code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase : List[Any] = TypeVar('KT') lowerCAmelCase : Tuple = TypeVar('VT') class _A ( Generic[KT, VT]): def __init__( self , _SCREAMING_SNAKE_CASE = "root" , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = key SCREAMING_SNAKE_CASE_ : Union[str, Any] = value SCREAMING_SNAKE_CASE_ : list[Node[KT, VT]] = [] def __repr__( self ): """simple docstring""" return f"Node({self.key}: {self.value})" @property def UpperCAmelCase ( self ): """simple docstring""" return len(self.forward ) class _A ( Generic[KT, VT]): def __init__( self , _SCREAMING_SNAKE_CASE = 0.5 , _SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Node[KT, VT] = Node[KT, VT]() SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Any = p SCREAMING_SNAKE_CASE_ : Optional[Any] = max_level def __str__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(self ) if len(snake_case_ ) == 0: return f"SkipList(level={self.level})" SCREAMING_SNAKE_CASE_ : str = max((len(str(snake_case_ ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE_ : Any = max(snake_case_ , 4 ) + 4 SCREAMING_SNAKE_CASE_ : Any = self.head SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = node.forward.copy() lines.append(f"[{node.key}]".ljust(snake_case_ , '-' ) + '* ' * len(snake_case_ ) ) lines.append(' ' * label_size + '| ' * len(snake_case_ ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = node.forward[0] lines.append( f"[{node.key}]".ljust(snake_case_ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(snake_case_ ) ) SCREAMING_SNAKE_CASE_ : Dict = node.forward lines.append('None'.ljust(snake_case_ ) + '* ' * len(snake_case_ ) ) return f"SkipList(level={self.level})\n" + "\n".join(snake_case_ ) def __iter__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.forward[0] def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE_ : str = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(snake_case_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self._locate_node(snake_case_ ) if node is not None: for i, update_node in enumerate(snake_case_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE_ : Optional[int] = node.forward[i] else: SCREAMING_SNAKE_CASE_ : int = update_node.forward[:i] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self._locate_node(snake_case_ ) if node is not None: SCREAMING_SNAKE_CASE_ : List[Any] = value else: SCREAMING_SNAKE_CASE_ : Any = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , snake_case_ ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE_ : List[str] = level SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(snake_case_ , snake_case_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(snake_case_ ) else: SCREAMING_SNAKE_CASE_ : Dict = new_node def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self._locate_node(snake_case_ ) if node is not None: return node.value return None def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 1_2 ) skip_list.insert('Key3' , 4_1 ) skip_list.insert('Key4' , -1_9 ) SCREAMING_SNAKE_CASE_ : Tuple = skip_list.head SCREAMING_SNAKE_CASE_ : List[str] = {} while node.level != 0: SCREAMING_SNAKE_CASE_ : List[Any] = node.forward[0] SCREAMING_SNAKE_CASE_ : List[str] = node.value assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SkipList() skip_list.insert('Key1' , 1_0 ) skip_list.insert('Key1' , 1_2 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 1_0 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 1_0 ) SCREAMING_SNAKE_CASE_ : Dict = skip_list.head SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} while node.level != 0: SCREAMING_SNAKE_CASE_ : str = node.forward[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.value if len(_UpperCAmelCase ) != 4: print() assert len(_UpperCAmelCase ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = SkipList() assert skip_list.find('Some key' ) is None def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = SkipList() skip_list.insert('Key2' , 2_0 ) assert skip_list.find('Key2' ) == 2_0 skip_list.insert('Some Key' , 1_0 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 1_3 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 1_0 assert skip_list.find('V' ) == 1_3 def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 1_4 assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 1_2 assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 1_5 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = SkipList() skip_list.insert('Key1' , 1_2 ) skip_list.insert('V' , 1_3 ) skip_list.insert('X' , 1_4_2 ) skip_list.insert('Key2' , 1_5 ) skip_list.delete('X' ) def traverse_keys(a ): yield node.key for forward_node in node.forward: yield from traverse_keys(_UpperCAmelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def A_ ( ): """simple docstring""" def is_sorted(a ): return all(next_item >= item for item, next_item in zip(_UpperCAmelCase , lst[1:] ) ) SCREAMING_SNAKE_CASE_ : List[str] = SkipList() for i in range(1_0 ): skip_list.insert(_UpperCAmelCase , _UpperCAmelCase ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_UpperCAmelCase ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(_UpperCAmelCase ) ) def A_ ( ): """simple docstring""" for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
253
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger lowerCamelCase_ : Dict = get_logger(__name__) lowerCamelCase_ : List[str] = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase : '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ ): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @add_start_docstrings(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ): """simple docstring""" for processor in self: A_ : Tuple = inspect.signature(processor.__call__ ).parameters if len(snake_case_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) A_ : Tuple = processor(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) else: A_ : Optional[Any] = processor(snake_case_ , snake_case_ , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) A_ : Optional[int] = temperature def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = scores / self.temperature return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = -float('Inf' ) , snake_case_ = 1 ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(snake_case_ , snake_case_ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) A_ : str = top_p A_ : Union[str, Any] = filter_value A_ : int = min_tokens_to_keep def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ , A_ : Tuple = lax.top_k(snake_case_ , scores.shape[-1] ) A_ : List[Any] = jnp.full_like(snake_case_ , self.filter_value ) A_ : List[str] = jax.nn.softmax(snake_case_ , axis=-1 ).cumsum(axis=-1 ) A_ : Optional[int] = cumulative_probs < self.top_p # include the token that is higher than top_p as well A_ : Union[str, Any] = jnp.roll(snake_case_ , 1 ) score_mask |= score_mask.at[:, 0].set(snake_case_ ) # min tokens to keep A_ : int = score_mask.at[:, : self.min_tokens_to_keep].set(snake_case_ ) A_ : Optional[Any] = jnp.where(snake_case_ , snake_case_ , snake_case_ ) A_ : List[Any] = jax.lax.sort_key_val(snake_case_ , snake_case_ )[-1] return next_scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ = -float('Inf' ) , snake_case_ = 1 ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) A_ : str = max(snake_case_ , snake_case_ ) A_ : Union[str, Any] = filter_value def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ , A_ : int = scores.shape A_ : Tuple = jnp.full(batch_size * vocab_size , self.filter_value ) A_ : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check A_ , A_ : Dict = lax.top_k(snake_case_ , snake_case_ ) A_ : Optional[int] = jnp.broadcast_to((jnp.arange(snake_case_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() A_ : int = topk_scores.flatten() A_ : Any = topk_indices.flatten() + shift A_ : List[str] = next_scores_flat.at[topk_indices_flat].set(snake_case_ ) A_ : Union[str, Any] = next_scores_flat.reshape(snake_case_ , snake_case_ ) return next_scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = bos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Optional[Any] = jnp.full(scores.shape , -float('inf' ) ) A_ : Union[str, Any] = 1 - jnp.bool_(cur_len - 1 ) A_ : str = jnp.where(snake_case_ , new_scores.at[:, self.bos_token_id].set(0 ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = max_length A_ : Optional[int] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Union[str, Any] = jnp.full(scores.shape , -float('inf' ) ) A_ : Dict = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A_ : Dict = jnp.where(snake_case_ , new_scores.at[:, self.eos_token_id].set(0 ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" if not isinstance(snake_case_ , snake_case_ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(snake_case_ , snake_case_ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) A_ : Any = min_length A_ : List[Any] = eos_token_id def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : int = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) A_ : Optional[Any] = jnp.where(snake_case_ , scores.at[:, self.eos_token_id].set(-float('inf' ) ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[Any] = list(snake_case_ ) A_ : Tuple = begin_index def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Dict = 1 - jnp.bool_(cur_len - self.begin_index ) A_ : int = jnp.where(snake_case_ , scores.at[:, self.begin_suppress_tokens].set(-float('inf' ) ) , snake_case_ ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : List[Any] = list(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float('inf' ) ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ ): """simple docstring""" A_ : Any = dict(snake_case_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A_ : Tuple = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A_ : Tuple = force_token_array.at[index].set(snake_case_ ) A_ : Any = jnp.intaa(snake_case_ ) def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" def _force_token(snake_case_ ): A_ : List[Any] = scores.shape[0] A_ : Any = self.force_token_array[generation_idx] A_ : Tuple = jnp.ones_like(snake_case_ , dtype=scores.dtype ) * -float('inf' ) A_ : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) A_ : int = lax.dynamic_update_slice(snake_case_ , snake_case_ , (0, current_token) ) return new_scores A_ : int = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(snake_case_ ) , lambda: scores , ) , ) return scores class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : Tuple = generate_config.eos_token_id A_ : Optional[int] = generate_config.no_timestamps_token_id A_ : List[str] = generate_config.no_timestamps_token_id + 1 A_ : Any = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(snake_case_ , 'max_initial_timestamp_index' ): A_ : List[Any] = generate_config.max_initial_timestamp_index else: A_ : Any = model_config.vocab_size if self.max_initial_timestamp_index is None: A_ : Optional[Any] = model_config.vocab_size def __call__( self , snake_case_ , snake_case_ , snake_case_ ): """simple docstring""" A_ : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float('inf' ) ) def handle_pairs(snake_case_ , snake_case_ ): A_ : Any = jnp.where((cur_len - self.begin_index) >= 1 , snake_case_ , snake_case_ ) A_ : Tuple = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , snake_case_ , ) A_ : Tuple = jnp.where((cur_len - self.begin_index) < 2 , snake_case_ , snake_case_ ) A_ : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , snake_case_ , snake_case_ , ) return jnp.where( snake_case_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('inf' ) ) , scores_k.at[: self.eos_token_id].set(-float('inf' ) ) , ) , snake_case_ , ) A_ : Tuple = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) A_ : Optional[Any] = jnp.where(cur_len == self.begin_index , snake_case_ , snake_case_ ) A_ : Tuple = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , snake_case_ , ) A_ : int = self.timestamp_begin + self.max_initial_timestamp_index A_ : List[Any] = jnp.where( snake_case_ , scores.at[:, last_allowed + 1 :].set(-float('inf' ) ) , snake_case_ , ) # if sum of probability over timestamps is above any other token, sample timestamp A_ : Any = jax.nn.log_softmax(snake_case_ , axis=-1 ) def handle_cumulative_probs(snake_case_ , snake_case_ ): A_ : Dict = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) A_ : Optional[Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('inf' ) ) , snake_case_ , ) A_ : Union[str, Any] = jax.vmap(snake_case_ )(snake_case_ , snake_case_ ) return scores
286
0
from __future__ import annotations import pandas as pd def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> list[int]: A__ : Optional[int] = [0] * no_of_processes A__ : Dict = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(lowercase_ ): A__ : str = burst_time[i] A__ : Dict = 0 A__ : Union[str, Any] = 0 A__ : Union[str, Any] = 999999999 A__ : str = 0 A__ : Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(lowercase_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: A__ : Optional[Any] = remaining_time[j] A__ : Any = j A__ : Optional[Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 A__ : List[Any] = remaining_time[short] if minm == 0: A__ : Optional[int] = 999999999 if remaining_time[short] == 0: complete += 1 A__ : Optional[Any] = False # Find finish time of current process A__ : Optional[int] = increment_time + 1 # Calculate waiting time A__ : Dict = finish_time - arrival_time[short] A__ : Dict = finar - burst_time[short] if waiting_time[short] < 0: A__ : Optional[Any] = 0 # Increment time increment_time += 1 return waiting_time def UpperCamelCase (lowercase_: list[int] , lowercase_: int , lowercase_: list[int] ) -> list[int]: A__ : Dict = [0] * no_of_processes for i in range(lowercase_ ): A__ : str = burst_time[i] + waiting_time[i] return turn_around_time def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> None: A__ : Optional[int] = 0 A__ : Dict = 0 for i in range(lowercase_ ): A__ : Dict = total_waiting_time + waiting_time[i] A__ : str = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') A_ : Optional[Any] = int(input()) A_ : Union[str, Any] = [0] * no_of_processes A_ : List[Any] = [0] * no_of_processes A_ : Union[str, Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) A_ : int = map(int, input().split()) A_ : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) A_ : int = burst_time A_ : List[str] = no_of_processes A_ : int = waiting_time A_ : Tuple = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) A_ : List[str] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
360
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort A_ : Union[str, Any] = logging.get_logger(__name__) A_ : str = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class _a : '''simple docstring''' def __init__( self , A__=None , **A__ ): logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) A__ : Dict = model A__ : Any = kwargs.get("""model_save_dir""" , A__ ) A__ : Optional[int] = kwargs.get("""latest_model_name""" , A__ ) def __call__( self , **A__ ): A__ : int = {k: np.array(A__ ) for k, v in kwargs.items()} return self.model.run(A__ , A__ ) @staticmethod def __A ( A__ , A__=None , A__=None ): if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) A__ : List[Any] = """CPUExecutionProvider""" return ort.InferenceSession(A__ , providers=[provider] , sess_options=A__ ) def __A ( self , A__ , A__ = None , **A__ ): A__ : List[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME A__ : List[Any] = self.model_save_dir.joinpath(self.latest_model_name ) A__ : Optional[int] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) A__ : str = self.model_save_dir.joinpath(A__ ) if src_path.exists(): A__ : List[str] = Path(A__ ).joinpath(A__ ) try: shutil.copyfile(A__ , A__ ) except shutil.SameFileError: pass def __A ( self , A__ , **A__ , ): if os.path.isfile(A__ ): logger.error(F"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(A__ , exist_ok=A__ ) # saving model weights/files self._save_pretrained(A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = None , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , A__ = None , **A__ , ): A__ : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(A__ ): A__ : Dict = OnnxRuntimeModel.load_model( os.path.join(A__ , A__ ) , provider=A__ , sess_options=A__ ) A__ : Optional[Any] = Path(A__ ) # load model from hub else: # download model A__ : Union[str, Any] = hf_hub_download( repo_id=A__ , filename=A__ , use_auth_token=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , ) A__ : List[str] = Path(A__ ).parent A__ : str = Path(A__ ).name A__ : Optional[int] = OnnxRuntimeModel.load_model(A__ , provider=A__ , sess_options=A__ ) return cls(model=A__ , **A__ ) @classmethod def __A ( cls , A__ , A__ = True , A__ = None , A__ = None , **A__ , ): A__ : Optional[Any] = None if len(str(A__ ).split("""@""" ) ) == 2: A__ , A__ : Union[str, Any] = model_id.split("""@""" ) return cls._from_pretrained( model_id=A__ , revision=A__ , cache_dir=A__ , force_download=A__ , use_auth_token=A__ , **A__ , )
141
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : Tuple = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) _snake_case : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params A_ = logging.getLogger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" if metric == "rouge2": _snake_case : Any = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _snake_case : Tuple = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _snake_case : str = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) _snake_case : str = ModelCheckpoint( dirpath=snake_case__ , filename=snake_case__ , monitor=F"val_{metric}" , mode="""max""" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Union[str, Any] ): """simple docstring""" return EarlyStopping( monitor=F"val_{metric}" , mode="""min""" if """loss""" in metric else """max""" , patience=snake_case__ , verbose=snake_case__ , ) class lowercase( pl.Callback ): '''simple docstring''' def UpperCamelCase_ ( self: Optional[int], a_: Optional[int], a_: int ): '''simple docstring''' _snake_case : Union[str, Any] = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(a_ ) @rank_zero_only def UpperCamelCase_ ( self: int, a_: pl.Trainer, a_: pl.LightningModule, a_: str, a_: Tuple=True ): '''simple docstring''' logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) _snake_case : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _snake_case : int = Path(pl_module.hparams.output_dir ) if type_path == "test": _snake_case : Tuple = od / """test_results.txt""" _snake_case : str = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _snake_case : Optional[int] = od / f"{type_path}_results/{trainer.global_step:05d}.txt" _snake_case : Optional[Any] = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=a_ ) generations_file.parent.mkdir(exist_ok=a_ ) with open(a_, """a+""" ) as writer: for key in sorted(a_ ): if key in ["log", "progress_bar", "preds"]: continue _snake_case : str = metrics[key] if isinstance(a_, torch.Tensor ): _snake_case : int = val.item() _snake_case : int = f"{key}: {val:.6f}\n" writer.write(a_ ) if not save_generations: return if "preds" in metrics: _snake_case : str = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(a_ ) @rank_zero_only def UpperCamelCase_ ( self: Tuple, a_: Optional[Any], a_: Any ): '''simple docstring''' try: _snake_case : Dict = pl_module.model.model.num_parameters() except AttributeError: _snake_case : Tuple = pl_module.model.num_parameters() _snake_case : int = count_trainable_parameters(a_ ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def UpperCamelCase_ ( self: List[str], a_: pl.Trainer, a_: pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics, pl_module.metrics_save_path ) return self._write_logs(a_, a_, """test""" ) @rank_zero_only def UpperCamelCase_ ( self: Tuple, a_: pl.Trainer, a_: Any ): '''simple docstring''' save_json(pl_module.metrics, pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
64
lowerCAmelCase_ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case_ : str = ( f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' f'''Valid values are: {", ".join(_UpperCamelCase )}''' ) raise ValueError(_UpperCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
279
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> bool: snake_case_ = [int(UpperCAmelCase ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(UpperCAmelCase ) == 4 and all(0 <= int(UpperCAmelCase ) <= 254 for octet in octets ) if __name__ == "__main__": __UpperCamelCase = input().strip() __UpperCamelCase = "valid" if is_ip_va_address_valid(ip) else "invalid" print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
355
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
0
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __SCREAMING_SNAKE_CASE :List[Any] = 0b1_0_1_1_0_0_1_1_1_1_1_0_1_1_0_0_1_0_0_1_0_0_0_0_0_1_1_1_1_0_1_1_1_0_1_1_0_0_0_1_1_0_0_1_1_1_1_0 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __SCREAMING_SNAKE_CASE :Optional[Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class A_ : def __init__( self : List[Any] ): _UpperCAmelCase = WATERMARK_BITS _UpperCAmelCase = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def lowercase ( self : int , snake_case_ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images _UpperCAmelCase = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase = [self.encoder.encode(snake_case_ , "dwtDct" ) for image in images] _UpperCAmelCase = torch.from_numpy(np.array(snake_case_ ) ).permute(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
22
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase : List[str] = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : List[Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : Optional[Any] = """yolos""" def __init__( self : List[str] , snake_case_ : str=768 , snake_case_ : Optional[Any]=12 , snake_case_ : Dict=12 , snake_case_ : Any=3072 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : Any=0.0 , snake_case_ : Any=0.0 , snake_case_ : Dict=0.02 , snake_case_ : Union[str, Any]=1e-12 , snake_case_ : Tuple=[512, 864] , snake_case_ : Tuple=16 , snake_case_ : List[str]=3 , snake_case_ : int=True , snake_case_ : Any=100 , snake_case_ : Dict=True , snake_case_ : Dict=False , snake_case_ : int=1 , snake_case_ : str=5 , snake_case_ : Optional[Any]=2 , snake_case_ : Optional[int]=5 , snake_case_ : Dict=2 , snake_case_ : Union[str, Any]=0.1 , **snake_case_ : int , ): super().__init__(**snake_case_ ) UpperCamelCase_: Any = hidden_size UpperCamelCase_: Tuple = num_hidden_layers UpperCamelCase_: str = num_attention_heads UpperCamelCase_: Union[str, Any] = intermediate_size UpperCamelCase_: Any = hidden_act UpperCamelCase_: str = hidden_dropout_prob UpperCamelCase_: Union[str, Any] = attention_probs_dropout_prob UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: str = layer_norm_eps UpperCamelCase_: Union[str, Any] = image_size UpperCamelCase_: str = patch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: str = qkv_bias UpperCamelCase_: Dict = num_detection_tokens UpperCamelCase_: Tuple = use_mid_position_embeddings UpperCamelCase_: str = auxiliary_loss # Hungarian matcher UpperCamelCase_: Any = class_cost UpperCamelCase_: Dict = bbox_cost UpperCamelCase_: Any = giou_cost # Loss coefficients UpperCamelCase_: Dict = bbox_loss_coefficient UpperCamelCase_: int = giou_loss_coefficient UpperCamelCase_: Optional[int] = eos_coefficient class _UpperCamelCase ( _A ): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("""1.11""" ) @property def lowerCAmelCase__ ( self : Dict ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase__ ( self : str ): return 12
223
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase : Optional[datasets.Features] = None __UpperCamelCase : str = "utf-8" __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[str] = None __UpperCamelCase : bool = True # deprecated __UpperCamelCase : Optional[int] = None # deprecated __UpperCamelCase : int = 10 << 20 # 10MB __UpperCamelCase : Optional[bool] = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase : Tuple = JsonConfig def lowerCAmelCase__ ( self : int ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCamelCase_: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [files] UpperCamelCase_: Any = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase_: Dict = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Tuple = [files] UpperCamelCase_: Optional[int] = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase__ ( self : str , snake_case_ : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase_: Union[str, Any] = self.config.features.arrow_schema.field(snake_case_ ).type UpperCamelCase_: Tuple = pa_table.append_column(snake_case_ , pa.array([None] * len(snake_case_ ) , type=snake_case_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(snake_case_ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] ): for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Dict = json.load(snake_case_ ) # We keep only the field we are interested in UpperCamelCase_: Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case_ , (list, tuple) ): UpperCamelCase_: Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: int = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} else: UpperCamelCase_: Optional[int] = dataset UpperCamelCase_: List[str] = pa.Table.from_pydict(snake_case_ ) yield file_idx, self._cast_table(snake_case_ ) # If the file has one json object per line else: with open(snake_case_ , """rb""" ) as f: UpperCamelCase_: Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase_: Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase_: Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: UpperCamelCase_: int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase_: Tuple = batch.decode(self.config.encoding , errors=snake_case_ ).encode("""utf-8""" ) try: while True: try: UpperCamelCase_: Tuple = paj.read_json( io.BytesIO(snake_case_ ) , read_options=paj.ReadOptions(block_size=snake_case_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case_ , pa.ArrowInvalid ) and "straddling" not in str(snake_case_ ) or block_size > len(snake_case_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(snake_case_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Optional[Any] = json.load(snake_case_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case_ , snake_case_ ): # list is the only sequence type supported in JSON try: UpperCamelCase_: Any = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: List[str] = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} UpperCamelCase_: int = pa.Table.from_pydict(snake_case_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(snake_case_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) batch_idx += 1
223
1
def UpperCamelCase__( UpperCamelCase__ : int = 1_00_00_00 )->int: A__ = set(range(3 , UpperCamelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase__ , UpperCamelCase__ ) ) ) A__ = [float(UpperCamelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase__ , limit + 1 , UpperCamelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"{solution() = }")
193
def UpperCamelCase__( UpperCamelCase__ : Dict )->Dict: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection A__ = len(UpperCamelCase__ ) A__ = max(UpperCamelCase__ ) A__ = min(UpperCamelCase__ ) # create the counting array A__ = coll_max + 1 - coll_min A__ = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): A__ = counting_arr[i] + counting_arr[i - 1] # create the output collection A__ = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): A__ = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->Tuple: return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" a__: Dict = input('Enter numbers separated by a comma:\n').strip() a__: Any = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
193
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : Union[str, Any] = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase : Dict = [144, 192, 240] lowercase : Dict = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowercase : Any = [96, 120, 144] lowercase : int = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowercase : List[str] = [64, 80, 96] lowercase : Any = [16, 16, 24, 48, 64, 80, 320] lowercase : Tuple = 0.05 lowercase : List[Any] = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase : Optional[Any] = 512 lowercase : Union[str, Any] = 16 lowercase : List[str] = 21 lowercase : Union[str, Any] = """pascal-voc-id2label.json""" else: lowercase : Union[str, Any] = 1_000 lowercase : Optional[int] = """imagenet-1k-id2label.json""" lowercase : Tuple = """huggingface/label-files""" lowercase : Dict = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) lowercase : List[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} lowercase : Tuple = idalabel lowercase : List[str] = {v: k for k, v in idalabel.items()} return config def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> List[Any]: for i in range(1 , 6 ): if f"layer_{i}." in name: lowercase : Optional[Any] = name.replace(f"layer_{i}." , f"encoder.layer.{i - 1}." ) if "conv_1." in name: lowercase : str = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase : Optional[Any] = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase : Union[str, Any] = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase : int = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase : Tuple = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase : str = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase : Any = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase : Dict = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase : List[str] = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: lowercase : Optional[Any] = name.replace(f".{i}.{j}." , f".{i}.layer.{j}." ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f".{i}.{j}." in name: lowercase : str = name.replace(f".{i}.{j}." , f".{i}." ) if "expand_1x1" in name: lowercase : List[Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase : Union[str, Any] = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase : Tuple = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f".global_rep.{i}.weight" in name: lowercase : Union[str, Any] = name.replace(f".global_rep.{i}.weight" , """.layernorm.weight""" ) if f".global_rep.{i}.bias" in name: lowercase : Union[str, Any] = name.replace(f".global_rep.{i}.bias" , """.layernorm.bias""" ) if ".global_rep." in name: lowercase : List[Any] = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase : Dict = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase : List[Any] = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase : Optional[int] = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase : Tuple = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase : List[str] = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase : int = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase : str = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase : Optional[int] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase : Optional[int] = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase : Dict = """mobilevit.""" + name return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> int: if base_model: lowercase : Union[str, Any] = """""" else: lowercase : Optional[Any] = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase : Optional[int] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if key[:8] == "encoder.": lowercase : Union[str, Any] = key[8:] if "qkv" in key: lowercase : Optional[int] = key.split(""".""" ) lowercase : Optional[int] = int(key_split[0][6:] ) - 1 lowercase : int = int(key_split[3] ) lowercase : Union[str, Any] = model.get_submodule(f"{model_prefix}encoder.layer.{layer_num}" ) lowercase : str = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase : Optional[int] = ( f"{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention." ) if "weight" in key: lowercase : str = val[:dim, :] lowercase : Optional[Any] = val[dim : dim * 2, :] lowercase : Union[str, Any] = val[-dim:, :] else: lowercase : Tuple = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Dict = val[-dim:] else: lowercase : str = val return orig_state_dict def _snake_case( ) -> Union[str, Any]: lowercase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Any: lowercase : str = get_mobilevit_config(SCREAMING_SNAKE_CASE__ ) # load original state_dict lowercase : List[str] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase : Dict = MobileViTForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ).eval() else: lowercase : List[str] = MobileViTForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() lowercase : Tuple = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase : List[Any] = model(**SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase : Any = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase : List[str] = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowercase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": lowercase : Optional[Any] = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": lowercase : Tuple = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f"Unknown mobilevit_name: {mobilevit_name}" ) assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) print(f"Saving model {mobilevit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: lowercase : Union[str, Any] = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase : Dict = model_mapping[mobilevit_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""apple""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""apple""" ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase : List[Any] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
285
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _snake_case( ) -> tuple[list[int], int]: lowercase : List[Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] lowercase : Tuple = randint(-5_000 , 5_000 ) return (arr, r) lowercase : List[Any] = make_dataset() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, ...]: for triplet in permutations(SCREAMING_SNAKE_CASE__ , 3 ): if sum(SCREAMING_SNAKE_CASE__ ) == target: return tuple(sorted(SCREAMING_SNAKE_CASE__ ) ) return (0, 0, 0) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> tuple[int, int, int]: arr.sort() lowercase : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): lowercase , lowercase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _snake_case( ) -> tuple[float, float]: lowercase : Dict = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ lowercase : Tuple = """ triplet_sum1(*dataset) """ lowercase : int = """ triplet_sum2(*dataset) """ lowercase : str = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) lowercase : Dict = repeat(setup=SCREAMING_SNAKE_CASE__ , stmt=SCREAMING_SNAKE_CASE__ , repeat=5 , number=10_000 ) return (min(SCREAMING_SNAKE_CASE__ ), min(SCREAMING_SNAKE_CASE__ )) if __name__ == "__main__": from doctest import testmod testmod() lowercase : Union[str, Any] = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
285
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: A =None A =logging.get_logger(__name__) A ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A ={ 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } A ={ 'google/fnet-base': 5_12, 'google/fnet-large': 5_12, } A ='▁' class _a ( __lowerCamelCase ): __a : List[str] = VOCAB_FILES_NAMES __a : Dict = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[Any] = ["""input_ids""", """token_type_ids"""] __a : List[str] = FNetTokenizer def __init__( self : Union[str, Any] , lowercase : str=None , lowercase : List[str]=None , lowercase : Optional[int]=False , lowercase : Any=True , lowercase : Optional[int]=True , lowercase : Dict="<unk>" , lowercase : Optional[int]="[SEP]" , lowercase : Dict="<pad>" , lowercase : Optional[int]="[CLS]" , lowercase : Tuple="[MASK]" , **lowercase : Tuple , ): '''simple docstring''' UpperCAmelCase = ( AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase , normalized=lowercase ) if isinstance(lowercase , lowercase ) else mask_token ) super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , **lowercase , ) UpperCAmelCase = do_lower_case UpperCAmelCase = remove_space UpperCAmelCase = keep_accents UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def A ( self : int , lowercase : List[Any] , lowercase : Union[str, Any] = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Tuple , lowercase : Any , lowercase : Union[str, Any] = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Any , lowercase : Tuple , lowercase : List[str] = None ): '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
34
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = 1.5 lowercase = int(factor * num_class_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__SCREAMING_SNAKE_CASE ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: lowercase = client.query(text=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: lowercase = int(factor * num_images ) lowercase = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=__SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) lowercase = 0 lowercase = 0 lowercase = tqdm(desc='downloading real regularization images' , total=__SCREAMING_SNAKE_CASE ) with open(F'''{class_data_dir}/caption.txt''' , 'w' ) as fa, open(F'''{class_data_dir}/urls.txt''' , 'w' ) as fa, open( F'''{class_data_dir}/images.txt''' , 'w' ) as fa: while total < num_class_images: lowercase = class_images[count] count += 1 try: lowercase = requests.get(images['url'] ) if img.status_code == 200: lowercase = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser('' , add_help=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--class_data_dir' , help='path to save images' , required=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=__SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
195
0
# Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowercase__ :List[str] = TypeVar("T") class lowercase ( Generic[T] ): def __init__( self ,A__ = True): lowercase = {} # dictionary of lists lowercase = directed def A__ ( self ,A__ ,A__): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_a) self.adj_list[destination_vertex].append(_a) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_a) lowercase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(_a) lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowercase = [destination_vertex] lowercase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(_a) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(_a) lowercase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowercase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowercase = [destination_vertex] lowercase = [] return self def __repr__( self): return pformat(self.adj_list)
365
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :Dict = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[str] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys lowercase__ :Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
0
'''simple docstring''' def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(lowerCAmelCase__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
181
