code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = BarthezTokenizer A_ : Optional[Any] = BarthezTokenizerFast A_ : str = True A_ : str = True def UpperCAmelCase_ ( self ): super().setUp() _SCREAMING_SNAKE_CASE : Any = BarthezTokenizerFast.from_pretrained("""moussaKam/mbarthez""" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__snake_case ) _SCREAMING_SNAKE_CASE : List[Any] = tokenizer def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = """<pad>""" _SCREAMING_SNAKE_CASE : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_1122 ) def UpperCAmelCase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _SCREAMING_SNAKE_CASE : Optional[Any] = [0, 57, 3018, 7_0307, 91, 2] _SCREAMING_SNAKE_CASE : Dict = self.tokenizer( __snake_case , max_length=len(__snake_case ) , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _SCREAMING_SNAKE_CASE : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) def UpperCAmelCase_ ( self ): if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() _SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Any = """I was born in 92000, and this is falsé.""" _SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : Any = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) _SCREAMING_SNAKE_CASE : int = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(__snake_case ) _SCREAMING_SNAKE_CASE : int = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def UpperCAmelCase_ ( self ): # fmt: off _SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _SCREAMING_SNAKE_CASE : str = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""moussaKam/mbarthez""" , revision="""c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6""" , sequences=__snake_case , )
200
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration UpperCAmelCase_ : Union[str, Any] = pytest.mark.integration UpperCAmelCase_ : List[Any] = {'comet'} UpperCAmelCase_ : int = importlib.util.find_spec('fairseq') is not None UpperCAmelCase_ : Optional[Any] = {'code_eval'} UpperCAmelCase_ : Optional[int] = os.name == 'nt' UpperCAmelCase_ : Dict = {'bertscore', 'frugalscore', 'perplexity'} UpperCAmelCase_ : Dict = importlib.util.find_spec('transformers') is not None def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @wraps(SCREAMING_SNAKE_CASE__ ) def wrapper(self , SCREAMING_SNAKE_CASE__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , SCREAMING_SNAKE_CASE__ ) return wrapper def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _snake_case , _snake_case , _snake_case ) @local class lowercase__ ( parameterized.TestCase ): '''simple docstring''' A_ : Optional[int] = {} A_ : Union[str, Any] = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : str = """[...]""" _SCREAMING_SNAKE_CASE : Any = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __snake_case ) ).module_path ) _SCREAMING_SNAKE_CASE : Optional[int] = datasets.load.import_main_class(metric_module.__name__ , dataset=__snake_case ) # check parameters _SCREAMING_SNAKE_CASE : Tuple = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__snake_case , metric_module.__name__ ): with self.use_local_metrics(): try: _SCREAMING_SNAKE_CASE : int = doctest.testmod(__snake_case , verbose=__snake_case , raise_on_error=__snake_case ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase_ ( self , __snake_case ): _SCREAMING_SNAKE_CASE : List[Any] = """[...]""" _SCREAMING_SNAKE_CASE : Optional[Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __snake_case ) ).module_path ) # run doctest with self.use_local_metrics(): _SCREAMING_SNAKE_CASE : List[str] = doctest.testmod(__snake_case , verbose=__snake_case , raise_on_error=__snake_case ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase_ ( self , __snake_case , __snake_case ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__snake_case ): yield else: yield @contextmanager def UpperCAmelCase_ ( self ): def load_local_metric(__snake_case , *__snake_case , **__snake_case ): return load_metric(os.path.join("""metrics""" , __snake_case ) , *__snake_case , **__snake_case ) with patch("""datasets.load_metric""" ) as mock_load_metric: _SCREAMING_SNAKE_CASE : Union[str, Any] = load_local_metric yield @classmethod def UpperCAmelCase_ ( cls , __snake_case ): def wrapper(__snake_case ): _SCREAMING_SNAKE_CASE : Any = contextmanager(__snake_case ) _SCREAMING_SNAKE_CASE : int = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowercase__ ( _snake_case ): '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case ): assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: _SCREAMING_SNAKE_CASE : Any = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" import torch def bert_cos_score_idf(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(SCREAMING_SNAKE_CASE__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: _SCREAMING_SNAKE_CASE : Any = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def load_from_checkpoint(SCREAMING_SNAKE_CASE__ ): class lowercase__ : '''simple docstring''' def UpperCAmelCase_ ( self , __snake_case , *__snake_case , **__snake_case ): assert len(__snake_case ) == 2 _SCREAMING_SNAKE_CASE : Dict = [0.19, 0.92] return scores, sum(__snake_case ) / len(__snake_case ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: _SCREAMING_SNAKE_CASE : Any = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: _SCREAMING_SNAKE_CASE : List[str] = load_from_checkpoint yield def snake_case_ ( ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) _SCREAMING_SNAKE_CASE : List[str] = """ERROR""" _SCREAMING_SNAKE_CASE : Tuple = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(SCREAMING_SNAKE_CASE__ , match=re.escape(SCREAMING_SNAKE_CASE__ ) ): metric.compute(predictions=[] , references=[] , scheme=SCREAMING_SNAKE_CASE__ )
200
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : Tuple = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ["OwlViTFeatureExtractor"] lowercase : int = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
from math import sqrt def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00_00_00 ): __UpperCamelCase : int = 0 __UpperCamelCase : int = 0 __UpperCamelCase : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(_lowerCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
171
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class a (A__ ): """simple docstring""" __UpperCAmelCase : int = CustomTokenizer pass
123
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_file.split(os.path.sep) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'''{test_file} instead.''') SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith('py'): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''') if not test_fn.startswith('test_modeling_'): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''') SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace('.py' , '')] SCREAMING_SNAKE_CASE = '.'.join(_UpperCAmelCase) return test_module_path def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_module_path(_UpperCAmelCase) SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCAmelCase) return test_module def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): if attr.endswith('ModelTester'): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase)) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , 'all_model_classes' , []) if len(_UpperCAmelCase) > 0: test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_class() if hasattr(_UpperCAmelCase , 'setUp'): test.setUp() SCREAMING_SNAKE_CASE = None if hasattr(_UpperCAmelCase , 'model_tester'): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(_UpperCAmelCase) if tester_class is not None: tester_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(_UpperCAmelCase) for test_class in test_classes} return test_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_test_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): if isinstance(_UpperCAmelCase , _UpperCAmelCase): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple)): return [to_json(_UpperCAmelCase) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return {to_json(_UpperCAmelCase): to_json(_UpperCAmelCase) for k, v in o.items()} else: return o
137
0
'''simple docstring''' from __future__ import annotations from statistics import mean def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = [0] * no_of_processes _UpperCamelCase : Union[str, Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase__ ): _UpperCamelCase : int = burst_time[i] _UpperCamelCase : Dict = [] _UpperCamelCase : Tuple = 0 _UpperCamelCase : str = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _UpperCamelCase : Dict = [] _UpperCamelCase : Union[str, Any] = -1 for i in range(lowerCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: _UpperCamelCase : Any = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _UpperCamelCase : List[str] = i total_time += burst_time[target_process] completed += 1 _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" _UpperCamelCase : int = [0] * no_of_processes for i in range(lowerCamelCase__ ): _UpperCamelCase : Any = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') snake_case_ : Union[str, Any] = 4 snake_case_ : str = [2, 5, 3, 7] snake_case_ : str = [0, 0, 0, 0] snake_case_ : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) snake_case_ : str = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( F"""{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t""" F"""{waiting_time[i]}\t\t\t\t{turn_around_time[i]}""" ) print(F"""\nAverage waiting time = {mean(waiting_time):.5f}""") print(F"""Average turnaround time = {mean(turn_around_time):.5f}""")
353
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = DanceDiffusionPipeline lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } lowercase__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase : str = UNetaDModel( block_out_channels=(32, 32, 64) ,extra_in_channels=16 ,sample_size=512 ,sample_rate=16000 ,in_channels=2 ,out_channels=2 ,flip_sin_to_cos=lowerCamelCase__ ,use_timestep_embedding=lowerCamelCase__ ,time_embedding_type='fourier' ,mid_block_type='UNetMidBlock1D' ,down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') ,up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') ,) _UpperCamelCase : int = IPNDMScheduler() _UpperCamelCase : List[str] = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : int=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): _UpperCamelCase : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: _UpperCamelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _UpperCamelCase : str = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase : List[str] = self.get_dummy_components() _UpperCamelCase : int = DanceDiffusionPipeline(**lowerCamelCase__ ) _UpperCamelCase : List[str] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(lowerCamelCase__ ) _UpperCamelCase : List[Any] = pipe(**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = output.audios _UpperCamelCase : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase : Dict = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def UpperCamelCase_ ( self : Dict ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = torch_device _UpperCamelCase : Dict = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _UpperCamelCase : str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : int = torch.manual_seed(0 ) _UpperCamelCase : Optional[Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Optional[int] = output.audios _UpperCamelCase : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Tuple = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = torch_device _UpperCamelCase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ,torch_dtype=torch.floataa ) _UpperCamelCase : Any = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCamelCase : Union[str, Any] = pipe(generator=lowerCamelCase__ ,num_inference_steps=100 ,audio_length_in_s=4.0_9_6 ) _UpperCamelCase : Any = output.audios _UpperCamelCase : str = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase : Any = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
236
0
'''simple docstring''' from math import pi, sqrt def _lowerCamelCase ( lowercase : float ) -> float: if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(lowercase ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(lowercase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _lowerCamelCase ( ) -> None: assert gamma(0.5 ) == sqrt(lowercase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase_ : int = 1.0 while num: lowerCAmelCase_ : Optional[Any] = float(input('Gamma of: ')) print(f"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
63
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : int , lowercase : int=1024 , lowercase : int=1024 , lowercase : Tuple=False , **lowercase : Optional[int] ) -> Union[str, Any]: _a = AutoTokenizer.from_pretrained(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="train" , **lowercase ) _a = tok.pad_token_id def get_lens(lowercase : Optional[int] ): _a = tqdm( DataLoader(lowercase , batch_size=512 , num_workers=8 , shuffle=lowercase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _a = [] for batch in dl: _a = batch["input_ids"].ne(lowercase ).sum(1 ).tolist() _a = batch["labels"].ne(lowercase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase , lowercase ): max_lens.append(max(lowercase , lowercase ) ) else: max_lens.extend(lowercase ) return max_lens _a = get_lens(lowercase ) _a = SeqaSeqDataset(lowercase , lowercase , lowercase , lowercase , type_path="val" , **lowercase ) _a = get_lens(lowercase ) pickle_save(lowercase , train_ds.len_file ) pickle_save(lowercase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
63
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowercase ( ) ->None: """simple docstring""" print('''Making key files...''' ) make_key_files('''rsa''', 1024 ) print('''Key files generation successful.''' ) def __lowercase ( _UpperCamelCase ) ->tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) lowercase : List[str] = rabinMiller.generate_large_prime(_UpperCamelCase ) print('''Generating prime q...''' ) lowercase : Union[str, Any] = rabinMiller.generate_large_prime(_UpperCamelCase ) lowercase : Optional[int] = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: lowercase : Any = random.randrange(2 ** (key_size - 1), 2 ** (key_size) ) if cryptoMath.gcd(_UpperCamelCase, (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) lowercase : List[str] = cryptoMath.find_mod_inverse(_UpperCamelCase, (p - 1) * (q - 1) ) lowercase : Union[str, Any] = (n, e) lowercase : Tuple = (n, d) return (public_key, private_key) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->None: """simple docstring""" if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() lowercase , lowercase : int = generate_key(_UpperCamelCase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""", '''w''' ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""", '''w''' ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
173
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
173
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase_ = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
191
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Tuple = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a_ ) __SCREAMING_SNAKE_CASE :str = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go __SCREAMING_SNAKE_CASE :int = parser.parse_args() if not hasattr(a_ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
191
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _a = logging.get_logger(__name__) if is_vision_available(): import PIL class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ["""pixel_values"""] def __init__( self , lowercase_ = True , lowercase_ = None , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = True , lowercase_ = None , lowercase_ = True , lowercase_ = 1 / 255 , lowercase_ = True , lowercase_ = None , lowercase_ = None , lowercase_ = True , **lowercase_ , ): """simple docstring""" super().__init__(**lowercase_ ) UpperCAmelCase_ : List[str] = size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ : Tuple = get_size_dict(lowercase_ , default_to_square=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ : int = get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : List[Any] = size UpperCAmelCase_ : Union[str, Any] = resample UpperCAmelCase_ : int = do_center_crop UpperCAmelCase_ : str = crop_size UpperCAmelCase_ : Optional[Any] = do_rescale UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : Union[str, Any] = do_normalize UpperCAmelCase_ : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : List[Any] = do_convert_rgb def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = PILImageResampling.BICUBIC , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase_ : str = get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , **lowercase_ , ): """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = ChannelDimension.FIRST , **lowercase_ , ): """simple docstring""" UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : str = get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : List[Any] = get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) UpperCAmelCase_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[Any] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : Tuple = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : List[str] = [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: UpperCAmelCase_ : List[str] = [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: UpperCAmelCase_ : Optional[Any] = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: UpperCAmelCase_ : List[Any] = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] UpperCAmelCase_ : str = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] UpperCAmelCase_ : Tuple = {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
23
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Tuple = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
23
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class UpperCAmelCase ( unittest.TestCase ): A__ : List[str] = inspect.getfile(accelerate.test_utils ) A__ : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) A__ : Tuple = ["accelerate", "launch"] A__ : int = Path.home() / ".cache/huggingface/accelerate" A__ : Tuple = "default_config.yaml" A__ : List[Any] = config_folder / config_file A__ : List[Any] = config_folder / "_default_config.yaml" A__ : List[str] = Path("tests/test_configs" ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _SCREAMING_SNAKE_CASE (cls : Optional[Any] ) -> Optional[int]: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _SCREAMING_SNAKE_CASE (self : str ) -> Dict: '''simple docstring''' snake_case : int = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=snake_case__ ): execute_subprocess_async( self.base_cmd + ["--config_file", str(snake_case__ ), self.test_file_path] , env=os.environ.copy() ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict: '''simple docstring''' execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class UpperCAmelCase ( unittest.TestCase ): A__ : List[Any] = "test-tpu" A__ : int = "us-central1-a" A__ : Any = "ls" A__ : int = ["accelerate", "tpu-config"] A__ : Dict = "cd /usr/share" A__ : List[Any] = "tests/test_samples/test_command_file.sh" A__ : Optional[int] = "Running gcloud compute tpus tpu-vm ssh" def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> int: '''simple docstring''' snake_case : List[str] = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Any: '''simple docstring''' snake_case : Tuple = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : Any ) -> int: '''simple docstring''' snake_case : Any = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=snake_case__ ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : str = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : Union[str, Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : List[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Tuple: '''simple docstring''' snake_case : Any = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=snake_case__ , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , snake_case__ , )
59
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=3 , lowercase=True , lowercase=True , lowercase=0.1 , lowercase=0.1 , lowercase=224 , lowercase=1000 , lowercase=[3, 3, 6, 4] , lowercase=[48, 56, 112, 220] , ): A_ : Dict = parent A_ : List[Any] = batch_size A_ : Dict = num_channels A_ : Optional[Any] = is_training A_ : List[str] = use_labels A_ : List[Any] = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : Tuple = num_labels A_ : List[str] = image_size A_ : str = layer_depths A_ : Optional[int] = embed_dims def _a (self ): A_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : int = None if self.use_labels: A_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) A_ : int = self.get_config() return config, pixel_values, labels def _a (self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowercase , layer_scale_init_value=1E-5 , ) def _a (self , lowercase , lowercase , lowercase ): A_ : List[Any] = SwiftFormerModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a (self , lowercase , lowercase , lowercase ): A_ : Any = self.num_labels A_ : Any = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) A_ : int = SwiftFormerForImageClassification(lowercase ) model.to(lowercase ) model.eval() A_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self ): ((A_), (A_), (A_)) : int = self.prepare_config_and_inputs() A_ : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def _a (self ): A_ : Optional[int] = SwiftFormerModelTester(self ) A_ : Any = ConfigTester( self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a (self ): pass def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(lowercase ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def _a (self ): A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(lowercase ) A_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : int = [*signature.parameters.keys()] A_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def _a (self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = SwiftFormerModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a (self ): pass def _a (self ): def check_hidden_states_output(lowercase , lowercase , lowercase ): A_ : str = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): A_ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase ) ) A_ : Any = outputs.hidden_states A_ : Any = 8 self.assertEqual(len(lowercase ) , lowercase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowercase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) A_, A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(lowercase , lowercase , lowercase ) def _a (self ): def _config_zero_init(lowercase ): A_ : Optional[Any] = copy.deepcopy(lowercase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowercase , lowercase , 1E-10 ) if isinstance(getattr(lowercase , lowercase , lowercase ) , lowercase ): A_ : Any = _config_zero_init(getattr(lowercase , lowercase ) ) setattr(lowercase , lowercase , lowercase ) return configs_no_init A_, A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = _config_zero_init(lowercase ) for model_class in self.all_model_classes: A_ : List[str] = model_class(config=lowercase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a (self ): pass def a ( ): '''simple docstring''' A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def _a (self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a (self ): A_ : Any = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowercase ) A_ : Dict = self.default_image_processor A_ : Dict = prepare_img() A_ : int = image_processor(images=lowercase , return_tensors="""pt""" ).to(lowercase ) # forward pass with torch.no_grad(): A_ : int = model(**lowercase ) # verify the logits A_ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) A_ : List[str] = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
206
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = (DEISMultistepScheduler,) lowerCamelCase = (("""num_inference_steps""", 25),) def lowerCAmelCase ( self : Optional[int] , **UpperCamelCase__ : Dict ) -> Any: """simple docstring""" snake_case : Tuple = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, } config.update(**UpperCamelCase__ ) return config def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Optional[Any]=0 , **UpperCamelCase__ : List[str] ) -> List[Any]: """simple docstring""" snake_case : Optional[int] = dict(self.forward_default_kwargs ) snake_case : str = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) snake_case : int = self.dummy_sample snake_case : Optional[Any] = 0.1 * sample snake_case : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case : Tuple = self.get_scheduler_config(**UpperCamelCase__ ) snake_case : int = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals snake_case : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) snake_case : Tuple = scheduler_class.from_pretrained(UpperCamelCase__ ) new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals snake_case : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case : Optional[int] = sample, sample for t in range(UpperCamelCase__ , time_step + scheduler.config.solver_order + 1 ): snake_case : Dict = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample snake_case : Optional[int] = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Any=0 , **UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[int] = dict(self.forward_default_kwargs ) snake_case : Optional[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) snake_case : Optional[int] = self.dummy_sample snake_case : str = 0.1 * sample snake_case : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: snake_case : Optional[int] = self.get_scheduler_config() snake_case : str = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) snake_case : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__ ) snake_case : Optional[Any] = scheduler_class.from_pretrained(UpperCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) snake_case : Any = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample snake_case : str = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : str=None , **UpperCamelCase__ : Any ) -> int: """simple docstring""" if scheduler is None: snake_case : Union[str, Any] = self.scheduler_classes[0] snake_case : Any = self.get_scheduler_config(**UpperCamelCase__ ) snake_case : str = scheduler_class(**UpperCamelCase__ ) snake_case : Optional[int] = self.scheduler_classes[0] snake_case : List[Any] = self.get_scheduler_config(**UpperCamelCase__ ) snake_case : Tuple = scheduler_class(**UpperCamelCase__ ) snake_case : str = 10 snake_case : List[Any] = self.dummy_model() snake_case : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): snake_case : Any = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Union[str, Any] = dict(self.forward_default_kwargs ) snake_case : Optional[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase__ ) for scheduler_class in self.scheduler_classes: snake_case : Dict = self.get_scheduler_config() snake_case : int = scheduler_class(**UpperCamelCase__ ) snake_case : Optional[int] = self.dummy_sample snake_case : Any = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , '''set_timesteps''' ): scheduler.set_timesteps(UpperCamelCase__ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , '''set_timesteps''' ): snake_case : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] snake_case : Tuple = dummy_past_residuals[: scheduler.config.solver_order] snake_case : Any = scheduler.timesteps[5] snake_case : List[Any] = scheduler.timesteps[6] snake_case : List[str] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample snake_case : Dict = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Optional[int] = DEISMultistepScheduler(**self.get_scheduler_config() ) snake_case : List[str] = self.full_loop(scheduler=UpperCamelCase__ ) snake_case : Optional[Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 snake_case : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case : int = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case : List[str] = DEISMultistepScheduler.from_config(scheduler.config ) snake_case : Any = self.full_loop(scheduler=UpperCamelCase__ ) snake_case : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=UpperCamelCase__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , algorithm_type='''deis''' , solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , ) def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , algorithm_type=UpperCamelCase__ , ) snake_case : List[Any] = self.full_loop( solver_order=UpperCamelCase__ , solver_type=UpperCamelCase__ , prediction_type=UpperCamelCase__ , algorithm_type=UpperCamelCase__ , ) assert not torch.isnan(UpperCamelCase__ ).any(), "Samples have nan numbers" def lowerCAmelCase ( self : int ) -> int: """simple docstring""" self.check_over_configs(lower_order_final=UpperCamelCase__ ) self.check_over_configs(lower_order_final=UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=0 ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Any = self.full_loop() snake_case : str = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case : Tuple = self.full_loop(prediction_type='''v_prediction''' ) snake_case : int = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : Tuple = self.scheduler_classes[0] snake_case : Optional[Any] = self.get_scheduler_config(thresholding=UpperCamelCase__ , dynamic_thresholding_ratio=0 ) snake_case : Optional[int] = scheduler_class(**UpperCamelCase__ ) snake_case : Tuple = 10 snake_case : Optional[Any] = self.dummy_model() snake_case : Any = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): snake_case : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample assert sample.dtype == torch.floataa
