simple docstring''' snake_case_ = os.path.dirname(os.path.realpath(snake_case ) ) snake_case_ = os.path.join(snake_case , "triangle.txt" ) with open(snake_case ) as f: snake_case_ = f.readlines() snake_case_ = [] for line in triangle: snake_case_ = [] for number in line.strip().split(" " ): numbers_from_line.append(int(snake_case ) ) a.append(snake_case ) for i in range(1 , len(snake_case ) ): for j in range(len(a[i] ) ): snake_case_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 snake_case_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case , snake_case ) return max(a[-1] ) if __name__ == "__main__": print(solution())
92
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class _snake_case : def __init__( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. snake_case_ = len(a__ ) - 1 def lowerCAmelCase__ ( self , a__ ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , a__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(a__ ) , 5 ) == 1 return output_values def lowerCAmelCase__ ( self , a__ ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case_ = self.basis_function(a__ ) snake_case_ = 0.0 snake_case_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowerCAmelCase__ ( self , a__ = 0.0_1 ) -> Any: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore snake_case_ = [] # x coordinates of points to plot snake_case_ = [] # y coordinates of points to plot snake_case_ = 0.0 while t <= 1: snake_case_ = self.bezier_curve_function(a__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size snake_case_ = [i[0] for i in self.list_of_points] snake_case_ = [i[1] for i in self.list_of_points] plt.plot( a__ , a__ , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(a__ , a__ , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
92
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem a :List[str] = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 a :List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowercase ( __lowerCAmelCase ) -> str: if "://" in dataset_path: SCREAMING_SNAKE_CASE__ : Dict = dataset_path.split("""://""" )[1] return dataset_path def _lowercase ( __lowerCAmelCase ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : Optional[Any] = not is_remote_filesystem(__lowerCAmelCase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__lowerCAmelCase ) , fs._strip_protocol(__lowerCAmelCase ) ) else: fs.mv(__lowerCAmelCase , __lowerCAmelCase , recursive=__lowerCAmelCase ) def _lowercase ( ) -> None: if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = threading.Lock()
132
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __a : '''simple docstring''' def __init__( self , _a , _a=13 , _a=2 , _a=24 , _a=16 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , _a=2 , _a=2 , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = patch_size SCREAMING_SNAKE_CASE__ : str = max_length SCREAMING_SNAKE_CASE__ : Optional[Any] = num_mel_bins SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Tuple = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : List[str] = frequency_stride SCREAMING_SNAKE_CASE__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ : Optional[int] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE__ : Any = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE__ : Any = num_patches + 2 def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE__ : int = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_values, labels def _a ( self ) -> Union[str, Any]: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _a ( self , _a , _a , _a ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ASTModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""input_values""": input_values} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Dict = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :Any = False _SCREAMING_SNAKE_CASE :Union[str, Any] = False _SCREAMING_SNAKE_CASE :Tuple = False def _a ( self , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ASTModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def _a ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def _a ( self ) -> List[str]: """simple docstring""" pass def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Any = model_class(_a ) SCREAMING_SNAKE_CASE__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Dict = ["""input_values"""] self.assertListEqual(arg_names[:1] , _a ) def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) @slow def _a ( self ) -> Union[str, Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = ASTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( ) -> int: SCREAMING_SNAKE_CASE__ : List[Any] = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = torchaudio.load(__lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class __a (unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ) -> int: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_feature_extractor SCREAMING_SNAKE_CASE__ : Optional[Any] = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_a ) SCREAMING_SNAKE_CASE__ : Dict = self.default_feature_extractor SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_audio() SCREAMING_SNAKE_CASE__ : List[str] = audio.squeeze().numpy() SCREAMING_SNAKE_CASE__ : List[str] = feature_extractor(_a , sampling_rate=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[Any] = model(**_a ) # verify the logits SCREAMING_SNAKE_CASE__ : List[Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _a ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
132
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def _UpperCAmelCase ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Any): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. UpperCAmelCase : int = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_) lowercase_ = INVOICE_URL lowercase_ = list(zip(*apply_tesseract(load_image(lowerCAmelCase_) , lowerCAmelCase_ , """"""))) lowercase_ = """What is the placebo?""" lowercase_ = [ { """image""": load_image(lowerCAmelCase_), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = dqa_pipeline(lowerCAmelCase_ , top_k=2) self.assertEqual( lowerCAmelCase_ , [ [ {"""score""": ANY(lowerCAmelCase_), """answer""": ANY(lowerCAmelCase_), """start""": ANY(lowerCAmelCase_), """end""": ANY(lowerCAmelCase_)}, {"""score""": ANY(lowerCAmelCase_), """answer""": ANY(lowerCAmelCase_), """start""": ANY(lowerCAmelCase_), """end""": ANY(lowerCAmelCase_)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""") lowercase_ = INVOICE_URL lowercase_ = """How many cats are there?""" lowercase_ = [ {"""score""": 0.0_001, """answer""": """oy 2312/2019""", """start""": 3_8, """end""": 3_9}, {"""score""": 0.0_001, """answer""": """oy 2312/2019 DUE""", """start""": 3_8, """end""": 4_0}, ] lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4) , lowerCAmelCase_) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4) , lowerCAmelCase_) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowercase_ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual(lowerCAmelCase_ , []) # We can optionnally pass directly the words and bounding boxes lowercase_ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowercase_ = [] lowercase_ = [] lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2) self.assertEqual(lowerCAmelCase_ , []) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.9_944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=5_0 , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.9_974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9_948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCAmelCase_) lowercase_ = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCAmelCase_ , revision="""3dc6de3""" , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) lowercase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] ] * 2 , ) lowercase_ = list(zip(*apply_tesseract(load_image(lowerCAmelCase_) , lowerCAmelCase_ , """"""))) # This model should also work if `image` is set to None lowercase_ = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.4_251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0_819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=lowerCAmelCase_) lowercase_ = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=lowerCAmelCase_ , revision="""3dc6de3""" , max_seq_len=5_0 , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowercase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) lowercase_ = list(zip(*apply_tesseract(load_image(lowerCAmelCase_) , lowerCAmelCase_ , """"""))) # This model should also work if `image` is set to None lowercase_ = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4) , [ {"""score""": 0.9_999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9_998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) @slow @require_torch def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""") , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) lowercase_ = INVOICE_URL lowercase_ = """What is the invoice number?""" lowercase_ = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4) , [{"""answer""": """us-001"""}]) @require_tf @unittest.skip("""Document question answering not implemented in TF""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" pass
351
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = None lowercase__ = None lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = True lowercase__ = None lowercase__ = 1 lowercase__ = None lowercase__ = False lowercase__ = None lowercase__ = None def _UpperCAmelCase ( self : int): """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_) for k, v in self.__dict__.items()})
313
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : str = LayoutLMTokenizer lowerCAmelCase__ : Optional[int] = LayoutLMTokenizerFast lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : int = True def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' super().setUp() lowercase__ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCamelCase__ (self : List[Any] , **UpperCamelCase : List[Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : List[Any] , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = '''UNwant\u00E9d,running''' lowercase__ = '''unwanted, running''' return input_text, output_text def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = self.tokenizer_class(self.vocab_file ) lowercase__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' pass
2
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCamelCase : Optional[Any] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCamelCase : Dict = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCamelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCamelCase : Tuple = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCamelCase : Optional[int] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ ,lowercase__ = randrange(len(A ) ), randrange(len(A ) ) lowercase__ = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase__ ,lowercase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (A = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(A )) @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> List[str]: """simple docstring""" assert PokerHand(A )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Any: """simple docstring""" lowercase__ = PokerHand(A ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" assert PokerHand(A )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , A ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Union[str, Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (A , A , A ) -> Optional[Any]: """simple docstring""" assert PokerHand(A ).compare_with(PokerHand(A ) ) == expected def _SCREAMING_SNAKE_CASE () -> Tuple: """simple docstring""" lowercase__ = [PokerHand(A ) for hand in SORTED_HANDS] lowercase__ = poker_hands.copy() shuffle(A ) lowercase__ = chain(sorted(A ) ) for index, hand in enumerate(A ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: """simple docstring""" lowercase__ = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=A ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> int: """simple docstring""" lowercase__ = PokerHand('''2C 4S AS 3D 5C''' ) lowercase__ = True lowercase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: """simple docstring""" lowercase__ = 0 lowercase__ = os.path.abspath(os.path.dirname(A ) ) lowercase__ = os.path.join(A , '''poker_hands.txt''' ) with open(A ) as file_hand: for line in file_hand: lowercase__ = line[:14].strip() lowercase__ = line[15:].strip() lowercase__ ,lowercase__ = PokerHand(A ), PokerHand(A ) lowercase__ = player.compare_with(A ) if output == "Win": answer += 1 assert answer == 376
2
1
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCAmelCase__ :Tuple = mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ :List[str] = max( mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , mf_knapsack(i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - wt[i - 1] ) + val[i - 1] , ) lowerCAmelCase__ :str = val return f[i][j] def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :List[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCAmelCase__ :int = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCAmelCase__ :List[str] = dp[i - 1][w_] return dp[n][w_], dp def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" if not (isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) lowerCAmelCase__ :List[str] = len(_SCREAMING_SNAKE_CASE ) if num_items != len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Any = ( 'The number of weights must be the same as the number of values.\n' F"But got {num_items} weights and {len(_SCREAMING_SNAKE_CASE )} values" ) raise ValueError(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): if not isinstance(wt[i] , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Union[str, Any] = ( 'All weights must be integers but got weight of ' F"type {type(wt[i] )} at index {i}" ) raise TypeError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :str = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :set = set() _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return optimal_val, example_optional_set def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: optimal_set.add(_SCREAMING_SNAKE_CASE ) _construct_solution(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i - 1 , j - wt[i - 1] , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = [3, 2, 4, 4] __A = [4, 3, 2, 3] __A = 4 __A = 6 __A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __A , __A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __A , __A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