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LEDTokenizer lowerCAmelCase__ = LEDTokenizerFast lowerCAmelCase__ = True def lowercase_ ( self : int ): '''simple docstring''' super().setUp() UpperCAmelCase__ : List[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] UpperCAmelCase__ : Optional[Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCAmelCase__ : Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase__ : Any = {'''unk_token''': '''<unk>'''} UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def lowercase_ ( self : Optional[int] , **_A : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Union[str, Any] , **_A : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : Tuple , _A : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def lowercase_ ( self : List[Any] ): '''simple docstring''' return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def lowercase_ ( self : Any ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Union[str, Any] = tokenizer(_A , max_length=len(_A ) , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCAmelCase__ : int = batch.input_ids.tolist()[0] self.assertListEqual(_A , _A ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _A ) self.assertIn('''attention_mask''' , _A ) self.assertNotIn('''labels''' , _A ) self.assertNotIn('''decoder_attention_mask''' , _A ) @require_torch def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : Tuple = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(text_target=_A , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def lowercase_ ( self : Tuple ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Any = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=_A , truncation=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) self.assertEqual(batch.input_ids.shape , (2, 5_122) ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = ['''A long paragraph for summarization.'''] UpperCAmelCase__ : List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Optional[Any] = tokenizer(_A , return_tensors='''pt''' ) UpperCAmelCase__ : int = tokenizer(text_target=_A , return_tensors='''pt''' ) UpperCAmelCase__ : str = inputs['''input_ids'''] UpperCAmelCase__ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCAmelCase__ : Tuple = ['''Summary of the text.''', '''Another summary.'''] UpperCAmelCase__ : List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCAmelCase__ : List[str] = tokenizer(_A , padding=_A ) UpperCAmelCase__ : str = [[0] * len(_A ) for x in encoded_output['''input_ids''']] UpperCAmelCase__ : Any = tokenizer.pad(_A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass def lowercase_ ( self : Dict ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCAmelCase__ : Any = '''A, <mask> AllenNLP sentence.''' UpperCAmelCase__ : Dict = tokenizer_r.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) UpperCAmelCase__ : Optional[int] = tokenizer_p.encode_plus(_A , add_special_tokens=_A , return_token_type_ids=_A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) UpperCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) UpperCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
181
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __magic_name__ ( _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowercase_ , """depth_multiplier""" ) ) class __magic_name__ : def __init__( self : List[str] , lowercase_ : List[Any] , lowercase_ : int=13 , lowercase_ : List[str]=3 , lowercase_ : Tuple=32 , lowercase_ : List[Any]=0.25 , lowercase_ : int=8 , lowercase_ : Any=8 , lowercase_ : Tuple=6 , lowercase_ : Union[str, Any]=32 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]="relu6" , lowercase_ : Dict=1280 , lowercase_ : Any=0.1 , lowercase_ : Any=0.02 , lowercase_ : List[Any]=True , lowercase_ : List[str]=True , lowercase_ : List[str]=10 , lowercase_ : Optional[Any]=None , ): lowercase_ : Optional[int] = parent lowercase_ : Any = batch_size lowercase_ : List[str] = num_channels lowercase_ : Union[str, Any] = image_size lowercase_ : List[Any] = depth_multiplier lowercase_ : Dict = depth_divisible_by lowercase_ : Optional[Any] = min_depth lowercase_ : Dict = expand_ratio lowercase_ : str = tf_padding lowercase_ : List[str] = output_stride lowercase_ : List[str] = first_layer_is_expansion lowercase_ : List[str] = finegrained_output lowercase_ : Optional[Any] = hidden_act lowercase_ : Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase_ : List[str] = classifier_dropout_prob lowercase_ : List[Any] = use_labels lowercase_ : int = is_training lowercase_ : Tuple = num_labels lowercase_ : Any = initializer_range lowercase_ : Dict = scope def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ : int = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = MobileNetVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[Any] = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : List[Any] ): lowercase_ : Any = self.num_labels lowercase_ : int = MobileNetVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : int = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : int ): lowercase_ : Optional[int] = self.num_labels lowercase_ : Optional[int] = MobileNetVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : str = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ : Dict = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = self.prepare_config_and_inputs() lowercase_ : Tuple = config_and_inputs lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = MobileNetVaModelTester(self ) lowercase_ : Optional[int] = MobileNetVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(lowercase_ ) lowercase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): def check_hidden_states_output(lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : int ): lowercase_ : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : Optional[Any] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : Optional[int] = outputs.hidden_states lowercase_ : List[Any] = 16 self.assertEqual(len(lowercase_ ) , lowercase_ ) lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : str = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : List[str] = MobileNetVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( ) -> Tuple: lowercase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : str ): return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(lowercase_ ) lowercase_ : Optional[Any] = self.default_image_processor lowercase_ : Optional[Any] = prepare_img() lowercase_ : Dict = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[int] = model(**lowercase_ ) # verify the logits lowercase_ : Optional[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : List[str] = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) lowercase_ : List[str] = model.to(lowercase_ ) lowercase_ : Optional[Any] = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) lowercase_ : Optional[Any] = prepare_img() lowercase_ : str = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : int = model(**lowercase_ ) lowercase_ : List[Any] = outputs.logits # verify the logits lowercase_ : List[Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , lowercase_ ) lowercase_ : List[Any] = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) )
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowercase__ ( unittest.TestCase): def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[Any] = BlipImageProcessor() SCREAMING_SNAKE_CASE : Any = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-BertModel''' ) SCREAMING_SNAKE_CASE : Tuple = BlipProcessor(UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Dict , **UpperCamelCase__ : List[str] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def __A ( self : Union[str, Any] , **UpperCamelCase__ : List[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def __A ( self : Dict ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : Any = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE : int = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE : Optional[int] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(UpperCamelCase__ , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Tuple = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = '''lower newer''' SCREAMING_SNAKE_CASE : Dict = processor(text=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.get_image_processor() SCREAMING_SNAKE_CASE : int = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = '''lower newer''' SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : List[Any] = processor.batch_decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Tuple = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
182
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A ( _lowercase ): if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : int = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *_lowercase , **_lowercase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_lowercase , **_lowercase ) return wrapper
182
1
import math def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' return math.sqrt(UpperCamelCase__ ) * math.sqrt(UpperCamelCase__ ) == num def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 snake_case_ = n while left <= right: snake_case_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: snake_case_ = mid - 1 else: snake_case_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
200
import requests _UpperCAmelCase : Union[str, Any] = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
200
1
'''simple docstring''' import json import sys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: UpperCAmelCase__ : Any = json.load(lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = results[benchmark_name] UpperCAmelCase__ : str = benchmark_name.split('''/''' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase__ : Optional[Any] = '''| metric |''' UpperCAmelCase__ : Tuple = '''|--------|''' UpperCAmelCase__ : List[str] = '''| new / old (diff) |''' for metric_name in sorted(lowerCAmelCase__ ): UpperCAmelCase__ : Tuple = benchmark_res[metric_name] UpperCAmelCase__ : Tuple = metric_vals['''new'''] UpperCAmelCase__ : List[Any] = metric_vals.get('''old''' , lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = metric_vals.get('''diff''' , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = F""" {new_val:f}""" if isinstance(lowerCAmelCase__ , (int, float) ) else '''None''' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(lowerCAmelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(lowerCAmelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(lowerCAmelCase__ ) ) if __name__ == "__main__": UpperCamelCase__ = sys.argv[1] UpperCamelCase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
181
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase_ ( __a ): def __init__( self : List[str] , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[str] = None , _A : Optional[int] = None , **_A : Union[str, Any] , ): '''simple docstring''' super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) UpperCAmelCase__ : List[str] = field UpperCAmelCase__ : Optional[Any] = path_or_paths if isinstance(_A , _A ) else {self.split: path_or_paths} UpperCAmelCase__ : Any = Json( cache_dir=_A , data_files=_A , features=_A , field=_A , **_A , ) def lowercase_ ( self : Dict ): '''simple docstring''' if self.streaming: UpperCAmelCase__ : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : List[Any] = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) UpperCAmelCase__ : str = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : def __init__( self : Optional[Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , _A : Optional[int] = None , **_A : List[str] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) UpperCAmelCase__ : Dict = dataset UpperCAmelCase__ : Any = path_or_buf UpperCAmelCase__ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase__ : Tuple = num_proc UpperCAmelCase__ : Any = '''utf-8''' UpperCAmelCase__ : Optional[int] = to_json_kwargs def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.to_json_kwargs.pop('''path_or_buf''' , _A ) UpperCAmelCase__ : Optional[int] = self.to_json_kwargs.pop('''orient''' , '''records''' ) UpperCAmelCase__ : Tuple = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) UpperCAmelCase__ : str = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) UpperCAmelCase__ : Optional[Any] = self.to_json_kwargs.pop('''compression''' , _A ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=_A ) as buffer: UpperCAmelCase__ : Union[str, Any] = self._write(file_obj=_A , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) UpperCAmelCase__ : Union[str, Any] = self._write( file_obj=self.path_or_buf , orient=_A , lines=_A , index=_A , **self.to_json_kwargs ) return written def lowercase_ ( self : Optional[int] , _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = args UpperCAmelCase__ : Dict = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase__ : str = batch.to_pandas().to_json( path_or_buf=_A , orient=_A , lines=_A , index=_A , **_A ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def lowercase_ ( self : Union[str, Any] , _A : BinaryIO , _A : Optional[int] , _A : int , _A : Any , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): UpperCAmelCase__ : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(_A ) else: UpperCAmelCase__ , UpperCAmelCase__ : str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(_A ) return written
181
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = "" lowerCAmelCase__ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(self , **UpperCAmelCase ) lowercase_ = repo_info lowercase_ = token lowercase_ = None def A__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.dir_cache is None: lowercase_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(UpperCAmelCase ): {"name": str(UpperCAmelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = "rb" , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' if not isinstance(self.repo_info , UpperCAmelCase ): raise NotImplementedError(F'Open is only implemented for dataset repositories, but got {self.repo_info}' ) lowercase_ = hf_hub_url(self.repo_info.id , UpperCAmelCase , revision=self.repo_info.sha ) return fsspec.open( UpperCAmelCase , mode=UpperCAmelCase , headers=get_authentication_headers_for_url(UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def A__ ( self , UpperCAmelCase , **UpperCAmelCase ) -> List[str]: '''simple docstring''' self._get_dirs() lowercase_ = self._strip_protocol(UpperCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=False , **UpperCAmelCase ) -> List[str]: '''simple docstring''' self._get_dirs() lowercase_ = PurePosixPath(path.strip("/" ) ) lowercase_ = {} for p, f in self.dir_cache.items(): lowercase_ = PurePosixPath(p.strip("/" ) ) lowercase_ = p.parent if root == path: lowercase_ = f lowercase_ = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
361
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' lowercase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowercase_ = 1 - (matter_density + radiation_density + dark_energy) lowercase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowercase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
297
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCAmelCase__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) lowerCAmelCase__ = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) lowerCAmelCase__ = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(6_4, 6_4), batch_size=3_2, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions lowerCAmelCase__ = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(6_4, 6_4) ) lowerCAmelCase__ = tf.keras.preprocessing.image.img_to_array(test_image) lowerCAmelCase__ = np.expand_dims(test_image, axis=0) lowerCAmelCase__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCAmelCase__ = '''Normal''' if result[0][0] == 1: lowerCAmelCase__ = '''Abnormality detected'''
130
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _A ( lowercase ): """simple docstring""" # vision encoder if "img_encoder.pos_embed" in name: a =name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: a =name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: a =name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: a =name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: a =name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: a =name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: a =name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: a =name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: a =name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: a =name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: a =name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: a =name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: a =name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: a =name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: a =name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: a =name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: a =name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: a =name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: a =name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: a =name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: a =name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: a =name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: a =name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: a =name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def _A ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): a =orig_state_dict.pop(lowercase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors a =key.split('''.''' ) a , a =int(key_split[2] ), int(key_split[4] ) a =config.vision_config.hidden_size if "weight" in key: a =val[:dim, :] a =val[dim : dim * 2, :] a =val[-dim:, :] else: a =val[:dim] a =val[dim : dim * 2] a =val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors a =key.split('''.''' ) a =int(key_split[3] ) a =config.text_config.hidden_size if "weight" in key: a =val[:dim, :] a =val[ dim : dim * 2, : ] a =val[-dim:, :] else: a =val[:dim] a =val[dim : dim * 2] a =val[-dim:] else: a =rename_key(lowercase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): a =val.squeeze_() else: a =val return orig_state_dict def _A ( ): """simple docstring""" a ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def _A ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ): """simple docstring""" a =GroupViTConfig() a =GroupViTModel(lowercase ).eval() a =torch.load(lowercase , map_location='''cpu''' )['''model'''] a =convert_state_dict(lowercase , lowercase ) a , a =model.load_state_dict(lowercase , strict=lowercase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0) # verify result a =CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) a =prepare_img() a =processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=lowercase , padding=lowercase , return_tensors='''pt''' ) with torch.no_grad(): a =model(**lowercase ) if model_name == "groupvit-gcc-yfcc": a =torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": a =torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , lowercase , atol=1E-3 ) processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) print('''Successfully saved processor and model to''' , lowercase ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(lowercase , organization='''nielsr''' ) model.push_to_hub(lowercase , organization='''nielsr''' ) if __name__ == "__main__": lowerCamelCase_ : Any = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) lowerCamelCase_ : Optional[Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
363
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING lowerCamelCase_ : Dict = logging.get_logger(__name__) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , **__A ) -> Dict: super().__init__(**__A ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , '''vision''' ) self.check_model_type(__A ) def __call__( self , __A , __A = None , **__A , ) -> List[str]: if "text_queries" in kwargs: a =kwargs.pop('''text_queries''' ) if isinstance(__A , (str, Image.Image) ): a ={'''image''': image, '''candidate_labels''': candidate_labels} else: a =image a =super().__call__(__A , **__A ) return results def SCREAMING_SNAKE_CASE ( self , **__A ) -> Optional[Any]: a ={} if "threshold" in kwargs: a =kwargs['''threshold'''] if "top_k" in kwargs: a =kwargs['''top_k'''] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self , __A ) -> str: a =load_image(inputs['''image'''] ) a =inputs['''candidate_labels'''] if isinstance(__A , __A ): a =candidate_labels.split(''',''' ) a =torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(__A ): a =self.tokenizer(__A , return_tensors=self.framework ) a =self.image_processor(__A , return_tensors=self.framework ) yield { "is_last": i == len(__A ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self , __A ) -> List[Any]: a =model_inputs.pop('''target_size''' ) a =model_inputs.pop('''candidate_label''' ) a =model_inputs.pop('''is_last''' ) a =self.model(**__A ) a ={'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self , __A , __A=0.1 , __A=None ) -> List[str]: a =[] for model_output in model_outputs: a =model_output['''candidate_label'''] a =BaseModelOutput(__A ) a =self.image_processor.post_process_object_detection( outputs=__A , threshold=__A , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): a =outputs['''scores'''][index].item() a =self._get_bounding_box(outputs['''boxes'''][index][0] ) a ={'''score''': score, '''label''': label, '''box''': box} results.append(__A ) a =sorted(__A , key=lambda __A : x["score"] , reverse=__A ) if top_k: a =results[:top_k] return results def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) a , a , a , a =box.int().tolist() a ={ '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
215
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ :Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =XLMProphetNetTokenizer UpperCamelCase__ : int =False UpperCamelCase__ : Optional[int] =True def __lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase : List[Any] =XLMProphetNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ='[PAD]' __UpperCamelCase : Union[str, Any] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowerCamelCase__ ) , 1012 ) def __lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =XLMProphetNetTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) __UpperCamelCase : List[str] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCamelCase : List[str] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __UpperCamelCase : List[str] =tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __UpperCamelCase : int =tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def __lowercase ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str ='Hello World!' __UpperCamelCase : Union[str, Any] =[35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int ={'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
71
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
312
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : List[str] = logging.get_logger(__name__) lowerCAmelCase_ : Union[str, Any] = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='''roformer''' def __init__( self : int , __a : Union[str, Any]=5_00_00 , __a : int=None , __a : str=7_68 , __a : List[str]=12 , __a : Any=12 , __a : List[Any]=30_72 , __a : List[Any]="gelu" , __a : Optional[int]=0.1 , __a : str=0.1 , __a : List[Any]=15_36 , __a : Union[str, Any]=2 , __a : Tuple=0.02 , __a : int=1e-1_2 , __a : List[str]=0 , __a : Dict=False , __a : Dict=True , **__a : Tuple , ): super().__init__(pad_token_id=_a , **_a ) _a = vocab_size _a = hidden_size if embedding_size is None else embedding_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = rotary_value _a = use_cache class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Optional[int] ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
363
'''simple docstring''' from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] , *__a : Optional[int] , **__a : List[str] ): super().__init__(*__a , **__a ) self.check_model_type(__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : int=None , __a : Optional[Any]=None , **__a : List[Any] ): _a , _a = {}, {} if padding is not None: _a = padding if truncation is not None: _a = truncation if top_k is not None: _a = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , __a : Union["Image.Image", str] , __a : str = None , **__a : Any ): if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ): _a = {"image": image, "question": question} else: _a = image _a = super().__call__(__a , **__a ) return results def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : Optional[Any]=False , __a : List[Any]=False ): _a = load_image(inputs["image"] ) _a = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=__a , truncation=__a ) _a = self.image_processor(images=__a , return_tensors=self.framework ) model_inputs.update(__a ) return model_inputs def UpperCamelCase__ ( self : List[Any] , __a : List[str] ): _a = self.model(**__a ) return model_outputs def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : Dict=5 ): if top_k > self.model.config.num_labels: _a = self.model.config.num_labels if self.framework == "pt": _a = model_outputs.logits.sigmoid()[0] _a , _a = probs.topk(__a ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) _a = scores.tolist() _a = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
346
0
from __future__ import annotations def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] __magic_name__ = [] __magic_name__ = 0 __magic_name__ = sum(A_ ) create_state_space_tree(A_, A_, A_, A_, A_, A_ ) return result def a__ ( A_, A_, A_, A_, A_, A_, ): '''simple docstring''' if sum(A_ ) > max_sum or (remaining_nums_sum + sum(A_ )) < max_sum: return if sum(A_ ) == max_sum: result.append(A_ ) return for index in range(A_, len(A_ ) ): create_state_space_tree( A_, A_, index + 1, [*path, nums[index]], A_, remaining_nums_sum - nums[index], ) __lowerCAmelCase : Tuple = [3, 34, 4, 12, 5, 2] __lowerCAmelCase : Tuple = 9 __lowerCAmelCase : Optional[int] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
88
from maths.prime_check import is_prime def __lowercase ( lowerCamelCase : int ): if not isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase ) if is_prime(lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
175
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowercase ( unittest.TestCase ): def __snake_case( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = 10 def __snake_case( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [1, 2, 3, 4] SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_UpperCamelCase , self.block_size , 0 ) , _UpperCamelCase ) def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCamelCase , self.block_size , 0 ) , _UpperCamelCase ) def __snake_case( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] SCREAMING_SNAKE_CASE = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_UpperCamelCase , self.block_size , 0 ) , _UpperCamelCase ) def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = process_story(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , [] ) def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = process_story(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , [] ) self.assertEqual(_UpperCamelCase , [] ) def __snake_case( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = process_story(_UpperCamelCase ) SCREAMING_SNAKE_CASE = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = ["It was the best of times."] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __snake_case( self : Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_UpperCamelCase , 0 ).numpy() , expected.numpy() ) def __snake_case( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) SCREAMING_SNAKE_CASE = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCamelCase , 23 ).numpy() , expected.numpy() ) def __snake_case( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_UpperCamelCase , 1 ).numpy() , expected.numpy() ) def __snake_case( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = 101 SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE = compute_token_type_ids(_UpperCamelCase , _UpperCamelCase ) np.testing.assert_array_equal(_UpperCamelCase , _UpperCamelCase )
206
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Dict = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] _lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : Any = {f"""funnel-transformer/{name}""": 5_12 for name in _model_names} _lowerCamelCase : Optional[Any] = {f"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class lowercase ( a ): lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = FunnelTokenizer lowercase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : int = 2 def __init__( self : str , _UpperCamelCase : str=None , _UpperCamelCase : str=None , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : str="<unk>" , _UpperCamelCase : Optional[Any]="<sep>" , _UpperCamelCase : Optional[int]="<pad>" , _UpperCamelCase : int="<cls>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : Union[str, Any]="<s>" , _UpperCamelCase : Optional[int]="</s>" , _UpperCamelCase : Dict=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=None , _UpperCamelCase : Dict="##" , **_UpperCamelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , clean_text=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , wordpieces_prefix=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict=None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
206
1
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil A_ = 1_00 A_ = set(range(3, NUM_PRIMES, 2)) primes.add(2) A_ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _snake_case : set[int] = set() _snake_case : int _snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase__ (snake_case__ : int = 50_00 ): """simple docstring""" for number_to_partition in range(1 , snake_case__ ): if len(partition(snake_case__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
64
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
from __future__ import annotations from cmath import sqrt def UpperCAmelCase_ (_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) __UpperCamelCase : Tuple = b * b - 4 * a * c __UpperCamelCase : Union[str, Any] = (-b + sqrt(_lowerCAmelCase )) / (2 * a) __UpperCamelCase : List[str] = (-b - sqrt(_lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase_ (): __UpperCamelCase , __UpperCamelCase : List[str] = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
171
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=[10, 20, 30, 40] , __UpperCamelCase=[2, 2, 3, 2] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=["stage2", "stage3", "stage4"] , __UpperCamelCase=3 , __UpperCamelCase=None , ) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = parent __UpperCamelCase : List[Any] = batch_size __UpperCamelCase : Union[str, Any] = image_size __UpperCamelCase : Any = num_channels __UpperCamelCase : Union[str, Any] = num_stages __UpperCamelCase : List[Any] = hidden_sizes __UpperCamelCase : Optional[Any] = depths __UpperCamelCase : Dict = is_training __UpperCamelCase : List[Any] = use_labels __UpperCamelCase : str = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : Tuple = type_sequence_label_size __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : List[Any] = out_features __UpperCamelCase : Optional[Any] = num_labels __UpperCamelCase : Optional[Any] = scope __UpperCamelCase : List[Any] = num_stages def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : int = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCamelCase ( self ) -> str: '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__UpperCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__UpperCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = UperNetForSemanticSegmentation(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() __UpperCamelCase : List[str] = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : int = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[int] = config_and_inputs __UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Any = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase : Dict = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase : Union[str, Any] = False lowercase : Tuple = False lowercase : Optional[int] = False lowercase : Tuple = False lowercase : List[str] = False lowercase : Any = False def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Tuple = UperNetModelTester(self ) __UpperCamelCase : str = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' return def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Tuple = model_class(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : List[str] = [*signature.parameters.keys()] __UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="UperNet does not have a base model" ) def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' pass def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCamelCase : Any = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase : int = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : Any = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : List[str] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : Tuple = _config_zero_init(__UpperCamelCase ) __UpperCamelCase : int = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __UpperCamelCase : List[str] = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' pass @slow def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : str = UperNetForSemanticSegmentation.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def UpperCAmelCase_ (): __UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" ) __UpperCamelCase : List[str] = Image.open(_lowerCAmelCase ).convert("RGB" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> str: '''simple docstring''' __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) __UpperCamelCase : Dict = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__UpperCamelCase ) __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : Any = processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) with torch.no_grad(): __UpperCamelCase : Any = model(**__UpperCamelCase ) __UpperCamelCase : Tuple = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) __UpperCamelCase : List[Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__UpperCamelCase ) __UpperCamelCase : Dict = prepare_img() __UpperCamelCase : int = processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) with torch.no_grad(): __UpperCamelCase : int = model(**__UpperCamelCase ) __UpperCamelCase : Dict = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) )
171
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( __lowerCamelCase): """simple docstring""" A__ = ["""image_processor""", """tokenizer"""] A__ = """BridgeTowerImageProcessor""" A__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : List[str] = True , __lowerCamelCase : Union[str, Any] = False , __lowerCamelCase : Tuple = None , __lowerCamelCase : int = None , __lowerCamelCase : int = 0 , __lowerCamelCase : List[str] = None , __lowerCamelCase : Any = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : int = False , __lowerCamelCase : str = False , __lowerCamelCase : Any = False , __lowerCamelCase : Optional[int] = False , __lowerCamelCase : Dict = True , __lowerCamelCase : List[Any] = None , **__lowerCamelCase : List[str] , ): '''simple docstring''' lowerCamelCase__ : Tuple = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel_values + pixel_mask lowerCamelCase__ : Union[str, Any] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , do_normalize=__lowerCamelCase , do_center_crop=__lowerCamelCase , **__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , *__lowerCamelCase : str , **__lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Tuple = self.tokenizer.model_input_names lowerCamelCase__ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
184
import sys from collections import defaultdict class A_ : '''simple docstring''' def __init__( self ): lowercase = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowercase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowercase = 2 * start + 1 else: lowercase = 2 * start + 2 if heap[smallest_child] < heap[start]: lowercase , lowercase = heap[smallest_child], positions[smallest_child] lowercase , lowercase = ( heap[start], positions[start], ) lowercase , lowercase = temp, tempa lowercase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case ) self.top_to_bottom(snake_case , snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): lowercase = position[index] while index != 0: lowercase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowercase = heap[parent] lowercase = position[parent] self.set_position(position[parent] , snake_case ) else: lowercase = val lowercase = temp self.set_position(snake_case , snake_case ) break lowercase = parent else: lowercase = val lowercase = temp self.set_position(snake_case , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = len(snake_case ) // 2 - 1 for i in range(snake_case , -1 , -1 ): self.top_to_bottom(snake_case , snake_case , len(snake_case ) , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = positions[0] lowercase = sys.maxsize self.top_to_bottom(snake_case , 0 , len(snake_case ) , snake_case ) return temp def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = Heap() lowercase = [0] * len(__SCREAMING_SNAKE_CASE ) lowercase = [-1] * len(__SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowercase = [] # Heap of Distance of vertices from their neighboring vertex lowercase = [] for vertex in range(len(__SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(__SCREAMING_SNAKE_CASE ) heap.node_position.append(__SCREAMING_SNAKE_CASE ) lowercase = [] lowercase = 1 lowercase = sys.maxsize for neighbor, distance in adjacency_list[0]: lowercase = 0 lowercase = distance heap.heapify(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for _ in range(1 , len(__SCREAMING_SNAKE_CASE ) ): lowercase = heap.delete_minimum(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowercase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__SCREAMING_SNAKE_CASE )] ): lowercase = distance heap.bottom_to_top( __SCREAMING_SNAKE_CASE , heap.get_position(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > UpperCAmelCase = int(input('''Enter number of edges: ''').strip()) UpperCAmelCase = defaultdict(list) for _ in range(edges_number): UpperCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
195
0
lowercase__ =[ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
361
import os import sys import unittest lowercase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase__ =os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase__ =os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : str = get_test_to_tester_mapping(snake_case_ ) __a : Tuple = get_test_to_tester_mapping(snake_case_ ) __a : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} __a : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : str ): __a : Optional[int] = get_model_to_test_mapping(snake_case_ ) __a : Any = get_model_to_test_mapping(snake_case_ ) __a : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __a : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : int ): __a : Any = get_model_to_tester_mapping(snake_case_ ) __a : List[str] = get_model_to_tester_mapping(snake_case_ ) __a : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __a : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
90
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , lowerCamelCase_ , ) if isinstance(lowerCamelCase_ , torch.Tensor ): return image elif isinstance(lowerCamelCase_ , PIL.Image.Image ): UpperCamelCase = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase = image[0].size UpperCamelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCamelCase = np.concatenate(lowerCamelCase_ , axis=0 ) UpperCamelCase = np.array(lowerCamelCase_ ).astype(np.floataa ) / 255.0 UpperCamelCase = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase = 2.0 * image - 1.0 UpperCamelCase = torch.from_numpy(lowerCamelCase_ ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase = torch.cat(lowerCamelCase_ , dim=0 ) return image def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' if isinstance(lowerCamelCase_ , torch.Tensor ): return mask elif isinstance(lowerCamelCase_ , PIL.Image.Image ): UpperCamelCase = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCamelCase = mask[0].size UpperCamelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] UpperCamelCase = np.concatenate(lowerCamelCase_ , axis=0 ) UpperCamelCase = mask.astype(np.floataa ) / 255.0 UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = torch.from_numpy(lowerCamelCase_ ) elif isinstance(mask[0] , torch.Tensor ): UpperCamelCase = torch.cat(lowerCamelCase_ , dim=0 ) return mask class SCREAMING_SNAKE_CASE_ ( _a ): __lowerCAmelCase = 42 __lowerCAmelCase = 42 def __init__( self : Any , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] = 250 , lowerCamelCase_ : Any = 0.0 , lowerCamelCase_ : Union[str, Any] = 10 , lowerCamelCase_ : Optional[int] = 10 , lowerCamelCase_ : Dict = None , lowerCamelCase_ : int = "pil" , lowerCamelCase_ : Any = True , ): """simple docstring""" UpperCamelCase = image UpperCamelCase = _preprocess_image(lowerCamelCase_ ) UpperCamelCase = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase = _preprocess_mask(lowerCamelCase_ ) UpperCamelCase = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase = original_image.shape UpperCamelCase = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.device ) UpperCamelCase = eta UpperCamelCase = self.scheduler.timesteps[0] + 1 UpperCamelCase = generator[0] if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase = self.scheduler.undo_step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = t UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