367
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=0.9 , UpperCamelCase__ : Any=None , ) -> Tuple: """simple docstring""" snake_case : List[Any] = parent snake_case : Tuple = batch_size snake_case : str = image_size snake_case : Tuple = num_channels snake_case : List[Any] = patch_size snake_case : Optional[Any] = tubelet_size snake_case : Tuple = num_frames snake_case : Optional[Any] = is_training snake_case : Tuple = use_labels snake_case : List[str] = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Tuple = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Optional[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Any = mask_ratio snake_case : Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case : Dict = (image_size // patch_size) ** 2 snake_case : Optional[int] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case : Optional[int] = int(mask_ratio * self.seq_length ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Tuple = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" snake_case : Any = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" snake_case : Any = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : int = torch.ones((self.num_masks,) ) snake_case : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case : Tuple = mask.expand(self.batch_size , -1 ).bool() snake_case : str = model(UpperCamelCase__ , UpperCamelCase__ ) # model only returns predictions for masked patches snake_case : Tuple = mask.sum().item() snake_case : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Optional[int] = config_and_inputs snake_case : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case : List[Any] = VideoMAEModelTester(self ) snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Optional[int] = torch.ones((self.model_tester.num_masks,) ) snake_case : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case : Dict = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case : Optional[int] = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> str: """simple docstring""" snake_case ,snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCamelCase__ ) snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" if not self.has_attentions: pass else: snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] = True for model_class in self.all_model_classes: snake_case : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case : Dict = True snake_case : List[str] = False snake_case : Tuple = True snake_case : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : List[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Any = True snake_case : Any = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : int = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case : Any = len(UpperCamelCase__ ) # Check attention is always last and order is fine snake_case : Union[str, Any] = True snake_case : Union[str, Any] = True snake_case : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) snake_case : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : Union[str, Any] = outputs.hidden_states snake_case : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case ,snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def _UpperCamelCase ( ) -> str: '''simple docstring''' snake_case : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case : str = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" snake_case : Tuple = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Dict = prepare_video() snake_case : int = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : int = model(**UpperCamelCase__ ) # verify the logits snake_case : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Optional[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" snake_case : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Tuple = prepare_video() snake_case : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask snake_case : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case : Dict = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**UpperCamelCase__ ) # verify the logits snake_case : str = torch.Size([1, 1408, 1536] ) snake_case : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case : Any = torch.tensor([0.5_142] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case : str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): snake_case : Optional[int] = model(**UpperCamelCase__ ) snake_case : str = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) )
83
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") a_ : Optional[Any] = logging.getLogger(__name__) @dataclass class __UpperCamelCase : lowercase : str =field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowercase : str =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class __UpperCamelCase : lowercase : Optional[str] =field(default=lowerCamelCase__ , metadata={'help': 'The input training data file (a text file).'} ) lowercase : Optional[str] =field( default=lowerCamelCase__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase : bool =field( default=lowerCamelCase__ , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowercase : Optional[int] =field( default=lowerCamelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self ): """simple docstring""" if self.train_file is not None: lowerCamelCase_ =self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase_ =self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __UpperCamelCase : lowercase : PreTrainedTokenizerBase lowercase : Union[bool, str, PaddingStrategy] =True lowercase : Optional[int] =None lowercase : Optional[int] =None def __call__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ='''label''' if '''label''' in features[0].keys() else '''labels''' lowerCamelCase_ =[feature.pop(lowerCAmelCase ) for feature in features] lowerCamelCase_ =len(lowerCAmelCase ) lowerCamelCase_ =len(features[0]['''input_ids'''] ) lowerCamelCase_ =[ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase )] for feature in features ] lowerCamelCase_ =list(chain(*lowerCAmelCase ) ) lowerCamelCase_ =self.tokenizer.pad( lowerCAmelCase, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) # Un-flatten lowerCamelCase_ ={k: v.view(lowerCAmelCase, lowerCAmelCase, -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase_ =torch.tensor(lowerCAmelCase, dtype=torch.intaa ) return batch def a_ ( ) -> Optional[Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , __snake_case , __snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ =training_args.get_process_log_level() logger.setLevel(__snake_case ) datasets.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase_ =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase_ ={} if data_args.train_file is not None: lowerCamelCase_ =data_args.train_file if data_args.validation_file is not None: lowerCamelCase_ =data_args.validation_file lowerCamelCase_ =data_args.train_file.split('''.''' )[-1] lowerCamelCase_ =load_dataset( __snake_case , data_files=__snake_case , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase_ =load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase_ =[F'''ending{i}''' for i in range(4 )] lowerCamelCase_ ='''sent1''' lowerCamelCase_ ='''sent2''' if data_args.max_seq_length is None: lowerCamelCase_ =tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) lowerCamelCase_ =1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase_ =min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__snake_case : Optional[int] ): lowerCamelCase_ =[[context] * 4 for context in examples[context_name]] lowerCamelCase_ =examples[question_header_name] lowerCamelCase_ =[ [F'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(__snake_case ) ] # Flatten out lowerCamelCase_ =list(chain(*__snake_case ) ) lowerCamelCase_ =list(chain(*__snake_case ) ) # Tokenize lowerCamelCase_ =tokenizer( __snake_case , __snake_case , truncation=__snake_case , max_length=__snake_case , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__snake_case ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) lowerCamelCase_ =raw_datasets['''train'''] if data_args.max_train_samples is not None: lowerCamelCase_ =min(len(__snake_case ) , data_args.max_train_samples ) lowerCamelCase_ =train_dataset.select(range(__snake_case ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): lowerCamelCase_ =train_dataset.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) lowerCamelCase_ =raw_datasets['''validation'''] if data_args.max_eval_samples is not None: lowerCamelCase_ =min(len(__snake_case ) , data_args.max_eval_samples ) lowerCamelCase_ =eval_dataset.select(range(__snake_case ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): lowerCamelCase_ =eval_dataset.map( __snake_case , batched=__snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase_ =( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__snake_case , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__snake_case : Tuple ): lowerCamelCase_, lowerCamelCase_ =eval_predictions lowerCamelCase_ =np.argmax(__snake_case , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase_ =Trainer( model=__snake_case , args=__snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__snake_case , data_collator=__snake_case , compute_metrics=__snake_case , ) # Training if training_args.do_train: lowerCamelCase_ =None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ =last_checkpoint lowerCamelCase_ =trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase_ =train_result.metrics lowerCamelCase_ =( data_args.max_train_samples if data_args.max_train_samples is not None else len(__snake_case ) ) lowerCamelCase_ =min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''train''' , __snake_case ) trainer.save_metrics('''train''' , __snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCamelCase_ =trainer.evaluate() lowerCamelCase_ =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__snake_case ) lowerCamelCase_ =min(__snake_case , len(__snake_case ) ) trainer.log_metrics('''eval''' , __snake_case ) trainer.save_metrics('''eval''' , __snake_case ) lowerCamelCase_ ={ '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) def a_ ( __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
75
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =[ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
9
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if hor == 128: snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') snake_case_ = (32, 128, 256) snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') snake_case_ = (32, 64, 128, 256) snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') snake_case_ = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) snake_case_ = model.state_dict() snake_case_ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } snake_case_ = UNetaDModel(**UpperCamelCase__ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } snake_case_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) snake_case_ = model snake_case_ = UNetaDModel(**UpperCamelCase__ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) snake_case_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): snake_case_ = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
354
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
200
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __lowerCAmelCase : List[Any] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCAmelCase : Tuple = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __lowerCAmelCase : str = {'unk_token': '<unk>'} __lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[int] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __lowerCAmelCase : Any = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase : str = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[int] = self.get_tokenizer() __lowerCAmelCase : List[Any] = self.get_rust_tokenizer() __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : List[str] = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCAmelCase : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Dict = self.get_image_processor() __lowerCAmelCase : List[Any] = self.get_tokenizer() __lowerCAmelCase : Optional[Any] = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.prepare_image_inputs() __lowerCAmelCase : str = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='np' ) __lowerCAmelCase : List[Any] = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ): __lowerCAmelCase : int = self.get_image_processor() __lowerCAmelCase : int = self.get_tokenizer() __lowerCAmelCase : str = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = 'lower newer' __lowerCAmelCase : Optional[Any] = processor(text=_SCREAMING_SNAKE_CASE , return_tensors='np' ) __lowerCAmelCase : int = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __lowerCamelCase ( self ): __lowerCAmelCase : Any = self.get_image_processor() __lowerCAmelCase : Union[str, Any] = self.get_tokenizer() __lowerCAmelCase : Any = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = 'lower newer' __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : str = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = 'google/owlvit-base-patch32' __lowerCAmelCase : Optional[int] = OwlViTProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = ['cat', 'nasa badge'] __lowerCAmelCase : int = processor(text=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = 'google/owlvit-base-patch32' __lowerCAmelCase : List[Any] = OwlViTProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = [['cat', 'nasa badge'], ['person']] __lowerCAmelCase : Union[str, Any] = processor(text=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = 16 __lowerCAmelCase : str = len(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = max([len(_SCREAMING_SNAKE_CASE ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __lowerCamelCase ( self ): __lowerCAmelCase : Any = 'google/owlvit-base-patch32' __lowerCAmelCase : Tuple = OwlViTProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = ['cat', 'nasa badge'] __lowerCAmelCase : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = 16 __lowerCAmelCase : Union[str, Any] = inputs['input_ids'] __lowerCAmelCase : Union[str, Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.get_image_processor() __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : Union[str, Any] = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = self.prepare_image_inputs() __lowerCAmelCase : List[Any] = self.prepare_image_inputs() __lowerCAmelCase : int = processor(images=_SCREAMING_SNAKE_CASE , query_images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.get_image_processor() __lowerCAmelCase : Tuple = self.get_tokenizer() __lowerCAmelCase : Any = OwlViTProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
86
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = ['''image_processor'''] __lowerCAmelCase = '''SamImageProcessor''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __a : Any = self.image_processor __a : List[Any] = -10 __a : str = self.image_processor.size['''longest_edge'''] def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __a : Tuple = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless __a : Optional[Any] = encoding_image_processor['''original_sizes'''] if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks if Torch or TF tensor __a : Optional[Any] = original_sizes.numpy() __a , __a , __a : int = self._check_and_preprocess_points( input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , ) __a : List[Any] = self._normalize_and_convert( _UpperCAmelCase , _UpperCAmelCase , input_points=_UpperCAmelCase , input_labels=_UpperCAmelCase , input_boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="pt" , ): if input_points is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] ) for point in input_points ] else: __a : Dict = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase ) for point, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __a , __a : Tuple = self._pad_points_and_labels(_UpperCAmelCase , _UpperCAmelCase ) __a : List[Any] = np.array(_UpperCAmelCase ) if input_labels is not None: __a : List[Any] = np.array(_UpperCAmelCase ) if input_boxes is not None: if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): __a : Any = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , original_sizes[0] , is_bounding_box=_UpperCAmelCase ) for box in input_boxes ] else: __a : int = [ self._normalize_coordinates(self.target_size , _UpperCAmelCase , _UpperCAmelCase , is_bounding_box=_UpperCAmelCase ) for box, original_size in zip(_UpperCAmelCase , _UpperCAmelCase ) ] __a : Optional[int] = np.array(_UpperCAmelCase ) if input_boxes is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __a : Dict = tf.convert_to_tensor(_UpperCAmelCase ) # boxes batch size of 1 by default __a : str = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __a : int = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __a : List[Any] = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Optional[Any] = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __a : Any = torch.from_numpy(_UpperCAmelCase ) # point batch size of 1 by default __a : Union[str, Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __a : str = tf.convert_to_tensor(_UpperCAmelCase ) # point batch size of 1 by default __a : Dict = tf.expand_dims(_UpperCAmelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = max([point.shape[0] for point in input_points] ) __a : Dict = [] for i, point in enumerate(_UpperCAmelCase ): if point.shape[0] != expected_nb_points: __a : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __a : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_UpperCAmelCase ) __a : int = processed_input_points return input_points, input_labels def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): __a , __a : str = original_size __a , __a : Optional[int] = self.image_processor._get_preprocess_shape(_UpperCAmelCase , longest_edge=_UpperCAmelCase ) __a : List[str] = deepcopy(_UpperCAmelCase ).astype(_UpperCAmelCase ) if is_bounding_box: __a : Optional[int] = coords.reshape(-1 , 2 , 2 ) __a : str = coords[..., 0] * (new_w / old_w) __a : List[Any] = coords[..., 1] * (new_h / old_h) if is_bounding_box: __a : List[Any] = coords.reshape(-1 , 4 ) return coords def _lowerCamelCase ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): if input_points is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): # Checks for TF or Torch tensor __a : str = input_points.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_points[0] , _UpperCAmelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) __a : str = [np.array(_UpperCAmelCase ) for input_point in input_points] else: __a : Optional[int] = None if input_labels is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : Dict = input_labels.numpy().tolist() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_labels[0] , _UpperCAmelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) __a : Dict = [np.array(_UpperCAmelCase ) for label in input_labels] else: __a : Tuple = None if input_boxes is not None: if hasattr(_UpperCAmelCase , '''numpy''' ): __a : List[Any] = input_boxes.numpy().tolist() if ( not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not isinstance(input_boxes[0] , _UpperCAmelCase ) or not isinstance(input_boxes[0][0] , _UpperCAmelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __a : Optional[Any] = [np.array(_UpperCAmelCase ).astype(np.floataa ) for box in input_boxes] else: __a : Union[str, Any] = None return input_points, input_labels, input_boxes @property def _lowerCamelCase ( self ): __a : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(_UpperCAmelCase ) ) def _lowerCamelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.image_processor.post_process_masks(*_UpperCAmelCase , **_UpperCAmelCase )
160
0
def UpperCAmelCase_( a__ ): """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(a__ ) % 3 != 0: SCREAMING_SNAKE_CASE : Optional[int] = '''0''' + bin_string SCREAMING_SNAKE_CASE : Dict = [ bin_string[index : index + 3] for index in range(len(a__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE : Optional[Any] = 0 for index, val in enumerate(a__ ): oct_val += int(2 ** (2 - index) * int(a__ ) ) oct_string += str(a__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
19
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
1
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowerCamelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = (IPNDMScheduler,) _lowerCAmelCase : Optional[int] = (('num_inference_steps', 50),) def snake_case ( self , **lowerCAmelCase ): """simple docstring""" snake_case = {'num_train_timesteps': 10_00} config.update(**lowerCAmelCase ) return config def snake_case ( self , lowerCAmelCase=0 , **lowerCAmelCase ): """simple docstring""" snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop('num_inference_steps' , lowerCAmelCase ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config(**lowerCAmelCase ) snake_case = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals snake_case = dummy_past_residuals[:] if time_step is None: snake_case = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) snake_case = scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals snake_case = dummy_past_residuals[:] snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample snake_case = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample snake_case = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case ( self ): """simple docstring""" pass def snake_case ( self , lowerCAmelCase=0 , **lowerCAmelCase ): """simple docstring""" snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop('num_inference_steps' , lowerCAmelCase ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) snake_case = dummy_past_residuals[:] if time_step is None: snake_case = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) snake_case = scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) snake_case = dummy_past_residuals[:] snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample snake_case = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample snake_case = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case ( self , **lowerCAmelCase ): """simple docstring""" snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(**lowerCAmelCase ) snake_case = scheduler_class(**lowerCAmelCase ) snake_case = 10 snake_case = self.dummy_model() snake_case = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): snake_case = model(lowerCAmelCase , lowerCAmelCase ) snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): snake_case = model(lowerCAmelCase , lowerCAmelCase ) snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def snake_case ( self ): """simple docstring""" snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop('num_inference_steps' , lowerCAmelCase ) for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**lowerCAmelCase ) snake_case = self.dummy_sample snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase , 'set_timesteps' ): snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case = dummy_past_residuals[:] snake_case = scheduler.timesteps[5] snake_case = scheduler.timesteps[6] snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample snake_case = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case ( self ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase , time_step=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=lowerCAmelCase ) def snake_case ( self ): """simple docstring""" snake_case = self.full_loop() snake_case = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
150
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ : str = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp a_ : Optional[Any] = 5 a_ : str = 10 @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): lowercase : int =SpeechaTextTokenizer lowercase : int =False lowercase : List[str] =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCamelCase_ =sp.SentencePieceProcessor() spm_model.Load(lowerCAmelCase ) lowerCamelCase_ =['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCAmelCase ) )] lowerCamelCase_ =dict(zip(lowerCAmelCase, range(len(lowerCAmelCase ) ) ) ) lowerCamelCase_ =Path(self.tmpdirname ) save_json(lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase, save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''<pad>''' lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ), lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ), lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''<s>''' ) self.assertEqual(vocab_keys[1], '''<pad>''' ) self.assertEqual(vocab_keys[-1], '''j''' ) self.assertEqual(len(lowerCAmelCase ), 1_001 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size, 1_001 ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCamelCase_ =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ), [289, 50, 14, 174, 386], ) lowerCamelCase_ =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''], ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase, [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''], ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={'''input_ids''': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase, model_name='''facebook/s2t-small-mustc-en-de-st''', revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''', ) @require_sentencepiece class __UpperCamelCase ( unittest.TestCase ): lowercase : Tuple ='valhalla/s2t_mustc_multilinguial_medium' lowercase : Dict ='C\'est trop cool' lowercase : str ='Esto es genial' @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCamelCase_ =SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''], 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''], 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''], 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''], 11 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.tokenizer.vocab_size, 10_000 ) def lowercase__ ( self ): """simple docstring""" self.assertIn(lowerCAmelCase, self.tokenizer.all_special_ids ) lowerCamelCase_ =[ES_CODE, 4, 1_601, 47, 7_647, 2] lowerCamelCase_ =self.tokenizer.decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase ) lowerCamelCase_ =self.tokenizer.decode(generated_ids[1:], skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase, lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token, lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''fr''' lowerCamelCase_ =self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0], lowerCAmelCase ) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ='''fr''' self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE] ) lowerCamelCase_ ='''es''' self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE] )
75