254
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ): '''simple docstring''' lowerCAmelCase__ :Tuple = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } lowerCAmelCase__ :Optional[int] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCAmelCase__ :Any = token_dict['token'] lowerCAmelCase__ :int = Tokenizer(Unigram() ) lowerCAmelCase__ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) lowerCAmelCase__ :Any = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) lowerCAmelCase__ :List[str] = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = TemplateProcessing( single=F"$A {self.special_tokens['eos']['token']}" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) lowerCAmelCase__ :Optional[int] = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :int = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ :int = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = 8_0_0_0 , __UpperCAmelCase = True , ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase ) self.add_unk_id() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = json.loads(self._tokenizer.to_str() ) lowerCAmelCase__ :List[str] = self.special_tokens['unk']['id'] lowerCAmelCase__ :Union[str, Any] = Tokenizer.from_str(json.dumps(__UpperCAmelCase ) )
254
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class __lowercase ( UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase : List[Any] = """focalnet""" def __init__(self , A=2_2_4 , A=4 , A=3 , A=9_6 , A=False , A=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , A=[2, 2, 6, 2] , A=[2, 2, 2, 2] , A=[3, 3, 3, 3] , A="gelu" , A=4.0 , A=0.0 , A=0.1 , A=False , A=1E-4 , A=False , A=False , A=False , A=0.02 , A=1E-5 , A=3_2 , A=None , A=None , **A , ): super().__init__(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ : Tuple = image_size lowerCamelCase_ : Optional[int] = patch_size lowerCamelCase_ : int = num_channels lowerCamelCase_ : Dict = embed_dim lowerCamelCase_ : Union[str, Any] = use_conv_embed lowerCamelCase_ : List[Any] = hidden_sizes lowerCamelCase_ : Optional[Any] = depths lowerCamelCase_ : Optional[int] = focal_levels lowerCamelCase_ : Optional[Any] = focal_windows lowerCamelCase_ : Optional[int] = hidden_act lowerCamelCase_ : Any = mlp_ratio lowerCamelCase_ : Optional[Any] = hidden_dropout_prob lowerCamelCase_ : Optional[int] = drop_path_rate lowerCamelCase_ : str = use_layerscale lowerCamelCase_ : str = layerscale_value lowerCamelCase_ : Optional[int] = use_post_layernorm lowerCamelCase_ : Any = use_post_layernorm_in_modulation lowerCamelCase_ : Optional[Any] = normalize_modulator lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Union[str, Any] = layer_norm_eps lowerCamelCase_ : str = encoder_stride lowerCamelCase_ : List[str] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCamelCase_, lowerCamelCase_ : Optional[int] = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
318
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Union[str, Any]: assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: if issubclass(snake_case__ , snake_case__ ): lowerCAmelCase = text_path elif issubclass(snake_case__ , snake_case__ ): lowerCAmelCase = [text_path] lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_text_dataset(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__=("train",) ) -> Optional[Any]: assert isinstance(snake_case__ , snake_case__ ) for split in splits: lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase = TextDatasetReader({'''train''': text_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = features.copy() if features else default_expected_features lowerCAmelCase = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase = TextDatasetReader({'''train''': text_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: if split: lowerCAmelCase = {split: text_path} else: lowerCAmelCase = '''train''' lowerCAmelCase = {'''train''': text_path, '''test''': text_path} lowerCAmelCase = tmp_path / '''cache''' lowerCAmelCase = {'''text''': '''string'''} lowerCAmelCase = TextDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_text_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
338
0
'''simple docstring''' from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
21
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Optional[int] = StableDiffusionControlNetImgaImgPipeline _lowercase: Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _lowercase: Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Any , __snake_case : str , __snake_case : Any=0 ) -> str: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ) _lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : Optional[int] ) -> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : Tuple ) -> Optional[int]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): _lowercase: Any = StableDiffusionControlNetImgaImgPipeline _lowercase: Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _lowercase: List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowercase: Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__snake_case : Optional[Any] ): if isinstance(__snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__snake_case ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _lowerCAmelCase = CLIPTextModel(__snake_case ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) _lowerCAmelCase = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Tuple , __snake_case : int , __snake_case : List[str]=0 ) -> Union[str, Any]: if str(__snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(__snake_case ) else: _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _lowerCAmelCase = 2 _lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__snake_case , device=torch.device(__snake_case ) , ), ] _lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(__snake_case ) ).to(__snake_case ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase = Image.fromarray(np.uinta(__snake_case ) ).convert("""RGB""" ).resize((64, 64) ) _lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowercase__ ( self : List[str] ) -> Dict: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) _lowerCAmelCase = 10.0 _lowerCAmelCase = 4 _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowerCAmelCase = self.get_dummy_inputs(__snake_case ) _lowerCAmelCase = steps _lowerCAmelCase = scale _lowerCAmelCase = pipe(**__snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowercase__ ( self : int ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Optional[Any] ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowercase__ ( self : int ) -> str: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Union[str, Any] ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Any: _lowerCAmelCase = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__snake_case , controlnet=__snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) _lowerCAmelCase = """evil space-punk bird""" _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_12, 5_12) ) _lowerCAmelCase = pipe( __snake_case , __snake_case , control_image=__snake_case , generator=__snake_case , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