343
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_( lowerCamelCase_ ) -> bool: _lowercase : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> tuple[int, int]: _lowercase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _lowercase : int = x_den * y_den * z_den _lowercase : int = gcd(lowerCamelCase_ , lowerCamelCase_ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_( lowerCamelCase_ = 35 ) -> int: _lowercase : set = set() _lowercase : int _lowercase : Fraction = Fraction(0 ) _lowercase : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _lowercase : int = x_num * y_den + x_den * y_num _lowercase : int = x_den * y_den _lowercase : str = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : List[Any] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _lowercase : List[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : int = int(sqrt(lowerCamelCase_ ) ) _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Optional[int] = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=-1 _lowercase : Any = x_num * y_num _lowercase : str = x_den * y_num + x_num * y_den _lowercase : Any = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : int = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) # n=2 _lowercase : str = x_num * x_num * y_num * y_num _lowercase : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCamelCase_ ) and is_sq(lowerCamelCase_ ): _lowercase : Tuple = int(sqrt(lowerCamelCase_ ) ) _lowercase : List[str] = int(sqrt(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = gcd(lowerCamelCase_ , lowerCamelCase_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _lowercase : Tuple = add_three( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) unique_s.add(lowerCamelCase_ ) for num, den in unique_s: total += Fraction(lowerCamelCase_ , lowerCamelCase_ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
21
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[str]: torch.manual_seed(0 ) A : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: A : List[Any] = self.dummy_uncond_unet A : str = PNDMScheduler() A : Union[str, Any] = PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) A : Tuple = torch.manual_seed(0 ) A : int = pndm(generator=_a , num_inference_steps=20 , output_type="numpy" ).images A : str = torch.manual_seed(0 ) A : Optional[int] = pndm(generator=_a , num_inference_steps=20 , output_type="numpy" , return_dict=_a )[0] A : Tuple = image[0, -3:, -3:, -1] A : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : List[str] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[Any]: A : Optional[Any] = "google/ddpm-cifar10-32" A : str = UNetaDModel.from_pretrained(_a ) A : Dict = PNDMScheduler() A : int = PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) A : str = torch.manual_seed(0 ) A : Any = pndm(generator=_a , output_type="numpy" ).images A : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : List[Any] = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Any = set() A : int = [] def parse_line(_lowerCamelCase ): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase ): A : Any = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase ) > 0: A : Union[str, Any] = "\n".join(_lowerCamelCase ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(_lowerCamelCase ) buffer.clear() continue else: A : Union[str, Any] = line.strip() buffer.append(_lowerCamelCase ) if from_gh: for filename in os.listdir(_lowerCamelCase ): A : Tuple = os.path.join(_lowerCamelCase , _lowerCamelCase ) if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) else: try: with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Tuple = set() A : Union[str, Any] = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def UpperCAmelCase ( _lowerCamelCase ): return values.split("," ) __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __SCREAMING_SNAKE_CASE = extract_warnings(args.output_dir, args.targets) __SCREAMING_SNAKE_CASE = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
256
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCamelCase () -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowercase_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def UpperCamelCase () -> List[Any]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def UpperCamelCase () -> Any: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowercase_ ): http_head("""https://huggingface.co""" )
192
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A_ : List[str] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": A_ : Optional[int] = 'hopper-medium-v2' A_ : List[Any] = gym.make(env_name) A_ : str = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) A_ : List[Any] = env.reset() A_ : Optional[int] = 0 A_ : str = 0 A_ : Optional[Any] = 1000 A_ : Union[str, Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A_ : Tuple = pipeline(obs, planning_horizon=32) # execute action in environment A_ , A_ , A_ , A_ : Dict = env.step(denorm_actions) A_ : List[str] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) A_ : int = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
192
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): # TODO: is there an appropriate internal test set? lowercase__ = 'ssube/stable-diffusion-x4-upscaler-onnx' def UpperCAmelCase ( self , __a=0) -> Any: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__a)) _UpperCamelCase = torch.manual_seed(__a) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__a) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') _UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase( unittest.TestCase ): @property def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = ort.SessionOptions() _UpperCamelCase = False return options def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') _UpperCamelCase = init_image.resize((1_28, 1_28)) # using the PNDM scheduler by default _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''A fantasy landscape, trending on artstation''' _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=__a , image=__a , guidance_scale=7.5 , num_inference_steps=10 , generator=__a , output_type='''np''' , ) _UpperCamelCase = output.images _UpperCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') _UpperCamelCase = init_image.resize((1_28, 1_28)) _UpperCamelCase = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = '''A fantasy landscape, trending on artstation''' _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=__a , image=__a , guidance_scale=7.5 , num_inference_steps=20 , generator=__a , output_type='''np''' , ) _UpperCamelCase = output.images _UpperCamelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) _UpperCamelCase = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
362
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=False , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Tuple: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> str: '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = BioGptModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BioGptModel(config=__a) model.to(__a) model.eval() # create attention mask _UpperCamelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__a) _UpperCamelCase = self.seq_length // 2 _UpperCamelCase = 0 # first forward pass _UpperCamelCase , _UpperCamelCase = model(__a , attention_mask=__a).to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _UpperCamelCase = ids_tensor((1,) , __a).item() + 1 _UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _UpperCamelCase = random_other_next_tokens # append to next input_ids and attn_mask _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__a)] , dim=1 , ) # get two different outputs _UpperCamelCase = model(__a , attention_mask=__a)['''last_hidden_state'''] _UpperCamelCase = model(__a , past_key_values=__a , attention_mask=__a)['''last_hidden_state'''] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BioGptModel(config=__a).to(__a).eval() _UpperCamelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__a) # first forward pass _UpperCamelCase = model(__a , attention_mask=__a , use_cache=__a) _UpperCamelCase , _UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1) _UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1) _UpperCamelCase = model(__a , attention_mask=__a)['''last_hidden_state'''] _UpperCamelCase = model(__a , attention_mask=__a , past_key_values=__a)[ '''last_hidden_state''' ] # select random slice _UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1]).item() _UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a , __a=False) -> List[Any]: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM(__a) model.to(__a) if gradient_checkpointing: model.gradient_checkpointing_enable() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def UpperCAmelCase ( self , __a , *__a) -> Any: '''simple docstring''' _UpperCamelCase = BioGptModel(__a) _UpperCamelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , *__a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = BioGptForTokenClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowercase__ = (BioGptForCausalLM,) if is_torch_available() else () lowercase__ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BioGptModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase = type self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__a , gradient_checkpointing=__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__a) @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(__a) _UpperCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = '''left''' # Define PAD Token = EOS Token = 50256 _UpperCamelCase = tokenizer.eos_token _UpperCamelCase = model.config.eos_token_id # use different length sentences to test batching _UpperCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] _UpperCamelCase = tokenizer(__a , return_tensors='''pt''' , padding=__a) _UpperCamelCase = inputs['''input_ids'''].to(__a) _UpperCamelCase = model.generate( input_ids=__a , attention_mask=inputs['''attention_mask'''].to(__a) , ) _UpperCamelCase = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(__a) _UpperCamelCase = model.generate(input_ids=__a) _UpperCamelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() _UpperCamelCase = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(__a) _UpperCamelCase = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings) _UpperCamelCase = tokenizer.batch_decode(__a , skip_special_tokens=__a) _UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a) _UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__a) _UpperCamelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__a , __a) self.assertListEqual(__a , [non_padded_sentence, padded_sentence]) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = BioGptModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = 3 _UpperCamelCase = input_dict['''input_ids'''] _UpperCamelCase = input_ids.ne(1).to(__a) _UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _UpperCamelCase = BioGptForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , labels=__a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = 3 _UpperCamelCase = '''multi_label_classification''' _UpperCamelCase = input_dict['''input_ids'''] _UpperCamelCase = input_ids.ne(1).to(__a) _UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _UpperCamelCase = BioGptForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , labels=__a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = torch.tensor([[2, 48_05, 9, 6_56, 21]]) _UpperCamelCase = model(__a)[0] _UpperCamelCase = 4_23_84 _UpperCamelCase = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4)) @slow def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') _UpperCamelCase = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(__a) torch.manual_seed(0) _UpperCamelCase = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(__a) _UpperCamelCase = model.generate( **__a , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__a , ) _UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__a) _UpperCamelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__a , __a)
100
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : List[Any] = "roformer" def __init__(self : Optional[Any] , snake_case_ : Optional[int]=5_0_0_0_0 , snake_case_ : Tuple=None , snake_case_ : Optional[int]=7_6_8 , snake_case_ : Tuple=1_2 , snake_case_ : Any=1_2 , snake_case_ : str=3_0_7_2 , snake_case_ : Any="gelu" , snake_case_ : Tuple=0.1 , snake_case_ : Dict=0.1 , snake_case_ : List[Any]=1_5_3_6 , snake_case_ : int=2 , snake_case_ : Any=0.02 , snake_case_ : Dict=1E-12 , snake_case_ : Optional[int]=0 , snake_case_ : List[Any]=False , snake_case_ : str=True , **snake_case_ : Optional[Any] , ): super().__init__(pad_token_id=snake_case_ , **snake_case_ ) __a : Any = vocab_size __a : Optional[int] = hidden_size if embedding_size is None else embedding_size __a : Tuple = hidden_size __a : Optional[Any] = num_hidden_layers __a : Optional[int] = num_attention_heads __a : List[Any] = hidden_act __a : List[Any] = intermediate_size __a : str = hidden_dropout_prob __a : Union[str, Any] = attention_probs_dropout_prob __a : Tuple = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Optional[Any] = initializer_range __a : Dict = layer_norm_eps __a : List[Any] = rotary_value __a : int = use_cache class UpperCamelCase__ ( __lowercase ): @property def lowerCAmelCase (self : Tuple ): if self.task == "multiple-choice": __a : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : List[str] = {0: '''batch''', 1: '''sequence'''} __a : Dict = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
216
from __future__ import annotations def __UpperCamelCase ( lowerCAmelCase__ : list[float] , lowerCAmelCase__ : list[float] ): __a : Dict = sorted(numsa + numsa ) __a , __a : Optional[Any] = divmod(len(lowerCAmelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowercase__ =[float(x) for x in input('Enter the elements of first array: ').split()] lowercase__ =[float(x) for x in input('Enter the elements of second array: ').split()] print(F"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
216
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a_ : Any = None a_ : Optional[Any] = logging.get_logger(__name__) a_ : Optional[int] = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} a_ : List[str] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } a_ : str = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off a_ : Tuple = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class _snake_case ( A__ ): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : str = ['''input_ids''', '''attention_mask'''] _lowercase : Any = MBartTokenizer _lowercase : List[int] = [] _lowercase : List[int] = [] def __init__( self , a=None , a=None , a="<s>" , a="</s>" , a="</s>" , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a=None , a=None , a=None , **a , ) -> Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token super().__init__( vocab_file=a , tokenizer_file=a , bos_token=a , eos_token=a , sep_token=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , src_lang=a , tgt_lang=a , additional_special_tokens=a , **a , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True SCREAMING_SNAKE_CASE = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) SCREAMING_SNAKE_CASE = { lang_code: self.convert_tokens_to_ids(a) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE = src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(self._src_lang) SCREAMING_SNAKE_CASE = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def SCREAMING_SNAKE_CASE__ ( self) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self , a) -> None: SCREAMING_SNAKE_CASE = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]: SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , **a) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = self(a , add_special_tokens=a , return_tensors=a , **a) SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(a) SCREAMING_SNAKE_CASE = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self , a , a = "en_XX" , a = None , a = "ro_RO" , **a , ) -> BatchEncoding: SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang return super().prepare_seqaseq_batch(a , a , **a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return self.set_src_lang_special_tokens(self.src_lang) def SCREAMING_SNAKE_CASE__ ( self) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang) def SCREAMING_SNAKE_CASE__ ( self , a) -> None: SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(a) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens) SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens) SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def SCREAMING_SNAKE_CASE__ ( self , a) -> None: SCREAMING_SNAKE_CASE = self.convert_tokens_to_ids(a) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.prefix_tokens) SCREAMING_SNAKE_CASE = self.convert_ids_to_tokens(self.suffix_tokens) SCREAMING_SNAKE_CASE = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(a): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''') return SCREAMING_SNAKE_CASE = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(a): copyfile(self.vocab_file , a) return (out_vocab_file,)
327
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _snake_case ( unittest.TestCase ): _lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a) return generator, ["Something to write", "Something else"] def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any: SCREAMING_SNAKE_CASE = generator('Something there') self.assertEqual(a , [{'generated_text': ANY(a)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) with self.assertRaises(a): generator(4) @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}]) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=a , num_beams=a , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(a , a) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a) self.assertEqual( a , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}])
327
1
from __future__ import annotations import math def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _UpperCAmelCase : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCamelCase__ : int = [] for num in range(len(_UpperCAmelCase ) ): lowerCamelCase__ : Union[str, Any] = 0 while 2 * i * i <= odd_composites[num]: lowerCamelCase__ : Dict = odd_composites[num] - 2 * i * i if is_prime(_UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_UpperCAmelCase ) == n: return list_nums return [] def SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase_ : Any = get_tests_dir('fixtures') lowerCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ : Dict = get_tests_dir('fixtures/dummy-config.json') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): _a = 0 def UpperCamelCase__ ( self : str ): _a = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _a = AutoFeatureExtractor.from_pretrained(__a ).to_dict() config_dict.pop("feature_extractor_type" ) _a = WavaVecaFeatureExtractor(**__a ) # save in new folder model_config.save_pretrained(__a ) config.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) # make sure private variable is not incorrectly saved _a = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): with self.assertRaisesRegex( __a , "bert-base is not a local folder and is not a valid model identifier" ): _a = AutoFeatureExtractor.from_pretrained("bert-base" ) def UpperCamelCase__ ( self : Optional[Any] ): with self.assertRaisesRegex( __a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _a = AutoFeatureExtractor.from_pretrained(__a , revision="aaaaaa" ) def UpperCamelCase__ ( self : List[Any] ): with self.assertRaisesRegex( __a , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): _a = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def UpperCamelCase__ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def UpperCamelCase__ ( self : Any ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoFeatureExtractor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__a ) _a = AutoFeatureExtractor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Tuple ): class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =True try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) # If remote code is not set, the default is to use local _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _a = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=__a ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(__a , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
63
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase = logging.getLogger(__name__) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_a , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_a , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_a , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_a , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_a , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_a , type=_a , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_a , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_a , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) __lowercase= parser.parse_args() return args def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' def fn(lowercase__ ): return tokenizer(examples['text'] ) return fn def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= [] for i in range(len(tokenized_data['input_ids'] ) ): __lowercase= { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } __lowercase= tf.train.Features(feature=_a ) __lowercase= tf.train.Example(features=_a ) __lowercase= example.SerializeToString() records.append(_a ) return records def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __lowercase= min(len(_a ) , args.limit ) __lowercase= dataset.select(range(_a ) ) print(F'Limiting the dataset to {args.limit} entries.' ) __lowercase= AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowercase= os.path.join(args.output_dir , args.split ) if not os.path.exists(_a ): os.makedirs(_a ) else: __lowercase= os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __lowercase= tokenize_function(_a ) __lowercase= dataset.map(_a , batched=_a , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase__ ): # Concatenate all texts. __lowercase= {k: sum(examples[k] , [] ) for k in examples.keys()} __lowercase= len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowercase= (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowercase= { k: [t[i : i + args.max_length] for i in range(0 , _a , args.max_length )] for k, t in concatenated_examples.items() } return result __lowercase= dataset_tokenized.map(_a , batched=_a , batch_size=1_0_0_0 , num_proc=4 ) __lowercase= 0 __lowercase= 0 for shard in range(0 , len(_a ) , args.shard_size ): __lowercase= grouped_dataset[shard : shard + args.shard_size] __lowercase= len(dataset_snapshot['input_ids'] ) __lowercase= os.path.join(_a , F'dataset-{shard_count}-{records_containing}.tfrecord' ) __lowercase= get_serialized_examples(_a ) with tf.io.TFRecordWriter(_a ) as out_file: for i in range(len(_a ) ): __lowercase= serialized_examples[i] out_file.write(_a ) print('Wrote file {} containing {} records'.format(_a , _a ) ) shard_count += 1 total_records += records_containing with open(F'split-{args.split}-records-count.txt' , 'w' ) as f: print(F'Total {args.split} records: {total_records}' , file=_a ) if __name__ == "__main__": lowerCAmelCase = parse_args() main(args)
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A_ : Any = logging.get_logger(__name__) @add_end_docstrings(_a ) class A_ ( _a ): '''simple docstring''' def __init__(self , *lowercase__ , **lowercase__ ) -> int: super().__init__(*lowercase__ , **lowercase__ ) requires_backends(self , '''vision''' ) self.check_model_type(lowercase__ ) def __call__(self , lowercase__ , **lowercase__ ) -> Tuple: return super().__call__(lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: return {}, {}, {} def lowerCAmelCase_ (self , lowercase__ ) -> List[Any]: __UpperCAmelCase = load_image(lowercase__ ) __UpperCAmelCase = image.size __UpperCAmelCase = self.image_processor(images=lowercase__ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase_ (self , lowercase__ ) -> str: __UpperCAmelCase = self.model(**lowercase__ ) return model_outputs def lowerCAmelCase_ (self , lowercase__ ) -> Any: __UpperCAmelCase = model_outputs.predicted_depth __UpperCAmelCase = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=lowercase__ ) __UpperCAmelCase = prediction.squeeze().cpu().numpy() __UpperCAmelCase = (output * 255 / np.max(lowercase__ )).astype('''uint8''' ) __UpperCAmelCase = Image.fromarray(lowercase__ ) __UpperCAmelCase = {} __UpperCAmelCase = predicted_depth __UpperCAmelCase = depth return output_dict
333
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A_ : Tuple = logging.get_logger(__name__) class A_ ( _a ): '''simple docstring''' a__ = "linear" a__ = "cosine" a__ = "cosine_with_restarts" a__ = "polynomial" a__ = "constant" a__ = "constant_with_warmup" a__ = "piecewise_constant" def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Tuple: '''simple docstring''' return LambdaLR(SCREAMING_SNAKE_CASE , lambda SCREAMING_SNAKE_CASE : 1 , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> Union[str, Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1.0 , SCREAMING_SNAKE_CASE ) ) return 1.0 return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = {} __UpperCAmelCase = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase = rule_str.split(''':''' ) __UpperCAmelCase = int(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = float(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = value __UpperCAmelCase = float(rule_list[-1] ) def create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def rule_func(SCREAMING_SNAKE_CASE ) -> float: __UpperCAmelCase = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(SCREAMING_SNAKE_CASE ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase = create_rules_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.5 , SCREAMING_SNAKE_CASE = -1 ) -> int: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(SCREAMING_SNAKE_CASE ) * 2.0 * progress )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = -1 ) -> Dict: '''simple docstring''' def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) __UpperCAmelCase = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(SCREAMING_SNAKE_CASE ) * progress) % 1.0) )) ) return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=-1 ) -> List[str]: '''simple docstring''' __UpperCAmelCase = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(SCREAMING_SNAKE_CASE ): if current_step < num_warmup_steps: return float(SCREAMING_SNAKE_CASE ) / float(max(1 , SCREAMING_SNAKE_CASE ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase = lr_init - lr_end __UpperCAmelCase = num_training_steps - num_warmup_steps __UpperCAmelCase = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = -1 , ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = SchedulerType(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(SCREAMING_SNAKE_CASE , step_rules=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , num_cycles=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , power=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE , ) return schedule_func( SCREAMING_SNAKE_CASE , num_warmup_steps=SCREAMING_SNAKE_CASE , num_training_steps=SCREAMING_SNAKE_CASE , last_epoch=SCREAMING_SNAKE_CASE )
333
1
import math def lowerCamelCase_ ( lowerCAmelCase: float , lowerCAmelCase: float )-> int: if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(lowerCAmelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
366
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase_ = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase_ = 0 lowerCAmelCase_ = 0xE_000 lowerCAmelCase_ = 0xE_001 lowerCAmelCase_ = 0xE_002 lowerCAmelCase_ = 0xE_003 lowerCAmelCase_ = 0xE_004 # Maps special codepoints to human-readable names. lowerCAmelCase_ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase_ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , UpperCamelCase : int=chr(UpperCamelCase ) , UpperCamelCase : Union[str, Any]=chr(UpperCamelCase ) , UpperCamelCase : Any=chr(UpperCamelCase ) , UpperCamelCase : Union[str, Any]=chr(UpperCamelCase ) , UpperCamelCase : List[Any]=chr(UpperCamelCase ) , UpperCamelCase : List[str]=chr(UpperCamelCase ) , UpperCamelCase : int=False , UpperCamelCase : str=20_48 , **UpperCamelCase : List[str] , ): '''simple docstring''' _snake_case : Tuple = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else bos_token _snake_case : Optional[Any] = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else eos_token _snake_case : Any = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else sep_token _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else cls_token _snake_case : Dict = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case : str = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , add_prefix_space=UpperCamelCase , model_max_length=UpperCamelCase , **UpperCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. _snake_case : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _snake_case : Tuple = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _snake_case : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _snake_case : str = UNICODE_VOCAB_SIZE _snake_case : Optional[Any] = len(self._special_codepoints ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return self._unicode_vocab_size def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' return list(UpperCamelCase ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : str ): '''simple docstring''' try: return ord(UpperCamelCase ) except TypeError: raise ValueError(f"""invalid token: '{token}'""" ) def UpperCamelCase_ ( self : Dict , UpperCamelCase : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase ) except TypeError: raise ValueError(f"""invalid id: {index}""" ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' return "".join(UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Optional[Any] = [self.sep_token_id] _snake_case : int = [self.cls_token_id] _snake_case : Any = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase_ ( self : Tuple , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) _snake_case : int = [1] + ([0] * len(UpperCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase )) + [1] return result def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.sep_token_id] _snake_case : Dict = [self.cls_token_id] _snake_case : Tuple = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' return ()
260
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ :int = logging.get_logger(__name__) A_ :Union[str, Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} A_ :Dict = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } A_ :str = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A ( ) -> List[Any]: __UpperCamelCase : Tuple =( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) __UpperCamelCase : List[str] =bs[:] __UpperCamelCase : Any =0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 __UpperCamelCase : Any =[chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase ,_UpperCAmelCase ) ) def A ( a_ ) -> Dict: __UpperCamelCase : Any =set() __UpperCamelCase : List[str] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase : Optional[int] =char return pairs class __A ( a ): """simple docstring""" UpperCamelCase__ : Any =VOCAB_FILES_NAMES UpperCamelCase__ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Union[str, Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : str =["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="replace" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=False , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : Any =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token __UpperCamelCase : Union[str, Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token __UpperCamelCase : List[str] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token __UpperCamelCase : Tuple =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token __UpperCamelCase : Optional[Any] =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token __UpperCamelCase : Tuple =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase : Tuple =AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase : int =json.load(lowerCamelCase__ ) __UpperCamelCase : Tuple ={v: k for k, v in self.encoder.items()} __UpperCamelCase : List[str] =errors # how to handle errors in decoding __UpperCamelCase : Dict =bytes_to_unicode() __UpperCamelCase : Union[str, Any] ={v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding='utf-8' ) as merges_handle: __UpperCamelCase : List[Any] =merges_handle.read().split('\n' )[1:-1] __UpperCamelCase : Optional[int] =[tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase : Optional[int] =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : Union[str, Any] ={} __UpperCamelCase : Tuple =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase : List[Any] =re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __lowercase ( self ): """simple docstring""" return len(self.encoder ) def __lowercase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if token in self.cache: return self.cache[token] __UpperCamelCase : Optional[int] =tuple(lowerCamelCase__ ) __UpperCamelCase : List[str] =get_pairs(lowerCamelCase__ ) if not pairs: return token while True: __UpperCamelCase : Tuple =min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase : Union[str, Any] =bigram __UpperCamelCase : int =[] __UpperCamelCase : List[Any] =0 while i < len(lowerCamelCase__ ): try: __UpperCamelCase : Dict =word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase : str =j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase : Optional[Any] =tuple(lowerCamelCase__ ) __UpperCamelCase : int =new_word if len(lowerCamelCase__ ) == 1: break else: __UpperCamelCase : Union[str, Any] =get_pairs(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =' '.join(lowerCamelCase__ ) __UpperCamelCase : Dict =word return word def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[Any] =[] for token in re.findall(self.pat , lowerCamelCase__ ): __UpperCamelCase : Optional[Any] =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(' ' ) ) return bpe_tokens def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" return self.decoder.get(lowerCamelCase__ ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =''.join(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Dict =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Tuple =os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '\n' ) __UpperCamelCase : List[Any] =0 with open(lowerCamelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase : Dict =token_index writer.write(' '.join(lowerCamelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase : Optional[Any] =[self.cls_token_id] __UpperCamelCase : Optional[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" __UpperCamelCase : List[str] =[self.sep_token_id] __UpperCamelCase : Any =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=False , **lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): __UpperCamelCase : List[Any] =' ' + text return (text, kwargs)
71
UpperCAmelCase__ = {} def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: '''simple docstring''' # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _UpperCAmelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _UpperCAmelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _UpperCAmelCase = _calculate(days - 1 , _UpperCAmelCase , 0 ) _UpperCAmelCase = state_late + state_absent + state_ontime _UpperCAmelCase = prizestrings return prizestrings def A ( _UpperCAmelCase : int = 30 ) -> int: '''simple docstring''' return _calculate(_UpperCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
339
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase : List[Any] = random.Random() def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Optional[int]=1.0 , lowercase : Optional[int]=None , lowercase : str=None ): '''simple docstring''' if rng is None: lowerCamelCase_ = global_rng lowerCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Optional[Any] , A_ : Dict=7 , A_ : List[str]=400 , A_ : List[str]=2000 , A_ : str=2048 , A_ : Optional[Any]=128 , A_ : Tuple=1 , A_ : str=512 , A_ : Optional[int]=30 , A_ : int=44100 , ) -> Dict: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = min_seq_length lowerCamelCase_ = max_seq_length lowerCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase_ = spectrogram_length lowerCamelCase_ = feature_size lowerCamelCase_ = num_audio_channels lowerCamelCase_ = hop_length lowerCamelCase_ = chunk_length lowerCamelCase_ = sampling_rate def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a__ ( self : int , A_ : Tuple=False , A_ : int=False ) -> Dict: """simple docstring""" def _flatten(A_ : Dict ): return list(itertools.chain(*A_ ) ) if equal_length: lowerCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase_ = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = TvltFeatureExtractor def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ = TvltFeatureExtractionTester(self ) def a__ ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(A_ , 'feature_size' ) ) self.assertTrue(hasattr(A_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(A_ , 'hop_length' ) ) self.assertTrue(hasattr(A_ , 'chunk_length' ) ) self.assertTrue(hasattr(A_ , 'sampling_rate' ) ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) lowerCamelCase_ = self.feature_extraction_class.from_pretrained(A_ ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = dict_first.pop('mel_filters' ) lowerCamelCase_ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) lowerCamelCase_ = self.feature_extraction_class.from_json_file(A_ ) lowerCamelCase_ = feat_extract_first.to_dict() lowerCamelCase_ = feat_extract_second.to_dict() lowerCamelCase_ = dict_first.pop('mel_filters' ) lowerCamelCase_ = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowerCamelCase_ = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input lowerCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowerCamelCase_ = feature_extractor( A_ , return_tensors='np' , sampling_rate=44100 , mask_audio=A_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowerCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCamelCase_ = np.asarray(A_ ) lowerCamelCase_ = feature_extractor(A_ , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a__ ( self : Union[str, Any] , A_ : str ) -> List[Any]: """simple docstring""" lowerCamelCase_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCamelCase_ = ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self._load_datasamples(1 ) lowerCamelCase_ = TvltFeatureExtractor() lowerCamelCase_ = feature_extractor(A_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) lowerCamelCase_ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A_ , atol=1E-4 ) )
208
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) lowerCamelCase_ = '' while len(lowercase ) % 3 != 0: lowerCamelCase_ = '0' + bin_string lowerCamelCase_ = [ bin_string[index : index + 3] for index in range(len(lowercase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ = 0 for index, val in enumerate(lowercase ): oct_val += int(2 ** (2 - index) * int(lowercase ) ) oct_string += str(lowercase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
208
1
'''simple docstring''' from math import pow, sqrt def lowercase_ ( *_lowercase ) -> bool: '''simple docstring''' lowerCamelCase_ : Optional[int] = len(_lowercase ) > 0 and all(value > 0.0 for value in values ) return result def lowercase_ ( _lowercase , _lowercase ) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowercase , _lowercase , _lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
318