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __UpperCAmelCase = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def _snake_case ( A ) -> str: lowerCAmelCase__ = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(A , A ) __UpperCAmelCase = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def _snake_case ( A ) -> Any: lowerCAmelCase__ = list(s_dict.keys() ) for key in keys: lowerCAmelCase__ = key for k, v in WHISPER_MAPPING.items(): if k in key: lowerCAmelCase__ = new_key.replace(A , A ) print(F"""{key} -> {new_key}""" ) lowerCAmelCase__ = s_dict.pop(A ) return s_dict def _snake_case ( A ) -> Union[str, Any]: lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(A , A , bias=A ) lowerCAmelCase__ = emb.weight.data return lin_layer def _snake_case ( A , A ) -> bytes: os.makedirs(A , exist_ok=A ) lowerCAmelCase__ = os.path.basename(A ) lowerCAmelCase__ = url.split('''/''' )[-2] lowerCAmelCase__ = os.path.join(A , A ) if os.path.exists(A ) and not os.path.isfile(A ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(A ): lowerCAmelCase__ = open(A , '''rb''' ).read() if hashlib.shaaaa(A ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(A ) as source, open(A , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=A , unit_divisor=1024 ) as loop: while True: lowerCAmelCase__ = source.read(8192 ) if not buffer: break output.write(A ) loop.update(len(A ) ) lowerCAmelCase__ = open(A , '''rb''' ).read() if hashlib.shaaaa(A ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def _snake_case ( A , A ) -> str: if ".pt" not in checkpoint_path: lowerCAmelCase__ = _download(_MODELS[checkpoint_path] ) else: lowerCAmelCase__ = torch.load(A , map_location='''cpu''' ) lowerCAmelCase__ = original_checkpoint['''dims'''] lowerCAmelCase__ = original_checkpoint['''model_state_dict'''] lowerCAmelCase__ = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(A ) rename_keys(A ) lowerCAmelCase__ = True lowerCAmelCase__ = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] lowerCAmelCase__ = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=A , decoder_ffn_dim=A , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) lowerCAmelCase__ = WhisperForConditionalGeneration(A ) lowerCAmelCase__ , lowerCAmelCase__ = model.model.load_state_dict(A , strict=A ) if len(A ) > 0 and not set(A ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F""" but all the following weights are missing {missing}""" ) if tie_embeds: lowerCAmelCase__ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCAmelCase__ = proj_out_weights model.save_pretrained(A ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __UpperCAmelCase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
351
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = CLIPTokenizer lowercase__ : List[str] = CLIPTokenizerFast lowercase__ : Dict = True lowercase__ : Any = {} lowercase__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: super().setUp() # fmt: off lowerCAmelCase__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowerCAmelCase__ = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = '''lower newer''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase__ = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase__ = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase__ = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = F""" {text}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().test_tokenization_python_rust_equals() def __SCREAMING_SNAKE_CASE ( self ) -> Any: # CLIP always lower cases letters pass
228
0
def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float(moles / volume ) * nfactor ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
327
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self : Union[str, Any] , _A : Any , _A : Dict ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = params snake_case_ : int = np.array(_A ) snake_case_ : Optional[int] = np.array([len(_A ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Tuple , _A : Optional[int] ) -> str: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : List[str] ) -> str: """simple docstring""" return len(self.lengths ) def UpperCAmelCase_ ( self : Dict ) -> str: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ : Dict = self.params.max_model_input_size snake_case_ : Tuple = self.lengths > max_len logger.info(F"""Splitting {sum(_A )} too long sequences.""" ) def divide_chunks(_A : Union[str, Any] , _A : Dict ): return [l[i : i + n] for i in range(0 , len(_A ) , _A )] snake_case_ : Dict = [] snake_case_ : Union[str, Any] = [] if self.params.mlm: snake_case_ ,snake_case_ : Optional[int] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: snake_case_ ,snake_case_ : Any = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: snake_case_ : List[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: snake_case_ : Optional[int] = np.insert(_A , 0 , _A ) if sub_s[-1] != sep_id: snake_case_ : Optional[Any] = np.insert(_A , len(_A ) , _A ) assert len(_A ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(_A ) new_tok_ids.extend(_A ) new_lengths.extend([len(_A ) for l in sub_seqs] ) snake_case_ : Tuple = np.array(_A ) snake_case_ : int = np.array(_A ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: """simple docstring""" snake_case_ : Tuple = len(self ) snake_case_ : int = self.lengths > 11 snake_case_ : Dict = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : List[Any] = len(self ) logger.info(F"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: snake_case_ : Optional[Any] = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = len(self ) snake_case_ : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) snake_case_ : Any = (unk_occs / self.lengths) < 0.5 snake_case_ : List[Any] = self.token_ids[indices] snake_case_ : int = self.lengths[indices] snake_case_ : Tuple = len(self ) logger.info(F"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCAmelCase_ ( self : Optional[int] , _A : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : Any = [t[0] for t in batch] snake_case_ : int = [t[1] for t in batch] assert len(_A ) == len(_A ) # Max for paddings snake_case_ : str = max(_A ) # Pad token ids if self.params.mlm: snake_case_ : int = self.params.special_tok_ids['pad_token'] else: snake_case_ : Dict = self.params.special_tok_ids['unk_token'] snake_case_ : Dict = [list(t.astype(_A ) ) + [pad_idx] * (max_seq_len_ - len(_A )) for t in token_ids] assert len(tk_ ) == len(_A ) assert all(len(_A ) == max_seq_len_ for t in tk_ ) snake_case_ : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) snake_case_ : Optional[Any] = torch.tensor(_A ) # (bs) return tk_t, lg_t
327
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A : str = 'sshleifer/bart-tiny-random' A : Dict = 'patrickvonplaten/t5-tiny-random' @require_torch class __A( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return AutoConfig.from_pretrained(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a , *__a = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a , *__a = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a , *__a = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=lowerCAmelCase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a , *__a = create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): create_student_by_copying_alternating_layers(lowerCAmelCase__ , tempfile.mkdtemp() , e=lowerCAmelCase__ , d=lowerCAmelCase__ )
365
import functools def __lowerCAmelCase ( a__ , a__ ) -> int: __a = len(a__ ) __a = len(a__ ) @functools.cache def min_distance(a__ , a__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a__ ) , 1 + min_distance(a__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __lowerCamelCase = logging.get_logger(__name__) class A__ ( _snake_case ): def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
162
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
162
1
def lowerCamelCase__ ( lowercase ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) SCREAMING_SNAKE_CASE : Tuple = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": snake_case = input("""Enter a string """).strip() snake_case = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __snake_case =logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class UpperCAmelCase_ ( lowerCamelCase__ ): def __init__( self : str , **UpperCAmelCase__ : Optional[Any] ) -> List[Any]: super().__init__(**__lowerCamelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[str] , UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : Optional[Any] ) -> str: return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] , **UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: lowerCAmelCase = {} if "candidate_labels" in kwargs: lowerCAmelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCAmelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str="This is a photo of {}." ) -> Union[str, Any]: lowerCAmelCase = load_image(__lowerCamelCase ) lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase = candidate_labels lowerCAmelCase = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] lowerCAmelCase = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) lowerCAmelCase = [text_inputs] return inputs def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Tuple ) -> Optional[Any]: lowerCAmelCase = model_inputs.pop('candidate_labels' ) lowerCAmelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __lowerCamelCase ): lowerCAmelCase = text_inputs[0] else: # Batching case. lowerCAmelCase = text_inputs[0][0] lowerCAmelCase = self.model(**__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[str] ) -> int: lowerCAmelCase = model_outputs.pop('candidate_labels' ) lowerCAmelCase = model_outputs['''logits'''][0] if self.framework == "pt": lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase = probs.tolist() if not isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCAmelCase = [scores] elif self.framework == "tf": lowerCAmelCase = stable_softmax(__lowerCamelCase , axis=-1 ) lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCAmelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda UpperCAmelCase__ : -x[0] ) ] return result
4
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__ ( lowerCamelCase_ : Optional[Any]): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__ ( ): '''simple docstring''' with parallel_backend('''spark'''): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase__ : Any = [1, 2, 3] with pytest.raises(lowerCamelCase_): with parallel_backend('''unsupported backend'''): map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=2) with pytest.raises(lowerCamelCase_): with parallel_backend('''unsupported backend'''): map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=-1) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('''num_proc''' ,[2, -1]) def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : List[str] = [1, 2] lowerCAmelCase__ : Tuple = {'''a''': 1, '''b''': 2} lowerCAmelCase__ : Union[str, Any] = {'''a''': [1, 2], '''b''': [3, 4]} lowerCAmelCase__ : Any = {'''a''': {'''1''': 1}, '''b''': 2} lowerCAmelCase__ : Union[str, Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} lowerCAmelCase__ : int = [2, 3] lowerCAmelCase__ : List[str] = {'''a''': 2, '''b''': 3} lowerCAmelCase__ : str = {'''a''': [2, 3], '''b''': [4, 5]} lowerCAmelCase__ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} lowerCAmelCase__ : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} with parallel_backend('''spark'''): assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa assert map_nested(lowerCamelCase_ ,lowerCamelCase_ ,num_proc=lowerCamelCase_) == expected_map_nested_sa
129
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Tuple = CLIPTokenizer __magic_name__ :Union[str, Any] = CLIPTokenizerFast __magic_name__ :int = True __magic_name__ :Tuple = {} __magic_name__ :List[Any] = False def snake_case ( self ): '''simple docstring''' super().setUp() # fmt: off lowerCAmelCase__ :List[str] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase__ :Dict = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ :Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] lowerCAmelCase__ :Tuple = {'unk_token': '<unk>'} lowerCAmelCase__ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCAmelCase ) ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 'lower newer' lowerCAmelCase__ :Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ :int = 'lower newer' lowerCAmelCase__ :str = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] lowerCAmelCase__ :List[str] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase__ :List[str] = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) @require_ftfy def snake_case ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ :Any = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Tuple = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' lowerCAmelCase__ :Any = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase__ :Union[str, Any] = 'xa\u0303y' + ' ' + 'x\xe3y' lowerCAmelCase__ :Union[str, Any] = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase__ :int = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase__ :int = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase__ :Dict = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase__ :Union[str, Any] = tokenizer_s.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :int = tokenizer_r.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase__ :Optional[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ :Union[str, Any] = F"{text_of_1_token} {text_of_1_token}" lowerCAmelCase__ :List[Any] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , ) lowerCAmelCase__ :Optional[Any] = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCAmelCase ) + 1, len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) lowerCAmelCase__ :Optional[Any] = F" {text}" lowerCAmelCase__ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __UpperCAmelCase , use_fast=__UpperCAmelCase , ) lowerCAmelCase__ :int = tokenizer_r(__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCAmelCase ) + 1, 1 + len(__UpperCAmelCase ) + 1 + len(__UpperCAmelCase )) , ) def snake_case ( self ): '''simple docstring''' with self.assertRaises(__UpperCAmelCase ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): '''simple docstring''' super().test_tokenization_python_rust_equals() def snake_case ( self ): '''simple docstring''' pass
254
"""simple docstring""" def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" lowerCAmelCase__ :int = credit_card_number lowerCAmelCase__ :Tuple = 0 lowerCAmelCase__ :int = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit lowerCAmelCase__ :Optional[Any] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCAmelCase__ :str = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" lowerCAmelCase__ :Optional[int] = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(_SCREAMING_SNAKE_CASE ) <= 16: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
254
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCamelCase__: Optional[Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ) -> List[str]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) return (preds == labels).mean() def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] ) -> List[str]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) UpperCAmelCase : int = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] ) -> List[str]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) UpperCAmelCase : List[Any] = pearsonr(_lowerCAmelCase , _lowerCAmelCase )[0] UpperCAmelCase : List[Any] = spearmanr(_lowerCAmelCase , _lowerCAmelCase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> Union[str, Any]: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mrpc": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "sts-b": return pearson_and_spearman(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "qqp": return acc_and_fa(_lowerCAmelCase , _lowerCAmelCase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Dict: warnings.warn(_lowerCAmelCase , _lowerCAmelCase ) requires_backends(_lowerCAmelCase , '''sklearn''' ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError(f"""Predictions and labels have mismatched lengths {len(_lowerCAmelCase )} and {len(_lowerCAmelCase )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(_lowerCAmelCase , _lowerCAmelCase )} else: raise KeyError(_lowerCAmelCase )
23
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : str , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=8 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : int=True , __snake_case : List[Any]=99 , __snake_case : str=16 , __snake_case : Tuple=5 , __snake_case : Tuple=2 , __snake_case : str=36 , __snake_case : Dict="gelu" , __snake_case : str=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=512 , __snake_case : Optional[Any]=16 , __snake_case : int=2 , __snake_case : int=0.02 , __snake_case : str=3 , __snake_case : Dict=4 , __snake_case : str=None , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : int = use_input_mask UpperCAmelCase : Any = use_token_type_ids UpperCAmelCase : str = use_labels UpperCAmelCase : Union[str, Any] = vocab_size UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Optional[Any] = num_hidden_layers UpperCAmelCase : Union[str, Any] = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Union[str, Any] = hidden_act UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Optional[int] = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : str = type_vocab_size UpperCAmelCase : List[str] = type_sequence_label_size UpperCAmelCase : Tuple = initializer_range UpperCAmelCase : Optional[Any] = num_labels UpperCAmelCase : Optional[int] = num_choices UpperCAmelCase : Any = scope def A ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict = None if self.use_token_type_ids: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : Tuple = None UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> Tuple: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[Any] = self.get_config() UpperCAmelCase : int = 300 return config def A ( self : Optional[Any] ) -> Any: ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = self.prepare_config_and_inputs() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[Any] ) -> List[str]: UpperCAmelCase : int = MraModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Optional[int] = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Optional[Any] , ) -> Tuple: UpperCAmelCase : str = True UpperCAmelCase : Tuple = MraModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , encoder_hidden_states=__snake_case , ) UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : int ) -> Any: UpperCAmelCase : Dict = MraForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = MraForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: UpperCAmelCase : int = self.num_labels UpperCAmelCase : Union[str, Any] = MraForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> int: UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = MraForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : str , __snake_case : int , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.num_choices UpperCAmelCase : int = MraForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] = config_and_inputs UpperCAmelCase : Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : List[str] = MraModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A ( self : Optional[Any] ) -> str: self.config_tester.run_common_tests() def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Tuple ) -> Dict: UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def A ( self : Tuple ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def A ( self : int ) -> Dict: UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def A ( self : Dict ) -> Optional[int]: UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def A ( self : Any ) -> Optional[int]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def A ( self : Dict ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : str = MraModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def A ( self : str ) -> Optional[Any]: return @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple ) -> List[Any]: UpperCAmelCase : int = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Optional[Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Any = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ) -> Any: UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) UpperCAmelCase : Dict = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(__snake_case )[0] UpperCAmelCase : int = 50265 UpperCAmelCase : int = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Union[str, Any] = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def A ( self : str ) -> List[Any]: UpperCAmelCase : List[Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) UpperCAmelCase : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): UpperCAmelCase : Tuple = model(__snake_case )[0] UpperCAmelCase : Optional[int] = 50265 UpperCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase : Optional[int] = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
23
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCAmelCase ( ): _UpperCAmelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' _UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) return image def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __UpperCAmelCase ( a_: Optional[Any], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : Dict = dct.pop(snake_case__ ) _UpperCAmelCase : str = val def __UpperCAmelCase ( a_: str, a_: Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase : Optional[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) _UpperCAmelCase : int = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _UpperCAmelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__, requires_grad=snake_case__ ), v_bias) ) _UpperCAmelCase : Tuple = qkv_bias def __UpperCAmelCase ( a_: Tuple, a_: Optional[Any] ): _UpperCAmelCase : str = 364 if 'coco' in model_name else 224 _UpperCAmelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase : int = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase : List[str] = TaConfig.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() _UpperCAmelCase : Any = BlipaConfig(vision_config=snake_case__, text_config=snake_case__ ) return config, image_size @torch.no_grad() def __UpperCAmelCase ( a_: int, a_: Dict=None, a_: int=False ): _UpperCAmelCase : str = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if 'opt' in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _UpperCAmelCase : int = tokenizer("\n", add_special_tokens=snake_case__ ).input_ids[0] _UpperCAmelCase : Union[str, Any] = get_blipa_config(snake_case__, eos_token_id=snake_case__ ) _UpperCAmelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() _UpperCAmelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } _UpperCAmelCase : Optional[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) _UpperCAmelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase : Tuple = load_model_and_preprocess( name=snake_case__, model_type=snake_case__, is_eval=snake_case__, device=snake_case__ ) original_model.eval() print("Done!" ) # update state dict keys _UpperCAmelCase : List[Any] = original_model.state_dict() _UpperCAmelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith("Qformer.bert" ): _UpperCAmelCase : List[str] = key.replace("Qformer.bert", "qformer" ) if "attention.self" in key: _UpperCAmelCase : Tuple = key.replace("self", "attention" ) if "opt_proj" in key: _UpperCAmelCase : Union[str, Any] = key.replace("opt_proj", "language_projection" ) if "t5_proj" in key: _UpperCAmelCase : Optional[Any] = key.replace("t5_proj", "language_projection" ) if key.startswith("opt" ): _UpperCAmelCase : Dict = key.replace("opt", "language" ) if key.startswith("t5" ): _UpperCAmelCase : Dict = key.replace("t5", "language" ) _UpperCAmelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__, snake_case__ ) _UpperCAmelCase : Any = hf_model.load_state_dict(snake_case__, strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase : List[str] = load_demo_image() _UpperCAmelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _UpperCAmelCase : Any = tokenizer(["\n"], return_tensors="pt" ).input_ids.to(snake_case__ ) # create processor _UpperCAmelCase : Optional[Any] = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=snake_case__, image_std=snake_case__ ) _UpperCAmelCase : Any = BlipaProcessor(image_processor=snake_case__, tokenizer=snake_case__ ) _UpperCAmelCase : Optional[int] = processor(images=snake_case__, return_tensors="pt" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__, snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _UpperCAmelCase : str = hf_model(snake_case__, snake_case__ ).logits else: _UpperCAmelCase : Tuple = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _UpperCAmelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100 ) _UpperCAmelCase : Optional[int] = hf_model(snake_case__, snake_case__, labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:", original_logits[0, :3, :3] ) print("First values of HF logits:", logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]], device=snake_case__ ) assert torch.allclose(logits[0, :3, :3], snake_case__, atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]], device=snake_case__ ) else: # cast to same type _UpperCAmelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ), snake_case__, atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) _UpperCAmelCase : Optional[int] = '' _UpperCAmelCase : Union[str, Any] = tokenizer(snake_case__, return_tensors="pt" ).input_ids.to(snake_case__ ) _UpperCAmelCase : str = original_model.generate({"image": original_pixel_values} ) _UpperCAmelCase : str = hf_model.generate( snake_case__, snake_case__, do_sample=snake_case__, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, ) print("Original generation:", snake_case__ ) _UpperCAmelCase : Optional[int] = input_ids.shape[1] _UpperCAmelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=snake_case__ ) _UpperCAmelCase : Dict = [text.strip() for text in output_text] print("HF generation:", snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() __a = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Dict = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[Any] = """mobilenet_v2""" def __init__( self : str , snake_case_ : List[str]=3 , snake_case_ : Any=2_2_4 , snake_case_ : Union[str, Any]=1.0 , snake_case_ : int=8 , snake_case_ : List[str]=8 , snake_case_ : Dict=6 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Optional[int]=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]="relu6" , snake_case_ : int=True , snake_case_ : Any=0.8 , snake_case_ : List[str]=0.0_2 , snake_case_ : Optional[int]=0.0_0_1 , snake_case_ : Dict=2_5_5 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = depth_multiplier _UpperCAmelCase = depth_divisible_by _UpperCAmelCase = min_depth _UpperCAmelCase = expand_ratio _UpperCAmelCase = output_stride _UpperCAmelCase = first_layer_is_expansion _UpperCAmelCase = finegrained_output _UpperCAmelCase = hidden_act _UpperCAmelCase = tf_padding _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = semantic_loss_ignore_index class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = version.parse("""1.11""" ) @property def lowercase ( self : Optional[int] ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase ( self : Union[str, Any] ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase ( self : List[Any] ): return 1e-4
22
def _A ( SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Optional[Any] =len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr a__ : List[Any] =arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi a__ : int =arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list a__ : List[str] =arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : int = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase : Optional[int] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
95
0
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : List[str] = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
1
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) _UpperCAmelCase : str = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
263
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) class _UpperCAmelCase ( a ): '''simple docstring''' def __init__( self , *A , **A ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , A , ) super().__init__(*A , **A )
263