70
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase : def __init__( self : str , __snake_case : Any ) -> str: _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self : List[str] , __snake_case : Union[str, Any] ) -> Any: return self.key < other.key def __repr__( self : Optional[Any] ) -> Optional[Any]: return self.id def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple ) -> Optional[Any]: self.neighbors.append(__snake_case ) def lowercase__ ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple ) -> Any: _lowerCAmelCase = weight def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(lowerCAmelCase ) q.remove(lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(lowerCAmelCase ) hq.heapify(lowerCAmelCase ) while h: _lowerCAmelCase = hq.heappop(lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(lowerCAmelCase ) for i in range(1 , len(lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
70
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: List[Any] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Any = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __a: int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
214
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = DDIMPipeline SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) lowercase__ : Any = DDIMScheduler() lowercase__ : Union[str, Any] = {'''unet''': unet, '''scheduler''': scheduler} return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> int: if str(__lowerCAmelCase ).startswith('''mps''' ): lowercase__ : Optional[Any] = torch.manual_seed(__lowerCAmelCase ) else: lowercase__ : int = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) lowercase__ : List[Any] = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : int = '''cpu''' lowercase__ : Optional[Any] = self.get_dummy_components() lowercase__ : str = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : str = self.get_dummy_inputs(__lowerCAmelCase ) lowercase__ : str = pipe(**__lowerCAmelCase ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) lowercase__ : Optional[int] = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) lowercase__ : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def _lowerCAmelCase( self ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> List[str]: super().test_save_load_local(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> Tuple: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _lowerCAmelCase( self ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = '''google/ddpm-cifar10-32''' lowercase__ : List[Any] = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : str = DDIMScheduler() lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddim.to(__lowerCAmelCase ) ddim.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Dict = torch.manual_seed(0 ) lowercase__ : Optional[int] = ddim(generator=__lowerCAmelCase , eta=0.0 , output_type='''numpy''' ).images lowercase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[int] = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : Optional[Any] = '''google/ddpm-ema-bedroom-256''' lowercase__ : Tuple = UNetaDModel.from_pretrained(__lowerCAmelCase ) lowercase__ : Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCAmelCase ) lowercase__ : List[Any] = DDIMPipeline(unet=__lowerCAmelCase , scheduler=__lowerCAmelCase ) ddpm.to(__lowerCAmelCase ) ddpm.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase__ : Union[str, Any] = torch.manual_seed(0 ) lowercase__ : Optional[Any] = ddpm(generator=__lowerCAmelCase , output_type='''numpy''' ).images lowercase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase__ : Union[str, Any] = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
214
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __A ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowercase__ ( self : int ): lowerCAmelCase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , x.transpose() ) ) lowerCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase__ ( self : List[str] ): lowerCAmelCase : List[str] = np.random.randn(3 , 4 ) lowerCAmelCase : str = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Dict = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Any = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , transpose(UpperCAmelCase_ ).numpy() ) ) lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : int = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , transpose(UpperCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Optional[Any] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ ) , np.asarray(transpose(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[int] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : List[Any] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(UpperCAmelCase_ , axes=(1, 2, 0) ) ) ) ) def lowercase__ ( self : str ): lowerCAmelCase : int = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.reshape(UpperCAmelCase_ , (4, 3) ) ) ) lowerCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.reshape(UpperCAmelCase_ , (12, 5) ) ) ) @require_torch def lowercase__ ( self : List[str] ): lowerCAmelCase : Dict = np.random.randn(3 , 4 ) lowerCAmelCase : Optional[Any] = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) lowerCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Union[str, Any] = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_tf def lowercase__ ( self : List[Any] ): lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Any = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , reshape(UpperCAmelCase_ , (4, 3) ).numpy() ) ) lowerCAmelCase : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : int = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , reshape(UpperCAmelCase_ , (12, 5) ).numpy() ) ) @require_flax def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : str = np.random.randn(3 , 4 ) lowerCAmelCase : Tuple = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (4, 3) ) , np.asarray(reshape(UpperCAmelCase_ , (4, 3) ) ) ) ) lowerCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) lowerCAmelCase : Any = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(reshape(UpperCAmelCase_ , (12, 5) ) , np.asarray(reshape(UpperCAmelCase_ , (12, 5) ) ) ) ) def lowercase__ ( self : Tuple ): lowerCAmelCase : Optional[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.squeeze(UpperCAmelCase_ ) ) ) lowerCAmelCase : Tuple = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.squeeze(UpperCAmelCase_ , axis=2 ) ) ) @require_torch def lowercase__ ( self : Tuple ): lowerCAmelCase : Dict = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : List[str] = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) lowerCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Dict = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_tf def lowercase__ ( self : List[Any] ): lowerCAmelCase : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : Optional[Any] = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , squeeze(UpperCAmelCase_ ).numpy() ) ) lowerCAmelCase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Optional[Any] = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , squeeze(UpperCAmelCase_ , axis=2 ).numpy() ) ) @require_flax def lowercase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase : int = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ ) , np.asarray(squeeze(UpperCAmelCase_ ) ) ) ) lowerCAmelCase : Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase : Optional[int] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(squeeze(UpperCAmelCase_ , axis=2 ) , np.asarray(squeeze(UpperCAmelCase_ , axis=2 ) ) ) ) def lowercase__ ( self : int ): lowerCAmelCase : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.expand_dims(UpperCAmelCase_ , axis=1 ) ) ) @require_torch def lowercase__ ( self : List[str] ): lowerCAmelCase : List[Any] = np.random.randn(3 , 4 ) lowerCAmelCase : Dict = torch.tensor(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_tf def lowercase__ ( self : List[str] ): lowerCAmelCase : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase : str = tf.constant(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , expand_dims(UpperCAmelCase_ , axis=1 ).numpy() ) ) @require_flax def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : int = np.random.randn(3 , 4 ) lowerCAmelCase : Union[str, Any] = jnp.array(UpperCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(UpperCAmelCase_ , axis=1 ) , np.asarray(expand_dims(UpperCAmelCase_ , axis=1 ) ) ) )
138
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __A : Dict = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __A : Optional[int] = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __A : Dict = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def lowercase__ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[List[List[str]]] , UpperCAmelCase_ : List[List[str]] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCAmelCase_ , hypotheses=UpperCAmelCase_ , min_len=UpperCAmelCase_ , max_len=UpperCAmelCase_ ) }
138
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]: __lowerCamelCase = k_size // 2 __lowerCamelCase , __lowerCamelCase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __lowerCamelCase = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) ) return g def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> List[str]: __lowerCamelCase , __lowerCamelCase = image.shape[0], image.shape[1] # dst image height and width __lowerCamelCase = height - k_size + 1 __lowerCamelCase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __lowerCamelCase = zeros((dst_height * dst_width, k_size * k_size) ) __lowerCamelCase = 0 for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ): __lowerCamelCase = ravel(image[i : i + k_size, j : j + k_size] ) __lowerCamelCase = window row += 1 # turn the kernel into shape(k*k, 1) __lowerCamelCase = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = ravel(__lowerCAmelCase ) # reshape and get the dst image __lowerCamelCase = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) return dst if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ : Optional[Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value SCREAMING_SNAKE_CASE__ : int = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size SCREAMING_SNAKE_CASE__ : Optional[Any] = gaussian_filter(gray, 3, sigma=1) SCREAMING_SNAKE_CASE__ : str = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
354
from collections import namedtuple import requests from lxml import html # type: ignore SCREAMING_SNAKE_CASE__ : List[Any] = namedtuple("covid_data", "cases deaths recovered") def __magic_name__ ( __lowerCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__lowerCAmelCase ).content ).xpath(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
339
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase_ ( _snake_case : List[str] , _snake_case : str ) -> Optional[Any]: '''simple docstring''' assert isinstance(_snake_case , _snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Any , _snake_case : List[Any] ) -> Dict: '''simple docstring''' __magic_name__ : str = tmp_path / "cache" __magic_name__ : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : str = ParquetDatasetReader(_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case ).read() _check_parquet_dataset(_snake_case , _snake_case ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : List[Any] , _snake_case : Any ) -> Dict: '''simple docstring''' __magic_name__ : Any = tmp_path / "cache" __magic_name__ : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ : List[str] = features.copy() if features else default_expected_features __magic_name__ : Tuple = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : Dict = ParquetDatasetReader(_snake_case , features=_snake_case , cache_dir=_snake_case ).read() _check_parquet_dataset(_snake_case , _snake_case ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( _snake_case : Dict , _snake_case : List[Any] , _snake_case : List[Any] ) -> List[Any]: '''simple docstring''' __magic_name__ : List[str] = tmp_path / "cache" __magic_name__ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ : Any = ParquetDatasetReader(_snake_case , cache_dir=_snake_case , split=_snake_case ).read() _check_parquet_dataset(_snake_case , _snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' if issubclass(_snake_case , _snake_case ): __magic_name__ : Optional[Any] = parquet_path elif issubclass(_snake_case , _snake_case ): __magic_name__ : List[str] = [parquet_path] __magic_name__ : Dict = tmp_path / "cache" __magic_name__ : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ : Any = ParquetDatasetReader(_snake_case , cache_dir=_snake_case ).read() _check_parquet_dataset(_snake_case , _snake_case ) def lowerCAmelCase_ ( _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Dict=("train",) ) -> str: '''simple docstring''' assert isinstance(_snake_case , _snake_case ) for split in splits: __magic_name__ : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : int , _snake_case : List[str] ) -> int: '''simple docstring''' __magic_name__ : Any = tmp_path / "cache" __magic_name__ : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ : Optional[Any] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=_snake_case , keep_in_memory=_snake_case ).read() _check_parquet_datasetdict(_snake_case , _snake_case ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : List[Any] = tmp_path / "cache" __magic_name__ : List[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ : Dict = features.copy() if features else default_expected_features __magic_name__ : Optional[Any] = ( Features({feature: Value(_snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ : str = ParquetDatasetReader({"train": parquet_path} , features=_snake_case , cache_dir=_snake_case ).read() _check_parquet_datasetdict(_snake_case , _snake_case ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCAmelCase_ ( _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ) -> Tuple: '''simple docstring''' if split: __magic_name__ : Union[str, Any] = {split: parquet_path} else: __magic_name__ : Union[str, Any] = "train" __magic_name__ : List[str] = {"train": parquet_path, "test": parquet_path} __magic_name__ : Union[str, Any] = tmp_path / "cache" __magic_name__ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __magic_name__ : str = ParquetDatasetReader(_snake_case , cache_dir=_snake_case ).read() _check_parquet_datasetdict(_snake_case , _snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase_ ( _snake_case : List[Any] , _snake_case : Optional[Any] ) -> int: '''simple docstring''' __magic_name__ : Union[str, Any] = ParquetDatasetWriter(_snake_case , tmp_path / "foo.parquet" ) assert writer.write() > 0 __magic_name__ : Any = pq.ParquetFile(tmp_path / "foo.parquet" ) __magic_name__ : Optional[Any] = pf.read() assert dataset.data.table == output_table def lowerCAmelCase_ ( _snake_case : Union[str, Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' __magic_name__ : str = str(shared_datadir / "test_image_rgb.jpg" ) __magic_name__ : Dict = {"image": [image_path]} __magic_name__ : Dict = Features({"image": Image()} ) __magic_name__ : Any = Dataset.from_dict(_snake_case , features=_snake_case ) __magic_name__ : Union[str, Any] = ParquetDatasetWriter(_snake_case , tmp_path / "foo.parquet" ) assert writer.write() > 0 __magic_name__ : Optional[Any] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features __magic_name__ : Optional[Any] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=_snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Optional[Any] ) -> Optional[Any]: '''simple docstring''' assert get_writer_batch_size(_snake_case ) == expected
281
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case : str = "▁" snake_case : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = BigBirdTokenizer UpperCamelCase__ = BigBirdTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def SCREAMING_SNAKE_CASE ( self ): super().setUp() __magic_name__ : Optional[Any] = self.tokenizer_class(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = "<s>" __magic_name__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "[MASK]" ) self.assertEqual(len(_a ) , 1_004 ) def SCREAMING_SNAKE_CASE ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def SCREAMING_SNAKE_CASE ( self ): if not self.test_rust_tokenizer: return __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Any = "I was born in 92000, and this is falsé." __magic_name__ : Dict = tokenizer.tokenize(_a ) __magic_name__ : Any = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __magic_name__ : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) __magic_name__ : List[str] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Dict = tokenizer.encode(_a ) __magic_name__ : Optional[int] = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = BigBirdTokenizer(_a , keep_accents=_a ) __magic_name__ : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [285, 46, 10, 170, 382] , ) __magic_name__ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __magic_name__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __magic_name__ : int = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def SCREAMING_SNAKE_CASE ( self ): return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = "Hello World!" __magic_name__ : Dict = [65, 18_536, 2_260, 101, 66] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) # fmt: off __magic_name__ : List[str] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231 # fmt: on self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __magic_name__ : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] __magic_name__ : List[Any] = " ".join(_a ) __magic_name__ : Any = self.big_tokenizer.encode_plus(_a , return_tensors="pt" , return_token_type_ids=_a ) __magic_name__ : Union[str, Any] = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=_a ) __magic_name__ : List[str] = BigBirdConfig(attention_type="original_full" ) __magic_name__ : Optional[int] = BigBirdModel(_a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_a ) model(**_a ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" ) __magic_name__ : int = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids ) self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" ) @slow def SCREAMING_SNAKE_CASE ( self ): # fmt: off __magic_name__ : Optional[Any] = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
281
1
import numpy as np def A ( _UpperCAmelCase : np.array ) -> np.array: '''simple docstring''' return 1 / (1 + np.exp(-vector )) def A ( _UpperCAmelCase : np.array ) -> np.array: '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
290
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( snake_case_ , unittest.TestCase ): _lowercase: List[Any] = LEDTokenizer _lowercase: Dict = LEDTokenizerFast _lowercase: List[str] = True def lowercase__ ( self : Optional[int] ) -> str: super().setUp() _lowerCAmelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCAmelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _lowerCAmelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase = {"""unk_token""": """<unk>"""} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__snake_case ) ) def lowercase__ ( self : List[Any] , **__snake_case : str ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : int , **__snake_case : Optional[int] ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Optional[Any] ) -> Tuple: return "lower newer", "lower newer" @cached_property def lowercase__ ( self : Optional[int] ) -> Optional[Any]: return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowercase__ ( self : str ) -> Optional[int]: return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowercase__ ( self : str ) -> int: _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowerCAmelCase = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def lowercase__ ( self : Tuple ) -> Any: _lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""" ) self.assertIn("""input_ids""" , __snake_case ) self.assertIn("""attention_mask""" , __snake_case ) self.assertNotIn("""labels""" , __snake_case ) self.assertNotIn("""decoder_attention_mask""" , __snake_case ) @require_torch def lowercase__ ( self : Optional[int] ) -> List[Any]: _lowerCAmelCase = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(text_target=__snake_case , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowercase__ ( self : Tuple ) -> Dict: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def lowercase__ ( self : str ) -> Any: _lowerCAmelCase = ["""A long paragraph for summarization."""] _lowerCAmelCase = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = tokenizer(__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = tokenizer(text_target=__snake_case , return_tensors="""pt""" ) _lowerCAmelCase = inputs["""input_ids"""] _lowerCAmelCase = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase__ ( self : str ) -> Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase = ["""Summary of the text.""", """Another summary."""] _lowerCAmelCase = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowerCAmelCase = tokenizer(__snake_case , padding=__snake_case ) _lowerCAmelCase = [[0] * len(__snake_case ) for x in encoded_output["""input_ids"""]] _lowerCAmelCase = tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , __snake_case ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: pass def lowercase__ ( self : int ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) _lowerCAmelCase = """A, <mask> AllenNLP sentence.""" _lowerCAmelCase = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) _lowerCAmelCase = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) _lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
70
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : list[list[int]] = [] snake_case_ : list[int] = [] snake_case_ : List[Any] = 0 snake_case_ : Union[str, Any] = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a , ): if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) _SCREAMING_SNAKE_CASE = [3, 34, 4, 12, 5, 2] _SCREAMING_SNAKE_CASE = 9 _SCREAMING_SNAKE_CASE = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
327
0
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Any ): '''simple docstring''' _snake_case = {} def A ( self : List[Any] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_snake_case , ' -> ' , ' -> '.join([str(_snake_case ) for j in self.vertex[i]] ) ) def A ( self : Tuple , lowercase : Tuple , lowercase : List[str] ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_snake_case ) else: # else make a new vertex _snake_case = [to_vertex] def A ( self : int ): '''simple docstring''' _snake_case = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) def A ( self : str , lowercase : int , lowercase : str ): '''simple docstring''' _snake_case = True print(_snake_case , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_snake_case , _snake_case ) if __name__ == "__main__": _lowerCamelCase : List[str] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
361
def a_ ( __lowercase : int = 50_000_000 ) -> int: _snake_case = set() _snake_case = int((limit - 24) ** (1 / 2) ) _snake_case = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) ) for primea in primes: _snake_case = primea * primea for primea in primes: _snake_case = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _snake_case = primea * primea * primea * primea _snake_case = square + cube + tetr if total >= limit: break ret.add(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(F'{solution() = }')
130
0
from __future__ import annotations def lowerCAmelCase_ ( A_): UpperCamelCase__: List[str] = [True] * limit UpperCamelCase__: Any = False UpperCamelCase__: Any = False UpperCamelCase__: Optional[int] = True for i in range(3 ,int(limit**0.5 + 1) ,2): UpperCamelCase__: str = i * 2 while index < limit: UpperCamelCase__: Dict = False UpperCamelCase__: Union[str, Any] = index + i UpperCamelCase__: str = [2] for i in range(3 ,A_ ,2): if is_prime[i]: primes.append(A_) return primes def lowerCAmelCase_ ( A_ = 1_00_00_00): UpperCamelCase__: List[str] = prime_sieve(A_) UpperCamelCase__: List[Any] = 0 UpperCamelCase__: List[str] = 0 for i in range(len(A_)): for j in range(i + length ,len(A_)): UpperCamelCase__: List[Any] = sum(primes[i:j]) if sol >= ceiling: break if sol in primes: UpperCamelCase__: List[Any] = j - i UpperCamelCase__: List[str] = sol return largest if __name__ == "__main__": print(f"{solution() = }")
149
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _a ( UpperCamelCase__): """simple docstring""" UpperCamelCase__ = (DDIMParallelScheduler,) UpperCamelCase__ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Dict ): '''simple docstring''' UpperCamelCase__: Any = { "num_train_timesteps": 1000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self: int , **__lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: str = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(**__lowerCamelCase ) UpperCamelCase__: List[str] = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: int = 10, 0.0 UpperCamelCase__: List[Any] = self.dummy_model() UpperCamelCase__: Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for t in scheduler.timesteps: UpperCamelCase__: Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCamelCase ) UpperCamelCase__: Tuple = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__lowerCamelCase , num_inference_steps=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCamelCase , eta=__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Any = self.scheduler_classes[0] UpperCamelCase__: Optional[int] = self.get_scheduler_config() UpperCamelCase__: str = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: List[Any] = self.scheduler_classes[0] UpperCamelCase__: Union[str, Any] = self.get_scheduler_config() UpperCamelCase__: Any = scheduler_class(**__lowerCamelCase ) UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = 10, 0.0 scheduler.set_timesteps(__lowerCamelCase ) UpperCamelCase__: Tuple = self.dummy_model() UpperCamelCase__: Union[str, Any] = self.dummy_sample_deter UpperCamelCase__: Dict = self.dummy_sample_deter + 0.1 UpperCamelCase__: Dict = self.dummy_sample_deter - 0.1 UpperCamelCase__: int = samplea.shape[0] UpperCamelCase__: List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase__: Union[str, Any] = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) UpperCamelCase__: str = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase__: Optional[int] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __lowerCamelCase ) UpperCamelCase__: Dict = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Tuple = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' UpperCamelCase__: str = self.full_loop() UpperCamelCase__: List[str] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Any = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = self.full_loop(prediction_type="v_prediction" ) UpperCamelCase__: List[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Any = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__: Tuple = self.full_loop(set_alpha_to_one=__lowerCamelCase , beta_start=0.01 ) UpperCamelCase__: Optional[int] = torch.sum(torch.abs(__lowerCamelCase ) ) UpperCamelCase__: List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