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __lowercase ( tf.keras.layers.Layer ): def __init__(self , A , A , A = None , A = None ): super().__init__() lowerCamelCase_ : List[Any] = pad_token_id lowerCamelCase_ : Union[str, Any] = max_length lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : Optional[int] = merges lowerCamelCase_ : List[str] = BytePairTokenizer(A , A , sequence_length=A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : int = [''' '''.join(A ) for m in tokenizer.bpe_ranks.keys()] lowerCamelCase_ : Dict = tokenizer.get_vocab() return cls(A , A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A , *A , **A ): lowerCamelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(A , *A , **A ) return cls.from_tokenizer(A , *A , **A ) @classmethod def UpperCAmelCase__ (cls , A ): return cls(**A ) def UpperCAmelCase__ (self ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : str = self.tf_tokenizer(A ) lowerCamelCase_ : Any = tf.ones_like(A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCamelCase_ : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: lowerCamelCase_, lowerCamelCase_ : Tuple = pad_model_inputs( A , max_seq_length=A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def a ( lowerCamelCase__ ): '''simple docstring''' if isinstance(lowerCamelCase__ , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowerCAmelCase : def _a (self , lowercase , lowercase ): pass def _a (self ): pass def _a (self ): pass def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): A_ : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase , lowercase ) A_ : Any = TFVisionTextDualEncoderModel(lowercase ) A_ : Union[str, Any] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): A_ : Any = self.get_vision_text_model(lowercase , lowercase ) A_ : Dict = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase ) A_ : int = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): A_ : str = self.get_vision_text_model(lowercase , lowercase ) A_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} A_ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase ) A_ : str = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): A_ : List[str] = self.get_vision_text_model(lowercase , lowercase ) A_ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase ) A_ : Optional[int] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) A_ : List[Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) A_ : Any = TFVisionTextDualEncoderModel.from_pretrained(lowercase ) A_ : Optional[int] = model(input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase ) A_ : Dict = after_output[0].numpy() A_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase , 1E-5 ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): A_ : Dict = self.get_vision_text_model(lowercase , lowercase ) A_ : Dict = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase ) A_ : Any = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase ) A_ : Any = output.vision_model_output.attentions self.assertEqual(len(lowercase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Tuple = to_atuple(vision_model.config.image_size ) A_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) A_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A_ : Union[str, Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A_ : Dict = output.text_model_output.attentions self.assertEqual(len(lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a (self , lowercase , lowercase , lowercase ): A_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase , lowercase , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _a (self ): A_ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowercase ) def _a (self ): A_ : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase ) def _a (self ): A_ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase ) def _a (self ): A_ : Tuple = self.prepare_config_and_inputs() self.check_save_load(**lowercase ) def _a (self ): A_ : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase ) @slow def _a (self ): A_ : int = self.get_pretrained_model_and_inputs() A_ : Union[str, Any] = model_a(**lowercase ) A_ : List[str] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase ) A_ : Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(lowercase ) A_ : Union[str, Any] = model_a(**lowercase ) A_ : Dict = after_outputs[0].numpy() A_ : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase , 1E-5 ) @require_tf class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): def _a (self ): A_ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A_ : Dict = 13 A_ : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A_ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A_ : Optional[Any] = random_attention_mask([batch_size, 4] ) A_ : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a (self , lowercase , lowercase ): A_ : Union[str, Any] = TFViTModel(lowercase , name="""vision_model""" ) A_ : str = TFBertModel(lowercase , name="""text_model""" ) return vision_model, text_model def _a (self ): A_ : Optional[int] = TFViTModelTester(self ) A_ : Union[str, Any] = TFBertModelTester(self ) A_ : List[str] = vit_model_tester.prepare_config_and_inputs() A_ : List[Any] = bert_model_tester.prepare_config_and_inputs() A_ : int = vision_config_and_inputs ( A_ ) : int = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): def _a (self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. A_ : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A_ : List[Any] = 13 A_ : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A_ : str = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A_ : Tuple = random_attention_mask([batch_size, 4] ) A_ : Tuple = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase=None , **lowercase ): A_ : str = self.get_vision_text_model(lowercase , lowercase ) A_ : int = TFVisionTextDualEncoderModel(vision_model=lowercase , text_model=lowercase ) A_ : Dict = model( input_ids=lowercase , pixel_values=lowercase , attention_mask=lowercase , output_attentions=lowercase ) A_ : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(lowercase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A_ : List[str] = to_atuple(vision_model.config.image_size ) A_ : int = to_atuple(vision_model.config.patch_size ) A_ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A_ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A_ : Tuple = output.text_model_output.attentions self.assertEqual(len(lowercase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a (self , lowercase , lowercase ): A_ : Optional[Any] = TFDeiTModel(lowercase , name="""vision_model""" ) A_ : Union[str, Any] = TFRobertaModel(lowercase , name="""text_model""" ) return vision_model, text_model def _a (self ): A_ : Optional[int] = TFDeiTModelTester(self ) A_ : Optional[int] = TFRobertaModelTester(self ) A_ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() A_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() A_ : Tuple = vision_config_and_inputs ( A_ ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): def _a (self ): A_ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A_ : Union[str, Any] = 13 A_ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A_ : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A_ : List[Any] = random_attention_mask([batch_size, 4] ) A_ : Optional[int] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a (self , lowercase , lowercase ): A_ : Optional[Any] = TFCLIPVisionModel(lowercase , name="""vision_model""" ) A_ : int = TFBertModel(lowercase , name="""text_model""" ) return vision_model, text_model def _a (self ): A_ : Optional[int] = TFCLIPVisionModelTester(self ) A_ : List[str] = TFBertModelTester(self ) A_ : Optional[int] = clip_model_tester.prepare_config_and_inputs() A_ : List[Any] = bert_model_tester.prepare_config_and_inputs() A_ : int = vision_config_and_inputs ( A_ ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=lowercase ) A_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A_ : Optional[Any] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase , padding=lowercase , return_tensors="""np""" ) A_ : Optional[int] = model(**lowercase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A_ : int = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowercase , atol=1E-3 ) )
350
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase :Dict = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :str = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys lowerCamelCase :Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
135
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "facebook/bart-large-mnli" __UpperCamelCase = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __UpperCamelCase = "text_classifier" __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSequenceClassification __UpperCamelCase = ["text", ["text"]] __UpperCamelCase = ["text"] def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' super().setup() SCREAMING_SNAKE_CASE_ : Optional[int] = self.model.config SCREAMING_SNAKE_CASE_ : List[Any] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail'''): SCREAMING_SNAKE_CASE_ : List[str] = int(lowercase_) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''') def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : str , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = labels return self.pre_processor( [text] * len(lowercase_) , [F'This example is {label}' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = outputs.logits SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.argmax(logits[:, 2]).item() return self._labels[label_id]
91
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = GenerationConfig() SCREAMING_SNAKE_CASE_ : Any = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : str = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig() SCREAMING_SNAKE_CASE_ : List[str] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Optional[Any] = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str]): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
91
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''timesformer''' def __init__( self , lowercase=2_2_4 , lowercase=1_6 , lowercase=3 , lowercase=8 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-6 , lowercase=True , lowercase="divided_space_time" , lowercase=0 , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Union[str, Any] = image_size A_ : Union[str, Any] = patch_size A_ : List[Any] = num_channels A_ : Any = num_frames A_ : Tuple = hidden_size A_ : str = num_hidden_layers A_ : str = num_attention_heads A_ : str = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : Tuple = attention_probs_dropout_prob A_ : Optional[int] = initializer_range A_ : Dict = layer_norm_eps A_ : Any = qkv_bias A_ : Union[str, Any] = attention_type A_ : str = drop_path_rate
192
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _UpperCAmelCase = """hopper-medium-v2""" _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1000 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
192
1
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = XLMProphetNetTokenizer lowercase = False lowercase = True def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = '[PAD]' __UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__UpperCAmelCase ) , 1012 ) def UpperCAmelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __UpperCamelCase = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'Hello World!' __UpperCamelCase = [3_5389, 6672, 49, 2] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A ( snake_case :str = "laptop" ) -> DataFrame: __UpperCamelCase = f'https://www.amazon.in/laptop/s?k={product}' __UpperCamelCase = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } __UpperCamelCase = BeautifulSoup(requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__ ).text ) # Initialize a Pandas dataframe with the column titles __UpperCamelCase = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: __UpperCamelCase = item.ha.text __UpperCamelCase = 'https://www.amazon.in/' + item.ha.a['href'] __UpperCamelCase = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: __UpperCamelCase = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: __UpperCamelCase = 'Not available' try: __UpperCamelCase = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: __UpperCamelCase = '' try: __UpperCamelCase = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 1_0_0 ) except ValueError: __UpperCamelCase = float('nan' ) except AttributeError: pass __UpperCamelCase = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __UpperCamelCase = ' ' __UpperCamelCase = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : int = "headphones" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
366
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCamelCase : List[Any] = { "Salesforce/codegen-350M-mono": 2_0_4_8, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = CodeGenTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) if kwargs.pop('add_bos_token' , __UpperCAmelCase ): __UpperCamelCase = kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = super().decode( token_ids=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , ) if truncate_before_pattern is not None and len(__UpperCAmelCase ) > 0: __UpperCamelCase = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) return decoded_text def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' def find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = pattern.search(__UpperCAmelCase , __UpperCAmelCase ) return m.start() if m else -1 __UpperCamelCase = [re.compile(__UpperCAmelCase , re.MULTILINE ) for pattern in truncate_before_pattern] __UpperCamelCase = list(re.finditer('^print' , __UpperCAmelCase , re.MULTILINE ) ) if len(__UpperCAmelCase ) > 1: __UpperCamelCase = completion[: prints[1].start()] __UpperCamelCase = list(re.finditer('^def' , __UpperCAmelCase , re.MULTILINE ) ) if len(__UpperCAmelCase ) > 1: __UpperCamelCase = completion[: defs[1].start()] __UpperCamelCase = 0 __UpperCamelCase = [ pos for pos in [find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for terminal in terminals] if pos != -1 ] if len(__UpperCAmelCase ) > 0: return completion[: min(__UpperCAmelCase )] else: return completion
263
0
"""simple docstring""" import argparse __snake_case = '''docs/source/_static/js/custom.js''' def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" with open(_lowerCAmelCase, encoding='''utf-8''', newline='''\n''' ) as f: _a = f.readlines() _a = 0 # First let's put the right version while not lines[index].startswith('''const stableVersion =''' ): index += 1 _a = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('''const versionMapping = {''' ): index += 1 # We go until the end while not lines[index].startswith('''}''' ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(_lowerCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') __snake_case = parser.parse_args() update_custom_js(args.version)
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Optional[Any] = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
222
def A ( lowercase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
222
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( A__ ): A : Any = ['image_processor', 'tokenizer'] A : List[Any] = 'LayoutLMv3ImageProcessor' A : Union[str, Any] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , SCREAMING_SNAKE_CASE__ , ) lowercase : int = kwargs.pop('''feature_extractor''' ) lowercase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor lowercase : List[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowercase : Optional[int] = features['''words'''] lowercase : int = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # add pixel values lowercase : Union[str, Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: lowercase : str = self.get_overflowing_images(SCREAMING_SNAKE_CASE__ , encoded_inputs['''overflow_to_sample_mapping'''] ) lowercase : Tuple = images return encoded_inputs def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowercase : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}""" ) return images_with_overflow def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __lowerCamelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
360
import os import pytest from attr import dataclass __a = '''us-east-1''' # defaults region @dataclass class __SCREAMING_SNAKE_CASE : A : str A : str = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' A : Union[str, Any] = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } A : str = {**hyperparameters, 'max_steps': 1000} @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def __lowerCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def __lowerCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def __lowerCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='''class''' ) def __lowercase ( _UpperCamelCase ) ->str: """simple docstring""" lowercase : Union[str, Any] = SageMakerTestEnvironment(framework=request.cls.framework )
173
0
"""simple docstring""" import math def _snake_case ( ): lowerCAmelCase : Union[str, Any] = input('''Enter message: ''' ) lowerCAmelCase : Optional[int] = int(input(f'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) lowerCAmelCase : str = input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase : Any = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('''d''' ): lowerCAmelCase : Union[str, Any] = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(f'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Optional[Any] = [''''''] * key for col in range(_snake_case ): lowerCAmelCase : Optional[Any] = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ): lowerCAmelCase : Union[str, Any] = math.ceil(len(_snake_case ) / key ) lowerCAmelCase : str = key lowerCAmelCase : Any = (num_cols * num_rows) - len(_snake_case ) lowerCAmelCase : Dict = [''''''] * num_cols lowerCAmelCase : int = 0 lowerCAmelCase : int = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase : int = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
60
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
0
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = PhobertTokenizer lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : str = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] __A : Tuple = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : List[Any] = ['#version: 0.2', 'l à</w>'] __A : Dict = {'unk_token': '<unk>'} __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[str] = 'Tôi là VinAI Research' __A : Union[str, Any] = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) __A : Optional[Any] = 'Tôi là VinAI Research' __A : Union[str, Any] = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() __A : List[str] = tokenizer.tokenize(_UpperCAmelCase) print(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = tokens + [tokenizer.unk_token] __A : Tuple = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase) , _UpperCAmelCase)
190
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str ) -> str: __A : Optional[Any] = [0] * len(__snake_case ) __A : Dict = [] __A : Optional[int] = [1] * len(__snake_case ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__snake_case ) ): if indegree[i] == 0: queue.append(__snake_case ) while queue: __A : int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__snake_case ) print(max(__snake_case ) ) # Adjacency list of Graph lowercase__ : Dict = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
190
1
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCamelCase_ : Union[str, Any] = get_logger(__name__) lowerCamelCase_ : Any = Path(__file__).parent / """model_card_template.md""" lowerCamelCase_ : Optional[int] = uuida().hex lowerCamelCase_ : str = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase_ : Tuple = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCamelCase_ : Dict = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def _A ( lowercase = None ): """simple docstring""" a =f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + user_agent return ua def _A ( lowercase , lowercase = None , lowercase = None ): """simple docstring""" if token is None: a =HfFolder.get_token() if organization is None: a =whoami(_SCREAMING_SNAKE_CASE )['''name'''] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def _A ( lowercase , lowercase ): """simple docstring""" if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_SCREAMING_SNAKE_CASE , '''local_rank''' ) and args.local_rank not in [-1, 0]: return a =args.hub_token if hasattr(_SCREAMING_SNAKE_CASE , '''hub_token''' ) else None a =get_full_repo_name(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) a =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_SCREAMING_SNAKE_CASE , model_name=_SCREAMING_SNAKE_CASE , repo_name=_SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(_SCREAMING_SNAKE_CASE , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_SCREAMING_SNAKE_CASE , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_SCREAMING_SNAKE_CASE , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_SCREAMING_SNAKE_CASE , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_SCREAMING_SNAKE_CASE , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_SCREAMING_SNAKE_CASE , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_SCREAMING_SNAKE_CASE , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_SCREAMING_SNAKE_CASE , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_SCREAMING_SNAKE_CASE , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) a =os.path.join(args.output_dir , '''README.md''' ) model_card.save(_SCREAMING_SNAKE_CASE ) def _A ( lowercase , lowercase = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash a =str(Path(_SCREAMING_SNAKE_CASE ).as_posix() ) a =re.search(R'''snapshots/([^/]+)/''' , _SCREAMING_SNAKE_CASE ) if search is None: return None a =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_SCREAMING_SNAKE_CASE ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCamelCase_ : int = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowerCamelCase_ : Any = os.path.join(hf_cache_home, """diffusers""") def _A ( lowercase = None , lowercase = None ): """simple docstring""" if new_cache_dir is None: a =DIFFUSERS_CACHE if old_cache_dir is None: a =old_diffusers_cache a =Path(_SCREAMING_SNAKE_CASE ).expanduser() a =Path(_SCREAMING_SNAKE_CASE ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a =new_cache_dir / old_blob_path.relative_to(_SCREAMING_SNAKE_CASE ) new_blob_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) os.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) try: os.symlink(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCamelCase_ : List[Any] = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowerCamelCase_ : Any = 0 else: with open(cache_version_file) as f: try: lowerCamelCase_ : List[Any] = int(f.read()) except ValueError: lowerCamelCase_ : List[str] = 0 if cache_version < 1: lowerCamelCase_ : Any = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowerCamelCase_ : str = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' """the directory exists and can be written to.""" ) def _A ( lowercase , lowercase = None ): """simple docstring""" if variant is not None: a =weights_name.split('''.''' ) a =splits[:-1] + [variant] + splits[-1:] a ='''.'''.join(_SCREAMING_SNAKE_CASE ) return weights_name def _A ( lowercase , *, lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None , ): """simple docstring""" a =str(_SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): return pretrained_model_name_or_path elif os.path.isdir(_SCREAMING_SNAKE_CASE ): if os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): # Load from a PyTorch checkpoint a =os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): a =os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse('''0.20.0''' ) ): try: a =hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _SCREAMING_SNAKE_CASE , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.''' , _SCREAMING_SNAKE_CASE , ) try: # 2. Load model file as usual a =hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' '''this model name. Check the model page at ''' f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
81
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple =KandinskyVaaPriorPipeline __lowerCamelCase : Union[str, Any] =['prompt'] __lowerCamelCase : Any =['prompt', 'negative_prompt'] __lowerCamelCase : List[str] =[ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : List[Any] =False @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : Any ): '''simple docstring''' return 32 @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 100 @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowercase ) @property def UpperCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) __a = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } __a = PriorTransformer(**__lowercase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) __a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __a = CLIPVisionModelWithProjection(__lowercase ) return model @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.dummy_prior __a = self.dummy_image_encoder __a = self.dummy_text_encoder __a = self.dummy_tokenizer __a = self.dummy_image_processor __a = UnCLIPScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=1000 , clip_sample=__lowercase , clip_sample_range=10.0 , ) __a = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[str] , __lowercase : Any=0 ): '''simple docstring''' if str(__lowercase ).startswith("""mps""" ): __a = torch.manual_seed(__lowercase ) else: __a = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __a = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__lowercase ) __a = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __a = pipe(**self.get_dummy_inputs(__lowercase ) ) __a = output.image_embeds __a = pipe( **self.get_dummy_inputs(__lowercase ) , return_dict=__lowercase , )[0] __a = image[0, -10:] __a = image_from_tuple[0, -10:] assert image.shape == (1, 32) __a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a = torch_device == """cpu""" __a = True __a = False self._test_inference_batch_single_identical( test_max_difference=__lowercase , relax_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , ) @skip_mps def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = torch_device == """cpu""" __a = False self._test_attention_slicing_forward_pass( test_max_difference=__lowercase , test_mean_pixel_difference=__lowercase , )
302
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A (__A : BertModel , __A : str , __A : str ) -> int: """simple docstring""" UpperCAmelCase_ = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') UpperCAmelCase_ = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__A ): os.makedirs(__A ) UpperCAmelCase_ = model.state_dict() def to_tf_var_name(__A : str ): for patt, repl in iter(__A ): UpperCAmelCase_ = name.replace(__A , __A ) return F"""bert/{name}""" def create_tf_var(__A : np.ndarray , __A : str , __A : tf.Session ): UpperCAmelCase_ = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ = tf.get_variable(dtype=__A , shape=tensor.shape , name=__A , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__A ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ = to_tf_var_name(__A ) UpperCAmelCase_ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ = torch_tensor.T UpperCAmelCase_ = create_tf_var(tensor=__A , name=__A , session=__A ) tf.keras.backend.set_value(__A , __A ) UpperCAmelCase_ = session.run(__A ) print(F"""Successfully created {tf_name}: {np.allclose(__A , __A )}""" ) UpperCAmelCase_ = tf.train.Saver(tf.trainable_variables() ) saver.save(__A , os.path.join(__A , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def A (__A : Any=None ) -> str: """simple docstring""" UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__A , required=__A , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__A , default=__A , required=__A , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__A , required=__A , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__A , required=__A , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ = parser.parse_args(__A ) UpperCAmelCase_ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__A , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''openai-gpt''' A : str = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=40_478, A=512, A=768, A=12, A=12, A="gelu", A=0.1, A=0.1, A=0.1, A=1E-5, A=0.02, A="cls_index", A=True, A=None, A=True, A=0.1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = n_positions SCREAMING_SNAKE_CASE : List[str] = n_embd SCREAMING_SNAKE_CASE : Optional[Any] = n_layer SCREAMING_SNAKE_CASE : Optional[Any] = n_head SCREAMING_SNAKE_CASE : str = afn SCREAMING_SNAKE_CASE : List[str] = resid_pdrop SCREAMING_SNAKE_CASE : int = embd_pdrop SCREAMING_SNAKE_CASE : Optional[Any] = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = summary_type SCREAMING_SNAKE_CASE : Tuple = summary_use_proj SCREAMING_SNAKE_CASE : Dict = summary_activation SCREAMING_SNAKE_CASE : Tuple = summary_first_dropout SCREAMING_SNAKE_CASE : List[str] = summary_proj_to_labels super().__init__(**A )
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
251
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __A = logging.get_logger(__name__) __A = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowercase_ = '''blenderbot-small''' lowercase_ = ['''past_key_values'''] lowercase_ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self : Any , UpperCAmelCase_ : Union[str, Any]=50_265 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Tuple=2_048 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Union[str, Any]=8 , UpperCAmelCase_ : int=2_048 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Dict=2 , **UpperCAmelCase_ : Optional[int] , ) ->Any: '''simple docstring''' lowerCamelCase__: Union[str, Any] =vocab_size lowerCamelCase__: Optional[Any] =max_position_embeddings lowerCamelCase__: str =d_model lowerCamelCase__: Optional[Any] =encoder_ffn_dim lowerCamelCase__: Tuple =encoder_layers lowerCamelCase__: List[Any] =encoder_attention_heads lowerCamelCase__: int =decoder_ffn_dim lowerCamelCase__: List[Any] =decoder_layers lowerCamelCase__: Optional[Any] =decoder_attention_heads lowerCamelCase__: Optional[int] =dropout lowerCamelCase__: int =attention_dropout lowerCamelCase__: Optional[Any] =activation_dropout lowerCamelCase__: List[str] =activation_function lowerCamelCase__: Dict =init_std lowerCamelCase__: Optional[Any] =encoder_layerdrop lowerCamelCase__: Optional[int] =decoder_layerdrop lowerCamelCase__: str =use_cache lowerCamelCase__: Union[str, Any] =encoder_layers lowerCamelCase__: Optional[int] =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) class _SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__: Optional[Any] =OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: lowerCamelCase__: Tuple ={0: "batch"} lowerCamelCase__: str ={0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__: List[str] ={0: "batch", 1: "decoder_sequence"} lowerCamelCase__: Union[str, Any] ={0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__: Any =OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: lowerCamelCase__ , lowerCamelCase__: List[Any] =self.num_layers for i in range(__snake_case): lowerCamelCase__: List[str] ={0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__: List[Any] ={0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__: str =OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ]) return common_inputs @property def SCREAMING_SNAKE_CASE_ (self : Dict) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__: Optional[Any] =super().outputs else: lowerCamelCase__: List[str] =super(__snake_case , self).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__: Tuple =self.num_layers for i in range(__snake_case): lowerCamelCase__: str ={0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__: Any ={0: "batch", 2: "past_sequence + sequence"} return common_outputs def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]: '''simple docstring''' lowerCamelCase__: str =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) # Generate decoder inputs lowerCamelCase__: Optional[Any] =seq_length if not self.use_past else 1 lowerCamelCase__: List[Any] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) lowerCamelCase__: Union[str, Any] ={F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__: List[str] =dict(**__snake_case , **__snake_case) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch lowerCamelCase__ , lowerCamelCase__: List[str] =common_inputs["input_ids"].shape lowerCamelCase__: Any =common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__: Optional[Any] =self.num_attention_heads lowerCamelCase__: List[Any] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__: Optional[int] =decoder_seq_length + 3 lowerCamelCase__: str =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__: Any =torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__snake_case , __snake_case)] , dim=1) lowerCamelCase__: Optional[Any] =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__: Any =self.num_layers lowerCamelCase__: str =min(__snake_case , __snake_case) lowerCamelCase__: Union[str, Any] =max(__snake_case , __snake_case) - min_num_layers lowerCamelCase__: Tuple ="encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__snake_case): common_inputs["past_key_values"].append( ( torch.zeros(__snake_case), torch.zeros(__snake_case), torch.zeros(__snake_case), torch.zeros(__snake_case), )) # TODO: test this. lowerCamelCase__: Union[str, Any] =encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__snake_case , __snake_case): common_inputs["past_key_values"].append((torch.zeros(__snake_case), torch.zeros(__snake_case))) return common_inputs def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch lowerCamelCase__ , lowerCamelCase__: str =common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__: Tuple =seqlen + 2 lowerCamelCase__ , lowerCamelCase__: Any =self.num_layers lowerCamelCase__ , lowerCamelCase__: List[str] =self.num_attention_heads lowerCamelCase__: Optional[Any] =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__: List[str] =common_inputs["attention_mask"].dtype lowerCamelCase__: Optional[int] =torch.cat( [common_inputs["attention_mask"], torch.ones(__snake_case , __snake_case , dtype=__snake_case)] , dim=1) lowerCamelCase__: Union[str, Any] =[ (torch.zeros(__snake_case), torch.zeros(__snake_case)) for _ in range(__snake_case) ] return common_inputs def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]: '''simple docstring''' lowerCamelCase__: str =compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__: Dict =tokenizer.num_special_tokens_to_add(__snake_case) lowerCamelCase__: Optional[int] =compute_effective_axis_dimension( __snake_case , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__snake_case) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__: int =[" ".join([tokenizer.unk_token]) * seq_length] * batch_size lowerCamelCase__: List[Any] =dict(tokenizer(__snake_case , return_tensors=__snake_case)) return common_inputs def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ) ->Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__: List[str] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) elif self.task == "causal-lm": lowerCamelCase__: Tuple =self._generate_dummy_inputs_for_causal_lm( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) else: lowerCamelCase__: Tuple =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case) return common_inputs def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__: List[Any] =super()._flatten_past_key_values_(__snake_case , __snake_case , __snake_case , __snake_case) else: lowerCamelCase__: Tuple =super(__snake_case , self)._flatten_past_key_values_( __snake_case , __snake_case , __snake_case , __snake_case)
371
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE_ (UpperCAmelCase_ : ArgumentParser) ->str: '''simple docstring''' lowerCamelCase__: Dict =parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Model's type.") train_parser.add_argument( "--tf_checkpoint" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="TensorFlow checkpoint path or folder.") train_parser.add_argument( "--pytorch_dump_output" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the PyTorch saved model output.") train_parser.add_argument("--config" , type=UpperCAmelCase_ , default="" , help="Configuration file path or folder.") train_parser.add_argument( "--finetuning_task_name" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=UpperCAmelCase_) def __init__(self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , *UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =logging.get_logger("transformers-cli/converting") self._logger.info(F"""Loading model {model_type}""") lowerCamelCase__: Any =model_type lowerCamelCase__: Optional[int] =tf_checkpoint lowerCamelCase__: Any =pytorch_dump_output lowerCamelCase__: Union[str, Any] =config lowerCamelCase__: str =finetuning_task_name def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(UpperCAmelCase_) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) if "ckpt" in self._tf_checkpoint.lower(): lowerCamelCase__: Tuple =self._tf_checkpoint lowerCamelCase__: List[str] ="" else: lowerCamelCase__: Any =self._tf_checkpoint lowerCamelCase__: Dict ="" convert_transfo_xl_checkpoint_to_pytorch( UpperCAmelCase_ , self._config , self._pytorch_dump_output , UpperCAmelCase_) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(UpperCAmelCase_) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]")
273
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem a_ : int = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 a_ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a_ ( __snake_case : str ) -> str: """simple docstring""" if "://" in dataset_path: lowerCamelCase_ =dataset_path.split('''://''' )[1] return dataset_path def a_ ( __snake_case : fsspec.AbstractFileSystem ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def a_ ( __snake_case : fsspec.AbstractFileSystem , __snake_case : str , __snake_case : str ) -> List[str]: """simple docstring""" lowerCamelCase_ =not is_remote_filesystem(__snake_case ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__snake_case ) , fs._strip_protocol(__snake_case ) ) else: fs.mv(__snake_case , __snake_case , recursive=__snake_case ) def a_ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =threading.Lock()
75
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) _A : List[Any] = 299792458 # Symbols _A , _A , _A , _A : Union[str, Any] = symbols('''ct x y z''') def UpperCamelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def UpperCamelCase_ ( snake_case_ : float ) -> float: '''simple docstring''' return 1 / sqrt(1 - beta(snake_case_ ) ** 2 ) def UpperCamelCase_ ( snake_case_ : float ) -> np.ndarray: '''simple docstring''' return np.array( [ [gamma(snake_case_ ), -gamma(snake_case_ ) * beta(snake_case_ ), 0, 0], [-gamma(snake_case_ ) * beta(snake_case_ ), gamma(snake_case_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_ ( snake_case_ : float , snake_case_ : np.ndarray | None = None ) -> np.ndarray: '''simple docstring''' if event is None: __lowerCAmelCase = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(snake_case_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: _A : str = transform(29979245) print('''Example of four vector: ''') print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values _A : int = {ct: c, x: 1, y: 1, z: 1} _A : Any = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
229
0
"""simple docstring""" from __future__ import annotations lowerCamelCase_ : int = 1.6_0_2_1E-1_9 # units = C def _A ( lowercase , lowercase , lowercase , ): """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
215
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = IFInpaintingSuperResolutionPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"latents"} def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE ( self , __A , __A=0 ) -> Optional[int]: if str(__A ).startswith('''mps''' ): a =torch.manual_seed(__A ) else: a =torch.Generator(device=__A ).manual_seed(__A ) a =floats_tensor((1, 3, 16, 16) , rng=random.Random(__A ) ).to(__A ) a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) a ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def SCREAMING_SNAKE_CASE ( self ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self ) -> Dict: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
215
1
import math from numpy import inf from scipy.integrate import quad def _a ( SCREAMING_SNAKE_CASE_ : float ): if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , args=(SCREAMING_SNAKE_CASE_) )[0] def _a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): return math.pow(SCREAMING_SNAKE_CASE_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
92