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Any = 'ylacombe/bark-small' lowercase__: int = tempfile.mkdtemp() lowercase__: List[Any] = 'en_speaker_1' lowercase__: int = 'This is a test string' lowercase__: Any = 'speaker_embeddings_path.json' lowercase__: List[str] = 'speaker_embeddings' def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Tuple = self.get_tokenizer() lowercase__: Union[str, Any] = BarkProcessor(tokenizer=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowercase__: List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowercase__: Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowercase__: int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowercase__: Tuple = 35 lowercase__: List[str] = 2 lowercase__: Any = 8 lowercase__: Optional[int] = { 'semantic_prompt': np.ones(__lowerCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowercase__: Any = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) lowercase__: List[str] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowercase__: str = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(__lowerCAmelCase , **__lowerCAmelCase ) lowercase__: Tuple = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) lowercase__: List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowercase__: Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Optional[Any] = self.get_tokenizer() lowercase__: int = BarkProcessor(tokenizer=__lowerCAmelCase ) lowercase__: Union[str, Any] = processor(text=self.input_string ) lowercase__: Any = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
371
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ = 101 ) -> Any: '''simple docstring''' lowercase__: Any = length def __len__( self ) -> List[Any]: '''simple docstring''' return self.length def __getitem__( self , lowerCAmelCase__ ) -> int: '''simple docstring''' return i class __a : def __call__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' return {"input_ids": torch.tensor(lowerCAmelCase__ ), "labels": torch.tensor(lowerCAmelCase__ )} class __a ( nn.Module ): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. lowercase__: List[str] = nn.Linear(120 , 80 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> int: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __a ( __UpperCamelCase ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: int = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: Optional[int] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __a ( __UpperCamelCase ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() lowercase__: Tuple = self.get_auto_remove_tmp_dir() lowercase__: List[str] = F'--output_dir {output_dir}'.split() lowercase__: int = ['torchrun'] + distributed_args + args execute_subprocess_async(lowerCAmelCase__ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: __lowerCAmelCase = DummyDataset(dataset_length) def snake_case_ ( snake_case ) -> Dict: lowercase__: str = list(range(len(snake_case ) ) ) lowercase__: Tuple = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( 'Predictions and/or labels do not match expected results:\n - predictions: ' f'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = 2 __lowerCAmelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase = None
288
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = r"\w+[.]\d+" lowerCamelCase_ = re.findall(lowerCamelCase__ , lowerCamelCase__ ) for pat in pats: lowerCamelCase_ = key.replace(lowerCamelCase__ , "_".join(pat.split("." ) ) ) return key def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCamelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCamelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCamelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCamelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCamelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4_2 ): # Step 1: Convert pytorch tensor to numpy lowerCamelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCamelCase_ = flax_model.init_weights(PRNGKey(lowerCamelCase__ ) ) lowerCamelCase_ = flatten_dict(lowerCamelCase__ ) lowerCamelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase_ = rename_key(lowerCamelCase__ ) lowerCamelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCamelCase_ , lowerCamelCase_ = rename_key_and_reshape_tensor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown lowerCamelCase_ = jnp.asarray(lowerCamelCase__ ) return unflatten_dict(lowerCamelCase__ )
19
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'''vocab_file''': '''sentencepiece.model'''} A = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } A = { '''google/rembert''': 256, } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , **_UpperCAmelCase , ): super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) __a : Union[str, Any] = do_lower_case __a : Tuple = remove_space __a : Dict = keep_accents __a : Optional[int] = vocab_file __a : str = spm.SentencePieceProcessor() self.sp_model.Load(_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): __a : List[str] = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a : Any = self.__dict__.copy() __a : int = None return state def __setstate__( self , _UpperCAmelCase ): __a : int = d __a : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ): __a : Dict = self.sp_model.EncodeAsPieces(_UpperCAmelCase ) return pieces def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : Optional[Any] = self.sp_model.decode_pieces(_UpperCAmelCase ) return out_string def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : str = [self.sep_token_id] __a : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : List[str] = [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_UpperCAmelCase ) ) return __a : Any = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
188
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=1 , ): __a : Dict = parent __a : str = batch_size __a : Union[str, Any] = seq_length __a : Any = is_training __a : int = use_input_mask __a : Optional[int] = use_token_type_ids __a : int = use_labels __a : int = vocab_size __a : int = hidden_size __a : str = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[int] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Union[str, Any] = type_vocab_size __a : List[str] = type_sequence_label_size __a : List[str] = initializer_range __a : Optional[int] = num_labels __a : List[str] = num_choices __a : int = scope __a : Union[str, Any] = q_groups __a : Dict = k_groups __a : List[str] = v_groups __a : Any = post_attention_groups __a : Optional[int] = intermediate_groups __a : List[str] = output_groups def _lowerCamelCase ( self ): __a : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[Any] = None if self.use_input_mask: __a : int = random_attention_mask([self.batch_size, self.seq_length] ) __a : List[str] = None __a : Union[str, Any] = None __a : int = None if self.use_labels: __a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : Dict = ids_tensor([self.batch_size] , self.num_choices ) __a : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Optional[int] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Any = self.num_labels __a : List[Any] = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[Any] = self.num_labels __a : List[str] = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : List[str] = self.num_choices __a : Union[str, Any] = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __a : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): __a : Any = self.prepare_config_and_inputs() ((__a) , (__a) , (__a) , (__a) , (__a) , (__a)) : Optional[Any] = config_and_inputs __a : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowerCAmelCase = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Union[str, Any] = SqueezeBertModelTester(self ) __a : Dict = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() def _lowerCamelCase ( self ): __a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def _lowerCamelCase ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class __lowercase ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self ): __a : int = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) __a : Tuple = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) __a : List[str] = model(_UpperCAmelCase )[0] __a : int = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) __a : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
188
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig __SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) # General docstring __SCREAMING_SNAKE_CASE : int = 'MobileNetV1Config' # Base docstring __SCREAMING_SNAKE_CASE : List[Any] = 'google/mobilenet_v1_1.0_224' __SCREAMING_SNAKE_CASE : str = [1, 1_024, 7, 7] # Image classification docstring __SCREAMING_SNAKE_CASE : Union[str, Any] = 'google/mobilenet_v1_1.0_224' __SCREAMING_SNAKE_CASE : int = 'tabby, tabby cat' __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: snake_case_ = {} if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = model.mobilenet_va else: snake_case_ = model snake_case_ = """MobilenetV1/Conv2d_0/""" snake_case_ = backbone.conv_stem.convolution.weight snake_case_ = backbone.conv_stem.normalization.bias snake_case_ = backbone.conv_stem.normalization.weight snake_case_ = backbone.conv_stem.normalization.running_mean snake_case_ = backbone.conv_stem.normalization.running_var for i in range(13 ): snake_case_ = i + 1 snake_case_ = i * 2 snake_case_ = backbone.layer[pt_index] snake_case_ = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" snake_case_ = pointer.convolution.weight snake_case_ = pointer.normalization.bias snake_case_ = pointer.normalization.weight snake_case_ = pointer.normalization.running_mean snake_case_ = pointer.normalization.running_var snake_case_ = backbone.layer[pt_index + 1] snake_case_ = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" snake_case_ = pointer.convolution.weight snake_case_ = pointer.normalization.bias snake_case_ = pointer.normalization.weight snake_case_ = pointer.normalization.running_mean snake_case_ = pointer.normalization.running_var if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ = """MobilenetV1/Logits/Conv2d_1c_1x1/""" snake_case_ = model.classifier.weight snake_case_ = model.classifier.bias return tf_to_pt_map def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model snake_case_ = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) snake_case_ = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) snake_case_ = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ = array # Build TF to PyTorch weights loading map snake_case_ = _build_tf_to_pytorch_map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue snake_case_ = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) snake_case_ = np.transpose(_SCREAMING_SNAKE_CASE , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer snake_case_ = array.squeeze().transpose() else: snake_case_ = np.transpose(_SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) snake_case_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) tf_weights.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/RMSProp""" , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/RMSProp_1""" , _SCREAMING_SNAKE_CASE ) tf_weights.pop(name + """/ExponentialMovingAverage""" , _SCREAMING_SNAKE_CASE ) logger.info(f"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> torch.Tensor: snake_case_ , snake_case_ = features.shape[-2:] snake_case_ , snake_case_ = conv_layer.stride snake_case_ , snake_case_ = conv_layer.kernel_size if in_height % stride_height == 0: snake_case_ = max(kernel_height - stride_height , 0 ) else: snake_case_ = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: snake_case_ = max(kernel_width - stride_width , 0 ) else: snake_case_ = max(kernel_width - (in_width % stride_width) , 0 ) snake_case_ = pad_along_width // 2 snake_case_ = pad_along_width - pad_left snake_case_ = pad_along_height // 2 snake_case_ = pad_along_height - pad_top snake_case_ = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , """constant""" , 0.0 ) class __A (nn.Module): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[bool] = True , UpperCAmelCase_ : Optional[bool or str] = True , ) ->None: """simple docstring""" super().__init__() snake_case_ = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) snake_case_ = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) snake_case_ = nn.Convad( in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_ , groups=UpperCAmelCase_ , bias=UpperCAmelCase_ , padding_mode="""zeros""" , ) if use_normalization: snake_case_ = nn.BatchNormad( num_features=UpperCAmelCase_ , eps=config.layer_norm_eps , momentum=0.9_997 , affine=UpperCAmelCase_ , track_running_stats=UpperCAmelCase_ , ) else: snake_case_ = None if use_activation: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = ACTaFN[use_activation] elif isinstance(config.hidden_act , UpperCAmelCase_ ): snake_case_ = ACTaFN[config.hidden_act] else: snake_case_ = config.hidden_act else: snake_case_ = None def lowerCAmelCase ( self : int , UpperCAmelCase_ : torch.Tensor ) ->torch.Tensor: """simple docstring""" if self.config.tf_padding: snake_case_ = apply_tf_padding(UpperCAmelCase_ , self.convolution ) snake_case_ = self.convolution(UpperCAmelCase_ ) if self.normalization is not None: snake_case_ = self.normalization(UpperCAmelCase_ ) if self.activation is not None: snake_case_ = self.activation(UpperCAmelCase_ ) return features class __A (snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = MobileNetVaConfig __lowercase: List[str] = load_tf_weights_in_mobilenet_va __lowercase: Tuple = """mobilenet_v1""" __lowercase: List[Any] = """pixel_values""" __lowercase: Union[str, Any] = False def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[nn.Linear, nn.Convad] ) ->None: """simple docstring""" if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) __SCREAMING_SNAKE_CASE : int = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __SCREAMING_SNAKE_CASE : List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , snake_case__ , ) class __A (snake_case__): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : MobileNetVaConfig , UpperCAmelCase_ : bool = True ) ->List[Any]: """simple docstring""" super().__init__(UpperCAmelCase_ ) snake_case_ = config snake_case_ = 32 snake_case_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) snake_case_ = MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=config.num_channels , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=2 , ) snake_case_ = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] snake_case_ = nn.ModuleList() for i in range(13 ): snake_case_ = out_channels if strides[i] == 2 or i == 0: depth *= 2 snake_case_ = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=3 , stride=strides[i] , groups=UpperCAmelCase_ , ) ) self.layer.append( MobileNetVaConvLayer( UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , kernel_size=1 , ) ) snake_case_ = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" snake_case_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) snake_case_ = self.conv_stem(UpperCAmelCase_ ) snake_case_ = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): snake_case_ = layer_module(UpperCAmelCase_ ) if output_hidden_states: snake_case_ = all_hidden_states + (hidden_states,) snake_case_ = hidden_states if self.pooler is not None: snake_case_ = torch.flatten(self.pooler(UpperCAmelCase_ ) , start_dim=1 ) else: snake_case_ = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , ) @add_start_docstrings( """ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case__ , ) class __A (snake_case__): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : MobileNetVaConfig ) ->None: """simple docstring""" super().__init__(UpperCAmelCase_ ) snake_case_ = config.num_labels snake_case_ = MobileNetVaModel(UpperCAmelCase_ ) snake_case_ = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head snake_case_ = nn.Dropout(config.classifier_dropout_prob , inplace=UpperCAmelCase_ ) snake_case_ = nn.Linear(UpperCAmelCase_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ = self.mobilenet_va(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ ) snake_case_ = outputs.pooler_output if return_dict else outputs[1] snake_case_ = self.classifier(self.dropout(UpperCAmelCase_ ) ) snake_case_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ = """single_label_classification""" else: snake_case_ = """multi_label_classification""" if self.config.problem_type == "regression": snake_case_ = MSELoss() if self.num_labels == 1: snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config.problem_type == "single_label_classification": snake_case_ = CrossEntropyLoss() snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ = BCEWithLogitsLoss() snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ ) if not return_dict: snake_case_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states , )
347
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __SCREAMING_SNAKE_CASE : Tuple = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __SCREAMING_SNAKE_CASE : Any = '|'.join(sys.argv[1:]) __SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(Rf"""^({joined_dirs}).*?\.py$""") __SCREAMING_SNAKE_CASE : List[str] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
347
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=__lowerCAmelCase ): __lowerCAmelCase : List[str] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__lowerCAmelCase ): __lowerCAmelCase : List[Any] = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__lowerCAmelCase ): __lowerCAmelCase : str = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__lowerCAmelCase ): __lowerCAmelCase : Any = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__lowerCAmelCase ): __lowerCAmelCase : int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=__lowerCAmelCase ): __lowerCAmelCase : int = ['''torch''', '''transformers''', '''onnx'''] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' requires_backends(self , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
364
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = value_function UpperCAmelCase : Dict = unet UpperCAmelCase : Union[str, Any] = scheduler UpperCAmelCase : List[Any] = env UpperCAmelCase : int = env.get_dataset() UpperCAmelCase : Optional[int] = {} for key in self.data.keys(): try: UpperCAmelCase : Dict = self.data[key].mean() except: # noqa: E722 pass UpperCAmelCase : int = {} for key in self.data.keys(): try: UpperCAmelCase : Optional[Any] = self.data[key].std() except: # noqa: E722 pass UpperCAmelCase : Any = env.observation_space.shape[0] UpperCAmelCase : str = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if type(_SCREAMING_SNAKE_CASE ) is dict: return {k: self.to_torch(_SCREAMING_SNAKE_CASE ) for k, v in x_in.items()} elif torch.is_tensor(_SCREAMING_SNAKE_CASE ): return x_in.to(self.unet.device ) return torch.tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' for key, val in cond.items(): UpperCAmelCase : Optional[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = x.shape[0] UpperCAmelCase : Optional[int] = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model UpperCAmelCase : Tuple = torch.full((batch_size,) , _SCREAMING_SNAKE_CASE , device=self.unet.device , dtype=torch.long ) for _ in range(_SCREAMING_SNAKE_CASE ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models UpperCAmelCase : Dict = self.value_function(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Optional[int] = torch.autograd.grad([y.sum()] , [x] )[0] UpperCAmelCase : List[Any] = self.scheduler._get_variance(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.exp(0.5 * posterior_variance ) UpperCAmelCase : str = model_std * grad UpperCAmelCase : str = 0 UpperCAmelCase : Any = x.detach() UpperCAmelCase : int = x + scale * grad UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : Optional[int] = self.unet(x.permute(0 , 2 , 1 ) , _SCREAMING_SNAKE_CASE ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , predict_epsilon=_SCREAMING_SNAKE_CASE )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) UpperCAmelCase : Dict = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : int = self.to_torch(_SCREAMING_SNAKE_CASE ) return x, y def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self.normalize(_SCREAMING_SNAKE_CASE , """observations""" ) UpperCAmelCase : int = obs[None].repeat(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCAmelCase : Dict = {0: self.to_torch(_SCREAMING_SNAKE_CASE )} UpperCAmelCase : Dict = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) UpperCAmelCase : str = randn_tensor(_SCREAMING_SNAKE_CASE , device=self.unet.device ) UpperCAmelCase : Any = self.reset_xa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.action_dim ) UpperCAmelCase : str = self.to_torch(_SCREAMING_SNAKE_CASE ) # run the diffusion process UpperCAmelCase , UpperCAmelCase : Any = self.run_diffusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # sort output trajectories by value UpperCAmelCase : List[str] = y.argsort(0 , descending=_SCREAMING_SNAKE_CASE ).squeeze() UpperCAmelCase : Any = x[sorted_idx] UpperCAmelCase : Dict = sorted_values[:, :, : self.action_dim] UpperCAmelCase : int = actions.detach().cpu().numpy() UpperCAmelCase : List[str] = self.de_normalize(_SCREAMING_SNAKE_CASE , key="""actions""" ) # select the action with the highest value if y is not None: UpperCAmelCase : Any = 0 else: # if we didn't run value guiding, select a random action UpperCAmelCase : Optional[int] = np.random.randint(0 , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = denorm_actions[selected_index, 0] return denorm_actions
76
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): _lowerCAmelCase = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: _lowerCAmelCase = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ : Optional[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Optional[int] = numpy_to_pil(UpperCamelCase ) return images def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if images.ndim == 3: lowerCAmelCase__ : List[str] = images[None, ...] lowerCAmelCase__ : int = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase__ : int = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowerCAmelCase__ : Tuple = [Image.fromarray(UpperCamelCase ) for image in images] return pil_images
37
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
33
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __a( _a ): """simple docstring""" lowerCAmelCase = '''gptsan-japanese''' lowerCAmelCase = [ '''past_key_values''', ] lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self ,_SCREAMING_SNAKE_CASE=36_000 ,_SCREAMING_SNAKE_CASE=1_280 ,_SCREAMING_SNAKE_CASE=1_024 ,_SCREAMING_SNAKE_CASE=8_192 ,_SCREAMING_SNAKE_CASE=4_096 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=10 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=128 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=1e-5 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE="float32" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=0.0_02 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=35_998 ,_SCREAMING_SNAKE_CASE=35_995 ,_SCREAMING_SNAKE_CASE=35_999 ,**_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : int = d_model UpperCAmelCase_ : List[str] = d_ff UpperCAmelCase_ : List[Any] = d_ext UpperCAmelCase_ : Any = d_spout UpperCAmelCase_ : Union[str, Any] = num_switch_layers UpperCAmelCase_ : int = num_ext_layers UpperCAmelCase_ : List[Any] = num_switch_layers + num_ext_layers UpperCAmelCase_ : Any = num_heads UpperCAmelCase_ : str = num_experts UpperCAmelCase_ : Tuple = expert_capacity UpperCAmelCase_ : List[str] = dropout_rate UpperCAmelCase_ : Union[str, Any] = layer_norm_epsilon UpperCAmelCase_ : Any = router_bias UpperCAmelCase_ : Union[str, Any] = router_jitter_noise UpperCAmelCase_ : Any = router_dtype UpperCAmelCase_ : List[Any] = router_ignore_padding_tokens UpperCAmelCase_ : Optional[Any] = output_hidden_states UpperCAmelCase_ : int = output_attentions UpperCAmelCase_ : Dict = initializer_factor UpperCAmelCase_ : str = output_router_logits UpperCAmelCase_ : int = use_cache super().__init__( separator_token_id=_SCREAMING_SNAKE_CASE ,pad_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,)
235
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if isinstance(_lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowercase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __a( _a ): """simple docstring""" lowerCAmelCase = ['''pixel_values'''] def __init__( self ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = 1 / 255 ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) UpperCAmelCase_ : str = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : int = do_center_crop UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Optional[int] = resample UpperCAmelCase_ : List[Any] = do_rescale UpperCAmelCase_ : Tuple = rescale_factor UpperCAmelCase_ : Optional[Any] = do_normalize UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: UpperCAmelCase_ : Dict = get_resize_output_image_size(_SCREAMING_SNAKE_CASE ,size['''shortest_edge'''] ,default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: UpperCAmelCase_ : Tuple = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: UpperCAmelCase_ : str = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE ,size=(size['''height'''], size['''width''']) ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> Dict: return rescale(_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : Any = to_numpy_array(_SCREAMING_SNAKE_CASE ) if do_resize: UpperCAmelCase_ : Union[str, Any] = self.resize(image=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ) if do_center_crop: UpperCAmelCase_ : Optional[int] = self.center_crop(_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ) if do_rescale: UpperCAmelCase_ : str = self.rescale(image=_SCREAMING_SNAKE_CASE ,scale=_SCREAMING_SNAKE_CASE ) if do_normalize: UpperCAmelCase_ : List[Any] = self.normalize(image=_SCREAMING_SNAKE_CASE ,mean=_SCREAMING_SNAKE_CASE ,std=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = to_channel_dimension_format(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return image def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = ChannelDimension.FIRST ,**_SCREAMING_SNAKE_CASE ,) -> PIL.Image.Image: UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : int = resample if resample is not None else self.resample UpperCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase_ : List[str] = size if size is not None else self.size UpperCAmelCase_ : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE ,default_to_square=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Any = get_size_dict(_SCREAMING_SNAKE_CASE ,param_name='''crop_size''' ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase_ : List[Any] = make_batched(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = [ [ self._preprocess_image( image=_SCREAMING_SNAKE_CASE ,do_resize=_SCREAMING_SNAKE_CASE ,size=_SCREAMING_SNAKE_CASE ,resample=_SCREAMING_SNAKE_CASE ,do_center_crop=_SCREAMING_SNAKE_CASE ,crop_size=_SCREAMING_SNAKE_CASE ,do_rescale=_SCREAMING_SNAKE_CASE ,rescale_factor=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,image_mean=_SCREAMING_SNAKE_CASE ,image_std=_SCREAMING_SNAKE_CASE ,data_format=_SCREAMING_SNAKE_CASE ,) for img in video ] for video in videos ] UpperCAmelCase_ : Any = {'''pixel_values''': videos} return BatchFeature(data=_SCREAMING_SNAKE_CASE ,tensor_type=_SCREAMING_SNAKE_CASE )
235
1
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging SCREAMING_SNAKE_CASE : Union[str, Any] = """\ """ SCREAMING_SNAKE_CASE : Any = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ SCREAMING_SNAKE_CASE : Dict = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = 16 , a_ = True , a_=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __snake_case : Optional[Any] = '''cuda''' else: __snake_case : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' __snake_case : int = AutoModelForCausalLM.from_pretrained(a_ ) __snake_case : Optional[int] = model.to(a_ ) __snake_case : Optional[int] = AutoTokenizer.from_pretrained(a_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __snake_case : List[Any] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(a_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __snake_case : List[Any] = model.config.max_length - 1 else: __snake_case : Dict = model.config.max_length __snake_case : Tuple = tokenizer( a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , return_tensors='''pt''' , return_attention_mask=a_ , ).to(a_ ) __snake_case : List[Any] = encodings['''input_ids'''] __snake_case : str = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __snake_case : Union[str, Any] = [] __snake_case : str = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(a_ ) , a_ ) ): __snake_case : Optional[int] = min(start_index + batch_size , len(a_ ) ) __snake_case : int = encoded_texts[start_index:end_index] __snake_case : Optional[int] = attn_masks[start_index:end_index] if add_start_token: __snake_case : List[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(a_ ) __snake_case : Union[str, Any] = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __snake_case : int = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(a_ ), attn_mask] , dim=1 ) __snake_case : List[Any] = encoded_batch with torch.no_grad(): __snake_case : List[str] = model(a_ , attention_mask=a_ ).logits __snake_case : List[str] = out_logits[..., :-1, :].contiguous() __snake_case : int = labels[..., 1:].contiguous() __snake_case : int = attn_mask[..., 1:].contiguous() __snake_case : Tuple = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , a_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a_ )}