149
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ =logging.get_logger(__name__) UpperCamelCase_ ={ """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class _a ( _lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase = '''focalnet''' def __init__( self : List[Any], lowerCAmelCase__ : str=2_2_4, lowerCAmelCase__ : Optional[int]=4, lowerCAmelCase__ : Union[str, Any]=3, lowerCAmelCase__ : Any=9_6, lowerCAmelCase__ : Dict=False, lowerCAmelCase__ : List[Any]=[1_9_2, 3_8_4, 7_6_8, 7_6_8], lowerCAmelCase__ : Optional[int]=[2, 2, 6, 2], lowerCAmelCase__ : Optional[int]=[2, 2, 2, 2], lowerCAmelCase__ : Tuple=[3, 3, 3, 3], lowerCAmelCase__ : Tuple="gelu", lowerCAmelCase__ : Optional[int]=4.0, lowerCAmelCase__ : List[str]=0.0, lowerCAmelCase__ : int=0.1, lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : Optional[Any]=1e-4, lowerCAmelCase__ : str=False, lowerCAmelCase__ : Tuple=False, lowerCAmelCase__ : Any=False, lowerCAmelCase__ : List[str]=0.02, lowerCAmelCase__ : int=1e-5, lowerCAmelCase__ : Dict=3_2, lowerCAmelCase__ : List[Any]=None, lowerCAmelCase__ : Any=None, **lowerCAmelCase__ : Union[str, Any], ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase_ ) _UpperCamelCase : Optional[Any] = image_size _UpperCamelCase : str = patch_size _UpperCamelCase : int = num_channels _UpperCamelCase : List[str] = embed_dim _UpperCamelCase : int = use_conv_embed _UpperCamelCase : List[Any] = hidden_sizes _UpperCamelCase : List[str] = depths _UpperCamelCase : Dict = focal_levels _UpperCamelCase : List[Any] = focal_windows _UpperCamelCase : Optional[Any] = hidden_act _UpperCamelCase : Any = mlp_ratio _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = drop_path_rate _UpperCamelCase : Tuple = use_layerscale _UpperCamelCase : Dict = layerscale_value _UpperCamelCase : Tuple = use_post_layernorm _UpperCamelCase : Optional[int] = use_post_layernorm_in_modulation _UpperCamelCase : Optional[int] = normalize_modulator _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : List[str] = layer_norm_eps _UpperCamelCase : str = encoder_stride _UpperCamelCase : Optional[int] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1, len(self.depths ) + 1 )] _UpperCamelCase , _UpperCamelCase : Union[str, Any] = get_aligned_output_features_output_indices( out_features=lowerCamelCase_, out_indices=lowerCamelCase_, stage_names=self.stage_names )
361
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def a_ ( _lowercase , _lowercase , _lowercase ): # Initialise PyTorch model _UpperCamelCase : List[Any] = MobileBertConfig.from_json_file(_lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase : List[str] = MobileBertForPreTraining(_lowercase ) # Load weights from tf checkpoint _UpperCamelCase : Union[str, Any] = load_tf_weights_in_mobilebert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": UpperCamelCase_ =argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--mobilebert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained MobileBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase_ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
128
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative value!''' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
80
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCAmelCase: Union[str, Any] = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Any = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCAmelCase: Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
297
0
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (_A , _A , _A , _A , _A ): """simple docstring""" with open(a__ ) as metadata_file: _lowerCAmelCase : Dict = json.load(a__ ) _lowerCAmelCase : Optional[int] = LukeConfig(use_entity_aware_attention=a__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _lowerCAmelCase : str = torch.load(a__ , map_location='cpu' ) # Load the entity vocab file _lowerCAmelCase : Dict = load_entity_vocab(a__ ) _lowerCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase : Any = AddedToken('<ent>' , lstrip=a__ , rstrip=a__ ) _lowerCAmelCase : str = AddedToken('<ent2>' , lstrip=a__ , rstrip=a__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(a__ ) with open(os.path.join(a__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(a__ , a__ ) _lowerCAmelCase : int = LukeTokenizer.from_pretrained(a__ ) # Initialize the embeddings of the special tokens _lowerCAmelCase : List[str] = state_dict['embeddings.word_embeddings.weight'] _lowerCAmelCase : List[str] = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) _lowerCAmelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) _lowerCAmelCase : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase : str = f'encoder.layer.{layer_index}.attention.self.' _lowerCAmelCase : Any = state_dict[prefix + matrix_name] _lowerCAmelCase : int = state_dict[prefix + matrix_name] _lowerCAmelCase : Tuple = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase : int = state_dict['entity_embeddings.entity_embeddings.weight'] _lowerCAmelCase : int = entity_emb[entity_vocab['[MASK]']] _lowerCAmelCase : Optional[int] = LukeModel(config=a__ ).eval() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model.load_state_dict(a__ , strict=a__ ) if not (len(a__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(a__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _lowerCAmelCase : Optional[int] = LukeTokenizer.from_pretrained(a__ , task='entity_classification' ) _lowerCAmelCase : Dict = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) _lowerCAmelCase : List[Any] = (3_9, 4_2) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ , entity_spans=[span] , add_prefix_space=a__ , return_tensors='pt' ) _lowerCAmelCase : Tuple = model(**a__ ) # Verify word hidden states if model_size == "large": _lowerCAmelCase : int = torch.Size((1, 4_2, 1_0_2_4) ) _lowerCAmelCase : List[str] = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base _lowerCAmelCase : Tuple = torch.Size((1, 4_2, 7_6_8) ) _lowerCAmelCase : Any = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _lowerCAmelCase : Optional[int] = torch.Size((1, 1, 1_0_2_4) ) _lowerCAmelCase : Optional[Any] = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base _lowerCAmelCase : int = torch.Size((1, 1, 7_6_8) ) _lowerCAmelCase : List[str] = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(a__ ) ) model.save_pretrained(a__ ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = {} with open(a__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(a__ ): _lowerCAmelCase , _lowerCAmelCase : Dict = line.rstrip().split('\t' ) _lowerCAmelCase : Optional[int] = index return entity_vocab if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCAmelCase : str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0