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' return (gray > 127) & (gray <= 255) def lowercase ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray ): '''simple docstring''' _UpperCAmelCase = np.zeros_like(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _UpperCAmelCase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _UpperCAmelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _UpperCAmelCase = int(summation > 0 ) return output if __name__ == "__main__": # read original image __A : str = Path(__file__).resolve().parent / "image_data" / "lena.jpg" __A : str = np.array(Image.open(lena_path)) # kernel to be applied __A : List[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __A : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __A : Optional[Any] = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
260
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _lowerCamelCase, _lowerCamelCase : Tuple = coefficient_matrix.shape _lowerCamelCase, _lowerCamelCase : Dict = constant_matrix.shape if rowsa != colsa: _lowerCamelCase : Dict = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase__ ) if colsa != 1: _lowerCamelCase : Any = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase__ ) if rowsa != rowsa: _lowerCamelCase : Any = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase__ ) if len(lowercase__ ) != rowsa: _lowerCamelCase : List[str] = ( 'Number of initial values must be equal to number of rows in coefficient ' f'''matrix but received {len(lowercase__ )} and {rowsa}''' ) raise ValueError(lowercase__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) _lowerCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCamelCase, _lowerCamelCase : Any = table.shape strictly_diagonally_dominant(lowercase__ ) # Iterates the whole matrix for given number of times for _ in range(lowercase__ ): _lowerCamelCase : List[str] = [] for row in range(lowercase__ ): _lowerCamelCase : Optional[int] = 0 for col in range(lowercase__ ): if col == row: _lowerCamelCase : Any = table[row][col] elif col == cols - 1: _lowerCamelCase : Optional[int] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCamelCase : List[str] = (temp + val) / denom new_val.append(lowercase__ ) _lowerCamelCase : List[Any] = new_val return [float(lowercase__ ) for i in new_val] def _snake_case ( lowercase__ ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = table.shape _lowerCamelCase : List[str] = True for i in range(0 , lowercase__ ): _lowerCamelCase : str = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
"""simple docstring""" __A = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def UpperCamelCase__ ( lowercase__ : str , lowercase__ : str , lowercase__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : Tuple = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(lowercase__ )}''' ) raise ValueError(lowercase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
148
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 13 , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE = 7 , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 37 , SCREAMING_SNAKE_CASE = "gelu" , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 128 , SCREAMING_SNAKE_CASE = [2, 2, 2, 2] , SCREAMING_SNAKE_CASE = 2 , SCREAMING_SNAKE_CASE = 2 , ): """simple docstring""" snake_case : int = parent snake_case : List[Any] = batch_size snake_case : List[str] = image_size snake_case : int = patch_size snake_case : int = num_channels snake_case : Any = is_training snake_case : int = use_labels snake_case : Optional[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Dict = hidden_act snake_case : Any = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = type_sequence_label_size snake_case : Optional[Any] = initializer_range snake_case : Any = encoder_stride snake_case : Tuple = num_attention_outputs snake_case : Dict = embed_dim snake_case : Optional[Any] = embed_dim + 1 snake_case : Any = resolution snake_case : int = depths snake_case : int = hidden_sizes snake_case : int = dim snake_case : Tuple = mlp_expansion_ratio def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Optional[int] = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : str = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : str = TFEfficientFormerModel(config=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = self.type_sequence_label_size snake_case : Tuple = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : List[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : Tuple = 1 snake_case : Any = TFEfficientFormerForImageClassification(SCREAMING_SNAKE_CASE ) snake_case : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Tuple = config_and_inputs snake_case : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): a__ : Dict = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) a__ : int = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) a__ : int = False a__ : List[str] = False a__ : Union[str, Any] = False a__ : Optional[Any] = False a__ : str = False def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = TFEfficientFormerModelTester(self ) snake_case : Dict = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowerCamelCase_ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def lowerCamelCase_ ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def lowerCamelCase_ ( self ): """simple docstring""" pass def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(SCREAMING_SNAKE_CASE ) snake_case : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[int] = [*signature.parameters.keys()] snake_case : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) if hasattr(self.model_tester , "encoder_seq_length" ): snake_case : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: snake_case : Optional[int] = seq_length * self.model_tester.chunk_length else: snake_case : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: snake_case : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(SCREAMING_SNAKE_CASE , (list, tuple) ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "decoder_seq_length" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" snake_case : str = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase_ ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str = TFEfficientFormerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : str = True snake_case : Tuple = getattr(self.model_tester , "seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = getattr(self.model_tester , "key_length" , SCREAMING_SNAKE_CASE ) snake_case : Tuple = getattr(self.model_tester , "chunk_length" , SCREAMING_SNAKE_CASE ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): snake_case : Optional[int] = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: snake_case : Optional[int] = True snake_case : List[Any] = False snake_case : Optional[int] = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : List[str] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Tuple = True snake_case : List[str] = model_class(SCREAMING_SNAKE_CASE ) snake_case : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , training=SCREAMING_SNAKE_CASE ) snake_case : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model snake_case : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes snake_case : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=SCREAMING_SNAKE_CASE ) for key, val in model.input_signature.items() if key in model.dummy_inputs } snake_case : Any = model(SCREAMING_SNAKE_CASE ) self.assertTrue(outputs_dict is not None ) def UpperCamelCase__ ( ): snake_case : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) snake_case : List[Any] = self.default_image_processor snake_case : Optional[Any] = prepare_img() snake_case : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : int = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Dict = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) snake_case : int = self.default_image_processor snake_case : List[Any] = prepare_img() snake_case : Optional[Any] = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass snake_case : Any = model(**SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) # verify the logits snake_case : Any = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
148
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='''%(message)s''') def SCREAMING_SNAKE_CASE_ ( __magic_name__ : np.ndarray ) -> np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : int ) -> np.ndarray: """simple docstring""" UpperCamelCase :Any = np.nan for i in range(__magic_name__ ): UpperCamelCase :Dict = features[:, labels == i] UpperCamelCase :Dict = data.mean(1 ) # Centralize the data of class i UpperCamelCase :Optional[int] = data - column_reshape(__magic_name__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__magic_name__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase :str = np.dot(__magic_name__ , centered_data.T ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : int ) -> np.ndarray: """simple docstring""" UpperCamelCase :str = features.mean(1 ) UpperCamelCase :List[str] = np.nan for i in range(__magic_name__ ): UpperCamelCase :List[str] = features[:, labels == i] UpperCamelCase :Union[str, Any] = data.shape[1] UpperCamelCase :Any = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__magic_name__ ) - column_reshape(__magic_name__ ) , (column_reshape(__magic_name__ ) - column_reshape(__magic_name__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase :Optional[int] = device_data * np.dot( column_reshape(__magic_name__ ) - column_reshape(__magic_name__ ) , (column_reshape(__magic_name__ ) - column_reshape(__magic_name__ )).T , ) return covariance_sum / features.shape[1] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : np.ndarray , __magic_name__ : int ) -> np.ndarray: """simple docstring""" if features.any(): UpperCamelCase :Union[str, Any] = features.mean(1 ) # Center the dataset UpperCamelCase :Tuple = features - np.reshape(__magic_name__ , (data_mean.size, 1) ) UpperCamelCase :Tuple = np.dot(__magic_name__ , centered_data.T ) / features.shape[1] UpperCamelCase , UpperCamelCase :List[Any] = np.linalg.eigh(__magic_name__ ) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase :str = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase :Union[str, Any] = np.dot(filtered_eigenvectors.T , __magic_name__ ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=__magic_name__ ) logging.error("""Dataset empty""" ) raise AssertionError def SCREAMING_SNAKE_CASE_ ( __magic_name__ : np.ndarray , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : int ) -> np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase , UpperCamelCase :Dict = eigh( covariance_between_classes(__magic_name__ , __magic_name__ , __magic_name__ ) , covariance_within_classes(__magic_name__ , __magic_name__ , __magic_name__ ) , ) UpperCamelCase :int = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = np.linalg.svd(__magic_name__ ) UpperCamelCase :List[str] = svd_matrix[:, 0:dimensions] UpperCamelCase :int = np.dot(filtered_svd_matrix.T , __magic_name__ ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=__magic_name__ ) logging.error("""Dataset empty""" ) raise AssertionError def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" UpperCamelCase :Optional[Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) UpperCamelCase :Optional[Any] = np.array([0, 0, 0, 1, 1] ) UpperCamelCase :Dict = 2 UpperCamelCase :Any = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__magic_name__ ) as error_info: UpperCamelCase :Optional[int] = linear_discriminant_analysis( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if isinstance(__magic_name__ , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def SCREAMING_SNAKE_CASE_ ( ) -> None: """simple docstring""" UpperCamelCase :Optional[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) UpperCamelCase :List[Any] = 2 UpperCamelCase :Tuple = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]] ) with pytest.raises(__magic_name__ ) as error_info: UpperCamelCase :Optional[Any] = principal_component_analysis(__magic_name__ , __magic_name__ ) if not np.allclose(__magic_name__ , __magic_name__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
62
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Any=7 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=30 , __lowerCamelCase : Union[str, Any]=400 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=True , __lowerCamelCase : Dict=[0.5, 0.5, 0.5] , __lowerCamelCase : int=[0.5, 0.5, 0.5] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=1 / 255 , __lowerCamelCase : str=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase :List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1_333} UpperCamelCase :Tuple = parent UpperCamelCase :int = batch_size UpperCamelCase :str = num_channels UpperCamelCase :Dict = min_resolution UpperCamelCase :Any = max_resolution UpperCamelCase :int = do_resize UpperCamelCase :str = size UpperCamelCase :Dict = do_normalize UpperCamelCase :Tuple = image_mean UpperCamelCase :Optional[int] = image_std UpperCamelCase :Tuple = do_rescale UpperCamelCase :Optional[Any] = rescale_factor UpperCamelCase :List[Any] = do_pad def _A ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _A ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=False ): if not batched: UpperCamelCase :Optional[Any] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): UpperCamelCase , UpperCamelCase :Union[str, Any] = image.size else: UpperCamelCase , UpperCamelCase :Optional[int] = image.shape[1], image.shape[2] if w < h: UpperCamelCase :int = int(self.size["""shortest_edge"""] * h / w ) UpperCamelCase :Tuple = self.size["""shortest_edge"""] elif w > h: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = int(self.size["""shortest_edge"""] * w / h ) else: UpperCamelCase :List[Any] = self.size["""shortest_edge"""] UpperCamelCase :str = self.size["""shortest_edge"""] else: UpperCamelCase :List[Any] = [] for image in image_inputs: UpperCamelCase , UpperCamelCase :int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :int = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] UpperCamelCase :Tuple = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[int] = DeformableDetrImageProcessor if is_vision_available() else None def _A ( self : Optional[Any] ): UpperCamelCase :str = DeformableDetrImageProcessingTester(self ) @property def _A ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : Dict ): UpperCamelCase :int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(__lowerCamelCase , """size""" ) ) def _A ( self : str ): UpperCamelCase :Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) UpperCamelCase :int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __lowerCamelCase ) def _A ( self : List[Any] ): pass def _A ( self : Dict ): # Initialize image_processing UpperCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase :Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase :str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) UpperCamelCase :int = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Tuple ): # Initialize image_processing UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase :Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Any = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Dict = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _A ( self : Any ): # Initialize image_processing UpperCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values UpperCamelCase , UpperCamelCase :List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _A ( self : Optional[Any] ): # prepare image and target UpperCamelCase :int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: UpperCamelCase :str = json.loads(f.read() ) UpperCamelCase :List[Any] = {"""image_id""": 39_769, """annotations""": target} # encode them UpperCamelCase :Optional[int] = DeformableDetrImageProcessor() UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Union[str, Any] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :Tuple = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify orig_size UpperCamelCase :Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :int = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) ) @slow def _A ( self : str ): # prepare image, target and masks_path UpperCamelCase :Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: UpperCamelCase :Any = json.loads(f.read() ) UpperCamelCase :int = {"""file_name""": """000000039769.png""", """image_id""": 39_769, """segments_info""": target} UpperCamelCase :Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them UpperCamelCase :Tuple = DeformableDetrImageProcessor(format="""coco_panoptic""" ) UpperCamelCase :Dict = image_processing(images=__lowerCamelCase , annotations=__lowerCamelCase , masks_path=__lowerCamelCase , return_tensors="""pt""" ) # verify pixel values UpperCamelCase :Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , __lowerCamelCase ) UpperCamelCase :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __lowerCamelCase , atol=1E-4 ) ) # verify area UpperCamelCase :List[str] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __lowerCamelCase ) ) # verify boxes UpperCamelCase :List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __lowerCamelCase ) UpperCamelCase :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __lowerCamelCase , atol=1E-3 ) ) # verify image_id UpperCamelCase :str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __lowerCamelCase ) ) # verify is_crowd UpperCamelCase :Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __lowerCamelCase ) ) # verify class_labels UpperCamelCase :List[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __lowerCamelCase ) ) # verify masks UpperCamelCase :Union[str, Any] = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __lowerCamelCase ) # verify orig_size UpperCamelCase :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __lowerCamelCase ) ) # verify size UpperCamelCase :str = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __lowerCamelCase ) )
62
1
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: A__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) A__ , A__ = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: A__ = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) A__ , A__ = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) A__ = ['key_proj', 'value_proj', 'query_proj'] A__ = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: A__ = key.split('.' ) if attributes[0] == "lm_head": A__ = prophet A__ = prophet_old else: A__ = prophet.prophetnet A__ = prophet_old.model A__ = False for attribute in attributes: if attribute in mapping: A__ = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: A__ = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): A__ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A__ = old_model.weight logger.info(F'''{attribute} is initialized.''' ) A__ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A__ = old_model.bias logger.info(F'''{attribute} is initialized''' ) A__ = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): A__ = old_model.in_proj_weight.shape[0] // 3 A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A__ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." A__ = nn.Parameter(old_model.embed_positions.weight[:512, :] ) A__ = True break if attribute.isdigit(): A__ = model[int(UpperCamelCase__ )] A__ = old_model[int(UpperCamelCase__ )] else: A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": A__ = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) A__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
221
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __lowerCamelCase = logging.get_logger(__name__) # General docstring __lowerCamelCase = "ResNetConfig" # Base docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = [1, 20_48, 7, 7] # Image classification docstring __lowerCamelCase = "microsoft/resnet-50" __lowerCamelCase = "tiger cat" __lowerCamelCase = [ "microsoft/resnet-50", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Any: super().__init__() A__ = nn.Convad( __UpperCAmelCase ,__UpperCAmelCase ,kernel_size=__UpperCAmelCase ,stride=__UpperCAmelCase ,padding=kernel_size // 2 ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) A__ = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Any: super().__init__() A__ = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A__ = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A__ = config.num_channels def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.pooler(__UpperCAmelCase ) return embedding class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ) -> Optional[Any]: super().__init__() A__ = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,stride=__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.BatchNormad(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = self.convolution(__UpperCAmelCase ) A__ = self.normalization(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ,__UpperCAmelCase = 4 ) -> int: super().__init__() A__ = in_channels != out_channels or stride != 1 A__ = out_channels // reduction A__ = ( ResNetShortCut(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) A__ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ) ,ResNetConvLayer(__UpperCAmelCase ,__UpperCAmelCase ,kernel_size=1 ,activation=__UpperCAmelCase ) ,) A__ = ACTaFN[activation] def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: A__ = hidden_state A__ = self.layer(__UpperCAmelCase ) A__ = self.shortcut(__UpperCAmelCase ) hidden_state += residual A__ = self.activation(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,) -> Any: super().__init__() A__ = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer A__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase ,__UpperCAmelCase ,stride=__UpperCAmelCase ,activation=config.hidden_act ) ,*[layer(__UpperCAmelCase ,__UpperCAmelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def snake_case__ ( self ,__UpperCAmelCase ) -> Tensor: A__ = input for layer in self.layers: A__ = layer(__UpperCAmelCase ) return hidden_state class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__() A__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__UpperCAmelCase ,config.depths[1:] ): self.stages.append(ResNetStage(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,depth=__UpperCAmelCase ) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> BaseModelOutputWithNoAttention: A__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A__ = hidden_states + (hidden_state,) A__ = stage_module(__UpperCAmelCase ) if output_hidden_states: A__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase ,hidden_states=__UpperCAmelCase ,) class UpperCamelCase__( __A ): lowerCAmelCase__ : str = ResNetConfig lowerCAmelCase__ : str = 'resnet' lowerCAmelCase__ : int = 'pixel_values' lowerCAmelCase__ : Any = True def snake_case__ ( self ,__UpperCAmelCase ) -> List[Any]: if isinstance(__UpperCAmelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(__UpperCAmelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Any: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): A__ = value __lowerCamelCase = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __lowerCamelCase = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Union[str, Any]: super().__init__(__UpperCAmelCase ) A__ = config A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) A__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BaseModelOutputWithPoolingAndNoAttention: A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder( __UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = encoder_outputs[0] A__ = self.pooler(__UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase ,pooler_output=__UpperCAmelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __A , ) class UpperCamelCase__( __A ): def __init__( self ,__UpperCAmelCase ) -> Tuple: super().__init__(__UpperCAmelCase ) A__ = config.num_labels A__ = ResNetModel(__UpperCAmelCase ) # classification head A__ = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def snake_case__ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> ImageClassifierOutputWithNoAttention: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = self.resnet(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.pooler_output if return_dict else outputs[1] A__ = self.classifier(__UpperCAmelCase ) A__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ = 'single_label_classification' else: A__ = 'multi_label_classification' if self.config.problem_type == "regression": A__ = MSELoss() if self.num_labels == 1: A__ = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": A__ = CrossEntropyLoss() A__ = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ = BCEWithLogitsLoss() A__ = loss_fct(__UpperCAmelCase ,__UpperCAmelCase ) if not return_dict: A__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase ,logits=__UpperCAmelCase ,hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __A , ) class UpperCamelCase__( __A , __A ): def __init__( self ,__UpperCAmelCase ) -> Optional[Any]: super().__init__(__UpperCAmelCase ) super()._init_backbone(__UpperCAmelCase ) A__ = [config.embedding_size] + config.hidden_sizes A__ = ResNetEmbeddings(__UpperCAmelCase ) A__ = ResNetEncoder(__UpperCAmelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @replace_return_docstrings(output_type=__UpperCAmelCase ,config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> BackboneOutput: A__ = return_dict if return_dict is not None else self.config.use_return_dict A__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ = self.embedder(__UpperCAmelCase ) A__ = self.encoder(__UpperCAmelCase ,output_hidden_states=__UpperCAmelCase ,return_dict=__UpperCAmelCase ) A__ = outputs.hidden_states A__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__UpperCAmelCase ,)
221
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable a = list[list[float | int]] def _snake_case ( _snake_case : Matrix , _snake_case : Matrix ) -> Tuple: '''simple docstring''' _A = len(__a ) _A = [[0 for _ in range(size + 1 )] for _ in range(__a )] _A = 42 _A = 42 _A = 42 _A = 42 _A = 42 _A = 42 for row in range(__a ): for col in range(__a ): _A = matrix[row][col] _A = vector[row][0] _A = 0 _A = 0 while row < size and col < size: # pivoting _A = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__a , __a ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __a ): _A = augmented[rowa][col] / augmented[row][col] _A = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __a ): for row in range(__a ): _A = augmented[row][col] / augmented[col][col] for cola in range(__a , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__a ) ] def _snake_case ( _snake_case : list[int] ) -> int: '''simple docstring''' _A = len(__a ) _A = [[0 for _ in range(__a )] for _ in range(__a )] _A = [[0] for _ in range(__a )] _A = 42 _A = 42 _A = 42 _A = 42 for x_val, y_val in enumerate(__a ): for col in range(__a ): _A = (x_val + 1) ** (size - col - 1) _A = y_val _A = solve(__a , __a ) def interpolated_func(_snake_case : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__a ) ) return interpolated_func def _snake_case ( _snake_case : int ) -> Tuple: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _snake_case ( _snake_case : Callable[[int], int] = question_function , _snake_case : int = 10 ) -> Optional[Any]: '''simple docstring''' _A = [func(__a ) for x_val in range(1 , order + 1 )] _A = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] _A = 0 _A = 42 _A = 42 for poly in polynomials: _A = 1 while func(__a ) == poly(__a ): x_val += 1 ret += poly(__a ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
355
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging a = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def _snake_case ( _snake_case : str , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple=None ) -> List[str]: '''simple docstring''' _A = XLNetConfig.from_json_file(_snake_case ) _A = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) _A = finetuning_task _A = GLUE_TASKS_NUM_LABELS[finetuning_task] _A = XLNetForSequenceClassification(_snake_case ) elif "squad" in finetuning_task: _A = finetuning_task _A = XLNetForQuestionAnswering(_snake_case ) else: _A = XLNetLMHeadModel(_snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_snake_case , _snake_case , _snake_case ) # Save pytorch-model _A = os.path.join(_snake_case , _snake_case ) _A = os.path.join(_snake_case , _snake_case ) print(F'''Save PyTorch model to {os.path.abspath(_snake_case )}''' ) torch.save(model.state_dict() , _snake_case ) print(F'''Save configuration file to {os.path.abspath(_snake_case )}''' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) a = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
271
0
def _lowercase ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 for i in range(1 , 1001 ): total += i**i return str(UpperCamelCase_ )[-10:] if __name__ == "__main__": print(solution())
176
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) @add_end_docstrings( _UpperCAmelCase , R""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class lowercase__ ( _UpperCAmelCase ): def A_ ( self : Any , UpperCAmelCase_ : GenericTensor ): if self.framework == "tf": SCREAMING_SNAKE_CASE__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": SCREAMING_SNAKE_CASE__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCAmelCase_ ) else: raise ValueError('Unsupported framework' ) return masked_index def A_ ( self : Optional[Any] , UpperCAmelCase_ : GenericTensor ): SCREAMING_SNAKE_CASE__ = self.get_masked_index(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : GenericTensor ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(UpperCAmelCase_ ) def A_ ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Union[str, Any] ): if return_tensors is None: SCREAMING_SNAKE_CASE__ = self.framework SCREAMING_SNAKE_CASE__ = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) self.ensure_exactly_one_mask_token(UpperCAmelCase_ ) return model_inputs def A_ ( self : Tuple , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = self.model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = model_inputs['input_ids'] return model_outputs def A_ ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : Dict=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: SCREAMING_SNAKE_CASE__ = target_ids.shape[0] SCREAMING_SNAKE_CASE__ = model_outputs['input_ids'][0] SCREAMING_SNAKE_CASE__ = model_outputs['logits'] if self.framework == "tf": SCREAMING_SNAKE_CASE__ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] SCREAMING_SNAKE_CASE__ = outputs.numpy() SCREAMING_SNAKE_CASE__ = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE__ = stable_softmax(UpperCAmelCase_ , axis=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE__ = tf.gather_nd(tf.squeeze(UpperCAmelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) SCREAMING_SNAKE_CASE__ = tf.expand_dims(UpperCAmelCase_ , 0 ) SCREAMING_SNAKE_CASE__ = tf.math.top_k(UpperCAmelCase_ , k=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = topk.values.numpy(), topk.indices.numpy() else: SCREAMING_SNAKE_CASE__ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=UpperCAmelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample SCREAMING_SNAKE_CASE__ = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE__ = logits.softmax(dim=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE__ = probs[..., target_ids] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = probs.topk(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): SCREAMING_SNAKE_CASE__ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place SCREAMING_SNAKE_CASE__ = input_ids.numpy().copy() if target_ids is not None: SCREAMING_SNAKE_CASE__ = target_ids[p].tolist() SCREAMING_SNAKE_CASE__ = p # Filter padding out: SCREAMING_SNAKE_CASE__ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back SCREAMING_SNAKE_CASE__ = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(UpperCAmelCase_ ) result.append(UpperCAmelCase_ ) if single_mask: return result[0] return result def A_ ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=None ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [targets] try: SCREAMING_SNAKE_CASE__ = self.tokenizer.get_vocab() except Exception: SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = [] for target in targets: SCREAMING_SNAKE_CASE__ = vocab.get(UpperCAmelCase_ , UpperCAmelCase_ ) if id_ is None: SCREAMING_SNAKE_CASE__ = self.tokenizer( UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , max_length=1 , truncation=UpperCAmelCase_ , )['input_ids'] if len(UpperCAmelCase_ ) == 0: logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' 'We cannot replace it with anything meaningful, ignoring it' ) continue SCREAMING_SNAKE_CASE__ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' F'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) SCREAMING_SNAKE_CASE__ = list(set(UpperCAmelCase_ ) ) if len(UpperCAmelCase_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) SCREAMING_SNAKE_CASE__ = np.array(UpperCAmelCase_ ) return target_ids def A_ ( self : List[str] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None ): SCREAMING_SNAKE_CASE__ = {} if targets is not None: SCREAMING_SNAKE_CASE__ = self.get_target_ids(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = target_ids if top_k is not None: SCREAMING_SNAKE_CASE__ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : Tuple , UpperCAmelCase_ : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) == 1: return outputs[0] return outputs
176
1
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( a__ ): """simple docstring""" lowerCAmelCase__ = ["image_processor", "tokenizer"] lowerCAmelCase__ = "AutoImageProcessor" lowerCAmelCase__ = "AutoTokenizer" def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) __SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.image_processor __SCREAMING_SNAKE_CASE = False def __call__( self : Optional[int] , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = kwargs.pop("""images""" , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = kwargs.pop("""text""" , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: __SCREAMING_SNAKE_CASE = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self : Any , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple , *__SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[str] ) -> int: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @contextmanager def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer yield __SCREAMING_SNAKE_CASE = self.image_processor __SCREAMING_SNAKE_CASE = False def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Dict=None ) -> Optional[int]: """simple docstring""" if added_vocab is None: __SCREAMING_SNAKE_CASE = self.tokenizer.get_added_vocab() __SCREAMING_SNAKE_CASE = {} while tokens: __SCREAMING_SNAKE_CASE = re.search(r"""<s_(.*?)>""" , __SCREAMING_SNAKE_CASE , re.IGNORECASE ) if start_token is None: break __SCREAMING_SNAKE_CASE = start_token.group(1 ) __SCREAMING_SNAKE_CASE = re.search(rf'</s_{key}>' , __SCREAMING_SNAKE_CASE , re.IGNORECASE ) __SCREAMING_SNAKE_CASE = start_token.group() if end_token is None: __SCREAMING_SNAKE_CASE = tokens.replace(__SCREAMING_SNAKE_CASE , """""" ) else: __SCREAMING_SNAKE_CASE = end_token.group() __SCREAMING_SNAKE_CASE = re.escape(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = re.escape(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , __SCREAMING_SNAKE_CASE , re.IGNORECASE ) if content is not None: __SCREAMING_SNAKE_CASE = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __SCREAMING_SNAKE_CASE = self.tokenajson(__SCREAMING_SNAKE_CASE , is_inner_value=__SCREAMING_SNAKE_CASE , added_vocab=__SCREAMING_SNAKE_CASE ) if value: if len(__SCREAMING_SNAKE_CASE ) == 1: __SCREAMING_SNAKE_CASE = value[0] __SCREAMING_SNAKE_CASE = value else: # leaf nodes __SCREAMING_SNAKE_CASE = [] for leaf in content.split(r"""<sep/>""" ): __SCREAMING_SNAKE_CASE = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __SCREAMING_SNAKE_CASE = leaf[1:-2] # for categorical special tokens output[key].append(__SCREAMING_SNAKE_CASE ) if len(output[key] ) == 1: __SCREAMING_SNAKE_CASE = output[key][0] __SCREAMING_SNAKE_CASE = tokens[tokens.find(__SCREAMING_SNAKE_CASE ) + len(__SCREAMING_SNAKE_CASE ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__SCREAMING_SNAKE_CASE , added_vocab=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __SCREAMING_SNAKE_CASE , ) return self.image_processor
370
'''simple docstring''' class lowerCAmelCase__ : # Public class to implement a graph """simple docstring""" def __init__( self : Dict , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = row __SCREAMING_SNAKE_CASE = col __SCREAMING_SNAKE_CASE = graph def UpperCAmelCase__ ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : list[list[bool]] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] __SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> int: # And finally, count all islands. """simple docstring""" __SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] __SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) count += 1 return count
331
0
'''simple docstring''' from math import factorial class snake_case : """simple docstring""" def __init__( self : int , __A : List[str] , __A : int ): __UpperCamelCase = real if isinstance(__A , __A ): __UpperCamelCase = [1] * rank else: __UpperCamelCase = rank def __repr__( self : Optional[Any] ): return ( f'''{self.real}+''' f'''{'+'.join(str(__A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _lowerCamelCase ( self : int ): __UpperCamelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __A ) def __add__( self : str , __A : Any ): if not isinstance(__A , __A ): return Dual(self.real + other , self.duals ) __UpperCamelCase = self.duals.copy() __UpperCamelCase = other.duals.copy() if len(__A ) > len(__A ): o_dual.extend([1] * (len(__A ) - len(__A )) ) elif len(__A ) < len(__A ): s_dual.extend([1] * (len(__A ) - len(__A )) ) __UpperCamelCase = [] for i in range(len(__A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __A ) SCREAMING_SNAKE_CASE_ : List[str] =__add__ def __sub__( self : int , __A : List[Any] ): return self + other * -1 def __mul__( self : List[str] , __A : Optional[int] ): if not isinstance(__A , __A ): __UpperCamelCase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __A ) __UpperCamelCase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __A ) SCREAMING_SNAKE_CASE_ : Any =__mul__ def __truediv__( self : Optional[Any] , __A : Optional[int] ): if not isinstance(__A , __A ): __UpperCamelCase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __A ) raise ValueError def __floordiv__( self : str , __A : List[str] ): if not isinstance(__A , __A ): __UpperCamelCase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __A ) raise ValueError def __pow__( self : Optional[int] , __A : Optional[Any] ): if n < 0 or isinstance(__A , __A ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self __UpperCamelCase = self for _ in range(n - 1 ): x *= self return x def lowercase__ ( __lowercase : List[Any] , __lowercase : Tuple , __lowercase : int ) -> Optional[int]: """simple docstring""" if not callable(SCREAMING_SNAKE_CASE__ ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(SCREAMING_SNAKE_CASE__ , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError('differentiate() requires an int as input for order' ) __UpperCamelCase = Dual(SCREAMING_SNAKE_CASE__ , 1 ) __UpperCamelCase = func(SCREAMING_SNAKE_CASE__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() def lowercase__ ( __lowercase : Optional[int] ) -> Tuple: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
53
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __UpperCAmelCase : Any = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False) -> Union[str, Any]: __snake_case , __snake_case: int = create_model( """HTSAT-tiny""" , """roberta""" , SCREAMING_SNAKE_CASE__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=SCREAMING_SNAKE_CASE__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def A__ ( SCREAMING_SNAKE_CASE__) -> Any: __snake_case: Optional[Any] = {} __snake_case: int = r""".*sequential.(\d+).*""" __snake_case: List[str] = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case: Tuple = key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): # replace sequential layers with list __snake_case: Optional[int] = re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).group(1) __snake_case: str = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(SCREAMING_SNAKE_CASE__)//3}.linear.''') elif re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): __snake_case: Any = int(re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__).group(1)) # Because in CLAP they use `nn.Sequential`... __snake_case: Dict = 1 if projecton_layer == 0 else 2 __snake_case: Any = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''') if "audio" and "qkv" in key: # split qkv into query key and value __snake_case: List[str] = value __snake_case: Optional[Any] = mixed_qkv.size(0) // 3 __snake_case: Union[str, Any] = mixed_qkv[:qkv_dim] __snake_case: Dict = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case: int = mixed_qkv[qkv_dim * 2 :] __snake_case: Optional[Any] = query_layer __snake_case: str = key_layer __snake_case: int = value_layer else: __snake_case: Dict = value return model_state_dict def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False) -> Optional[Any]: __snake_case , __snake_case: List[str] = init_clap(SCREAMING_SNAKE_CASE__ , enable_fusion=SCREAMING_SNAKE_CASE__) clap_model.eval() __snake_case: List[str] = clap_model.state_dict() __snake_case: Optional[int] = rename_state_dict(SCREAMING_SNAKE_CASE__) __snake_case: Any = ClapConfig() __snake_case: Dict = enable_fusion __snake_case: List[str] = ClapModel(SCREAMING_SNAKE_CASE__) # ignore the spectrogram embedding layer model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__) model.save_pretrained(SCREAMING_SNAKE_CASE__) transformers_config.save_pretrained(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __UpperCAmelCase : Tuple = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