102
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
0
import re def UpperCAmelCase ( a_ ) -> bool: """simple docstring""" __A = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(a_ , a_ ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = '0094702343221' print(is_sri_lankan_phone_number(phone))
124
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a_ = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''DeiTFeatureExtractor'''] a_ = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE : Union[str, Any] = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] ,lowercase__ : Dict=None ,lowercase__ : Union[str, Any]=None ,**lowercase__ : Tuple ): __lowercase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,lowercase__ ,) __lowercase = kwargs.pop('''feature_extractor''' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ ,lowercase__ ) def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]=None ,**lowercase__ : int ): if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __lowercase = self.tokenizer(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if images is not None: __lowercase = self.image_processor(lowercase__ ,return_tensors=lowercase__ ,**lowercase__ ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) ,tensor_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,*lowercase__ : List[str] ,**lowercase__ : int ): return self.tokenizer.batch_decode(*lowercase__ ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,*lowercase__ : Optional[int] ,**lowercase__ : Union[str, Any] ): return self.tokenizer.decode(*lowercase__ ,**lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,lowercase__ ,) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,lowercase__ ,) return self.image_processor
104
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
279
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCamelCase_ : Optional[int] = field( default=128, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) lowerCamelCase_ : Optional[int] = field( default=_a, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) }, ) @dataclass class __lowerCAmelCase : lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase_ : str = field( default=_a, metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase_ : Optional[str] = field( default=_a, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowerCamelCase_ : Optional[bool] = field( default=_a, metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) lowerCamelCase_ : str = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) lowerCamelCase_ : bool = field( default=_a, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) lowerCamelCase_ : bool = field( default=_a, metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''}, ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : List[Any] = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: snake_case_ : Union[str, Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : str = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = train_dataset.features['''label'''].names if training_args.do_eval: snake_case_ : Dict = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: snake_case_ : int = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Optional[int] = predict_dataset.features['''label'''].names # Labels snake_case_ : int = len(_UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel={str(_UpperCamelCase ): label for i, label in enumerate(_UpperCamelCase )} , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: snake_case_ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch snake_case_ : str = False def preprocess_function(_UpperCamelCase ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=_UpperCamelCase , max_length=data_args.max_seq_length , truncation=_UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: snake_case_ : List[Any] = min(len(_UpperCamelCase ) , data_args.max_train_samples ) snake_case_ : int = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): snake_case_ : Optional[int] = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: snake_case_ : List[str] = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) snake_case_ : List[str] = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): snake_case_ : List[str] = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: snake_case_ : Union[str, Any] = min(len(_UpperCamelCase ) , data_args.max_predict_samples ) snake_case_ : Dict = predict_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): snake_case_ : List[str] = predict_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function snake_case_ : int = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): snake_case_ : List[str] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions snake_case_ : Tuple = np.argmax(_UpperCamelCase , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: snake_case_ : Optional[int] = default_data_collator elif training_args.fpaa: snake_case_ : Any = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: snake_case_ : Any = None # Initialize our Trainer snake_case_ : Any = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: snake_case_ : int = None if training_args.resume_from_checkpoint is not None: snake_case_ : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : Dict = last_checkpoint snake_case_ : int = trainer.train(resume_from_checkpoint=_UpperCamelCase ) snake_case_ : Union[str, Any] = train_result.metrics snake_case_ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Dict = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case_ : Any = trainer.evaluate(eval_dataset=_UpperCamelCase ) snake_case_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) snake_case_ : str = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) snake_case_ , snake_case_ , snake_case_ : Optional[int] = trainer.predict(_UpperCamelCase , metric_key_prefix='''predict''' ) snake_case_ : Union[str, Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_UpperCamelCase ) ) snake_case_ : Optional[int] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''predict''' , _UpperCamelCase ) trainer.save_metrics('''predict''' , _UpperCamelCase ) snake_case_ : List[Any] = np.argmax(_UpperCamelCase , axis=1 ) snake_case_ : Optional[Any] = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(_UpperCamelCase ): snake_case_ : List[str] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
279
1
from datetime import datetime as dt import os from github import Github A__ : List[str] = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def UpperCamelCase( ): lowerCAmelCase_ : Union[str, Any] = Github(os.environ['''GITHUB_TOKEN'''] ) lowerCAmelCase_ : Tuple = g.get_repo('''huggingface/transformers''' ) lowerCAmelCase_ : int = repo.get_issues(state='''open''' ) for issue in open_issues: lowerCAmelCase_ : Optional[Any] = sorted([comment for comment in issue.get_comments()] ,key=lambda __UpperCamelCase : i.created_at ,reverse=__UpperCamelCase ) lowerCAmelCase_ : Tuple = comments[0] if len(__UpperCamelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
103
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" ,"False" ) ) is not True ,reason="Skipping test because should only be run when releasing minor transformers version" ,) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_6_0_0, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split(), encoding="utf-8", check=UpperCAmelCase__, ) assert hasattr(self, "env" ) def _lowercase ( self : str, UpperCAmelCase__ : List[Any] ): # configuration for running training on smdistributed Model Parallel __lowercase = { "enabled": True, "processes_per_host": 8, } __lowercase = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } __lowercase = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} __lowercase = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""", instance_count=UpperCAmelCase__, instance_type=self.instance_type, debugger_hook_config=UpperCAmelCase__, hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, }, metric_definitions=self.env.metric_definitions, distribution=UpperCAmelCase__, py_version="py36", ) def _lowercase ( self : Tuple, UpperCAmelCase__ : int ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowercase ( self : str, UpperCAmelCase__ : Union[str, Any] ): # create estimator __lowercase = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds", 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""", "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, UpperCAmelCase__ )
17
0
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , _SCREAMING_SNAKE_CASE )-> None: lowerCamelCase_ =data lowerCamelCase_ =None lowerCamelCase_ =None def __UpperCamelCase ( _A : Node | None ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCamelCase ( _A : Node | None ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCamelCase ( _A : Node ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCamelCase ( ) ->None: # Main function for testing. """simple docstring""" lowerCamelCase_ =Node(1 ) lowerCamelCase_ =Node(2 ) lowerCamelCase_ =Node(3 ) lowerCamelCase_ =Node(4 ) lowerCamelCase_ =Node(5 ) lowerCamelCase_ =Node(6 ) lowerCamelCase_ =Node(7 ) lowerCamelCase_ =Node(8 ) lowerCamelCase_ =Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
370
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __UpperCamelCase ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ) ->list[float]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ =constant_matrix.shape if rowsa != colsa: lowerCamelCase_ =f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_A ) if colsa != 1: lowerCamelCase_ =f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase_ =( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase_ =( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_A )} and {rowsa}' ) raise ValueError(_A ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowerCamelCase_ =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ =table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase_ =[] for row in range(_A ): lowerCamelCase_ =0 for col in range(_A ): if col == row: lowerCamelCase_ =table[row][col] elif col == cols - 1: lowerCamelCase_ =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ =(temp + val) / denom new_val.append(_A ) lowerCamelCase_ =new_val return [float(_A ) for i in new_val] def __UpperCamelCase ( _A : NDArray[floataa] ) ->bool: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ =table.shape lowerCamelCase_ =True for i in range(0 , _A ): lowerCamelCase_ =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
49
0
"""simple docstring""" def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) != 0 ) def a_ ( ): '''simple docstring''' assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
77
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Any = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'mctct' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str=8065 , _SCREAMING_SNAKE_CASE: str=1536 , _SCREAMING_SNAKE_CASE: str=36 , _SCREAMING_SNAKE_CASE: Optional[Any]=6144 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=384 , _SCREAMING_SNAKE_CASE: Optional[Any]=920 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-5 , _SCREAMING_SNAKE_CASE: List[Any]=0.3 , _SCREAMING_SNAKE_CASE: Optional[Any]="relu" , _SCREAMING_SNAKE_CASE: Optional[int]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.3 , _SCREAMING_SNAKE_CASE: Dict=0.3 , _SCREAMING_SNAKE_CASE: List[Any]=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=0 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1 , _SCREAMING_SNAKE_CASE: Tuple=0.3 , _SCREAMING_SNAKE_CASE: Dict=1 , _SCREAMING_SNAKE_CASE: int=(7,) , _SCREAMING_SNAKE_CASE: str=(3,) , _SCREAMING_SNAKE_CASE: Union[str, Any]=80 , _SCREAMING_SNAKE_CASE: Tuple=1 , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Tuple="sum" , _SCREAMING_SNAKE_CASE: List[str]=False , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = vocab_size __lowerCAmelCase : str = hidden_size __lowerCAmelCase : str = num_hidden_layers __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Dict = attention_head_dim __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : str = layer_norm_eps __lowerCAmelCase : Tuple = layerdrop __lowerCAmelCase : str = hidden_act __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : int = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : str = pad_token_id __lowerCAmelCase : Optional[int] = bos_token_id __lowerCAmelCase : Union[str, Any] = eos_token_id __lowerCAmelCase : Any = conv_glu_dim __lowerCAmelCase : Optional[int] = conv_dropout __lowerCAmelCase : Union[str, Any] = num_conv_layers __lowerCAmelCase : Optional[int] = input_feat_per_channel __lowerCAmelCase : Union[str, Any] = input_channels __lowerCAmelCase : Optional[Any] = conv_channels __lowerCAmelCase : Dict = ctc_loss_reduction __lowerCAmelCase : int = ctc_zero_infinity # prevents config testing fail with exporting to json __lowerCAmelCase : List[str] = list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = list(_SCREAMING_SNAKE_CASE) if len(self.conv_kernel) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " F"""but is `len(config.conv_kernel) = {len(self.conv_kernel)}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""")
269
0
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 64, 64) lowerCAmelCase__ = torch.rand(1) * 999 lowerCAmelCase__ = torch.randn(2, 77, 768) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 666 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
361
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase__ = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , snake_case__ = " " ): """simple docstring""" lowerCAmelCase : List[Any] = sentence_delimiter def lowercase__ ( self , snake_case__ ): """simple docstring""" return list(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] for sent_idx, sentence in enumerate(snake_case__ ): chars.extend(self.process_string(snake_case__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(snake_case__ ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase__ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase__ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase__ = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' lowerCAmelCase__ = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , )["wer"] lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = jiwer.compute_measures( snake_case__ , snake_case__ , truth_transform=snake_case__ , hypothesis_transform=snake_case__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
133
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case_ : List[str] = logging.get_logger(__name__) class __snake_case ( a ): UpperCAmelCase__ : List[Any] = ['''pixel_values'''] def __init__( self : Tuple , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = PILImageResampling.BILINEAR , _snake_case : bool = True , _snake_case : Union[int, float] = 1 / 255 , _snake_case : bool = True , _snake_case : Dict[str, int] = None , _snake_case : bool = True , **_snake_case : int , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ = get_size_dict(_snake_case , default_to_square=_snake_case) UpperCAmelCase_ = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCAmelCase_ = get_size_dict(_snake_case , param_name='''crop_size''') UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = resample UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = crop_size UpperCAmelCase_ = do_flip_channel_order def lowerCamelCase ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : PILImageResampling = PIL.Image.BILINEAR , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : int , ): """simple docstring""" UpperCAmelCase_ = get_size_dict(_snake_case , default_to_square=_snake_case) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""") UpperCAmelCase_ = get_resize_output_image_size(_snake_case , size=size['''shortest_edge'''] , default_to_square=_snake_case) return resize(_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : np.ndarray , _snake_case : Dict[str, int] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : Tuple , ): """simple docstring""" UpperCAmelCase_ = get_size_dict(_snake_case) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") return center_crop(_snake_case , size=(size['''height'''], size['''width''']) , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : np.ndarray , _snake_case : Union[int, float] , _snake_case : Optional[Union[str, ChannelDimension]] = None , **_snake_case : List[str] , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case) def lowerCamelCase ( self : Tuple , _snake_case : np.ndarray , _snake_case : Optional[Union[str, ChannelDimension]] = None): """simple docstring""" return flip_channel_order(_snake_case , data_format=_snake_case) def lowerCamelCase ( self : Tuple , _snake_case : ImageInput , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : PILImageResampling = None , _snake_case : bool = None , _snake_case : float = None , _snake_case : bool = None , _snake_case : Dict[str, int] = None , _snake_case : bool = None , _snake_case : Optional[Union[str, TensorType]] = None , _snake_case : ChannelDimension = ChannelDimension.FIRST , **_snake_case : str , ): """simple docstring""" UpperCAmelCase_ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ = resample if resample is not None else self.resample UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase_ = size if size is not None else self.size UpperCAmelCase_ = get_size_dict(_snake_case , default_to_square=_snake_case) UpperCAmelCase_ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ = get_size_dict(_snake_case , param_name='''crop_size''') UpperCAmelCase_ = make_list_of_images(_snake_case) if not valid_images(_snake_case): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(_snake_case) for image in images] if do_resize: UpperCAmelCase_ = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case) for image in images] if do_center_crop: UpperCAmelCase_ = [self.center_crop(image=_snake_case , size=_snake_case) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=_snake_case , scale=_snake_case) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase_ = [self.flip_channel_order(image=_snake_case) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(_snake_case , _snake_case) for image in images] UpperCAmelCase_ = {'''pixel_values''': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case) def lowerCamelCase ( self : List[Any] , _snake_case : Dict , _snake_case : List[Tuple] = None): """simple docstring""" UpperCAmelCase_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_snake_case) != len(_snake_case): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''') if is_torch_tensor(_snake_case): UpperCAmelCase_ = target_sizes.numpy() UpperCAmelCase_ = [] for idx in range(len(_snake_case)): UpperCAmelCase_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_snake_case) UpperCAmelCase_ = resized_logits[0].argmax(dim=0) semantic_segmentation.append(_snake_case) else: UpperCAmelCase_ = logits.argmax(dim=1) UpperCAmelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation
51
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') a_ = parser.parse_args() if args.model_type == "roberta": a_ = RobertaForMaskedLM.from_pretrained(args.model_name) a_ = 'roberta' elif args.model_type == "gpt2": a_ = GPTaLMHeadModel.from_pretrained(args.model_name) a_ = 'transformer' a_ = model.state_dict() a_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a_ = state_dict[F"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a_ = F"""{prefix}.embeddings.{w}.weight""" a_ = state_dict[param_name] for w in ["weight", "bias"]: a_ = F"""{prefix}.embeddings.LayerNorm.{w}""" a_ = state_dict[param_name] # Transformer Blocks # a_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] a_ = state_dict[F"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a_ = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a_ = state_dict[F"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: a_ = state_dict[F"""lm_head.dense.{w}"""] a_ = state_dict[F"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a_ = state_dict[F"""{prefix}.ln_f.{w}"""] a_ = state_dict['lm_head.weight'] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
175
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list] ) -> list[list]: __lowerCAmelCase : Optional[int] = current_set.copy() for row_index, row in enumerate(lowerCAmelCase__ ): __lowerCAmelCase : Any = row[0] for column_index, column in enumerate(lowerCAmelCase__ ): if magnitude == 0: __lowerCAmelCase : Optional[Any] = column continue __lowerCAmelCase : Optional[Any] = column / magnitude # Subtract to cancel term __lowerCAmelCase : Optional[int] = current_set[0] __lowerCAmelCase : List[str] = [first_row] __lowerCAmelCase : Any = current_set[1::] for row in current_set: __lowerCAmelCase : Optional[int] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase__ ) continue for column_index in range(len(lowerCAmelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: __lowerCAmelCase : List[str] = final_set[0] __lowerCAmelCase : str = [] __lowerCAmelCase : int = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __lowerCAmelCase : Optional[Any] = simplify(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase__ ) __lowerCAmelCase : Tuple = resultant return final_set def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list] ) -> list: if len(lowerCAmelCase__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) __lowerCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) + 1 if any(len(lowerCAmelCase__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] __lowerCAmelCase : Dict = equations.copy() if any(0 in row for row in data_set ): __lowerCAmelCase : Optional[Any] = data_set.copy() __lowerCAmelCase : Optional[int] = [] for row_index, row in enumerate(lowerCAmelCase__ ): if 0 not in row: __lowerCAmelCase : Optional[int] = data_set.pop(lowerCAmelCase__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase__ ) __lowerCAmelCase : str = data_set.copy() __lowerCAmelCase : int = simplify(lowerCAmelCase__ ) __lowerCAmelCase : List[Any] = simplified[::-1] __lowerCAmelCase : Tuple = [] for row in simplified: __lowerCAmelCase : Optional[int] = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __lowerCAmelCase : List[str] = row.copy()[: len(lowerCAmelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase__ ) == 0: solutions.append(0 ) continue __lowerCAmelCase : Tuple = temp_row[1::] __lowerCAmelCase : int = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase__ ) __lowerCAmelCase : str = [] for item in solutions: final.append(float(round(lowerCAmelCase__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
360
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> Dict: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if n == 0: return 0 __lowerCAmelCase : Union[str, Any] = float("""-inf""" ) for i in range(1 , n + 1 ): __lowerCAmelCase : Union[str, Any] = max( SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE ) ) return max_revue def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> List[str]: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list , SCREAMING_SNAKE_CASE :list ) -> List[str]: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __lowerCAmelCase : str = float("""-inf""" ) for i in range(1 , n + 1 ): __lowerCAmelCase : List[Any] = max( SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) __lowerCAmelCase : List[str] = max_revenue return max_rev[n] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> Union[str, Any]: _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __lowerCAmelCase : Optional[int] = [float("""-inf""" ) for _ in range(n + 1 )] __lowerCAmelCase : List[str] = 0 for i in range(1 , n + 1 ): __lowerCAmelCase : Optional[Any] = max_rev[i] for j in range(1 , i + 1 ): __lowerCAmelCase : Optional[int] = max(SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) __lowerCAmelCase : Optional[int] = max_revenue_i return max_rev[n] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list ) -> List[Any]: if n < 0: __lowerCAmelCase : Any = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(SCREAMING_SNAKE_CASE ) if n > len(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = ( """Each integral piece of rod must have a corresponding price. """ F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE )}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowerCAmelCase : Tuple = [6, 10, 12, 15, 20, 23] __lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __lowerCAmelCase : Union[str, Any] = 36 __lowerCAmelCase : Optional[int] = top_down_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = bottom_up_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
232
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCAmelCase :List[str] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' lowerCAmelCase :Any = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' lowerCAmelCase :Optional[int] = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self : int ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def __lowerCAmelCase ( self : Tuple , _A : Optional[Any] , _A : List[Any] ) -> List[Any]: __magic_name__ : List[str] = 0.0 for i, j in zip(_A , _A ): n_correct += 1.0 if math_equivalence.is_equiv(_A , _A ) else 0.0 __magic_name__ : Dict = n_correct / len(_A ) return { "accuracy": accuracy, }
331
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ : Any = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ : Dict = DisjunctiveConstraint(_A ) self.assertTrue(isinstance(dc.token_ids , _A ) ) with self.assertRaises(_A ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_A ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_A ): DisjunctiveConstraint(_A ) # fails here def __lowerCAmelCase ( self : List[Any] ) -> Tuple: __magic_name__ : Dict = [[1, 2, 3], [1, 2, 4]] __magic_name__ : List[Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : Tuple = dc.update(1 ) __magic_name__ : Optional[int] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(2 ) __magic_name__ : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(_A ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(3 ) __magic_name__ : Any = stepped is True and completed is True and reset is False self.assertTrue(_A ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self : List[Any] ) -> Dict: __magic_name__ : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ : Union[str, Any] = DisjunctiveConstraint(_A ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
331
1
"""simple docstring""" def a__ ( snake_case__ = 1_00 ) -> int: lowerCamelCase = set() lowerCamelCase = 0 lowerCamelCase = n + 1 # maximum limit for a in range(2 , snake_case__ ): for b in range(2 , snake_case__ ): lowerCamelCase = a**b # calculates the current power collect_powers.add(snake_case__ ) # adds the result to the set return len(snake_case__ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
369
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase : Tuple = _symbol_database.Default() lowerCAmelCase : int = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) lowerCAmelCase : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase : Dict = None lowerCAmelCase : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase : List[Any] = 45 lowerCAmelCase : List[str] = 1581 lowerCAmelCase : List[str] = 1517 lowerCAmelCase : List[Any] = 1570 lowerCAmelCase : List[str] = 1584 lowerCAmelCase : Tuple = 1793 lowerCAmelCase : Union[str, Any] = 1795 lowerCAmelCase : Tuple = 1916 lowerCAmelCase : Tuple = 1864 lowerCAmelCase : Any = 1905 lowerCAmelCase : int = 1919 lowerCAmelCase : Union[str, Any] = 2429 lowerCAmelCase : List[Any] = 2208 lowerCAmelCase : Tuple = 2418 lowerCAmelCase : str = 2323 lowerCAmelCase : List[str] = 2407 # @@protoc_insertion_point(module_scope)
168
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ = 60_08_51_47_51_43 ) -> int: try: A__ = int(lowercase_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(lowercase_ ) if __name__ == "__main__": print(f'{solution() = }')
247
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE = (720, 1280) # Height, Width SCREAMING_SNAKE_CASE = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE = 1 / 100 SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = "" SCREAMING_SNAKE_CASE = 250 def _SCREAMING_SNAKE_CASE ( ) -> None: A__, A__ = get_dataset(lowercase_ , lowercase_ ) for index in range(lowercase_ ): A__ = random.sample(range(len(lowercase_ ) ) , 4 ) A__, A__, A__ = update_image_and_anno( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , filter_scale=lowercase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ = random_chars(32 ) A__ = path.split(os.sep )[-1].rsplit("." , 1 )[0] A__ = f"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(f"""{file_root}.jpg""" , lowercase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) A__ = [] for anno in new_annos: A__ = anno[3] - anno[1] A__ = anno[4] - anno[2] A__ = anno[1] + width / 2 A__ = anno[2] + height / 2 A__ = f"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(lowercase_ ) with open(f"""{file_root}.txt""" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[list, list]: A__ = [] A__ = [] for label_file in glob.glob(os.path.join(lowercase_ , "*.txt" ) ): A__ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(lowercase_ ) as in_file: A__ = in_file.readlines() A__ = os.path.join(lowercase_ , f"""{label_name}.jpg""" ) A__ = [] for obj_list in obj_lists: A__ = obj_list.rstrip("\n" ).split(" " ) A__ = float(obj[1] ) - float(obj[3] ) / 2 A__ = float(obj[2] ) - float(obj[4] ) / 2 A__ = float(obj[1] ) + float(obj[3] ) / 2 A__ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowercase_ ) labels.append(lowercase_ ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 0.0 , ) -> tuple[list, list, str]: A__ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ = int(scale_x * output_size[1] ) A__ = int(scale_y * output_size[0] ) A__ = [] A__ = [] for i, index in enumerate(lowercase_ ): A__ = all_img_list[index] path_list.append(lowercase_ ) A__ = all_annos[index] A__ = cva.imread(lowercase_ ) if i == 0: # top-left A__ = cva.resize(lowercase_ , (divid_point_x, divid_point_y) ) A__ = img for bbox in img_annos: A__ = bbox[1] * scale_x A__ = bbox[2] * scale_y A__ = bbox[3] * scale_x A__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right A__ = cva.resize(lowercase_ , (output_size[1] - divid_point_x, divid_point_y) ) A__ = img for bbox in img_annos: A__ = scale_x + bbox[1] * (1 - scale_x) A__ = bbox[2] * scale_y A__ = scale_x + bbox[3] * (1 - scale_x) A__ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left A__ = cva.resize(lowercase_ , (divid_point_x, output_size[0] - divid_point_y) ) A__ = img for bbox in img_annos: A__ = bbox[1] * scale_x A__ = scale_y + bbox[2] * (1 - scale_y) A__ = bbox[3] * scale_x A__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right A__ = cva.resize( lowercase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) A__ = img for bbox in img_annos: A__ = scale_x + bbox[1] * (1 - scale_x) A__ = scale_y + bbox[2] * (1 - scale_y) A__ = scale_x + bbox[3] * (1 - scale_x) A__ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: A__ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: assert number_char > 1, "The number of character should greater than 1" A__ = ascii_lowercase + digits return "".join(random.choice(lowercase_ ) for _ in range(lowercase_ ) ) if __name__ == "__main__": main() print("DONE ✅")
247
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "realm" def __init__(self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=128 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=8 , UpperCAmelCase=3072 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=256 , UpperCAmelCase=10 , UpperCAmelCase=1e-3 , UpperCAmelCase=5 , UpperCAmelCase=320 , UpperCAmelCase=13353718 , UpperCAmelCase=5000 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ) -> Dict: super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = retriever_proj_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = num_candidates _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = type_vocab_size _snake_case = layer_norm_eps # Reader config _snake_case = span_hidden_size _snake_case = max_span_width _snake_case = reader_layer_norm_eps _snake_case = reader_beam_size _snake_case = reader_seq_len # Retrieval config _snake_case = num_block_records _snake_case = searcher_beam_size
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
270
1
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a__ = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
235
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : """simple docstring""" pass
235
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Tuple = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "blip_text_model" def __init__( self : Dict , lowerCAmelCase : Optional[int]=30524 , lowerCAmelCase : int=768 , lowerCAmelCase : Union[str, Any]=768 , lowerCAmelCase : Dict=3072 , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : List[Any]=12 , lowerCAmelCase : Dict=8 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : Any=1E-12 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : int=30522 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : int=0 , lowerCAmelCase : Optional[Any]=102 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=True , **lowerCAmelCase : Union[str, Any] , )-> int: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , sep_token_id=lowerCAmelCase , **lowerCAmelCase , ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = encoder_hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = projection_dim UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = layer_norm_eps UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = is_decoder UpperCAmelCase = use_cache @classmethod def a__( cls : List[Any] , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : str )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : str = "blip_vision_model" def __init__( self : List[str] , lowerCAmelCase : int=768 , lowerCAmelCase : List[Any]=3072 , lowerCAmelCase : Union[str, Any]=512 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=12 , lowerCAmelCase : int=384 , lowerCAmelCase : Dict=16 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Dict=1E-5 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Optional[int]=1E-10 , **lowerCAmelCase : int , )-> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = projection_dim UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = patch_size UpperCAmelCase = image_size UpperCAmelCase = initializer_range UpperCAmelCase = attention_dropout UpperCAmelCase = layer_norm_eps UpperCAmelCase = hidden_act @classmethod def a__( cls : Dict , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : Tuple )-> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = "blip" __magic_name__ : List[Any] = True def __init__( self : Tuple , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=512 , lowerCAmelCase : int=2.6592 , lowerCAmelCase : List[str]=256 , **lowerCAmelCase : Optional[Any] , )-> str: """simple docstring""" super().__init__(**lowerCAmelCase ) if text_config is None: UpperCAmelCase = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: UpperCAmelCase = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) UpperCAmelCase = BlipTextConfig(**lowerCAmelCase ) UpperCAmelCase = BlipVisionConfig(**lowerCAmelCase ) UpperCAmelCase = self.vision_config.hidden_size UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = 1.0 UpperCAmelCase = 0.02 UpperCAmelCase = image_text_hidden_size @classmethod def a__( cls : str , lowerCAmelCase : BlipTextConfig , lowerCAmelCase : BlipVisionConfig , **lowerCAmelCase : Any )-> List[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase ) def a__( self : Any )-> Tuple: """simple docstring""" UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
350
'''simple docstring''' from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
91
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class A ( UpperCamelCase_ ): def __init__( self : Any , lowercase_ : int , lowercase_ : Optional[int] ) -> Tuple: """simple docstring""" _lowerCamelCase : Dict =params _lowerCamelCase : Tuple =np.array(lowercase_ ) _lowerCamelCase : Optional[Any] =np.array([len(lowercase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : Union[str, Any] , lowercase_ : List[str] ) -> Union[str, Any]: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self : Tuple ) -> List[Any]: """simple docstring""" return len(self.lengths ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" _lowerCamelCase : Optional[int] =self.params.max_model_input_size _lowerCamelCase : Any =self.lengths > max_len logger.info(F'''Splitting {sum(lowercase_ )} too long sequences.''' ) def divide_chunks(lowercase_ : int , lowercase_ : List[Any] ): return [l[i : i + n] for i in range(0 , len(lowercase_ ) , lowercase_ )] _lowerCamelCase : Dict =[] _lowerCamelCase : int =[] if self.params.mlm: _lowerCamelCase , _lowerCamelCase : Dict =self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: _lowerCamelCase , _lowerCamelCase : List[str] =self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _lowerCamelCase : Tuple =[] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _lowerCamelCase : Tuple =np.insert(lowercase_ , 0 , lowercase_ ) if sub_s[-1] != sep_id: _lowerCamelCase : List[Any] =np.insert(lowercase_ , len(lowercase_ ) , lowercase_ ) assert len(lowercase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase_ ) new_tok_ids.extend(lowercase_ ) new_lengths.extend([len(lowercase_ ) for l in sub_seqs] ) _lowerCamelCase : Optional[int] =np.array(lowercase_ ) _lowerCamelCase : str =np.array(lowercase_ ) def lowerCamelCase ( self : Any ) -> List[str]: """simple docstring""" _lowerCamelCase : int =len(self ) _lowerCamelCase : int =self.lengths > 11 _lowerCamelCase : Optional[int] =self.token_ids[indices] _lowerCamelCase : List[Any] =self.lengths[indices] _lowerCamelCase : Tuple =len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: _lowerCamelCase : Dict =self.params.special_tok_ids['unk_token'] _lowerCamelCase : List[str] =len(self ) _lowerCamelCase : int =np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _lowerCamelCase : List[Any] =(unk_occs / self.lengths) < 0.5 _lowerCamelCase : Tuple =self.token_ids[indices] _lowerCamelCase : Optional[int] =self.lengths[indices] _lowerCamelCase : Tuple =len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowerCamelCase ( self : List[str] , lowercase_ : int ) -> str: """simple docstring""" _lowerCamelCase : Optional[Any] =[t[0] for t in batch] _lowerCamelCase : Dict =[t[1] for t in batch] assert len(lowercase_ ) == len(lowercase_ ) # Max for paddings _lowerCamelCase : List[Any] =max(lowercase_ ) # Pad token ids if self.params.mlm: _lowerCamelCase : List[Any] =self.params.special_tok_ids['pad_token'] else: _lowerCamelCase : Optional[Any] =self.params.special_tok_ids['unk_token'] _lowerCamelCase : Optional[Any] =[list(t.astype(lowercase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase_ )) for t in token_ids] assert len(tk_ ) == len(lowercase_ ) assert all(len(lowercase_ ) == max_seq_len_ for t in tk_ ) _lowerCamelCase : Optional[int] =torch.tensor(tk_ ) # (bs, max_seq_len_) _lowerCamelCase : List[str] =torch.tensor(lowercase_ ) # (bs) return tk_t, lg_t
199
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCamelCase = 5_00_03 lowerCamelCase = 5_00_02 @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : int =PLBartTokenizer UpperCamelCase__ : Dict =None UpperCamelCase__ : Optional[Any] =False def lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Any =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =PLBartTokenizer(lowercase_ , language_codes='base' , keep_accents=lowercase_ ) _lowerCamelCase : Optional[int] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : str =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : List[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : str =tokenizer.vocab_size _lowerCamelCase : List[str] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 4 , lowercase_ )] self.assertListEqual(lowercase_ , ['__java__', '__python__', '__en_XX__', '<mask>'] ) _lowerCamelCase : Optional[Any] ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Dict =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : Tuple =PLBartTokenizer(lowercase_ , language_codes='multi' , keep_accents=lowercase_ ) _lowerCamelCase : Any =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : Optional[Any] =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Dict =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCamelCase : Dict =tokenizer.vocab_size _lowerCamelCase : Optional[int] =[tokenizer.convert_ids_to_tokens(lowercase_ ) for x in range(end - 7 , lowercase_ )] self.assertListEqual( lowercase_ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) _lowerCamelCase : int ='java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCamelCase : Any =tokenizer(lowercase_ ).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) , lowercase_ , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] ='uclanlp/plbart-python-en_XX' UpperCamelCase__ : List[str] =[ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] UpperCamelCase__ : Optional[int] =[ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] UpperCamelCase__ : str =[ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCamelCase ( cls : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) _lowerCamelCase : Any =1 return cls def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) _lowerCamelCase : Dict =[EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCamelCase : Optional[int] =self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , lowercase_ ) _lowerCamelCase : Tuple =10 _lowerCamelCase : Optional[int] =self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[str] =tempfile.mkdtemp() _lowerCamelCase : Dict =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) _lowerCamelCase : Any =PLBartTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[Any] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='pt' ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCamelCase : List[Any] =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCamelCase : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='pt' ) _lowerCamelCase : Dict =self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='pt' ) _lowerCamelCase : List[str] =targets['input_ids'] _lowerCamelCase : Optional[Any] =shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : Any =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
199
1
def _A ( UpperCamelCase_ : int) -> int: '''simple docstring''' if a < 0: raise ValueError("Input value must be a positive integer") elif isinstance(_lowerCAmelCase, _lowerCAmelCase): raise TypeError("Input value must be a 'int' type") return bin(_lowerCAmelCase).count("1") if __name__ == "__main__": import doctest doctest.testmod()
354
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a = 'bert-base-cased' _a = 'google/pegasus-xsum' _a = [' Sam ate lunch today.', 'Sams lunch ingredients.'] _a = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] _a = 'patrickvonplaten/t5-tiny-random' _a = 'sshleifer/bart-tiny-random' _a = 'sshleifer/tiny-mbart' _a = 'sshleifer/tiny-marian-en-de' def _A ( UpperCamelCase_ : Path, UpperCamelCase_ : list) -> Optional[Any]: '''simple docstring''' __lowercase = "\n".join(UpperCamelCase_) Path(UpperCamelCase_).open("w").writelines(UpperCamelCase_) def _A ( UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCamelCase_, F"""{split}.source"""), UpperCamelCase_) _dump_articles(os.path.join(UpperCamelCase_, F"""{split}.target"""), UpperCamelCase_) return tmp_dir class _lowerCAmelCase ( lowercase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) @slow def _lowercase ( self : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowercase ,__lowercase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=UpperCAmelCase__, max_target_length=UpperCAmelCase__, src_lang=UpperCAmelCase__, tgt_lang=UpperCAmelCase__, ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowercase = shift_tokens_right(batch["labels"], tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = LegacySeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=2_0, max_target_length=UpperCAmelCase__, ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _lowercase ( self : str ): __lowercase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowercase = tmp_dir.joinpath("train.source" ).open().readlines() __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(UpperCAmelCase__, UpperCAmelCase__, 1_2_8, UpperCAmelCase__ ) __lowercase = {x.name for x in tmp_dir.iterdir()} __lowercase = {x.name for x in save_dir.iterdir()} __lowercase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(UpperCAmelCase__ ) < len(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(UpperCAmelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq" ) def _lowercase ( self : List[str] ): if not FAIRSEQ_AVAILABLE: return __lowercase ,__lowercase ,__lowercase = self._get_dataset(max_len=6_4 ) __lowercase = 6_4 __lowercase = ds.make_dynamic_sampler(UpperCAmelCase__, required_batch_size_multiple=UpperCAmelCase__ ) __lowercase = [len(UpperCAmelCase__ ) for x in batch_sampler] assert len(set(UpperCAmelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) # no dropped or added examples __lowercase = DataLoader(UpperCAmelCase__, batch_sampler=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2 ) __lowercase = [] __lowercase = [] for batch in data_loader: __lowercase = batch["input_ids"].shape __lowercase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowercase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(UpperCAmelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(UpperCAmelCase__ ) assert num_src_per_batch[0] == max(UpperCAmelCase__ ) if failures: raise AssertionError(F"""too many tokens in {len(UpperCAmelCase__ )} batches""" ) def _lowercase ( self : Any ): __lowercase ,__lowercase ,__lowercase = self._get_dataset(max_len=5_1_2 ) __lowercase = 2 __lowercase = ds.make_sortish_sampler(UpperCAmelCase__, shuffle=UpperCAmelCase__ ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2 ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2, sampler=UpperCAmelCase__ ) __lowercase = tokenizer.pad_token_id def count_pad_tokens(UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any]="input_ids" ): return [batch[k].eq(UpperCAmelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(UpperCAmelCase__, k="labels" ) ) < sum(count_pad_tokens(UpperCAmelCase__, k="labels" ) ) assert sum(count_pad_tokens(UpperCAmelCase__ ) ) < sum(count_pad_tokens(UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int=1_0_0_0, UpperCAmelCase__ : str=1_2_8 ): if os.getenv("USE_REAL_DATA", UpperCAmelCase__ ): __lowercase = "examples/seq2seq/wmt_en_ro" __lowercase = max_len * 2 * 6_4 if not Path(UpperCAmelCase__ ).joinpath("train.len" ).exists(): save_len_file(UpperCAmelCase__, UpperCAmelCase__ ) else: __lowercase = "examples/seq2seq/test_data/wmt_en_ro" __lowercase = max_len * 4 save_len_file(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=UpperCAmelCase__, max_target_length=UpperCAmelCase__, n_obs=UpperCAmelCase__, ) return ds, max_tokens, tokenizer def _lowercase ( self : Union[str, Any] ): __lowercase ,__lowercase ,__lowercase = self._get_dataset() __lowercase = set(DistributedSortishSampler(UpperCAmelCase__, 2_5_6, num_replicas=2, rank=0, add_extra_examples=UpperCAmelCase__ ) ) __lowercase = set(DistributedSortishSampler(UpperCAmelCase__, 2_5_6, num_replicas=2, rank=1, add_extra_examples=UpperCAmelCase__ ) ) assert idsa.intersection(UpperCAmelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) def _lowercase ( self : int, UpperCAmelCase__ : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__, use_fast=UpperCAmelCase__ ) if tok_name == MBART_TINY: __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path="train", max_source_length=4, max_target_length=8, src_lang="EN", tgt_lang="FR", ) __lowercase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path="train", max_source_length=4, max_target_length=8, ) __lowercase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(UpperCAmelCase__ ) == 1 if tok_name == BART_TINY else len(UpperCAmelCase__ ) == 0
144
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowercase__ = logging.get_logger(__name__) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: a__: Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ), F'{len(_SCREAMING_SNAKE_CASE )} != {len(_SCREAMING_SNAKE_CASE )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowercase__ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowercase__ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: try: a__: Dict = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(_SCREAMING_SNAKE_CASE ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "student" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) ->Optional[int]: a__: Optional[int] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ).save_pretrained(_SCREAMING_SNAKE_CASE ) # purely for convenience a__: Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(_SCREAMING_SNAKE_CASE ).eval() else: assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), F'teacher must be a model or string got type {type(_SCREAMING_SNAKE_CASE )}' a__: Optional[Any] = teacher.config.to_diff_dict() try: a__ , a__: Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: a__: Any = teacher_e if d is None: a__: Optional[Any] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): a__ , a__: Optional[int] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: a__ , a__: Tuple = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: a__: int = teacher_e if d is None: a__: Any = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_SCREAMING_SNAKE_CASE ) # Copy weights a__: Union[str, Any] = teacher.config_class(**_SCREAMING_SNAKE_CASE ) a__: List[Any] = AutoModelForSeqaSeqLM.from_config(_SCREAMING_SNAKE_CASE ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. a__: Tuple = student.load_state_dict(teacher.state_dict() , strict=_SCREAMING_SNAKE_CASE ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save a__ , a__: str = list(range(_SCREAMING_SNAKE_CASE ) ), list(range(_SCREAMING_SNAKE_CASE ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(_SCREAMING_SNAKE_CASE ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: a__: Optional[int] = pick_layers_to_copy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if d_layers_to_copy is None: a__: List[str] = pick_layers_to_copy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) try: if hasattr( _SCREAMING_SNAKE_CASE , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _SCREAMING_SNAKE_CASE ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _SCREAMING_SNAKE_CASE ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _SCREAMING_SNAKE_CASE ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _SCREAMING_SNAKE_CASE ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , _SCREAMING_SNAKE_CASE ) copy_layers(teacher.decoder.block , student.decoder.block , _SCREAMING_SNAKE_CASE ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) a__: Optional[int] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_SCREAMING_SNAKE_CASE ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
290
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCamelCase_ : str = logging.get_logger(__name__) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , *__A , **__A ) -> None: warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
81
0
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = BertJapaneseTokenizer __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : List[str] = True def snake_case_ ( self : List[str] ): super().setUp() _UpperCAmelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] _UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self : List[str] , A : Union[str, Any] ): _UpperCAmelCase : Dict = 'こんにちは、世界。 \nこんばんは、世界。' _UpperCAmelCase : Tuple = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def snake_case_ ( self : List[str] , A : List[Any] ): _UpperCAmelCase : Dict = self.get_input_output_texts(__a ) _UpperCAmelCase : List[str] = tokenizer.encode(__a , add_special_tokens=__a ) _UpperCAmelCase : int = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : Union[str, Any] ): pass # TODO add if relevant def snake_case_ ( self : str ): pass # TODO add if relevant def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : str = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Tuple = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(__a ) _UpperCAmelCase : Optional[Any] = 'こんにちは、世界。\nこんばんは、世界。' _UpperCAmelCase : List[str] = tokenizer.tokenize(__a ) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__a , "wb" ) as handle: pickle.dump(__a , __a ) with open(__a , "rb" ) as handle: _UpperCAmelCase : Any = pickle.load(__a ) _UpperCAmelCase : Dict = tokenizer_new.tokenize(__a ) self.assertListEqual(__a , __a ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : List[Any] = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def snake_case_ ( self : Optional[Any] ): try: _UpperCAmelCase : int = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def snake_case_ ( self : List[Any] ): try: _UpperCAmelCase : Dict = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def snake_case_ ( self : int ): _UpperCAmelCase : Any = MecabTokenizer(do_lower_case=__a , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def snake_case_ ( self : Tuple ): try: _UpperCAmelCase : Union[str, Any] = MecabTokenizer( do_lower_case=__a , normalize_text=__a , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def snake_case_ ( self : Dict ): _UpperCAmelCase : str = MecabTokenizer(normalize_text=__a , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(__a ) _UpperCAmelCase : Union[str, Any] = 'こんにちは、世界。\nこんばんは、世界。' _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__a , "wb" ) as handle: pickle.dump(__a , __a ) with open(__a , "rb" ) as handle: _UpperCAmelCase : List[str] = pickle.load(__a ) _UpperCAmelCase : int = tokenizer_new.tokenize(__a ) self.assertListEqual(__a , __a ) @require_sudachi def snake_case_ ( self : List[Any] ): _UpperCAmelCase : List[Any] = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Optional[int] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def snake_case_ ( self : List[str] ): _UpperCAmelCase : Optional[int] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def snake_case_ ( self : str ): _UpperCAmelCase : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def snake_case_ ( self : Tuple ): _UpperCAmelCase : List[Any] = SudachiTokenizer(do_lower_case=__a , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Dict = SudachiTokenizer(normalize_text=__a , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[Any] = SudachiTokenizer(trim_whitespace=__a , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def snake_case_ ( self : Dict ): _UpperCAmelCase : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(__a ) _UpperCAmelCase : List[Any] = 'こんにちは、世界。\nこんばんは、世界。' _UpperCAmelCase : Any = tokenizer.tokenize(__a ) self.assertListEqual(__a , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(__a , "wb" ) as handle: pickle.dump(__a , __a ) with open(__a , "rb" ) as handle: _UpperCAmelCase : List[str] = pickle.load(__a ) _UpperCAmelCase : Any = tokenizer_new.tokenize(__a ) self.assertListEqual(__a , __a ) @require_jumanpp def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Union[str, Any] = JumanppTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def snake_case_ ( self : str ): _UpperCAmelCase : Dict = JumanppTokenizer(normalize_text=__a ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = JumanppTokenizer(trim_whitespace=__a ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def snake_case_ ( self : str ): _UpperCAmelCase : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Any = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] _UpperCAmelCase : Any = {} for i, token in enumerate(__a ): _UpperCAmelCase : str = i _UpperCAmelCase : List[Any] = WordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : int = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) _UpperCAmelCase : Dict = tokenizer.subword_tokenizer _UpperCAmelCase : List[str] = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(__a , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) _UpperCAmelCase : List[Any] = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(__a , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) _UpperCAmelCase : List[Any] = tokenizer.encode("ありがとう。" , add_special_tokens=__a ) _UpperCAmelCase : str = tokenizer.encode("どういたしまして。" , add_special_tokens=__a ) _UpperCAmelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(__a , __a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = BertJapaneseTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = False def snake_case_ ( self : Optional[Any] ): super().setUp() _UpperCAmelCase : Optional[Any] = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self : Tuple , **A : Dict ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **__a ) def snake_case_ ( self : Any , A : Union[str, Any] ): _UpperCAmelCase : Dict = 'こんにちは、世界。 \nこんばんは、世界。' _UpperCAmelCase : str = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def snake_case_ ( self : Any ): pass # TODO add if relevant def snake_case_ ( self : int ): pass # TODO add if relevant def snake_case_ ( self : List[Any] ): pass # TODO add if relevant def snake_case_ ( self : List[Any] ): _UpperCAmelCase : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) _UpperCAmelCase : Any = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( __a , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def snake_case_ ( self : Tuple ): _UpperCAmelCase : Tuple = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] _UpperCAmelCase : Union[str, Any] = {} for i, token in enumerate(__a ): _UpperCAmelCase : Union[str, Any] = i _UpperCAmelCase : int = CharacterTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) _UpperCAmelCase : List[str] = tokenizer.encode("ありがとう。" , add_special_tokens=__a ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=__a ) _UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(__a , __a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Dict = 'cl-tohoku/bert-base-japanese' _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Union[str, Any] ): _UpperCAmelCase : Optional[int] = 'cl-tohoku/bert-base-japanese' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(__a ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) _UpperCAmelCase : str = 'bert-base-cased' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(__a ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