111
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case ,snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = imread("image_data/lena.jpg", 1) # convert to its negative SCREAMING_SNAKE_CASE__ = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
367
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase__ ( _UpperCamelCase : int = 8 ) -> str: """simple docstring""" snake_case = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" i -= len(_UpperCamelCase ) snake_case = i // 3 snake_case = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) snake_case = ( chars_incl + random(_UpperCamelCase , quotient + remainder ) + random(_UpperCamelCase , _UpperCamelCase ) + random(_UpperCamelCase , _UpperCamelCase ) ) snake_case = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int ) -> str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> Any: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass # Put your code here... def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : int = 8 ) -> bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False snake_case = any(char in ascii_uppercase for char in password ) snake_case = any(char in ascii_lowercase for char in password ) snake_case = any(char in digits for char in password ) snake_case = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase__ ( ) -> Any: """simple docstring""" snake_case = int(input('Please indicate the max length of your password: ' ).strip() ) snake_case = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(_UpperCamelCase ) ) print( 'Alternative Password generated:' , alternative_password_generator(_UpperCamelCase , _UpperCamelCase ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
149
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any],*lowercase_ : Any,**lowercase_ : Union[str, Any] )-> Any: '''simple docstring''' super().__init__(*lowercase_,**lowercase_ ) self.check_model_type(lowercase_ ) def snake_case__ ( self : Dict,lowercase_ : Any=None,lowercase_ : Any=None,lowercase_ : Any=None,**lowercase_ : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ , A__ = {}, {} if padding is not None: A__ = padding if truncation is not None: A__ = truncation if top_k is not None: A__ = top_k return preprocess_params, {}, postprocess_params def __call__( self : Dict,lowercase_ : Union["Image.Image", str],lowercase_ : str = None,**lowercase_ : List[Any] )-> Tuple: '''simple docstring''' if isinstance(lowercase_,(Image.Image, str) ) and isinstance(lowercase_,lowercase_ ): A__ = {'image': image, 'question': question} else: A__ = image A__ = super().__call__(lowercase_,**lowercase_ ) return results def snake_case__ ( self : str,lowercase_ : Any,lowercase_ : int=False,lowercase_ : List[Any]=False )-> Tuple: '''simple docstring''' A__ = load_image(inputs['image'] ) A__ = self.tokenizer( inputs['question'],return_tensors=self.framework,padding=lowercase_,truncation=lowercase_ ) A__ = self.image_processor(images=lowercase_,return_tensors=self.framework ) model_inputs.update(lowercase_ ) return model_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : Union[str, Any] )-> List[str]: '''simple docstring''' A__ = self.model(**lowercase_ ) return model_outputs def snake_case__ ( self : str,lowercase_ : str,lowercase_ : List[Any]=5 )-> int: '''simple docstring''' if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.sigmoid()[0] A__ , A__ = probs.topk(lowercase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_,lowercase_ )]
7
def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ = 0 A__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None A__ = sorted_collection[point] if current_item == item: return point else: if point < left: A__ = left A__ = point elif point > right: A__ = right A__ = point else: if item < current_item: A__ = point - 1 else: A__ = point + 1 return None def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None A__ = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , point + 1 , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys lowercase_ = 0 if debug == 1: lowercase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") lowercase_ = 67 lowercase_ = interpolation_search(collection, target) if result is not None: print(f"""{target} found at positions: {result}""") else: print("Not found")
7
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) __A = logging.getLogger(__name__) def __a ( lowerCAmelCase_ : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_= git.Repo(search_parent_directories=lowerCAmelCase_ ) UpperCAmelCase_= { """repo_id""": str(lowerCAmelCase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase_ ,"""git_log.json""" ) ,"""w""" ) as f: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ,indent=4 ) def __a ( lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if params.n_gpu <= 0: UpperCAmelCase_= 0 UpperCAmelCase_= -1 UpperCAmelCase_= True UpperCAmelCase_= False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase_= int(os.environ["""WORLD_SIZE"""] ) UpperCAmelCase_= int(os.environ["""N_GPU_NODE"""] ) UpperCAmelCase_= int(os.environ["""RANK"""] ) # number of nodes / node ID UpperCAmelCase_= params.world_size // params.n_gpu_per_node UpperCAmelCase_= params.global_rank // params.n_gpu_per_node UpperCAmelCase_= True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase_= 1 UpperCAmelCase_= 0 UpperCAmelCase_= 0 UpperCAmelCase_= 0 UpperCAmelCase_= 1 UpperCAmelCase_= 1 UpperCAmelCase_= False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase_= params.node_id == 0 and params.local_rank == 0 UpperCAmelCase_= params.n_nodes > 1 # summary UpperCAmelCase_= F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" ,backend="""nccl""" ,) def __a ( lowerCAmelCase_ : Dict ) -> Any: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
277
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __A = 16 __A = 32 def __a ( lowerCAmelCase_ : Accelerator ,lowerCAmelCase_ : int = 16 ,lowerCAmelCase_ : str = "bert-base-cased" ) -> Tuple: '''simple docstring''' UpperCAmelCase_= AutoTokenizer.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_= load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(lowerCAmelCase_ : List[Any] ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_= tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_= datasets.map( lowerCAmelCase_ ,batched=lowerCAmelCase_ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_= tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowerCAmelCase_ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ ,padding="""max_length""" ,max_length=1_28 ,return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. UpperCAmelCase_= DataLoader( tokenized_datasets["""train"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) UpperCAmelCase_= DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowerCAmelCase_ ,collate_fn=lowerCAmelCase_ ,batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_= Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_= config["""lr"""] UpperCAmelCase_= int(config["""num_epochs"""] ) UpperCAmelCase_= int(config["""seed"""] ) UpperCAmelCase_= int(config["""batch_size"""] ) UpperCAmelCase_= args.model_name_or_path set_seed(lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_= get_dataloaders(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ ,return_dict=lowerCAmelCase_ ) # Instantiate optimizer UpperCAmelCase_= ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_= optimizer_cls(params=model.parameters() ,lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_= accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase_= 1 UpperCAmelCase_= (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_= get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ ,num_warmup_steps=0 ,num_training_steps=lowerCAmelCase_ ,) else: UpperCAmelCase_= DummyScheduler(lowerCAmelCase_ ,total_num_steps=lowerCAmelCase_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= accelerator.prepare( lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_= 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_= 0 # Now we train the model UpperCAmelCase_= evaluate.load("""glue""" ,"""mrpc""" ) UpperCAmelCase_= 0 UpperCAmelCase_= {} for epoch in range(lowerCAmelCase_ ,lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.loss UpperCAmelCase_= loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCAmelCase_= 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_= model(**lowerCAmelCase_ ) UpperCAmelCase_= outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_, UpperCAmelCase_= accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: UpperCAmelCase_= predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_= references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ ,references=lowerCAmelCase_ ,) UpperCAmelCase_= metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,lowerCAmelCase_ ) UpperCAmelCase_= eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: UpperCAmelCase_= eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(lowerCAmelCase_ ,lowerCAmelCase_ ) def __a ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=lowerCAmelCase_ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=lowerCAmelCase_ ,) parser.add_argument( """--output_dir""" ,type=lowerCAmelCase_ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=lowerCAmelCase_ ,default=lowerCAmelCase_ ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=lowerCAmelCase_ ,default=3 ,help="""Number of train epochs.""" ,) UpperCAmelCase_= parser.parse_args() UpperCAmelCase_= {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ ,lowerCAmelCase_ ) if __name__ == "__main__": main()
277
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=10_00 , ): """simple docstring""" lowercase_ : List[Any] = parent lowercase_ : Dict = batch_size lowercase_ : Any = seq_length lowercase_ : Union[str, Any] = is_training lowercase_ : List[str] = use_input_mask lowercase_ : Tuple = use_token_type_ids lowercase_ : str = use_labels lowercase_ : Optional[int] = vocab_size lowercase_ : Optional[Any] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : Tuple = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : int = type_sequence_label_size lowercase_ : Tuple = initializer_range lowercase_ : List[str] = num_labels lowercase_ : Union[str, Any] = num_choices lowercase_ : Dict = scope lowercase_ : Optional[Any] = range_bbox def _snake_case ( self ): """simple docstring""" lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase_ : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase_ : Any = bbox[i, j, 3] lowercase_ : int = bbox[i, j, 1] lowercase_ : str = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase_ : List[str] = bbox[i, j, 2] lowercase_ : Union[str, Any] = bbox[i, j, 0] lowercase_ : int = t lowercase_ : Tuple = tf.convert_to_tensor(__snake_case ) lowercase_ : str = None if self.use_input_mask: lowercase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None if self.use_token_type_ids: lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : List[Any] = None lowercase_ : Tuple = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Dict = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = TFLayoutLMModel(config=__snake_case ) lowercase_ : List[str] = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) lowercase_ : List[str] = model(__snake_case , __snake_case , token_type_ids=__snake_case ) lowercase_ : str = model(__snake_case , __snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = TFLayoutLMForMaskedLM(config=__snake_case ) lowercase_ : Tuple = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = self.num_labels lowercase_ : Tuple = TFLayoutLMForSequenceClassification(config=__snake_case ) lowercase_ : List[Any] = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = self.num_labels lowercase_ : List[Any] = TFLayoutLMForTokenClassification(config=__snake_case ) lowercase_ : str = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = TFLayoutLMForQuestionAnswering(config=__snake_case ) lowercase_ : Union[str, Any] = model(__snake_case , __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[int] = config_and_inputs lowercase_ : List[str] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase__ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCAmelCase_ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = True lowerCAmelCase_ = 1_0 def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = TFLayoutLMModelTester(self ) lowercase_ : Dict = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _snake_case ( self ): """simple docstring""" lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def _snake_case ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : int = TFLayoutLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def _snake_case ( self ): """simple docstring""" pass def snake_case_ ( ): """simple docstring""" lowercase_ : Optional[int] = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 lowercase_ : Any = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowercase_ : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase_ : Any = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass lowercase_ : str = model(input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) # test the sequence output on [0, :3, :3] lowercase_ : Dict = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowercase_ : Any = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , __snake_case , atol=1E-3 ) ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Any = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass lowercase_ : Optional[Any] = model( input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowercase_ : str = outputs.loss lowercase_ : Tuple = (2,) self.assertEqual(loss.shape , __snake_case ) # test the shape of the logits lowercase_ : Tuple = outputs.logits lowercase_ : List[str] = (2, 2) self.assertEqual(logits.shape , __snake_case ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : int = prepare_layoutlm_batch_inputs() # forward pass lowercase_ : List[Any] = model( input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) # test the shape of the logits lowercase_ : Any = outputs.logits lowercase_ : Optional[int] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , __snake_case ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = prepare_layoutlm_batch_inputs() # forward pass lowercase_ : Any = model(input_ids=__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) # test the shape of the logits lowercase_ : Any = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , __snake_case ) self.assertEqual(outputs.end_logits.shape , __snake_case )
93
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int ): # Construct model if gpta_config_file == "": a__ = GPTaConfig() else: a__ = GPTaConfig.from_json_file(__lowerCAmelCase ) a__ = GPTaModel(__lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model a__ = pytorch_dump_folder_path + '/' + WEIGHTS_NAME a__ = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--gpt2_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) snake_case : Any = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
240
0
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def lowercase__ ( __UpperCamelCase )-> str: return "".join(sorted(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase )-> list[str]: return word_by_signature[signature(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') SCREAMING_SNAKE_CASE__ = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE__ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
183
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Image: def brightness(__UpperCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
183
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowercase : Dict = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_28, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCamelCase ( unittest.TestCase ): @classmethod def __UpperCAmelCase ( cls ): '''simple docstring''' __a : int = TOKEN HfFolder.save_token(__a ) @classmethod def __UpperCAmelCase ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __a : Dict = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id='test-config' , push_to_hub=__a , use_auth_token=self._token ) __a : List[str] = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Any = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __a : List[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id='valid_org/test-config-org' , push_to_hub=__a , use_auth_token=self._token ) __a : List[Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def __UpperCAmelCase ( self ): '''simple docstring''' CustomConfig.register_for_auto_class() __a : str = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __a : Tuple = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __a : Dict = c.n_embd + 1 # int __a : List[str] = c.resid_pdrop + 1.0 # float __a : Optional[int] = not c.scale_attn_weights # bool __a : Union[str, Any] = c.summary_type + 'foo' # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(__a , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__a , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__a , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__a , c.summary_type , 'mismatch for key: summary_type' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = PretrainedConfig() __a : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __a : int = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f""" {", ".join(__a )}.""" ) def __UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __a : List[Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __a : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = mock.Mock() __a : Dict = 500 __a : Any = {} __a : int = HTTPError __a : Tuple = {} # Download this model to make sure it's in the cache. __a : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: __a : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = AutoConfig.from_pretrained('bert-base-cased' ) __a : Optional[Any] = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __a : List[str] = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __a : Optional[int] = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __a : str = ['config.42.0.0.json'] __a : List[Any] = 768 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , 'config.4.0.0.json' ) , os.path.join(__a , 'config.42.0.0.json' ) ) __a : List[str] = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 768 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : int = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __a : Optional[Any] = 'v4.0.0' __a , __a : Any = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __a : Dict = 'v3.0.0' __a : str = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 768 )
27
'''simple docstring''' import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a ( __a ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
97
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __a = logging.get_logger(__name__) class __a( _a ): """simple docstring""" lowerCAmelCase = ['''audio_values''', '''audio_mask'''] def __init__( self ,_SCREAMING_SNAKE_CASE=2_048 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=[16, 16] ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=44_100 ,_SCREAMING_SNAKE_CASE=86 ,_SCREAMING_SNAKE_CASE=2_048 ,_SCREAMING_SNAKE_CASE=0.0 ,**_SCREAMING_SNAKE_CASE ,) -> Tuple: super().__init__( feature_size=_SCREAMING_SNAKE_CASE ,sampling_rate=_SCREAMING_SNAKE_CASE ,padding_value=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : Optional[int] = spectrogram_length UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : List[Any] = patch_size UpperCAmelCase_ : Any = feature_size // self.patch_size[1] UpperCAmelCase_ : Any = n_fft UpperCAmelCase_ : Tuple = sampling_rate // hop_length_to_sampling_rate UpperCAmelCase_ : Optional[Any] = sampling_rate UpperCAmelCase_ : Union[str, Any] = padding_value UpperCAmelCase_ : Tuple = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=_SCREAMING_SNAKE_CASE ,min_frequency=0.0 ,max_frequency=2_20_50.0 ,sampling_rate=_SCREAMING_SNAKE_CASE ,norm='''slaney''' ,mel_scale='''slaney''' ,).T def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> np.ndarray: UpperCAmelCase_ : Union[str, Any] = spectrogram( _SCREAMING_SNAKE_CASE ,window_function(self.n_fft ,'''hann''' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='''dB''' ,db_range=80.0 ,) UpperCAmelCase_ : Union[str, Any] = log_spec[:, :-1] UpperCAmelCase_ : int = log_spec - 20.0 UpperCAmelCase_ : Tuple = np.clip(log_spec / 40.0 ,-2.0 ,0.0 ) + 1.0 return log_spec def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,**_SCREAMING_SNAKE_CASE ,) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' f''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase_ : str = isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase_ : Optional[int] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : str = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ): UpperCAmelCase_ : str = np.asarray(_SCREAMING_SNAKE_CASE ,dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : Any = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis UpperCAmelCase_ : Any = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = [np.asarray(_SCREAMING_SNAKE_CASE ,dtype=np.floataa ) for feature in audio_features] # Create audio attention mask UpperCAmelCase_ : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: UpperCAmelCase_ : Union[str, Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] UpperCAmelCase_ : Tuple = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) # convert into correct format for padding UpperCAmelCase_ : int = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch UpperCAmelCase_ : List[Any] = np.ones([len(_SCREAMING_SNAKE_CASE ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) UpperCAmelCase_ : Any = padded_audio_features * self.padding_value for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : List[str] = audio_features[i] UpperCAmelCase_ : int = feature # return as BatchFeature if return_attention_mask: UpperCAmelCase_ : List[Any] = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: UpperCAmelCase_ : List[Any] = {'''audio_values''': padded_audio_features} UpperCAmelCase_ : Optional[Any] = BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_inputs
235
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
235
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowerCamelCase__ ( A__ : NDArray[floataa] , A__ : NDArray[floataa] , A__ : list[int] , A__ : int , ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = coefficient_matrix.shape __lowerCamelCase, __lowerCamelCase = constant_matrix.shape if rowsa != colsa: __lowerCamelCase = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(A__ ) if colsa != 1: __lowerCamelCase = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(A__ ) if rowsa != rowsa: __lowerCamelCase = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(A__ ) if len(A__ ) != rowsa: __lowerCamelCase = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(A__ )} and {rowsa}' ) raise ValueError(A__ ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) __lowerCamelCase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowerCamelCase, __lowerCamelCase = table.shape strictly_diagonally_dominant(A__ ) # Iterates the whole matrix for given number of times for _ in range(A__ ): __lowerCamelCase = [] for row in range(A__ ): __lowerCamelCase = 0 for col in range(A__ ): if col == row: __lowerCamelCase = table[row][col] elif col == cols - 1: __lowerCamelCase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowerCamelCase = (temp + val) / denom new_val.append(A__ ) __lowerCamelCase = new_val return [float(A__ ) for i in new_val] def lowerCamelCase__ ( A__ : NDArray[floataa] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = table.shape __lowerCamelCase = True for i in range(0 , A__ ): __lowerCamelCase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float ) ->float: '''simple docstring''' if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _SCREAMING_SNAKE_CASE ( _lowercase : float ) ->float: '''simple docstring''' if edge <= 0 or not isinstance(_lowercase , _lowercase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
79
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE ( _lowercase : dict ) ->tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE ( _lowercase : np.ndarray , _lowercase : np.ndarray ) ->XGBClassifier: '''simple docstring''' a : List[Any] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def _SCREAMING_SNAKE_CASE ( ) ->None: '''simple docstring''' a : List[str] = load_iris() a, a : Optional[int] = data_handling(_lowercase ) a, a, a, a : Tuple = train_test_split( _lowercase , _lowercase , test_size=0.25 ) a : List[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data a : Dict = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
79
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[Any] = logging.get_logger(__name__) a__ : Any = "▁" a__ : int = {"vocab_file": "sentencepiece.bpe.model"} a__ : Any = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } a__ : str = { "facebook/xglm-564M": 2_0_4_8, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = ['input_ids', 'attention_mask'] def __init__( self :Tuple , _A :Union[str, Any] , _A :Any="<s>" , _A :int="</s>" , _A :List[str]="</s>" , _A :Optional[Any]="<s>" , _A :Optional[Any]="<unk>" , _A :Optional[int]="<pad>" , _A :Optional[Dict[str, Any]] = None , **_A :Tuple , ) -> None: '''simple docstring''' __A = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __A = 7 __A = [F'<madeupword{i}>' for i in range(self.num_madeup_words )] __A = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __A = 1 # Mimic fairseq token-to-id alignment for the first 4 token __A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __A = len(self.sp_model ) __A = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_A ) __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' __A = self.__dict__.copy() __A = None __A = self.sp_model.serialized_model_proto() return state def __setstate__( self :Dict , _A :Union[str, Any] ) -> List[str]: '''simple docstring''' __A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase_ ( self :Any , _A :List[int] , _A :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __A = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def lowercase_ ( self :int , _A :List[int] , _A :Optional[List[int]] = None , _A :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) def lowercase_ ( self :Optional[int] , _A :List[int] , _A :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __A = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def lowercase_ ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def lowercase_ ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' __A = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self :Dict , _A :str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def lowercase_ ( self :Optional[int] , _A :Any ) -> Optional[int]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __A = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase_ ( self :str , _A :Tuple ) -> List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase_ ( self :Optional[Any] , _A :Dict ) -> List[Any]: '''simple docstring''' __A = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def lowercase_ ( self :Dict , _A :str , _A :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __A = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
161
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Optional[Any] = {"UserAgent": UserAgent().random} def snake_case ( UpperCAmelCase )-> dict: """simple docstring""" __A = script.contents[0] __A = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase__ : def __init__( self :Optional[Any] , _A :Optional[Any] ) -> Optional[Any]: '''simple docstring''' __A = F'https://www.instagram.com/{username}/' __A = self.get_json() def lowercase_ ( self :Union[str, Any] ) -> dict: '''simple docstring''' __A = requests.get(self.url , headers=_A ).text __A = BeautifulSoup(_A , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self :Union[str, Any] ) -> str: '''simple docstring''' return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self :List[Any] ) -> str: '''simple docstring''' return F'{self.fullname} ({self.username}) is {self.biography}' @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def lowercase_ ( self :Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["biography"] @property def lowercase_ ( self :str ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def lowercase_ ( self :int ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowercase_ ( self :List[Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowercase_ ( self :Tuple ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowercase_ ( self :Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowercase_ ( self :Union[str, Any] ) -> bool: '''simple docstring''' return self.user_data["is_private"] def snake_case ( UpperCAmelCase = "github" )-> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __A = InstagramUser(UpperCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
161
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowercase_ : @property def lowerCamelCase_ ( self ): """simple docstring""" return self.get_dummy_input() @property def lowerCamelCase_ ( self ): """simple docstring""" if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCamelCase_ ( self , __UpperCamelCase=True , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , ): """simple docstring""" UpperCamelCase_ = 4 UpperCamelCase_ = 3_2 UpperCamelCase_ = (3_2, 3_2) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = torch.device(__UpperCamelCase ) UpperCamelCase_ = (batch_size, num_channels) + sizes UpperCamelCase_ = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase ) UpperCamelCase_ = {"""hidden_states""": hidden_states} if include_temb: UpperCamelCase_ = 1_2_8 UpperCamelCase_ = randn_tensor((batch_size, temb_channels) , generator=__UpperCamelCase , device=__UpperCamelCase ) if include_res_hidden_states_tuple: UpperCamelCase_ = torch.manual_seed(1 ) UpperCamelCase_ = (randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase ),) if include_encoder_hidden_states: UpperCamelCase_ = floats_tensor((batch_size, 3_2, 3_2) ).to(__UpperCamelCase ) if include_skip_sample: UpperCamelCase_ = randn_tensor(((batch_size, 3) + sizes) , generator=__UpperCamelCase , device=__UpperCamelCase ) return dummy_input def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = { """in_channels""": 3_2, """out_channels""": 3_2, """temb_channels""": 1_2_8, } if self.block_type == "up": UpperCamelCase_ = 3_2 if self.block_type == "mid": init_dict.pop("""out_channels""" ) UpperCamelCase_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self , __UpperCamelCase ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCamelCase_ = self.block_class(**__UpperCamelCase ) unet_block.to(__UpperCamelCase ) unet_block.eval() with torch.no_grad(): UpperCamelCase_ = unet_block(**__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = output[0] self.assertEqual(output.shape , self.output_shape ) UpperCamelCase_ = output[0, -1, -3:, -3:] UpperCamelCase_ = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase ) assert torch_all_close(output_slice.flatten() , __UpperCamelCase , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.prepare_init_args_and_inputs_for_common() UpperCamelCase_ = self.block_class(**__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() UpperCamelCase_ = model(**__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ = output[0] UpperCamelCase_ = torch.device(__UpperCamelCase ) UpperCamelCase_ = randn_tensor(output.shape , device=__UpperCamelCase ) UpperCamelCase_ = torch.nn.functional.mse_loss(__UpperCamelCase , __UpperCamelCase ) loss.backward()
261
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =KandinskyVaaControlnetPipeline lowercase_ : Dict =['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowercase_ : str =['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowercase_ : Dict =[ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowercase_ : str =False @property def A__ ( self): return 3_2 @property def A__ ( self): return 3_2 @property def A__ ( self): return self.time_input_dim @property def A__ ( self): return self.time_input_dim * 4 @property def A__ ( self): return 1_0_0 @property def A__ ( self): torch.manual_seed(0) lowercase = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase = UNetaDConditionModel(**A__) return model @property def A__ ( self): return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def A__ ( self): torch.manual_seed(0) lowercase = VQModel(**self.dummy_movq_kwargs) return model def A__ ( self): lowercase = self.dummy_unet lowercase = self.dummy_movq lowercase = DDIMScheduler( num_train_timesteps=1_0_0_0 ,beta_schedule='''linear''' ,beta_start=0.00085 ,beta_end=0.012 ,clip_sample=A__ ,set_alpha_to_one=A__ ,steps_offset=1 ,prediction_type='''epsilon''' ,thresholding=A__ ,) lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A__ ( self ,A__ ,A__=0): lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(A__)).to(A__) lowercase = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1)).to( A__) # create hint lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(A__)).to(A__) if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def A__ ( self): lowercase = '''cpu''' lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**A__) lowercase = pipe.to(A__) pipe.set_progress_bar_config(disable=A__) lowercase = pipe(**self.get_dummy_inputs(A__)) lowercase = output.images lowercase = pipe( **self.get_dummy_inputs(A__) ,return_dict=A__ ,)[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''') lowercase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''') lowercase = torch.from_numpy(np.array(A__)).float() / 255.0 lowercase = hint.permute(2 ,0 ,1).unsqueeze(0) lowercase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' ,torch_dtype=torch.floataa) pipe_prior.to(A__) lowercase = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' ,torch_dtype=torch.floataa) lowercase = pipeline.to(A__) pipeline.set_progress_bar_config(disable=A__) lowercase = '''A robot, 4k photo''' lowercase = torch.Generator(device='''cuda''').manual_seed(0) lowercase , lowercase = pipe_prior( A__ ,generator=A__ ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() lowercase = torch.Generator(device='''cuda''').manual_seed(0) lowercase = pipeline( image_embeds=A__ ,negative_image_embeds=A__ ,hint=A__ ,generator=A__ ,num_inference_steps=1_0_0 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(A__ ,A__)
101
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ :str = logging.get_logger(__name__) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = '''huggingface/label-files''' lowercase = '''imagenet-1k-id2label.json''' lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = {v: k for k, v in idalabel.items()} lowercase = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase = BitConfig( conv_layer=lowerCAmelCase__ , num_labels=1000 , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ , ) return config def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if "stem.conv" in name: lowercase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: lowercase = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: lowercase = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): lowercase = '''bit.''' + name if "bit" not in name and "classifier" not in name: lowercase = '''bit.encoder.''' + name return name def UpperCamelCase ( ): '''simple docstring''' lowercase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ): '''simple docstring''' lowercase = get_config(lowerCAmelCase__ ) # load original model from timm lowercase = create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ) timm_model.eval() # load state_dict of original model lowercase = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase = state_dict.pop(lowerCAmelCase__ ) lowercase = val.squeeze() if '''head''' in key else val # load HuggingFace model lowercase = BitForImageClassification(lowerCAmelCase__ ) model.eval() model.load_state_dict(lowerCAmelCase__ ) # create image processor lowercase = create_transform(**resolve_data_config({} , model=lowerCAmelCase__ ) ) lowercase = transform.transforms lowercase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase = BitImageProcessor( do_resize=lowerCAmelCase__ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase__ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase = prepare_img() lowercase = transform(lowerCAmelCase__ ).unsqueeze(0 ) lowercase = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) # verify logits with torch.no_grad(): lowercase = model(lowerCAmelCase__ ) lowercase = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase = timm_model(lowerCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase__ , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) lowercase__ :List[str] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
101
1
'''simple docstring''' from collections.abc import Callable import numpy as np def _lowerCamelCase ( lowercase : Callable , lowercase : float , lowercase : float , lowercase : float , lowercase : float ) -> np.array: _a = int(np.ceil((x_end - xa) / step_size ) ) _a = np.zeros((n + 1,) ) _a = ya _a = xa for k in range(lowercase ): _a = y[k] + step_size * ode_func(lowercase , y[k] ) _a = y[k] + ( (step_size / 2) * (ode_func(lowercase , y[k] ) + ode_func(x + step_size , lowercase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import re from filelock import FileLock try: import nltk lowerCAmelCase_ : Optional[int] = True except (ImportError, ModuleNotFoundError): lowerCAmelCase_ : Tuple = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _lowerCamelCase ( lowercase : str ) -> str: re.sub("<n>" , "" , lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowercase ) )
346