350
"""simple docstring""" from collections.abc import Callable class UpperCAmelCase_ : def __init__( self : Dict , A : Callable | None = None ): # Stores actual heap items. _UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase : dict = {} # Stores current size of heap. _UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase : Any = key or (lambda A : x) def snake_case_ ( self : List[Any] , A : int ): return int((i - 1) / 2 ) if i > 0 else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 2 ) return right if 0 < right < self.size else None def snake_case_ ( self : Optional[int] , A : int , A : int ): _UpperCAmelCase , _UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase , _UpperCAmelCase : Any = self.arr[j], self.arr[i] def snake_case_ ( self : List[str] , A : int , A : int ): return self.arr[i][1] < self.arr[j][1] def snake_case_ ( self : Dict , A : int ): _UpperCAmelCase : str = self._left(A ) _UpperCAmelCase : str = self._right(A ) _UpperCAmelCase : List[Any] = i if left is not None and not self._cmp(A , A ): _UpperCAmelCase : Optional[int] = left if right is not None and not self._cmp(A , A ): _UpperCAmelCase : Any = right return valid_parent def snake_case_ ( self : Tuple , A : int ): _UpperCAmelCase : Tuple = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Dict = parent, self._parent(A ) def snake_case_ ( self : Optional[int] , A : int ): _UpperCAmelCase : Tuple = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = valid_parent, self._get_valid_parent(A ) def snake_case_ ( self : Dict , A : int , A : int ): if item not in self.pos_map: return _UpperCAmelCase : Any = self.pos_map[item] _UpperCAmelCase : Optional[int] = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : List[str] , A : int ): if item not in self.pos_map: return _UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase : Tuple = self.arr[self.size - 1] _UpperCAmelCase : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : Any , A : int , A : int ): _UpperCAmelCase : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: _UpperCAmelCase : Any = [item, self.key(A )] _UpperCAmelCase : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def snake_case_ ( self : Tuple ): return self.arr[0] if self.size else None def snake_case_ ( self : Any ): _UpperCAmelCase : Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __snake_case ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
202
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) __A =[ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _UpperCamelCase ( UpperCamelCase__ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase__ : Dict = k.replace(_UpperCAmelCase , _UpperCAmelCase ) if k.startswith("""encoder""" ): UpperCAmelCase__ : Tuple = k.replace(""".attn""" , """.self_attn""" ) UpperCAmelCase__ : List[str] = k.replace("""norm1""" , """self_attn_layer_norm""" ) UpperCAmelCase__ : Optional[Any] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): UpperCAmelCase__ : Union[str, Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) UpperCAmelCase__ : Tuple = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) UpperCAmelCase__ : List[str] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : Optional[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: UpperCAmelCase__ : Optional[int] = sd.pop(_UpperCAmelCase ) UpperCAmelCase__ : Any = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd UpperCAmelCase__ : List[str] = v __A =['''START'''] @torch.no_grad() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : int = torch.load(_UpperCAmelCase , map_location="""cpu""" ) UpperCAmelCase__ : Union[str, Any] = model["""model"""] UpperCAmelCase__ : Union[str, Any] = BlenderbotConfig.from_json_file(_UpperCAmelCase ) UpperCAmelCase__ : Any = BlenderbotForConditionalGeneration(_UpperCAmelCase ) UpperCAmelCase__ : Optional[int] = m.model.state_dict().keys() UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase__ : int = rename_state_dict_key(_UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase__ : Union[str, Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_UpperCAmelCase ) m.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) m.half() m.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __A =parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
163
from collections import defaultdict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = first_str.lower().strip() __a = second_str.lower().strip() # Remove whitespace __a = first_str.replace(''' ''' , '''''' ) __a = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False # Default values for count should be 0 __a = defaultdict(_UpperCAmelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(_UpperCAmelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __snake_case :Any = input('''Enter the first string ''').strip() __snake_case :int = input('''Enter the second string ''').strip() __snake_case :int = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
49
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def _snake_case ( _snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(F'''could not parse string as bool {string}''' ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a = parser.parse_args() a = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
271
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _snake_case ( _snake_case : int ) -> Any: '''simple docstring''' random.seed(_snake_case ) np.random.seed(_snake_case ) torch.manual_seed(_snake_case ) torch.cuda.manual_seed_all(_snake_case ) # ^^ safe to call this function even if cuda is not available class lowercase_ : '''simple docstring''' def __init__( self : Tuple , _UpperCAmelCase : Iterable[torch.nn.Parameter] , _UpperCAmelCase : float = 0.9999 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[float, int] = 1.0 , _UpperCAmelCase : Union[float, int] = 2 / 3 , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : Dict[str, Any] = None , **_UpperCAmelCase : Optional[int] , ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _A = True if kwargs.get('max_value' , _UpperCAmelCase ) is not None: _A = 'The `max_value` argument is deprecated. Please use `decay` instead.' deprecate('max_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['max_value'] if kwargs.get('min_value' , _UpperCAmelCase ) is not None: _A = 'The `min_value` argument is deprecated. Please use `min_decay` instead.' deprecate('min_value' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = kwargs['min_value'] _A = list(_UpperCAmelCase ) _A = [p.clone().detach() for p in parameters] if kwargs.get('device' , _UpperCAmelCase ) is not None: _A = 'The `device` argument is deprecated. Please use `to` instead.' deprecate('device' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) self.to(device=kwargs['device'] ) _A = None _A = decay _A = min_decay _A = update_after_step _A = use_ema_warmup _A = inv_gamma _A = power _A = 0 _A = None # set in `step()` _A = model_cls _A = model_config @classmethod def lowerCAmelCase_ ( cls : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ): _A , _A = model_cls.load_config(_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase ) _A = model_cls.from_pretrained(_UpperCAmelCase ) _A = cls(model.parameters() , model_cls=_UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(_UpperCAmelCase ) return ema_model def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): if self.model_cls is None: raise ValueError('`save_pretrained` can only be used if `model_cls` was defined at __init__.' ) if self.model_config is None: raise ValueError('`save_pretrained` can only be used if `model_config` was defined at __init__.' ) _A = self.model_cls.from_config(self.model_config ) _A = self.state_dict() state_dict.pop('shadow_params' , _UpperCAmelCase ) model.register_to_config(**_UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : int ): _A = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _A = 1 - (1 + step / self.inv_gamma) ** -self.power else: _A = (1 + step) / (10 + step) _A = min(_UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay _A = max(_UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if isinstance(_UpperCAmelCase , torch.nn.Module ): _A = ( 'Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ' 'Please pass the parameters of the module instead.' ) deprecate( 'passing a `torch.nn.Module` to `ExponentialMovingAverage.step`' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase , ) _A = parameters.parameters() _A = list(_UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _A = self.get_decay(self.optimization_step ) _A = decay _A = 1 - decay _A = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _A = deepspeed.zero.GatheredParameters(_UpperCAmelCase , modifier_rank=_UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = list(_UpperCAmelCase ) for s_param, param in zip(self.shadow_params , _UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None ): _A = [ p.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if p.is_floating_point() else p.to(device=_UpperCAmelCase ) for p in self.shadow_params ] def lowerCAmelCase_ ( self : Dict ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): _A = [param.detach().cpu().clone() for param in parameters] def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError('This ExponentialMovingAverage has no `store()`ed weights ' 'to `restore()`' ) for c_param, param in zip(self.temp_stored_params , _UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _A = None def lowerCAmelCase_ ( self : int , _UpperCAmelCase : dict ): _A = copy.deepcopy(_UpperCAmelCase ) _A = state_dict.get('decay' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('Decay must be between 0 and 1' ) _A = state_dict.get('min_decay' , self.min_decay ) if not isinstance(self.min_decay , _UpperCAmelCase ): raise ValueError('Invalid min_decay' ) _A = state_dict.get('optimization_step' , self.optimization_step ) if not isinstance(self.optimization_step , _UpperCAmelCase ): raise ValueError('Invalid optimization_step' ) _A = state_dict.get('update_after_step' , self.update_after_step ) if not isinstance(self.update_after_step , _UpperCAmelCase ): raise ValueError('Invalid update_after_step' ) _A = state_dict.get('use_ema_warmup' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _UpperCAmelCase ): raise ValueError('Invalid use_ema_warmup' ) _A = state_dict.get('inv_gamma' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('Invalid inv_gamma' ) _A = state_dict.get('power' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('Invalid power' ) _A = state_dict.get('shadow_params' , _UpperCAmelCase ) if shadow_params is not None: _A = shadow_params if not isinstance(self.shadow_params , _UpperCAmelCase ): raise ValueError('shadow_params must be a list' ) if not all(isinstance(_UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('shadow_params must all be Tensors' )
271
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowerCAmelCase :Union[str, Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' a__ =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a__ =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a__ ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a__ ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Optional[int] = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) _UpperCAmelCase : Optional[Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) _UpperCAmelCase : Union[str, Any] = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(A ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) _UpperCAmelCase : Union[str, Any] = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(A ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) _UpperCAmelCase : Optional[Any] = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior _UpperCAmelCase : List[Any] = text_classifier('''This is great !''' , return_all_scores=A ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) _UpperCAmelCase : Union[str, Any] = text_classifier('''This is great !''' , return_all_scores=A ) self.assertEqual( nested_simplify(A ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) _UpperCAmelCase : str = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=A ) self.assertEqual( nested_simplify(A ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) _UpperCAmelCase : Tuple = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=A ) self.assertEqual( nested_simplify(A ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: import torch _UpperCAmelCase : Optional[Any] = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) _UpperCAmelCase : str = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) _UpperCAmelCase : Any = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = pipeline('''text-classification''' ) _UpperCAmelCase : Optional[int] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) _UpperCAmelCase : Optional[int] = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) _UpperCAmelCase : Union[str, Any] = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : str = pipeline('''text-classification''' , framework='''tf''' ) _UpperCAmelCase : Union[str, Any] = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) _UpperCAmelCase : List[Any] = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) _UpperCAmelCase : Union[str, Any] = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(A ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __lowerCAmelCase ( self , A , A , A ) -> int: _UpperCAmelCase : Any = TextClassificationPipeline(model=A , tokenizer=A ) return text_classifier, ["HuggingFace is in", "This is another test"] def __lowerCAmelCase ( self , A , A ) -> Optional[int]: _UpperCAmelCase : List[str] = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 _UpperCAmelCase : int = '''HuggingFace is in''' _UpperCAmelCase : Tuple = text_classifier(A ) self.assertEqual(nested_simplify(A ) , [{'''label''': ANY(A ), '''score''': ANY(A )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) _UpperCAmelCase : Any = ['''HuggingFace is in ''', '''Paris is in France'''] _UpperCAmelCase : Optional[Any] = text_classifier(A ) self.assertEqual( nested_simplify(A ) , [{'''label''': ANY(A ), '''score''': ANY(A )}, {'''label''': ANY(A ), '''score''': ANY(A )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format _UpperCAmelCase : int = text_classifier(A , top_k=A ) _UpperCAmelCase : List[str] = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(A ) , [[{'''label''': ANY(A ), '''score''': ANY(A )}] * N, [{'''label''': ANY(A ), '''score''': ANY(A )}] * N] , ) _UpperCAmelCase : List[str] = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} _UpperCAmelCase : Optional[Any] = text_classifier(A ) self.assertEqual( nested_simplify(A ) , {'''label''': ANY(A ), '''score''': ANY(A )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. _UpperCAmelCase : List[str] = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(A ): text_classifier(A ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility _UpperCAmelCase : Optional[Any] = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(A ) , [{'''label''': ANY(A ), '''score''': ANY(A )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
263
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =IFImgaImgSuperResolutionPipeline a__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} a__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) a__ =PipelineTesterMixin.required_optional_params - {'''latents'''} def __lowerCAmelCase ( self ) -> List[str]: return self._get_superresolution_dummy_components() def __lowerCAmelCase ( self , A , A=0 ) -> Union[str, Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Any = torch.manual_seed(A ) else: _UpperCAmelCase : int = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : Dict = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def __lowerCAmelCase ( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_save_load_local() def __lowerCAmelCase ( self ) -> Union[str, Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
263
1
"""simple docstring""" import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __A : List[str] = logging.get_logger(__name__) __A : Optional[int] = '''T5Config''' def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" A = jnp.zeros_like(_lowercase ) A = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) A = shifted_input_ids.at[:, 0].set(_lowercase ) A = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class __UpperCamelCase ( a__ ): SCREAMING_SNAKE_CASE = """mt5""" SCREAMING_SNAKE_CASE = MTaConfig class __UpperCamelCase ( a__ ): SCREAMING_SNAKE_CASE = """mt5""" SCREAMING_SNAKE_CASE = MTaConfig class __UpperCamelCase ( a__ ): SCREAMING_SNAKE_CASE = """mt5""" SCREAMING_SNAKE_CASE = MTaConfig
362
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __UpperCamelCase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ (self : Dict): A = tempfile.mkdtemp() A = BlipImageProcessor() A = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") A = BlipaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Dict , **__SCREAMING_SNAKE_CASE : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).tokenizer def SCREAMING_SNAKE_CASE__ (self : Tuple , **__SCREAMING_SNAKE_CASE : int): return AutoProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE).image_processor def SCREAMING_SNAKE_CASE__ (self : Optional[int]): shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE__ (self : Any): A = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] A = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ (self : Any): A = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) A = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)") A = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) A = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = self.prepare_image_inputs() A = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="np") A = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def SCREAMING_SNAKE_CASE__ (self : Tuple): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = processor(text=__SCREAMING_SNAKE_CASE) A = tokenizer(__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE): processor() def SCREAMING_SNAKE_CASE__ (self : List[Any]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(__SCREAMING_SNAKE_CASE) A = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def SCREAMING_SNAKE_CASE__ (self : Optional[int]): A = self.get_image_processor() A = self.get_tokenizer() A = BlipaProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE) A = "lower newer" A = self.prepare_image_inputs() A = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ["pixel_values", "input_ids", "attention_mask"])
57
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Tuple = ["""pixel_values"""] def __init__( self : Dict , a_ : bool = True , a_ : Optional[Dict[str, int]] = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 2_55 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , **a_ : List[str] , ): super().__init__(**a_ ) lowerCAmelCase_ : Optional[int] = size if size is not None else {"shortest_edge": 2_56} lowerCAmelCase_ : Optional[Any] = get_size_dict(a_ , default_to_square=a_ ) lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowerCAmelCase_ : Optional[Any] = get_size_dict(a_ ) lowerCAmelCase_ : Any = do_resize lowerCAmelCase_ : Union[str, Any] = size lowerCAmelCase_ : List[str] = resample lowerCAmelCase_ : str = do_center_crop lowerCAmelCase_ : List[Any] = crop_size lowerCAmelCase_ : Tuple = do_rescale lowerCAmelCase_ : List[Any] = rescale_factor lowerCAmelCase_ : Dict = do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self : Optional[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Optional[int] , ): lowerCAmelCase_ : str = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCAmelCase_ : List[Any] = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def lowerCamelCase ( self : Tuple , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : int , ): lowerCAmelCase_ : str = get_size_dict(a_ ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def lowerCamelCase ( self : Tuple , a_ : np.ndarray , a_ : float , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[str] ): return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def lowerCamelCase ( self : Optional[int] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ): return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def lowerCamelCase ( self : Optional[int] , a_ : ImageInput , a_ : Optional[bool] = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : Dict[str, int] = None , a_ : Optional[bool] = None , a_ : Optional[float] = None , a_ : Optional[bool] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a_ : Optional[int] , ): lowerCAmelCase_ : Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Any = size if size is not None else self.size lowerCAmelCase_ : Tuple = get_size_dict(a_ , default_to_square=a_ ) lowerCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample lowerCAmelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : str = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : Any = get_size_dict(a_ ) lowerCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : int = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ : Any = [to_numpy_array(a_ ) for image in images] if do_resize: lowerCAmelCase_ : List[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: lowerCAmelCase_ : List[str] = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: lowerCAmelCase_ : List[str] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: lowerCAmelCase_ : Optional[Any] = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] lowerCAmelCase_ : Optional[int] = [to_channel_dimension_format(a_ , a_ ) for image in images] lowerCAmelCase_ : str = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
241
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = ["""image_processor""", """tokenizer"""] a_ : List[str] = """ViTImageProcessor""" a_ : List[str] = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : List[str] , a_ : str=None , a_ : Dict=None , **a_ : List[Any] ): lowerCAmelCase_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("feature_extractor" ) lowerCAmelCase_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) def __call__( self : Union[str, Any] , a_ : Any=None , a_ : Dict=None , a_ : List[str]=None , a_ : str=None , **a_ : Any ): if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None: lowerCAmelCase_ : Optional[Any] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if images is not None: lowerCAmelCase_ : List[str] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if visual_prompt is not None and images is not None: lowerCAmelCase_ : Union[str, Any] = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ : Dict = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def lowerCamelCase ( self : Optional[int] , *a_ : Optional[Any] , **a_ : List[str] ): return self.tokenizer.batch_decode(*a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , *a_ : Tuple , **a_ : Tuple ): return self.tokenizer.decode(*a_ , **a_ ) @property def lowerCamelCase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def lowerCamelCase ( self : Dict ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
241
1
def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' A__ = abs(SCREAMING_SNAKE_CASE__ ) A__ = 0 while n > 0: res += n % 10 n //= 10 return res def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' A__ = abs(SCREAMING_SNAKE_CASE__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE__ ) for c in str(abs(SCREAMING_SNAKE_CASE__ ) ) ) def _snake_case( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : int ) -> None: A__ = f'{func.__name__}({value})' A__ = timeit(f'__main__.{call}' , setup='import __main__' ) print(f'{call:56} = {func(SCREAMING_SNAKE_CASE__ )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
282
from __future__ import annotations from typing import Any def _snake_case( SCREAMING_SNAKE_CASE__ : list ) -> int: '''simple docstring''' if not postfix_notation: return 0 A__ = {'+', '-', '*', '/'} A__ = [] for token in postfix_notation: if token in operations: A__ , A__ = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(SCREAMING_SNAKE_CASE__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
282
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings lowerCamelCase : Tuple = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(lowercase_ ) class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Any = """rag""" lowerCAmelCase__ : List[Any] = True def __init__(self : Dict , UpperCamelCase : List[Any]=None , UpperCamelCase : str=True , UpperCamelCase : List[Any]=None , UpperCamelCase : List[str]=None , UpperCamelCase : List[Any]=None , UpperCamelCase : str=None , UpperCamelCase : List[Any]=None , UpperCamelCase : str=" / " , UpperCamelCase : Union[str, Any]=" // " , UpperCamelCase : List[str]=5 , UpperCamelCase : Tuple=300 , UpperCamelCase : Optional[int]=768 , UpperCamelCase : int=8 , UpperCamelCase : str="wiki_dpr" , UpperCamelCase : Optional[Any]="train" , UpperCamelCase : Any="compressed" , UpperCamelCase : Dict=None , UpperCamelCase : List[Any]=None , UpperCamelCase : List[Any]=False , UpperCamelCase : str=False , UpperCamelCase : Optional[int]=0.0 , UpperCamelCase : str=True , UpperCamelCase : int=False , UpperCamelCase : Any=False , UpperCamelCase : Any=False , UpperCamelCase : List[str]=True , UpperCamelCase : Optional[int]=None , **UpperCamelCase : List[Any] , ): '''simple docstring''' super().__init__( bos_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , decoder_start_token_id=UpperCamelCase , forced_eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , prefix=UpperCamelCase , vocab_size=UpperCamelCase , **UpperCamelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase__ = kwargs.pop('''question_encoder''' ) lowercase__ = question_encoder_config.pop('''model_type''' ) lowercase__ = kwargs.pop('''generator''' ) lowercase__ = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase__ = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) lowercase__ = AutoConfig.for_model(UpperCamelCase , **UpperCamelCase ) lowercase__ = reduce_loss lowercase__ = label_smoothing lowercase__ = exclude_bos_score lowercase__ = do_marginalize lowercase__ = title_sep lowercase__ = doc_sep lowercase__ = n_docs lowercase__ = max_combined_length lowercase__ = dataset lowercase__ = dataset_split lowercase__ = index_name lowercase__ = retrieval_vector_size lowercase__ = retrieval_batch_size lowercase__ = passages_path lowercase__ = index_path lowercase__ = use_dummy_dataset lowercase__ = output_retrieved lowercase__ = do_deduplication lowercase__ = use_cache if self.forced_eos_token_id is None: lowercase__ = getattr(self.generator , '''forced_eos_token_id''' , UpperCamelCase ) @classmethod def UpperCamelCase__ (cls : Optional[int] , UpperCamelCase : PretrainedConfig , UpperCamelCase : PretrainedConfig , **UpperCamelCase : int ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **UpperCamelCase ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.question_encoder.to_dict() lowercase__ = self.generator.to_dict() lowercase__ = self.__class__.model_type return output