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( a_ ): __lowerCAmelCase = (DDPMScheduler,) def __magic_name__ ( self , **_a ): lowercase : str = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**_a ) return config def __magic_name__ ( self ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def __magic_name__ ( self ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def __magic_name__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def __magic_name__ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_a ) def __magic_name__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __magic_name__ ( self ): self.check_over_configs(thresholding=_a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , ) def __magic_name__ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __magic_name__ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=_a ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.scheduler_classes[0] lowercase : Optional[Any] = self.get_scheduler_config() lowercase : str = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def __magic_name__ ( self ): lowercase : Optional[int] = self.scheduler_classes[0] lowercase : Any = self.get_scheduler_config() lowercase : List[str] = scheduler_class(**_a ) lowercase : Optional[int] = len(_a ) lowercase : List[str] = self.dummy_model() lowercase : Any = self.dummy_sample_deter lowercase : str = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : int = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : Optional[int] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : Dict = pred_prev_sample lowercase : Any = torch.sum(torch.abs(_a ) ) lowercase : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def __magic_name__ ( self ): lowercase : int = self.scheduler_classes[0] lowercase : Dict = self.get_scheduler_config(prediction_type="v_prediction" ) lowercase : Dict = scheduler_class(**_a ) lowercase : Optional[int] = len(_a ) lowercase : List[str] = self.dummy_model() lowercase : List[Any] = self.dummy_sample_deter lowercase : int = torch.manual_seed(0 ) for t in reversed(range(_a ) ): # 1. predict noise residual lowercase : int = model(_a , _a ) # 2. predict previous mean of sample x_t-1 lowercase : Any = scheduler.step(_a , _a , _a , generator=_a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase : Tuple = pred_prev_sample lowercase : List[str] = torch.sum(torch.abs(_a ) ) lowercase : List[Any] = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def __magic_name__ ( self ): lowercase : List[Any] = self.scheduler_classes[0] lowercase : List[Any] = self.get_scheduler_config() lowercase : Optional[Any] = scheduler_class(**_a ) lowercase : Any = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_a ) lowercase : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(_a ): if i == len(_a ) - 1: lowercase : Dict = -1 else: lowercase : List[str] = timesteps[i + 1] lowercase : List[Any] = scheduler.previous_timestep(_a ) lowercase : Tuple = prev_t.item() self.assertEqual(_a , _a ) def __magic_name__ ( self ): lowercase : int = self.scheduler_classes[0] lowercase : List[str] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_a ) lowercase : Union[str, Any] = [100, 87, 50, 51, 0] with self.assertRaises(_a , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=_a ) def __magic_name__ ( self ): lowercase : int = self.scheduler_classes[0] lowercase : Optional[int] = self.get_scheduler_config() lowercase : str = scheduler_class(**_a ) lowercase : Optional[Any] = [100, 87, 50, 1, 0] lowercase : List[Any] = len(_a ) with self.assertRaises(_a , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def __magic_name__ ( self ): lowercase : List[str] = self.scheduler_classes[0] lowercase : List[str] = self.get_scheduler_config() lowercase : List[Any] = scheduler_class(**_a ) lowercase : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=_a )
202
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _A : List[Any] = logging.get_logger(__name__) class a__ ( a_ ): __lowerCAmelCase = ["""pixel_values"""] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = True , **_a , ): super().__init__(**_a ) lowercase : Optional[Any] = size if size is not None else {"shortest_edge": 224} lowercase : List[Any] = get_size_dict(_a , default_to_square=_a ) lowercase : str = crop_size if crop_size is not None else {"height": 256, "width": 256} lowercase : List[str] = get_size_dict(_a , param_name="crop_size" ) lowercase : int = do_resize lowercase : Optional[int] = size lowercase : str = resample lowercase : List[Any] = do_rescale lowercase : Union[str, Any] = rescale_factor lowercase : Optional[int] = do_center_crop lowercase : Union[str, Any] = crop_size lowercase : Optional[Any] = do_flip_channel_order def __magic_name__ ( self , _a , _a , _a = PIL.Image.BILINEAR , _a = None , **_a , ): lowercase : List[Any] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase : Union[str, Any] = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a , _a = None , **_a , ): lowercase : str = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a , _a = None , **_a , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a = None ): return flip_channel_order(_a , data_format=_a ) def __magic_name__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase : Tuple = resample if resample is not None else self.resample lowercase : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Optional[int] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_a , default_to_square=_a ) lowercase : int = crop_size if crop_size is not None else self.crop_size lowercase : Any = get_size_dict(_a , param_name="crop_size" ) lowercase : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowercase : Any = [to_numpy_array(_a ) for image in images] if do_resize: lowercase : Optional[int] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: lowercase : str = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: lowercase : Union[str, Any] = [self.rescale(image=_a , scale=_a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase : int = [self.flip_channel_order(image=_a ) for image in images] lowercase : int = [to_channel_dimension_format(_a , _a ) for image in images] lowercase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a ) def __magic_name__ ( self , _a , _a = None ): lowercase : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): lowercase : Tuple = target_sizes.numpy() lowercase : List[Any] = [] for idx in range(len(_a ) ): lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) lowercase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: lowercase : str = logits.argmax(dim=1 ) lowercase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
202
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Optional[int] = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from __future__ import annotations import bisect def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): if hi < 0: __UpperCAmelCase = len(snake_case_ ) while lo < hi: __UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid return lo def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): if hi < 0: __UpperCAmelCase = len(snake_case_ ) while lo < hi: __UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __UpperCAmelCase = mid + 1 else: __UpperCAmelCase = mid return lo def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): sorted_collection.insert(bisect_left(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int = 0 , snake_case_ :int = -1 ): sorted_collection.insert(bisect_right(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) , snake_case_ ) def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = 0 __UpperCAmelCase = len(snake_case_ ) - 1 while left <= right: __UpperCAmelCase = left + (right - left) // 2 __UpperCAmelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __UpperCAmelCase = midpoint - 1 else: __UpperCAmelCase = midpoint + 1 return None def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = bisect.bisect_left(snake_case_ , snake_case_ ) if index != len(snake_case_ ) and sorted_collection[index] == item: return index return None def lowercase__ ( snake_case_ :list[int] , snake_case_ :int , snake_case_ :int , snake_case_ :int ): if right < left: return None __UpperCAmelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(snake_case_ , snake_case_ , snake_case_ , midpoint - 1 ) else: return binary_search_by_recursion(snake_case_ , snake_case_ , midpoint + 1 , snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = input('Enter numbers separated by comma:\n').strip() _lowercase : Optional[int] = sorted(int(item) for item in user_input.split(',')) _lowercase : Optional[Any] = int(input('Enter a single number to be found in the list:\n')) _lowercase : int = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
86
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCAmelCase ( a_ , a_ , a_ ) -> str: """simple docstring""" A_ : Dict = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") A_ : Dict = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(A_ ): os.makedirs(A_ ) A_ : Optional[Any] = model.state_dict() def to_tf_var_name(a_ ): for patt, repl in iter(A_ ): A_ : Optional[Any] = name.replace(A_ , A_ ) return F"bert/{name}" def create_tf_var(a_ , a_ , a_ ): A_ : Any = tf.dtypes.as_dtype(tensor.dtype ) A_ : int = tf.get_variable(dtype=A_ , shape=tensor.shape , name=A_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(A_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A_ : List[Any] = to_tf_var_name(A_ ) A_ : List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A_ : List[Any] = torch_tensor.T A_ : int = create_tf_var(tensor=A_ , name=A_ , session=A_ ) tf.keras.backend.set_value(A_ , A_ ) A_ : Optional[Any] = session.run(A_ ) print(F"Successfully created {tf_name}: {np.allclose(A_ , A_ )}" ) A_ : Tuple = tf.train.Saver(tf.trainable_variables() ) saver.save(A_ , os.path.join(A_ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def UpperCAmelCase ( a_=None ) -> List[str]: """simple docstring""" A_ : Tuple = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=A_ , required=A_ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=A_ , default=A_ , required=A_ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=A_ , required=A_ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=A_ , required=A_ , help="""Directory in which to save tensorflow model""" ) A_ : Any = parser.parse_args(A_ ) A_ : List[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=A_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
344
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib A__: Optional[int] = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } A__: int = logging.WARNING def lowerCAmelCase_ ( ): UpperCamelCase__: Optional[int] = os.getenv("DATASETS_VERBOSITY" ,A_) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option DATASETS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys()) }") return _default_log_level def lowerCAmelCase_ ( ): return __name__.split(".")[0] def lowerCAmelCase_ ( ): return logging.getLogger(_get_library_name()) def lowerCAmelCase_ ( ): # Apply our default configuration to the library root logger. UpperCamelCase__: Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level()) def lowerCAmelCase_ ( ): UpperCamelCase__: Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET) def lowerCAmelCase_ ( A_ = None): if name is None: UpperCamelCase__: Optional[Any] = _get_library_name() return logging.getLogger(A_) def lowerCAmelCase_ ( ): return _get_library_root_logger().getEffectiveLevel() def lowerCAmelCase_ ( A_): _get_library_root_logger().setLevel(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): return set_verbosity(A_) def lowerCAmelCase_ ( ): UpperCamelCase__: List[Any] = False def lowerCAmelCase_ ( ): UpperCamelCase__: List[str] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _a : """simple docstring""" def __init__( self: int , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ): # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase__: int = args[0] if args else None def __iter__( self: Optional[Any] ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self: Dict , __lowerCamelCase: Any ): '''simple docstring''' def empty_fn(*__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: str ): '''simple docstring''' return self def __exit__( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] ): '''simple docstring''' return A__: Tuple = True class _a : """simple docstring""" def __call__( self: Any , *__lowerCamelCase: List[str] , __lowerCamelCase: List[Any]=False , **__lowerCamelCase: Union[str, Any] ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase ) else: return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: List[str] , *__lowerCamelCase: List[str] , **__lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[int] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() A__: Optional[Any] = _tqdm_cls() def lowerCAmelCase_ ( ): global _tqdm_active return bool(_tqdm_active) def lowerCAmelCase_ ( ): global _tqdm_active UpperCamelCase__: int = True def lowerCAmelCase_ ( ): global _tqdm_active UpperCamelCase__: str = False
149
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } __UpperCamelCase : Tuple = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE : List[Any] = "lm_head" SCREAMING_SNAKE_CASE : List[str] = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: SCREAMING_SNAKE_CASE : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : str = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Optional[int] = value else: SCREAMING_SNAKE_CASE : int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : int = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Optional[Any] = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : List[Any] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : List[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Optional[int] = name.split(__lowerCamelCase )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : Optional[int] = mapped_key.replace('''*''' , __lowerCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE : str = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE : List[Any] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE : Tuple = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : str = "weight" else: SCREAMING_SNAKE_CASE : Union[str, Any] = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : int = name.split('''.''' ) SCREAMING_SNAKE_CASE : Any = int(items[0] ) SCREAMING_SNAKE_CASE : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True ): if config_path is not None: SCREAMING_SNAKE_CASE : int = UniSpeechConfig.from_pretrained(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Union[str, Any] = Dictionary.load_from_json(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : Any = target_dict.pad_index SCREAMING_SNAKE_CASE : List[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE : List[str] = target_dict.eos_index SCREAMING_SNAKE_CASE : List[str] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(__lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : str = 42 SCREAMING_SNAKE_CASE : int = 43 with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = WavaVecaPhonemeCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = UniSpeechForCTC(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = UniSpeechForPreTraining(__lowerCamelCase ) if is_finetuned: SCREAMING_SNAKE_CASE : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: SCREAMING_SNAKE_CASE : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_unispeech.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
360
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def A ( *_lowercase ): with open(_lowercase , '''r''' ) as fh: fcntl.flock(_lowercase , fcntl.LOCK_EX ) try: print(*_lowercase ) finally: fcntl.flock(_lowercase , fcntl.LOCK_UN ) __UpperCamelCase : Union[str, Any] = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) __UpperCamelCase : Any = torch.device('cuda', local_rank) __UpperCamelCase : Union[str, Any] = socket.gethostname() __UpperCamelCase : Tuple = f"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCamelCase : List[Any] = dist.get_rank() __UpperCamelCase : List[Any] = dist.get_world_size() printflock(f"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(f"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(f"""{gpu} is broken""") raise
258
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ = 100 ) -> int: _a : List[str] = (n * (n + 1) // 2) ** 2 _a : str = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { '''configuration_bigbird_pegasus''': [ '''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BigBirdPegasusConfig''', '''BigBirdPegasusOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BigBirdPegasusForCausalLM''', '''BigBirdPegasusForConditionalGeneration''', '''BigBirdPegasusForQuestionAnswering''', '''BigBirdPegasusForSequenceClassification''', '''BigBirdPegasusModel''', '''BigBirdPegasusPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class lowercase_ ( __snake_case ): def UpperCamelCase ( self ): _snake_case : Any = tempfile.mkdtemp() _snake_case : List[Any] = 5 # Realm tok _snake_case : Dict = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _snake_case : List[Any] = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) _snake_case : str = os.path.join(lowercase_ , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _snake_case : Dict = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) def UpperCamelCase ( self ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): _snake_case : Tuple = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase ( self ): _snake_case : Dict = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def UpperCamelCase ( self ): _snake_case : Tuple = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=lowercase_ , ) return block_records def UpperCamelCase ( self ): _snake_case : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.get_config() _snake_case : List[Any] = self.get_dummy_retriever() _snake_case : Any = retriever.tokenizer _snake_case : Optional[int] = np.array([0, 3] , dtype="long" ) _snake_case : Optional[Any] = tokenizer(["Test question"] ).input_ids _snake_case : Any = tokenizer( ["the fourth"] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids _snake_case : List[Any] = config.reader_seq_len _snake_case ,_snake_case ,_snake_case ,_snake_case : Any = retriever( lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors="np" ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(len(lowercase_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.get_config() _snake_case : Union[str, Any] = self.get_dummy_retriever() _snake_case : Tuple = retriever.tokenizer _snake_case : Union[str, Any] = np.array([0, 3, 5] , dtype="long" ) _snake_case : Optional[Any] = tokenizer(["Test question"] ).input_ids _snake_case : Optional[Any] = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , ).input_ids _snake_case : List[str] = config.reader_seq_len _snake_case ,_snake_case ,_snake_case ,_snake_case : Optional[Any] = retriever( lowercase_ , lowercase_ , answer_ids=lowercase_ , max_length=lowercase_ , return_tensors="np" ) self.assertEqual([False, True, True] , lowercase_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowercase_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowercase_ ) def UpperCamelCase ( self ): _snake_case : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _snake_case : Optional[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _snake_case : Any = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _snake_case : List[Any] = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
284
import os import pytest from attr import dataclass __SCREAMING_SNAKE_CASE : int = 'us-east-1' # defaults region @dataclass class lowercase_ : _lowerCamelCase = 42 _lowerCamelCase = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _lowerCamelCase = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } _lowerCamelCase = {**hyperparameters, 'max_steps': 1_000} @property def UpperCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def UpperCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def UpperCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
284
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } lowerCAmelCase_ = { '''camembert-base''': 5_12, } lowerCAmelCase_ = '''▁''' class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Dict="<s>" , _UpperCamelCase : str="</s>" , _UpperCamelCase : Dict="</s>" , _UpperCamelCase : List[Any]="<s>" , _UpperCamelCase : Optional[Any]="<unk>" , _UpperCamelCase : List[str]="<pad>" , _UpperCamelCase : Dict="<mask>" , _UpperCamelCase : List[str]=["<s>NOTUSED", "</s>NOTUSED"] , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , cls_token=_UpperCamelCase , pad_token=_UpperCamelCase , mask_token=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCamelCase ) ) snake_case_ = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> snake_case_ = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} snake_case_ = len(self.fairseq_tokens_to_ids ) snake_case_ = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case__( self : Dict , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case__( self : str , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1, 1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : Any , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case__( self : Any ) ->Union[str, Any]: return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case__( self : Tuple , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : List[str] , _UpperCamelCase : int ) ->Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_UpperCamelCase ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_UpperCamelCase ) def snake_case__( self : List[Any] , _UpperCamelCase : Tuple ) ->Any: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case__( self : Any , _UpperCamelCase : str ) ->Any: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def __getstate__( self : List[Any] ) ->str: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : int , _UpperCamelCase : str ) ->str: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Dict , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
8
"""simple docstring""" import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _SCREAMING_SNAKE_CASE : Tuple = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize _SCREAMING_SNAKE_CASE : Tuple = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' _SCREAMING_SNAKE_CASE : int = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' _SCREAMING_SNAKE_CASE : List[Any] = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase ( self : List[str] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any]=0.9 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.5 ) -> int: if NLTK_VERSION >= version.Version('3.6.5' ): lowerCamelCase_ = [ meteor_score.single_meteor_score( word_tokenize(__SCREAMING_SNAKE_CASE ) , word_tokenize(__SCREAMING_SNAKE_CASE ) , alpha=__SCREAMING_SNAKE_CASE , beta=__SCREAMING_SNAKE_CASE , gamma=__SCREAMING_SNAKE_CASE ) for ref, pred in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] else: lowerCamelCase_ = [ meteor_score.single_meteor_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , alpha=__SCREAMING_SNAKE_CASE , beta=__SCREAMING_SNAKE_CASE , gamma=__SCREAMING_SNAKE_CASE ) for ref, pred in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] return {"meteor": np.mean(__SCREAMING_SNAKE_CASE )}
183
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "vision-encoder-decoder" a = True def __init__( self : Optional[Any] , **__lowerCamelCase : Union[str, Any] ) -> int: super().__init__(**__lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''encoder''' ) SCREAMING_SNAKE_CASE__ = encoder_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''decoder''' ) SCREAMING_SNAKE_CASE__ = decoder_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = True @classmethod def lowercase_ ( cls : Union[str, Any] , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : Optional[int] ) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCamelCase ) def lowercase_ ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output class UpperCAmelCase__ ( A__ ): """simple docstring""" a = version.parse("1.11" ) @property def lowercase_ ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase_ ( self : List[str] ) -> float: return 1e-4 @property def lowercase_ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} SCREAMING_SNAKE_CASE__ = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def lowercase_ ( self : List[Any] , __lowerCamelCase : "PreTrainedTokenizerBase" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = dummy_input['''input_ids'''].shape SCREAMING_SNAKE_CASE__ = (batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE__ = dummy_input.pop('''input_ids''' ) SCREAMING_SNAKE_CASE__ = dummy_input.pop('''attention_mask''' ) SCREAMING_SNAKE_CASE__ = torch.zeros(__lowerCamelCase ) return common_inputs class UpperCAmelCase__ ( A__ ): """simple docstring""" @property def lowercase_ ( self : Any ) -> None: pass def lowercase_ ( self : Optional[Any] , __lowerCamelCase : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : str = "default" ) -> OnnxConfig: SCREAMING_SNAKE_CASE__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCamelCase , __lowerCamelCase )
218
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "vivit" def __init__( self : str , __lowerCamelCase : List[Any]=224 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Tuple=[2, 16, 16] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Any="gelu_fast" , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.02 , __lowerCamelCase : Any=1e-06 , __lowerCamelCase : Dict=True , **__lowerCamelCase : Any , ) -> List[str]: SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_frames SCREAMING_SNAKE_CASE__ = tubelet_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = qkv_bias super().__init__(**__lowerCamelCase )
218
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __UpperCAmelCase ( __a : Dict ,__a : Optional[int] ) -> int: """simple docstring""" _a : Tuple = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' _a : Optional[int] = Image.open(requests.get(__a ,stream=__a ).raw ).convert('''RGB''' ) _a : List[Any] = transforms.Compose( [ transforms.Resize((image_size, image_size) ,interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) ,(0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) _a : Tuple = transform(__a ).unsqueeze(0 ).to(__a ) return image def __UpperCAmelCase ( __a : Any ) -> Optional[Any]: """simple docstring""" if "visual_encoder" in key: _a : Dict = re.sub('''visual_encoder*''' ,'''vision_model.encoder''' ,__a ) if "blocks" in key: _a : Dict = re.sub(R'''blocks''' ,'''layers''' ,__a ) if "attn" in key: _a : int = re.sub(R'''attn''' ,'''self_attn''' ,__a ) if "norm1" in key: _a : Tuple = re.sub(R'''norm1''' ,'''layer_norm1''' ,__a ) if "norm2" in key: _a : List[str] = re.sub(R'''norm2''' ,'''layer_norm2''' ,__a ) if "encoder.norm" in key: _a : List[Any] = re.sub(R'''encoder.norm''' ,'''post_layernorm''' ,__a ) if "encoder.patch_embed.proj" in key: _a : List[Any] = re.sub(R'''encoder.patch_embed.proj''' ,'''embeddings.patch_embedding''' ,__a ) if "encoder.pos_embed" in key: _a : Union[str, Any] = re.sub(R'''encoder.pos_embed''' ,'''embeddings.position_embedding''' ,__a ) if "encoder.cls_token" in key: _a : Union[str, Any] = re.sub(R'''encoder.cls_token''' ,'''embeddings.class_embedding''' ,__a ) if "self_attn" in key: _a : int = re.sub(R'''self_attn.proj''' ,'''self_attn.projection''' ,__a ) return key @torch.no_grad() def __UpperCAmelCase ( __a : Tuple ,__a : Optional[Any]=None ) -> List[Any]: """simple docstring""" if config_path is not None: _a : List[str] = BlipConfig.from_pretrained(__a ) else: _a : Optional[Any] = BlipConfig(projection_dim=512 ,text_config={} ,vision_config={} ) _a : Union[str, Any] = BlipForConditionalGeneration(__a ).eval() _a : Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' _a : Union[str, Any] = blip_decoder(pretrained=__a ,image_size=384 ,vit='''base''' ) _a : List[Any] = pt_model.eval() _a : List[Any] = pt_model.state_dict() for key in modified_state_dict.copy(): _a : List[str] = modified_state_dict.pop(__a ) _a : List[Any] = rename_key(__a ) _a : Union[str, Any] = value hf_model.load_state_dict(__a ) _a : Optional[Any] = 384 _a : int = load_demo_image(image_size=__a ,device='''cpu''' ) _a : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _a : List[Any] = tokenizer(['''a picture of'''] ).input_ids _a : Tuple = hf_model.generate(__a ,__a ) assert out[0].tolist() == [30_522, 1_037, 3_861, 1_997, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] _a : str = hf_model.generate(__a ) assert out[0].tolist() == [30_522, 1_037, 2_450, 3_564, 2_006, 1_996, 3_509, 2_007, 2_014, 3_899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__a ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _a : int = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) _a : Optional[int] = blip_vqa(pretrained=__a ,image_size=__a ,vit='''base''' ) vqa_model.eval() _a : List[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): _a : Optional[Any] = modified_state_dict.pop(__a ) _a : Any = rename_key(__a ) _a : Dict = value _a : Union[str, Any] = BlipForQuestionAnswering(__a ) hf_vqa_model.load_state_dict(__a ) _a : Union[str, Any] = ['''How many dogs are in this image?'''] _a : List[Any] = tokenizer(__a ,return_tensors='''pt''' ).input_ids _a : Union[str, Any] = hf_vqa_model.generate(__a ,__a ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) _a : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' _a : str = blip_itm(pretrained=__a ,image_size=__a ,vit='''base''' ) itm_model.eval() _a : Dict = itm_model.state_dict() for key in modified_state_dict.copy(): _a : Optional[Any] = modified_state_dict.pop(__a ) _a : Any = rename_key(__a ) _a : Any = value _a : Tuple = BlipForImageTextRetrieval(__a ) _a : List[Any] = ['''A picture of a woman with a dog sitting in a beach'''] _a : int = tokenizer( __a ,return_tensors='''pt''' ,padding='''max_length''' ,truncation=__a ,max_length=35 ,).input_ids hf_itm_model.load_state_dict(__a ) hf_itm_model.eval() _a : Tuple = hf_itm_model(__a ,__a ,use_itm_head=__a ) _a : Optional[Any] = hf_itm_model(__a ,__a ,use_itm_head=__a ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] ,dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
235
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
235
1
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar UpperCAmelCase = TypeVar('_T') class __snake_case( Generic[_T] ): '''simple docstring''' def __init__( self , A_ = None ) -> None: lowerCAmelCase = list(iterable or [] ) lowerCAmelCase = [] def __len__( self ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self ) -> str: return f'Queue({tuple(self._stacka[::-1] + self._stacka )})' def __snake_case ( self , A_ ) -> None: self._stacka.append(A_ ) def __snake_case ( self ) -> _T: lowerCAmelCase = self._stacka.pop lowerCAmelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
187
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> List[str]: lowerCAmelCase = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) lowerCAmelCase = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(A_ ) from datasets import load_dataset lowerCAmelCase = load_dataset("""nielsr/rvlcdip-demo""" ) lowerCAmelCase = dataset["""train"""][0]["""image"""].convert("""RGB""" ) lowerCAmelCase = image_processor(A_ , return_tensors="""pt""" ).to(A_ ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**A_ ) lowerCAmelCase = outputs.logits lowerCAmelCase = torch.Size((1, 16) ) self.assertEqual(logits.shape , A_ ) lowerCAmelCase = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=A_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) )
187
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''donut-swin''' snake_case__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Optional[Any] , __UpperCamelCase : List[Any]=224 , __UpperCamelCase : int=4 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : List[str]=96 , __UpperCamelCase : Optional[Any]=[2, 2, 6, 2] , __UpperCamelCase : Optional[int]=[3, 6, 12, 24] , __UpperCamelCase : str=7 , __UpperCamelCase : Any=4.0 , __UpperCamelCase : Any=True , __UpperCamelCase : int=0.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Optional[int]=0.0_2 , __UpperCamelCase : List[str]=1E-5 , **__UpperCamelCase : List[Any] , ) -> List[str]: super().__init__(**__UpperCamelCase ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(__UpperCamelCase ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(__UpperCamelCase ) - 1) )
256
"""simple docstring""" import logging from transformers import PretrainedConfig UpperCAmelCase = logging.getLogger(__name__) UpperCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase_ ( _lowercase): snake_case__ = '''bertabs''' def __init__( self : Optional[Any] , __UpperCamelCase : List[Any]=3_0522 , __UpperCamelCase : Any=512 , __UpperCamelCase : int=6 , __UpperCamelCase : Optional[Any]=512 , __UpperCamelCase : Any=8 , __UpperCamelCase : int=512 , __UpperCamelCase : str=0.2 , __UpperCamelCase : List[str]=6 , __UpperCamelCase : Optional[Any]=768 , __UpperCamelCase : Union[str, Any]=8 , __UpperCamelCase : Optional[Any]=2048 , __UpperCamelCase : str=0.2 , **__UpperCamelCase : List[Any] , ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) _UpperCamelCase = vocab_size _UpperCamelCase = max_pos _UpperCamelCase = enc_layers _UpperCamelCase = enc_hidden_size _UpperCamelCase = enc_heads _UpperCamelCase = enc_ff_size _UpperCamelCase = enc_dropout _UpperCamelCase = dec_layers _UpperCamelCase = dec_hidden_size _UpperCamelCase = dec_heads _UpperCamelCase = dec_ff_size _UpperCamelCase = dec_dropout
256
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase , **__UpperCAmelCase ): requires_backends(lowercase__ , ["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) class UpperCamelCase ( metaclass=_A ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["torch"] def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(self ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] ) @classmethod def lowerCamelCase__ ( cls ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): requires_backends(cls ,["""torch"""] )
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : str ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =1 SCREAMING_SNAKE_CASE_: List[Any] =3 SCREAMING_SNAKE_CASE_: List[str] =(32, 32) SCREAMING_SNAKE_CASE_: Tuple =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase ) return image @property def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Tuple =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase ) @property def lowerCamelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' def extract(*lowerCAmelCase : List[Any] , **lowerCAmelCase : List[str] ): class a : def __init__( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =torch.ones([0] ) def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Any: '''simple docstring''' self.pixel_values.to(lowerCAmelCase ) return self return Out() return extract def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: Dict =self.dummy_cond_unet SCREAMING_SNAKE_CASE_: str =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] =self.dummy_vae SCREAMING_SNAKE_CASE_: Dict =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Tuple =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_: int =StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_: int =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Dict =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE_: str =output.images SCREAMING_SNAKE_CASE_: Any =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Dict =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_: Tuple =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Dict =np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: int =self.dummy_cond_unet SCREAMING_SNAKE_CASE_: Tuple =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.dummy_vae SCREAMING_SNAKE_CASE_: List[Any] =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Dict =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_: str =StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_: Dict =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Optional[int] =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Any =sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE_: Any =output.images SCREAMING_SNAKE_CASE_: List[str] =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_: Dict =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: int =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: List[str] =np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert isinstance(pipe.scheduler , lowerCAmelCase ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_: str =pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_: Optional[int] =pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.dummy_cond_unet SCREAMING_SNAKE_CASE_: Tuple =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.dummy_vae SCREAMING_SNAKE_CASE_: str =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: int =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 SCREAMING_SNAKE_CASE_: Optional[Any] =unet.half() SCREAMING_SNAKE_CASE_: Union[str, Any] =vae.half() SCREAMING_SNAKE_CASE_: str =bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_: str =StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_: int =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: str =sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_: Optional[Any] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) SCREAMING_SNAKE_CASE_: Optional[int] =40_0366_0346 SCREAMING_SNAKE_CASE_: Any =7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE_: Dict =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_: Optional[int] =output.images SCREAMING_SNAKE_CASE_: Tuple =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[str] =[0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE_: int =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_: Optional[Any] =output.images SCREAMING_SNAKE_CASE_: Any =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Union[str, Any] =[0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""padme amidala taking a bath artwork, safe for work, no nudity""" SCREAMING_SNAKE_CASE_: Dict =27_3497_1755 SCREAMING_SNAKE_CASE_: Any =7 SCREAMING_SNAKE_CASE_: int =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_: Optional[Any] =output.images SCREAMING_SNAKE_CASE_: Dict =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[str] =[0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE_: List[str] =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_: Tuple =output.images SCREAMING_SNAKE_CASE_: Optional[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: int =[0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) SCREAMING_SNAKE_CASE_: Any =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) SCREAMING_SNAKE_CASE_: Dict =10_4435_5234 SCREAMING_SNAKE_CASE_: Any =12 SCREAMING_SNAKE_CASE_: str =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_: Dict =output.images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Any =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_: Optional[Any] =output.images SCREAMING_SNAKE_CASE_: List[str] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Union[str, Any] =np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
173
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE_: Optional[int] =str(bin(lowercase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_: Any =str(bin(lowercase ) )[2:] SCREAMING_SNAKE_CASE_: Dict =max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
173
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : int , _snake_case : Union[str, Any] ): lowerCAmelCase : Optional[int] = multiprocessing.Manager() lowerCAmelCase : Tuple = manager.list() lowerCAmelCase : List[Any] = multiprocessing.Process(target=a__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _snake_case ( _snake_case : Any , _snake_case : int , _snake_case : Any ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowerCAmelCase : List[str] = shutil.rmtree lowerCAmelCase : Union[str, Any] = os.rmdir lowerCAmelCase : Tuple = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowerCAmelCase : List[Any] = {} with swallow_io(): with time_limit(a__ ): exec(a__ , a__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. lowerCAmelCase : int = rmtree lowerCAmelCase : Dict = rmdir lowerCAmelCase : Tuple = chdir @contextlib.contextmanager def _snake_case ( _snake_case : str ): def signal_handler(_snake_case : Any , _snake_case : int ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , a__ ) signal.signal(signal.SIGALRM , a__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _snake_case ( ): lowerCAmelCase : Tuple = WriteOnlyStringIO() with contextlib.redirect_stdout(a__ ): with contextlib.redirect_stderr(a__ ): with redirect_stdin(a__ ): yield @contextlib.contextmanager def _snake_case ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(a__ ): yield dirname class snake_case_( a__ ): pass class snake_case_( io.StringIO ): def lowerCamelCase__ ( self : Optional[int] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Dict ): raise OSError def lowerCamelCase__ ( self : str , *UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[Any] ): raise OSError def lowerCamelCase__ ( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Optional[Any] ): raise OSError def lowerCamelCase__ ( self : Optional[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ): return False class snake_case_( contextlib._RedirectStream ): # type: ignore __UpperCamelCase = '''stdin''' @contextlib.contextmanager def _snake_case ( _snake_case : List[Any] ): if root == ".": yield return lowerCAmelCase : Dict = os.getcwd() os.chdir(a__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(a__ ) def _snake_case ( _snake_case : List[str]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowerCAmelCase : List[Any] = None lowerCAmelCase : Dict = None import os lowerCAmelCase : Dict = '''1''' lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : int = None lowerCAmelCase : Any = None lowerCAmelCase : Any = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None lowerCAmelCase : List[str] = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : int = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = None lowerCAmelCase : Dict = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : Any = None lowerCAmelCase : int = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = None lowerCAmelCase : Dict = None import shutil lowerCAmelCase : Tuple = None lowerCAmelCase : Optional[Any] = None lowerCAmelCase : str = None import subprocess lowerCAmelCase : Dict = None # type: ignore lowerCAmelCase : List[str] = None import sys lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Dict = None lowerCAmelCase : str = None lowerCAmelCase : Dict = None lowerCAmelCase : List[str] = None
369
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path snake_case__ : Union[str, Any] = '''src/transformers''' # Matches is_xxx_available() snake_case__ : int = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case__ : List[str] = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case__ : List[str] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case__ : Optional[Any] = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case__ : Union[str, Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case__ : Any = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case__ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case__ : Optional[Any] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case__ : Optional[Any] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case__ : Dict = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case__ : int = re.compile(R'''^\s*else:''') def _snake_case ( _snake_case : Optional[Any] ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def _snake_case ( _snake_case : Optional[Any] ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : Tuple = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[str] = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : str = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Dict = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase : Tuple = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : str = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : str = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : Dict = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : Any = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase : Any = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _snake_case ( _snake_case : Dict , _snake_case : Optional[Any] ): def find_duplicates(_snake_case : Tuple ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Any = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) lowerCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Tuple = '''base imports''' if key == '''none''' else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _snake_case ( ): lowerCAmelCase : int = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : List[Any] = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase : List[Any] = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Tuple = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def _snake_case ( ): lowerCAmelCase : Optional[Any] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase : Dict = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Optional[Any] = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : Any = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules snake_case__ : str = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _snake_case ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Any = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Any = spec.loader.load_module() lowerCAmelCase : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase : Dict = '''\n'''.join(f'''- {module}''' for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f'''{list_of_modules}\n''' '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
314
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : List[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=8 ) -> Any: snake_case : Optional[int] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 snake_case : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( text_encoder=A , tokenizer=A , unet=A , scheduler=A , movq=A , ) snake_case : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , A , A , A , A , A , A ) -> Optional[Any]: if latents is None: snake_case : Optional[int] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) snake_case : Optional[Any] = latents.to(A ) snake_case : Optional[int] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self , A , A , A , A , A=None , ) -> Dict: snake_case : int = len(A ) if isinstance(A , A ) else 1 # get prompt text embeddings snake_case : Dict = self.tokenizer( A , padding="""max_length""" , truncation=A , max_length=7_7 , return_attention_mask=A , add_special_tokens=A , return_tensors="""pt""" , ) snake_case : Dict = text_inputs.input_ids snake_case : List[str] = self.tokenizer(A , padding="""longest""" , return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A , A ): snake_case : Dict = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) snake_case : Optional[int] = text_input_ids.to(A ) snake_case : List[str] = text_inputs.attention_mask.to(A ) snake_case , snake_case : int = self.text_encoder( input_ids=A , attention_mask=A ) snake_case : Optional[int] = prompt_embeds.repeat_interleave(A , dim=0 ) snake_case : Tuple = text_encoder_hidden_states.repeat_interleave(A , dim=0 ) snake_case : List[str] = text_mask.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: snake_case : List[str] if negative_prompt is None: snake_case : Tuple = [""""""] * batch_size elif type(A ) is not type(A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(A )} !=""" f""" {type(A )}.""" ) elif isinstance(A , A ): snake_case : str = [negative_prompt] elif batch_size != len(A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: snake_case : Any = negative_prompt snake_case : Optional[Any] = self.tokenizer( A , padding="""max_length""" , max_length=7_7 , truncation=A , return_attention_mask=A , add_special_tokens=A , return_tensors="""pt""" , ) snake_case : List[str] = uncond_input.input_ids.to(A ) snake_case : Dict = uncond_input.attention_mask.to(A ) snake_case , snake_case : Any = self.text_encoder( input_ids=A , attention_mask=A ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case : int = negative_prompt_embeds.shape[1] snake_case : Optional[int] = negative_prompt_embeds.repeat(1 , A ) snake_case : str = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A ) snake_case : Optional[int] = uncond_text_encoder_hidden_states.shape[1] snake_case : Any = uncond_text_encoder_hidden_states.repeat(1 , A , 1 ) snake_case : Union[str, Any] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A , -1 ) snake_case : Optional[int] = uncond_text_mask.repeat_interleave(A , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) snake_case : List[str] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) snake_case : Tuple = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCAmelCase ( self , A=0 ) -> Union[str, Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) snake_case : str = torch.device(f"""cuda:{gpu_id}""" ) snake_case : Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) def UpperCAmelCase ( self , A=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) snake_case : Union[str, Any] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=A ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: snake_case , snake_case : Optional[int] = cpu_offload_with_hook(A , A , prev_module_hook=A ) if self.safety_checker is not None: snake_case , snake_case : Optional[Any] = cpu_offload_with_hook(self.safety_checker , A , prev_module_hook=A ) # We'll offload the last model manually. snake_case : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ) -> List[Any]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A , A , A = None , A = 5_1_2 , A = 5_1_2 , A = 1_0_0 , A = 4.0 , A = 1 , A = None , A = None , A = "pil" , A = True , ) -> Tuple: if isinstance(A , A ): snake_case : Tuple = 1 elif isinstance(A , A ): snake_case : Tuple = len(A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(A )}""" ) snake_case : Any = self._execution_device snake_case : List[str] = batch_size * num_images_per_prompt snake_case : Optional[int] = guidance_scale > 1.0 snake_case , snake_case , snake_case : str = self._encode_prompt( A , A , A , A , A ) if isinstance(A , A ): snake_case : List[Any] = torch.cat(A , dim=0 ) if isinstance(A , A ): snake_case : int = torch.cat(A , dim=0 ) if do_classifier_free_guidance: snake_case : Tuple = image_embeds.repeat_interleave(A , dim=0 ) snake_case : int = negative_image_embeds.repeat_interleave(A , dim=0 ) snake_case : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A ) self.scheduler.set_timesteps(A , device=A ) snake_case : Tuple = self.scheduler.timesteps snake_case : List[str] = self.unet.config.in_channels snake_case , snake_case : List[str] = get_new_h_w(A , A , self.movq_scale_factor ) # create initial latent snake_case : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A , A , A , self.scheduler , ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance snake_case : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case : Dict = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} snake_case : str = self.unet( sample=A , timestep=A , encoder_hidden_states=A , added_cond_kwargs=A , return_dict=A , )[0] if do_classifier_free_guidance: snake_case , snake_case : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) snake_case , snake_case : Tuple = noise_pred.chunk(2 ) snake_case , snake_case : str = variance_pred.chunk(2 ) snake_case : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case , snake_case : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case : int = self.scheduler.step( A , A , A , generator=A , ).prev_sample # post-processing snake_case : Any = self.movq.decode(A , force_not_quantize=A )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: snake_case : str = image * 0.5 + 0.5 snake_case : List[str] = image.clamp(0 , 1 ) snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case : List[str] = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
124
from __future__ import annotations import math lowerCamelCase : Optional[int] = '2020.9.26' lowerCamelCase : int = 'xcodz-dot, cclaus, dhruvmanila' def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float]: if not all(isinstance(lowercase ,(float, int) ) for val in locals().values() ): snake_case : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(lowercase ) snake_case : List[str] = ((x * distance) / (z + distance)) * scale snake_case : Dict = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) -> tuple[float, float, float]: if not isinstance(lowercase ,lowercase ): raise TypeError("""Axis must be a str""" ) snake_case : Tuple = locals() del input_variables["axis"] if not all(isinstance(lowercase ,(float, int) ) for val in input_variables.values() ): snake_case : int = ( """Input values except axis must either be float or int: """ f"""{list(input_variables.values() )}""" ) raise TypeError(lowercase ) snake_case : int = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case : str = x * math.cos(lowercase ) - y * math.sin(lowercase ) snake_case : List[Any] = y * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = z elif axis == "x": snake_case : Optional[Any] = y * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Optional[int] = z * math.cos(lowercase ) + y * math.sin(lowercase ) snake_case : Optional[int] = x elif axis == "y": snake_case : List[str] = x * math.cos(lowercase ) - z * math.sin(lowercase ) snake_case : Tuple = z * math.cos(lowercase ) + x * math.sin(lowercase ) snake_case : Optional[int] = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(f"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
124
1
"""simple docstring""" import heapq import sys import numpy as np snake_case = tuple[int, int] class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[int] = set() def _A ( self : Optional[int] ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def _A ( self : List[Any] ): return len(self.elements ) == 0 def _A ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCAmelCase_ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE : Optional[Any] = [] (SCREAMING_SNAKE_CASE) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (SCREAMING_SNAKE_CASE) : List[str] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): if item in self.set: self.set.remove(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] (SCREAMING_SNAKE_CASE) : Tuple = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (SCREAMING_SNAKE_CASE) : Union[str, Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _A ( self : Dict ): return self.elements[0][1] def _A ( self : List[str] ): (SCREAMING_SNAKE_CASE) : Tuple = heapq.heappop(self.elements ) self.set.remove(UpperCAmelCase_ ) return (priority, item) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.array(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = np.array(lowercase ) return np.linalg.norm(a - b ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return consistent_heuristic(lowercase , lowercase ) // t def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = g_function[start] + Wa * heuristics[i](lowercase , lowercase ) return ans def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.chararray((n, n) ) for i in range(lowercase ): for j in range(lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = "*" for i in range(lowercase ): for j in range(lowercase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE : Dict = "#" SCREAMING_SNAKE_CASE : Optional[Any] = "-" SCREAMING_SNAKE_CASE : Optional[int] = back_pointer[goal] while x != start: (SCREAMING_SNAKE_CASE) : Optional[int] = x # print(x) SCREAMING_SNAKE_CASE : List[str] = "-" SCREAMING_SNAKE_CASE : Tuple = back_pointer[x] SCREAMING_SNAKE_CASE : Optional[int] = "-" for i in range(lowercase ): for j in range(lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) SCREAMING_SNAKE_CASE : List[str] = back_pointer[goal] while x != start: print(lowercase , end=" " ) SCREAMING_SNAKE_CASE : Optional[Any] = back_pointer[x] print(lowercase ) sys.exit() def lowerCamelCase__ ( lowercase ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" for itera in range(lowercase ): open_list[itera].remove_element(lowercase ) # print("s", s) # print("j", j) (SCREAMING_SNAKE_CASE) : Optional[Any] = s SCREAMING_SNAKE_CASE : str = (x - 1, y) SCREAMING_SNAKE_CASE : Optional[int] = (x + 1, y) SCREAMING_SNAKE_CASE : str = (x, y + 1) SCREAMING_SNAKE_CASE : Optional[Any] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = -1 SCREAMING_SNAKE_CASE : Dict = float("inf" ) if valid(lowercase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE : int = g_function[s] + 1 SCREAMING_SNAKE_CASE : Optional[int] = s if neighbours not in close_list_anchor: open_list[0].put(lowercase , key(lowercase , 0 , lowercase , lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase ): if key(lowercase , lowercase , lowercase , lowercase ) <= Wa * key( lowercase , 0 , lowercase , lowercase ): open_list[j].put( lowercase , key(lowercase , lowercase , lowercase , lowercase ) ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case = make_common_ground() snake_case = blocks_blk # hyper parameters snake_case = 1 snake_case = 1 snake_case = 20 snake_case = 3 # one consistent and two other inconsistent # start and end destination snake_case = (0, 0) snake_case = (n - 1, n - 1) snake_case = 1 def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = {start: 0, goal: float("inf" )} SCREAMING_SNAKE_CASE : str = {start: -1, goal: -1} SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Dict = set() for i in range(lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase , key(lowercase , lowercase , lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(lowercase , lowercase , lowercase ) else: SCREAMING_SNAKE_CASE : Tuple = open_list[i].top_show() visited.add(lowercase ) expand_state( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) close_list_inad.append(lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(lowercase , lowercase , lowercase ) else: SCREAMING_SNAKE_CASE : Optional[Any] = open_list[0].top_show() visited.add(lowercase ) expand_state( lowercase , 0 , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) close_list_anchor.append(lowercase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
355
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = '▁' UpperCamelCase__ = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} UpperCamelCase__ = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } UpperCamelCase__ = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } UpperCamelCase__ = { 'ernie-m-base': 5_1_4, 'ernie-m-large': 5_1_4, } UpperCamelCase__ = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class A ( UpperCAmelCase_ ): __UpperCAmelCase : List[str] = ["input_ids"] __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = RESOURCE_FILES_NAMES def __init__(self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Optional[Any]="utf8" , __UpperCAmelCase : Union[str, Any]="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : Union[str, Any]="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Tuple="[MASK]" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Optional[Any] , ) -> None: """simple docstring""" UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , vocab_file=__UpperCAmelCase , encoding=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = sentencepiece_model_ckpt UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase__ = self.load_vocab(filepath=__UpperCAmelCase ) else: UpperCAmelCase__ = {self.sp_model.id_to_piece(__UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase__ = {v: k for k, v in self.vocab.items()} def lowercase_ (self : Optional[Any] , __UpperCAmelCase : str ) -> int: """simple docstring""" if text is None: return None UpperCAmelCase__ = self.tokenize(__UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = "", [] for i, ch in enumerate(__UpperCAmelCase ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase__ = self.SP_CHAR_MAPPING.get(__UpperCAmelCase ) else: UpperCAmelCase__ = unicodedata.normalize("NFKC" , __UpperCAmelCase ) if self.is_whitespace(__UpperCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(__UpperCAmelCase ) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase__ = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase__ = token[1:] UpperCAmelCase__ = text[offset:].index(__UpperCAmelCase ) + offset UpperCAmelCase__ = start + len(__UpperCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase__ = end return token_mapping @property def lowercase_ (self : str ) -> List[str]: """simple docstring""" return len(self.vocab ) def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self : List[str] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__(self : int , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> Any: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__UpperCAmelCase , __UpperCAmelCase ) for c in text) ) def lowercase_ (self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=False , __UpperCAmelCase : str=6_4 , __UpperCAmelCase : str=0.1 ) -> str: """simple docstring""" if self.sp_model_kwargs.get("enable_sampling" ) is True: UpperCAmelCase__ = True if self.sp_model_kwargs.get("alpha" ) is not None: UpperCAmelCase__ = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: UpperCAmelCase__ = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: UpperCAmelCase__ = self.sp_model.EncodeAsPieces(__UpperCAmelCase ) else: UpperCAmelCase__ = self.sp_model.SampleEncodeAsPieces(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = [] for pi, piece in enumerate(__UpperCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__UpperCAmelCase ) and pi != 0: new_pieces.append(__UpperCAmelCase ) continue else: continue UpperCAmelCase__ = 0 for i, chunk in enumerate(__UpperCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__UpperCAmelCase ) or self.is_punct(__UpperCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__UpperCAmelCase ) UpperCAmelCase__ = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase__ = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase__ = i if len(__UpperCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase_ (self : Tuple , __UpperCAmelCase : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase , " " ).strip() return out_string def lowercase_ (self : Any , __UpperCAmelCase : Any ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.convert_ids_to_tokens(__UpperCAmelCase ) UpperCAmelCase__ = "".join(__UpperCAmelCase ).replace(__UpperCAmelCase , " " ).strip() return out_string def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" return self.vocab.get(__UpperCAmelCase , self.vocab.get(self.unk_token ) ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.reverse_vocab.get(__UpperCAmelCase , self.unk_token ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any]=None ) -> Dict: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] UpperCAmelCase__ = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase_ (self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str=None ) -> Dict: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=False ) -> Tuple: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase_ (self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__UpperCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__UpperCAmelCase ) + 1) + [1] * (len(__UpperCAmelCase ) + 3) def lowercase_ (self : Any , __UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase_ (self : str , __UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__UpperCAmelCase ) == 1: UpperCAmelCase__ = unicodedata.category(__UpperCAmelCase ) if cat == "Zs": return True return False def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = {} with io.open(__UpperCAmelCase , "r" , encoding="utf-8" ) as f: for index, line in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = line.rstrip("\n" ) UpperCAmelCase__ = int(__UpperCAmelCase ) return token_to_idx def lowercase_ (self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase__ = 0 if os.path.isdir(__UpperCAmelCase ): UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCAmelCase__ = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase__ = token_index writer.write(token + "\n" ) index += 1 UpperCAmelCase__ = os.path.join(__UpperCAmelCase , "sentencepiece.bpe.model" ) with open(__UpperCAmelCase , "wb" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (vocab_file,)
65
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } UpperCamelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } UpperCamelCase__ = '</w>' UpperCamelCase__ = '@@ ' def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = set() UpperCAmelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ = char return pairs # Speech2Text2 has no max input length UpperCamelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class A ( UpperCAmelCase_ ): __UpperCAmelCase : str = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__(self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict="<s>" , __UpperCAmelCase : Tuple="<pad>" , __UpperCAmelCase : str="</s>" , __UpperCAmelCase : int="<unk>" , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : str=None , **__UpperCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__( unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = do_lower_case with open(__UpperCAmelCase , encoding="utf-8" ) as vocab_handle: UpperCAmelCase__ = json.load(__UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) UpperCAmelCase__ = None UpperCAmelCase__ = None else: with open(__UpperCAmelCase , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ = [tuple(merge.split()[:2] ) for merge in merges] UpperCAmelCase__ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) UpperCAmelCase__ = {} @property def lowercase_ (self : List[str] ) -> int: """simple docstring""" return len(self.decoder ) def lowercase_ (self : Union[str, Any] ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ (self : Dict , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: UpperCAmelCase__ = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ = bigram UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while i < len(__UpperCAmelCase ): try: UpperCAmelCase__ = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ = tuple(__UpperCAmelCase ) UpperCAmelCase__ = new_word if len(__UpperCAmelCase ) == 1: break else: UpperCAmelCase__ = get_pairs(__UpperCAmelCase ) UpperCAmelCase__ = " ".join(__UpperCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: UpperCAmelCase__ = "\n" + BPE_TOKEN_MERGES if word.endswith(__UpperCAmelCase ): UpperCAmelCase__ = word.replace(__UpperCAmelCase , "" ) UpperCAmelCase__ = word.replace(" " , __UpperCAmelCase ) UpperCAmelCase__ = word return word def lowercase_ (self : Tuple , __UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: UpperCAmelCase__ = text.lower() UpperCAmelCase__ = text.split() UpperCAmelCase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(" " ) ) ) return split_tokens def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> int: """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def lowercase_ (self : Any , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = self.decoder.get(__UpperCAmelCase , self.unk_token ) return result def lowercase_ (self : Dict , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = " ".join(__UpperCAmelCase ) # make sure @@ tokens are concatenated UpperCAmelCase__ = "".join(string.split(__UpperCAmelCase ) ) return string def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + "\n" ) UpperCAmelCase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) UpperCAmelCase__ = token_index writer.write(" ".join(__UpperCAmelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
65
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Dict = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
326
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _a ( lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = CTRLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _UpperCAmelCase = {'''unk_token''': '''<unk>'''} _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def lowercase__ ( self : str , **__UpperCamelCase : Union[str, Any] )->Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Tuple: _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt react readapt apt''' return input_text, output_text def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase = '''adapt react readapt apt''' _UpperCAmelCase = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = tokens + [tokenizer.unk_token] _UpperCAmelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase )
326
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class _lowercase (unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def _lowerCamelCase ( self , snake_case__=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' TrainingJobAnalytics(snake_case__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.create_estimator() # run training estimator.fit() # result dataframe UpperCamelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
128
def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = len(_lowerCAmelCase) UpperCamelCase_ = len(matrix[0]) UpperCamelCase_ = min(_lowerCAmelCase , _lowerCAmelCase) for row in range(_lowerCAmelCase): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , _lowerCAmelCase): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(_lowerCAmelCase , _lowerCAmelCase): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , _lowerCAmelCase): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(_lowerCAmelCase): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
128
1
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase : str = logging.getLogger(__name__) def _snake_case ( a__ , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = False , ): """simple docstring""" __SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit __SCREAMING_SNAKE_CASE = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) __SCREAMING_SNAKE_CASE = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: __SCREAMING_SNAKE_CASE = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __SCREAMING_SNAKE_CASE = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft __SCREAMING_SNAKE_CASE = load_in_abit __SCREAMING_SNAKE_CASE = load_in_abit __SCREAMING_SNAKE_CASE = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) __SCREAMING_SNAKE_CASE = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype __SCREAMING_SNAKE_CASE = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __SCREAMING_SNAKE_CASE = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): __SCREAMING_SNAKE_CASE = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def _snake_case ( a__ , a__ , a__=None , a__=None , a__=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) __SCREAMING_SNAKE_CASE = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = special_dtypes __SCREAMING_SNAKE_CASE = no_split_module_classes __SCREAMING_SNAKE_CASE = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __SCREAMING_SNAKE_CASE = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == """balanced_low_0""") , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = max_memory __SCREAMING_SNAKE_CASE = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu __SCREAMING_SNAKE_CASE = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __SCREAMING_SNAKE_CASE = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def _snake_case ( a__ , a__ , a__=None , a__=None ): """simple docstring""" if modules_to_not_convert is None: __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _snake_case ( a__ , a__ , a__=None , a__=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE = False for name, module in model.named_children(): if current_key_name is None: __SCREAMING_SNAKE_CASE = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __SCREAMING_SNAKE_CASE = """.""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __SCREAMING_SNAKE_CASE = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __SCREAMING_SNAKE_CASE = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __SCREAMING_SNAKE_CASE = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) __SCREAMING_SNAKE_CASE = module.weight.data if module.bias is not None: __SCREAMING_SNAKE_CASE = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = True if len(list(module.children() ) ) > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _snake_case ( a__ ): """simple docstring""" with init_empty_weights(): __SCREAMING_SNAKE_CASE = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __SCREAMING_SNAKE_CASE = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __SCREAMING_SNAKE_CASE = sum(lowerCAmelCase__ , [] ) __SCREAMING_SNAKE_CASE = len(lowerCAmelCase__ ) > 0 # Check if it is a base model __SCREAMING_SNAKE_CASE = False if hasattr(lowerCAmelCase__ , """base_model_prefix""" ): __SCREAMING_SNAKE_CASE = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __SCREAMING_SNAKE_CASE = list(model.named_children() ) __SCREAMING_SNAKE_CASE = [list_modules[-1][0]] # add last module together with tied weights __SCREAMING_SNAKE_CASE = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys __SCREAMING_SNAKE_CASE = [""".weight""", """.bias"""] __SCREAMING_SNAKE_CASE = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __SCREAMING_SNAKE_CASE = name.replace(lowerCAmelCase__ , """""" ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def _snake_case ( a__ ): """simple docstring""" for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def _snake_case ( a__ ): """simple docstring""" return next(parameter.parameters() ).device def _snake_case ( a__ , a__ , a__ , a__ , a__ , a__ , a__ ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE = param_name __SCREAMING_SNAKE_CASE = model if "." in tensor_name: __SCREAMING_SNAKE_CASE = tensor_name.split(""".""" ) for split in splits[:-1]: __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) __SCREAMING_SNAKE_CASE = new_module __SCREAMING_SNAKE_CASE = splits[-1] # offload weights __SCREAMING_SNAKE_CASE = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace("""weight""" , """SCB""" ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , """meta""" , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
360
'''simple docstring''' from __future__ import annotations from cmath import sqrt def a__ ( a__ , a__ , a__ ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __SCREAMING_SNAKE_CASE = b * b - 4 * a * c __SCREAMING_SNAKE_CASE = (-b + sqrt(a__ )) / (2 * a) __SCREAMING_SNAKE_CASE = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
331
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase: List[str] = logging.get_logger(__name__) lowerCAmelCase: List[Any] = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class a__( lowerCamelCase__ ): lowercase__ = """camembert""" def __init__( self : List[Any] , __snake_case : str=3_05_22 , __snake_case : int=7_68 , __snake_case : List[str]=12 , __snake_case : List[Any]=12 , __snake_case : str=30_72 , __snake_case : Optional[int]="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Any=0.1 , __snake_case : str=5_12 , __snake_case : List[str]=2 , __snake_case : str=0.02 , __snake_case : Any=1e-1_2 , __snake_case : int=1 , __snake_case : Dict=0 , __snake_case : Tuple=2 , __snake_case : Optional[Any]="absolute" , __snake_case : Dict=True , __snake_case : int=None , **__snake_case : Dict , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) a : Tuple = vocab_size a : Tuple = hidden_size a : str = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : List[str] = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : int = max_position_embeddings a : Optional[Any] = type_vocab_size a : Union[str, Any] = initializer_range a : str = layer_norm_eps a : str = position_embedding_type a : Any = use_cache a : str = classifier_dropout class a__( lowerCamelCase__ ): @property def lowercase_ ( self : int ): if self.task == "multiple-choice": a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: a : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
297
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[int] , **lowerCamelCase :Dict ) -> int: super().__init__(**lowerCamelCase ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCamelCase ) def UpperCAmelCase_ ( self :Any , **lowerCamelCase :int ) -> int: UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , *lowerCamelCase :str , lowerCamelCase :Optional[Any]=None , lowerCamelCase :int=None , **lowerCamelCase :Optional[Any] ) -> str: return super().__call__(lowerCamelCase , *lowerCamelCase , num_workers=lowerCamelCase , batch_size=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Any , lowerCamelCase :str , lowerCamelCase :Optional[Any]=64 , lowerCamelCase :int = 0 , lowerCamelCase :float = 512 / 1500 , lowerCamelCase :Optional[int] = 32 , lowerCamelCase :Optional[int] = 1 , ) -> Any: UpperCAmelCase__ = load_image(lowerCamelCase ) UpperCAmelCase__ = self.image_processor.size["longest_edge"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self.image_processor(images=lowerCamelCase , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(lowerCamelCase , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :List[str] , lowerCamelCase :Union[str, Any]=0.88 , lowerCamelCase :Optional[Any]=0.95 , lowerCamelCase :Tuple=0 , lowerCamelCase :Union[str, Any]=1 , ) -> Dict: UpperCAmelCase__ = model_inputs.pop("input_boxes" ) UpperCAmelCase__ = model_inputs.pop("is_last" ) UpperCAmelCase__ = model_inputs.pop("original_sizes" ).tolist() UpperCAmelCase__ = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCAmelCase__ = self.model(**lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs["pred_masks"] UpperCAmelCase__ = self.image_processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , binarize=lowerCamelCase ) UpperCAmelCase__ = model_outputs["iou_scores"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase_ ( self :int , lowerCamelCase :str , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :int=0.7 , ) -> Union[str, Any]: UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = defaultdict(lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
169
0
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _A = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] _A = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def lowercase_ ( A__ , A__ ) -> Dict: """simple docstring""" snake_case = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case = int(re.match(r".*layer_(\d*).*" , A__ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def lowercase_ ( A__ ) -> List[str]: """simple docstring""" if dtype == torch.bool: return 1 / 8 snake_case = re.search(r"[^\d](\d+)$" , str(A__ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) snake_case = int(bit_search.groups()[0] ) return bit_size // 8 def lowercase_ ( A__ , A__ , A__ , A__ , A__ ) -> Optional[int]: """simple docstring""" if bloom_config_file == "": snake_case = BloomConfig() else: snake_case = BloomConfig.from_json_file(A__ ) if shard_model: snake_case = os.listdir(A__ ) snake_case = sorted(filter(lambda A__ : s.startswith("layer" ) and "model_00" in s , A__ ) ) snake_case = {"weight_map": {}, "metadata": {}} snake_case = 0 snake_case = None snake_case = BloomConfig() for j, file in enumerate(A__ ): print("Processing file: {}".format(A__ ) ) snake_case = None for i in range(A__ ): # load all TP files snake_case = file.replace("model_00" , F'model_0{i}' ) snake_case = torch.load(os.path.join(A__ , A__ ) , map_location="cpu" ) # Rename keys in the transformers names snake_case = list(temp.keys() ) for key in keys: snake_case = temp.pop(A__ ) if tensors is None: snake_case = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , "pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) snake_case = BloomConfig() snake_case = pytorch_dump_folder_path + "/" + CONFIG_NAME snake_case = total_size with open(A__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + ".index.json" ) , "w" , encoding="utf-8" ) as f: snake_case = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n" f.write(A__ ) else: snake_case = BloomModel(A__ ) snake_case = os.listdir(A__ ) snake_case = sorted(filter(lambda A__ : s.startswith("layer" ) and "model_00" in s , A__ ) ) snake_case = None for i, file in enumerate(A__ ): snake_case = None for i in range(A__ ): # load all TP files snake_case = file.replace("model_00" , F'model_0{i}' ) snake_case = torch.load(os.path.join(A__ , A__ ) , map_location="cpu" ) # Rename keys in the transformers names snake_case = list(temp.keys() ) for key in keys: snake_case = temp.pop(A__ ) if tensors is None: snake_case = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case = tensors[key] / pretraining_tp snake_case = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: snake_case = set(other_keys.missing_keys ) else: snake_case = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) snake_case = pytorch_dump_folder_path + "/" + WEIGHTS_NAME snake_case = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: snake_case = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(A__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) _A = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
137
from collections import defaultdict class lowerCamelCase : def __init__(self : Tuple , _A : Optional[int] , _A : List[str] ) -> Union[str, Any]: snake_case = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 snake_case = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(_A ) ) ] snake_case = defaultdict(_A ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 snake_case = (1 << len(_A )) - 1 def UpperCAmelCase(self : str , _A : Optional[Any] , _A : List[Any] ) -> str: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement snake_case = self.count_ways_until(_A , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. snake_case = total_ways_util return self.dp[mask][task_no] def UpperCAmelCase(self : Any , _A : Dict ) -> Optional[Any]: # Store the list of persons for each task for i in range(len(_A ) ): for j in task_performed[i]: self.task[j].append(_A ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
137
1