2
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _snake_case (__SCREAMING_SNAKE_CASE): __A : Optional[Any] ="beit" def __init__( self ,_snake_case=81_92 ,_snake_case=7_68 ,_snake_case=12 ,_snake_case=12 ,_snake_case=30_72 ,_snake_case="gelu" ,_snake_case=0.0 ,_snake_case=0.0 ,_snake_case=0.02 ,_snake_case=1E-12 ,_snake_case=2_24 ,_snake_case=16 ,_snake_case=3 ,_snake_case=False ,_snake_case=False ,_snake_case=False ,_snake_case=False ,_snake_case=0.1 ,_snake_case=0.1 ,_snake_case=True ,_snake_case=[3, 5, 7, 11] ,_snake_case=[1, 2, 3, 6] ,_snake_case=True ,_snake_case=0.4 ,_snake_case=2_56 ,_snake_case=1 ,_snake_case=False ,_snake_case=2_55 ,**_snake_case ,): super().__init__(**_snake_case ) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : Union[str, Any] = use_mask_token UpperCAmelCase_ : Optional[int] = use_absolute_position_embeddings UpperCAmelCase_ : Optional[int] = use_relative_position_bias UpperCAmelCase_ : Union[str, Any] = use_shared_relative_position_bias UpperCAmelCase_ : str = layer_scale_init_value UpperCAmelCase_ : List[Any] = drop_path_rate UpperCAmelCase_ : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase_ : Dict = out_indices UpperCAmelCase_ : str = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase_ : Any = use_auxiliary_head UpperCAmelCase_ : Union[str, Any] = auxiliary_loss_weight UpperCAmelCase_ : Optional[int] = auxiliary_channels UpperCAmelCase_ : List[Any] = auxiliary_num_convs UpperCAmelCase_ : List[str] = auxiliary_concat_input UpperCAmelCase_ : Any = semantic_loss_ignore_index class _snake_case (__SCREAMING_SNAKE_CASE): __A : Optional[int] =version.parse("1.11") @property def UpperCamelCase__ ( self ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCamelCase__ ( self ): return 1E-4
365
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case (metaclass=__SCREAMING_SNAKE_CASE): __A : Union[str, Any] =["torch", "torchsde"] def __init__( self ,*_snake_case ,**_snake_case ): requires_backends(self ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] ) @classmethod def UpperCamelCase__ ( cls ,*_snake_case ,**_snake_case ): requires_backends(cls ,["torch", "torchsde"] )
67
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=18 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , ) -> Union[str, Any]: """simple docstring""" A : int = size if size is not None else {'''height''': 18, '''width''': 18} A : List[str] = parent A : str = batch_size A : List[Any] = num_channels A : Optional[int] = image_size A : Optional[int] = min_resolution A : Dict = max_resolution A : Optional[int] = do_resize A : List[Any] = size A : Union[str, Any] = apply_ocr def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A ( __snake_case , unittest.TestCase ): __magic_name__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Tuple = LayoutLMvaImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''apply_ocr''' ) ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , SCREAMING_SNAKE_CASE ) # Test batched A : str = image_processing(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input A : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched A : Union[str, Any] = image_processing(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched A : int = image_processing(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : List[Any] = LayoutLMvaImageProcessor() from datasets import load_dataset A : Any = load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) A : str = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) A : Dict = image_processing(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 A : List[Any] = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 A : Optional[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , SCREAMING_SNAKE_CASE ) # with apply_OCR = False A : Any = LayoutLMvaImageProcessor(apply_ocr=SCREAMING_SNAKE_CASE ) A : int = image_processing(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
3
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =tempfile.mkdtemp() __UpperCamelCase : Optional[int] =8 # DPR tok __UpperCamelCase : str =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase : Optional[Any] =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase : Optional[int] =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase : str =dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __UpperCamelCase : Optional[int] =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase : Any ={'unk_token': '<unk>'} __UpperCamelCase : Any =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __UpperCamelCase : Any =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Dict =os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =os.path.join(self.tmpdirname , 'rag_tokenizer' ) __UpperCamelCase : Dict =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __UpperCamelCase : List[Any] =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase__ ) rag_tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =RagTokenizer.from_pretrained(lowerCamelCase__ , config=lowerCamelCase__ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase__ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : int =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __UpperCamelCase : Union[str, Any] =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase : Any =tokenizer(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
71
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase: Dict = numpy.array([0, 0]) UpperCAmelCase: Tuple = numpy.array([0.5, 0.8_660_254]) UpperCAmelCase: Any = numpy.array([1, 0]) UpperCAmelCase: Dict = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Tuple = initial_vectors for _ in range(_UpperCAmelCase ): _lowercase : Tuple = iteration_step(_UpperCAmelCase ) return vectors def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[Any] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowercase : Union[str, Any] = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) _lowercase : Union[str, Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : int = numpy.radians(_UpperCAmelCase ) _lowercase : Tuple = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) _lowercase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[str] = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowercase : List[Any] = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase: Optional[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
from __future__ import annotations from math import ceil, floor, sqrt def _snake_case( SCREAMING_SNAKE_CASE__ : int = 2000000 ) -> int: '''simple docstring''' A__ = [0] A__ = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target A__ = 0 # the area corresponding to the grid that gives the product closest to target A__ = 0 # an estimate of b, using the quadratic formula A__ = 42 # the largest integer less than b_estimate A__ = 42 # the largest integer less than b_estimate A__ = 42 # the triangle number corresponding to b_floor A__ = 42 # the triangle number corresponding to b_ceil A__ = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): A__ = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 A__ = floor(__snake_case ) A__ = ceil(__snake_case ) A__ = triangle_numbers[b_floor] A__ = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): A__ = triangle_b_first_guess * triangle_a A__ = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): A__ = triangle_b_second_guess * triangle_a A__ = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
7
'''simple docstring''' __snake_case : Tuple = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : List[str] = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Any = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
134
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): @property def _snake_case ( self ): torch.manual_seed(0 ) lowerCamelCase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _snake_case ( self ): lowerCamelCase =self.dummy_uncond_unet lowerCamelCase =PNDMScheduler() lowerCamelCase =PNDMPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) pndm.to(UpperCAmelCase_ ) pndm.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase =torch.manual_seed(0 ) lowerCamelCase =pndm(generator=UpperCAmelCase_ , num_inference_steps=20 , output_type="""numpy""" ).images lowerCamelCase =torch.manual_seed(0 ) lowerCamelCase =pndm(generator=UpperCAmelCase_ , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase_ )[0] lowerCamelCase =image[0, -3:, -3:, -1] lowerCamelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase =np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __A ( unittest.TestCase ): def _snake_case ( self ): lowerCamelCase ="""google/ddpm-cifar10-32""" lowerCamelCase =UNetaDModel.from_pretrained(UpperCAmelCase_ ) lowerCamelCase =PNDMScheduler() lowerCamelCase =PNDMPipeline(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) pndm.to(UpperCAmelCase_ ) pndm.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase =torch.manual_seed(0 ) lowerCamelCase =pndm(generator=UpperCAmelCase_ , output_type="""numpy""" ).images lowerCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase =np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
262
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ : Union[str, Any] =16 UpperCAmelCase__ : Any =32 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase = 16 ) -> int: lowerCamelCase =AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase =load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase =datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase =16 elif accelerator.mixed_precision != "no": lowerCamelCase =8 else: lowerCamelCase =None return tokenizer.pad( _UpperCAmelCase , padding="""longest""" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase =DataLoader( tokenized_datasets["""train"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase =DataLoader( tokenized_datasets["""validation"""] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase__ : Dict =mocked_dataloaders # noqa: F811 def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _UpperCAmelCase ) == "1": lowerCamelCase =2 # New Code # lowerCamelCase =int(args.gradient_accumulation_steps ) lowerCamelCase =int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase =config["""lr"""] lowerCamelCase =int(config["""num_epochs"""] ) lowerCamelCase =int(config["""seed"""] ) lowerCamelCase =int(config["""batch_size"""] ) lowerCamelCase =evaluate.load("""glue""" , """mrpc""" ) set_seed(_UpperCAmelCase ) lowerCamelCase , lowerCamelCase =get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase =model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase =AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler lowerCamelCase =get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() with LocalSGD( accelerator=_UpperCAmelCase , model=_UpperCAmelCase , local_sgd_steps=_UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase =model(**_UpperCAmelCase ) lowerCamelCase =outputs.logits.argmax(dim=-1 ) lowerCamelCase , lowerCamelCase =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) def _lowercase ( ) -> Any: lowerCamelCase =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=_UpperCAmelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase =parser.parse_args() lowerCamelCase ={"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
262
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = '''distilbert''' UpperCAmelCase_ : Tuple = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=512 , __lowerCAmelCase=False , __lowerCAmelCase=6 , __lowerCAmelCase=12 , __lowerCAmelCase=768 , __lowerCAmelCase=4 * 768 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.02 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.2 , __lowerCAmelCase=0 , **__lowerCAmelCase , ): """simple docstring""" lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = sinusoidal_pos_embds lowerCAmelCase = n_layers lowerCAmelCase = n_heads lowerCAmelCase = dim lowerCAmelCase = hidden_dim lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation lowerCAmelCase = initializer_range lowerCAmelCase = qa_dropout lowerCAmelCase = seq_classif_dropout super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase) class a__( lowerCAmelCase__ ): '''simple docstring''' @property def a_ ( self): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
272
"""simple docstring""" from collections.abc import Callable def lowerCamelCase ( _UpperCamelCase : Callable[[float], float] , _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' __UpperCAmelCase : float = a __UpperCAmelCase : float = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: __UpperCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: __UpperCAmelCase : Union[str, Any] = mid else: __UpperCAmelCase : List[Any] = mid __UpperCAmelCase : Optional[Any] = start + (end - start) / 2.0 return mid def lowerCamelCase ( _UpperCamelCase : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
115
0
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A_ ( A__ , A__ , A__ ) -> int: return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def A_ ( A__ , A__ , A__ , A__="attention" ) -> Union[str, Any]: a__ : Any = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) a__ : Any = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) a__ : int = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) a__ : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) a__ : Any = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) a__ : Tuple = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) a__ : Union[str, Any] = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) a__ : Tuple = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def A_ ( A__ , A__ , A__ , A__=False ) -> Optional[Any]: if split_mlp_wi: a__ : Union[str, Any] = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] a__ : Dict = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] a__ : List[str] = (wi_a, wi_a) else: a__ : str = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] a__ : List[Any] = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def A_ ( A__ , A__ , A__ , A__ ) -> List[str]: return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i] def A_ ( A__ , *, A__ , A__ , A__ = False ) -> List[str]: a__ : Dict = traverse_util.flatten_dict(variables['target'] ) a__ : str = {'/'.join(A__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a__ : List[Any] = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , A__ ) a__ : Any = collections.OrderedDict() # Shared embeddings. a__ : Union[str, Any] = old['token_embedder/embedding'] # Encoder. for i in range(A__ ): # Block i, layer 0 (Self Attention). a__ : List[str] = tax_layer_norm_lookup(A__ , A__ , 'encoder' , 'pre_attention_layer_norm' ) a__ : Tuple = tax_attention_lookup(A__ , A__ , 'encoder' , 'attention' ) a__ : Optional[int] = layer_norm a__ : List[Any] = k.T a__ : Dict = o.T a__ : Dict = q.T a__ : List[str] = v.T # Block i, layer 1 (MLP). a__ : Any = tax_layer_norm_lookup(A__ , A__ , 'encoder' , 'pre_mlp_layer_norm' ) a__ : Any = tax_mlp_lookup(A__ , A__ , 'encoder' , A__ ) a__ : Optional[Any] = layer_norm if split_mlp_wi: a__ : List[Any] = wi[0].T a__ : Union[str, Any] = wi[1].T else: a__ : Optional[int] = wi.T a__ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer a__ : Union[str, Any] = tax_relpos_bias_lookup( A__ , A__ , 'encoder' ).T a__ : str = old['encoder/encoder_norm/scale'] if not scalable_attention: a__ : List[str] = tax_relpos_bias_lookup( A__ , 0 , 'encoder' ).T a__ : str = tax_relpos_bias_lookup( A__ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(A__ ): # Block i, layer 0 (Self Attention). a__ : Any = tax_layer_norm_lookup(A__ , A__ , 'decoder' , 'pre_self_attention_layer_norm' ) a__ : Tuple = tax_attention_lookup(A__ , A__ , 'decoder' , 'self_attention' ) a__ : Any = layer_norm a__ : Optional[int] = k.T a__ : List[Any] = o.T a__ : Any = q.T a__ : Optional[Any] = v.T # Block i, layer 1 (Cross Attention). a__ : Any = tax_layer_norm_lookup(A__ , A__ , 'decoder' , 'pre_cross_attention_layer_norm' ) a__ : List[Any] = tax_attention_lookup(A__ , A__ , 'decoder' , 'encoder_decoder_attention' ) a__ : Any = layer_norm a__ : Tuple = k.T a__ : Union[str, Any] = o.T a__ : int = q.T a__ : str = v.T # Block i, layer 2 (MLP). a__ : Union[str, Any] = tax_layer_norm_lookup(A__ , A__ , 'decoder' , 'pre_mlp_layer_norm' ) a__ : Optional[Any] = tax_mlp_lookup(A__ , A__ , 'decoder' , A__ ) a__ : Any = layer_norm if split_mlp_wi: a__ : Any = wi[0].T a__ : Union[str, Any] = wi[1].T else: a__ : str = wi.T a__ : Optional[int] = wo.T if scalable_attention: # convert the rel_embedding of each layer a__ : Tuple = tax_relpos_bias_lookup(A__ , A__ , 'decoder' ).T a__ : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a__ : Tuple = old['decoder/logits_dense/kernel'].T return new def A_ ( A__ , A__ ) -> List[Any]: a__ : List[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a__ : Optional[int] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a__ : int = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) a__ : List[str] = state_dict['shared.weight'] return state_dict def A_ ( A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: a__ : Union[str, Any] = checkpoints.load_tax_checkpoint(A__ ) a__ : List[str] = convert_tax_to_pytorch( A__ , num_layers=config.num_layers , is_encoder_only=A__ , scalable_attention=A__ ) a__ : Tuple = make_state_dict(A__ , A__ ) model.load_state_dict(A__ , strict=A__ ) def A_ ( A__ , A__ , A__ , A__ = False , A__ = False , ) -> int: a__ : List[str] = MTaConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a__ : Optional[Any] = UMTaEncoderModel(A__ ) else: a__ : int = UMTaForConditionalGeneration(A__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(A__ , A__ , A__ , A__ , A__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(A__ ) # Verify that we can load the checkpoint. model.from_pretrained(A__ ) print('Done' ) if __name__ == "__main__": lowercase : str = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowercase : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
353
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=0.2 , lowercase=0.2) -> Any: '''simple docstring''' a__ : Tuple = bp_numa a__ : Union[str, Any] = bp_numa a__ : Optional[int] = bp_numa a__ : Optional[int] = conva_get[:2] a__ : Optional[Any] = conva_get[2] a__ : Optional[int] = size_pa a__ : Union[str, Any] = rate_w a__ : Dict = rate_t a__ : int = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] a__ : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) a__ : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) a__ : Any = -2 * np.random.rand(self.conva[1]) + 1 a__ : Optional[Any] = -2 * np.random.rand(self.num_bpa) + 1 a__ : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 def __lowercase ( self , lowercase) -> List[Any]: '''simple docstring''' a__ : Optional[Any] = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(lowercase , 'wb') as f: pickle.dump(lowercase , lowercase) print(F'Model saved: {save_path}') @classmethod def __lowercase ( cls , lowercase) -> Any: '''simple docstring''' with open(lowercase , 'rb') as f: a__ : Any = pickle.load(lowercase) # noqa: S301 a__ : Dict = model_dic.get('conv1') conv_get.append(model_dic.get('step_conv1')) a__ : Tuple = model_dic.get('size_pooling1') a__ : Optional[int] = model_dic.get('num_bp1') a__ : Tuple = model_dic.get('num_bp2') a__ : Optional[Any] = model_dic.get('num_bp3') a__ : Optional[Any] = model_dic.get('rate_weight') a__ : int = model_dic.get('rate_thre') # create model instance a__ : Union[str, Any] = CNN(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase) # modify model parameter a__ : str = model_dic.get('w_conv1') a__ : Optional[int] = model_dic.get('wkj') a__ : Tuple = model_dic.get('vji') a__ : str = model_dic.get('thre_conv1') a__ : List[str] = model_dic.get('thre_bp2') a__ : Tuple = model_dic.get('thre_bp3') return conv_ins def __lowercase ( self , lowercase) -> Any: '''simple docstring''' return 1 / (1 + np.exp(-1 * x)) def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' return round(lowercase , 3) def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase) -> Any: '''simple docstring''' a__ : Union[str, Any] = convs[0] a__ : Tuple = convs[1] a__ : Any = np.shape(lowercase)[0] # get the data slice of original image data, data_focus a__ : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase): for j_focus in range(0 , size_data - size_conv + 1 , lowercase): a__ : str = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase) # calculate the feature map of every single kernel, and saved as list of matrix a__ : str = [] a__ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1) for i_map in range(lowercase): a__ : Tuple = [] for i_focus in range(len(lowercase)): a__ : Optional[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase)) a__ : Dict = np.asmatrix(lowercase).reshape( lowercase , lowercase) data_featuremap.append(lowercase) # expanding the data slice to One dimenssion a__ : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase)) a__ : Optional[int] = np.asarray(lowercase) return focus_list, data_featuremap def __lowercase ( self , lowercase , lowercase , lowercase="average_pool") -> str: '''simple docstring''' a__ : Any = len(featuremaps[0]) a__ : int = int(size_map / size_pooling) a__ : Optional[Any] = [] for i_map in range(len(lowercase)): a__ : Any = featuremaps[i_map] a__ : Optional[int] = [] for i_focus in range(0 , lowercase , lowercase): for j_focus in range(0 , lowercase , lowercase): a__ : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase)) a__ : List[str] = np.asmatrix(lowercase).reshape(lowercase , lowercase) featuremap_pooled.append(lowercase) return featuremap_pooled def __lowercase ( self , lowercase) -> Optional[Any]: '''simple docstring''' a__ : Any = [] for i in range(len(lowercase)): a__ : Tuple = np.shape(data[i]) a__ : List[str] = data[i].reshape(1 , shapes[0] * shapes[1]) a__ : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(lowercase) a__ : Union[str, Any] = np.asarray(lowercase) return data_expanded def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' a__ : Dict = np.asarray(lowercase) a__ : Optional[int] = np.shape(lowercase) a__ : Any = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : int = [] a__ : Optional[int] = 0 for i_map in range(lowercase): a__ : Optional[Any] = np.ones((size_map, size_map)) for i in range(0 , lowercase , lowercase): for j in range(0 , lowercase , lowercase): a__ : Union[str, Any] = pd_pool[ i_pool ] a__ : Tuple = i_pool + 1 a__ : Optional[int] = np.multiply( lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(lowercase) return pd_all def __lowercase ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=bool) -> str: '''simple docstring''' print('----------------------Start Training-------------------------') print((' - - Shape: Train_Data ', np.shape(lowercase))) print((' - - Shape: Teach_Data ', np.shape(lowercase))) a__ : Dict = 0 a__ : List[Any] = [] a__ : Optional[int] = 1_0000 while rp < n_repeat and mse >= error_accuracy: a__ : Dict = 0 print(F'-------------Learning Time {rp}--------------') for p in range(len(lowercase)): # print('------------Learning Image: %d--------------'%p) a__ : Dict = np.asmatrix(datas_train[p]) a__ : Any = np.asarray(datas_teach[p]) a__ , a__ : Optional[int] = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a__ : Dict = self.pooling(lowercase , self.size_poolinga) a__ : Optional[Any] = np.shape(lowercase) a__ : Union[str, Any] = self._expand(lowercase) a__ : List[Any] = data_bp_input a__ : Tuple = np.dot(lowercase , self.vji.T) - self.thre_bpa a__ : Any = self.sig(lowercase) a__ : Any = np.dot(lowercase , self.wkj.T) - self.thre_bpa a__ : Any = self.sig(lowercase) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- a__ : Any = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase , (1 - bp_outa))) a__ : Optional[Any] = np.multiply( np.dot(lowercase , self.wkj) , np.multiply(lowercase , (1 - bp_outa))) a__ : Tuple = np.dot(lowercase , self.vji) a__ : Union[str, Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) a__ : List[str] = pd_conva_pooled.T.getA().tolist() a__ : str = self._calculate_gradient_from_pool( lowercase , lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): a__ : Optional[int] = self._expand_mat(pd_conva_all[k_conv]) a__ : int = self.rate_weight * np.dot(lowercase , lowercase) a__ : List[str] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) a__ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer a__ : List[str] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight a__ : List[str] = self.vji + pd_j_all.T * bp_outa * self.rate_weight a__ : Tuple = self.thre_bpa - pd_k_all * self.rate_thre a__ : Tuple = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image a__ : List[str] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) a__ : Any = rp + 1 a__ : Optional[Any] = error_count / patterns all_mse.append(lowercase) def draw_error(): a__ : int = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(lowercase , '+-') plt.plot(lowercase , 'r--') plt.xlabel('Learning Times') plt.ylabel('All_mse') plt.grid(lowercase , alpha=0.5) plt.show() print('------------------Training Complished---------------------') print((' - - Training epoch: ', rp, F' - - Mse: {mse:.6f}')) if draw_e: draw_error() return mse def __lowercase ( self , lowercase) -> Optional[int]: '''simple docstring''' a__ : str = [] print('-------------------Start Testing-------------------------') print((' - - Shape: Test_Data ', np.shape(lowercase))) for p in range(len(lowercase)): a__ : int = np.asmatrix(datas_test[p]) a__ , a__ : Optional[int] = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a__ : str = self.pooling(lowercase , self.size_poolinga) a__ : Optional[int] = self._expand(lowercase) a__ : str = data_bp_input a__ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa a__ : Optional[Any] = self.sig(lowercase) a__ : int = bp_outa * self.wkj.T - self.thre_bpa a__ : Dict = self.sig(lowercase) produce_out.extend(bp_outa.getA().tolist()) a__ : List[Any] = [list(map(self.do_round , lowercase)) for each in produce_out] return np.asarray(lowercase) def __lowercase ( self , lowercase) -> str: '''simple docstring''' a__ : str = np.asmatrix(lowercase) a__ , a__ : str = self.convolute( lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) a__ : List[str] = self.pooling(lowercase , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
225
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : int = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase_ : Optional[int] = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ : List[Any] = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCAmelCase_ : Dict = {"unk_token": "<unk>"} UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(lowercase_ ) ) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Any = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.get_input_output_texts(lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) UpperCAmelCase_ : Optional[int] = tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) return text, ids def UpperCamelCase__ ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase__ ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase__ ( self ): """simple docstring""" pass # TODO add if relevant def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ : Tuple = "こんにちは、世界。 こんばんは、㔺界。" UpperCAmelCase_ : Dict = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCAmelCase_ : int = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids without special tokens UpperCAmelCase_ : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) # Testing conversion to ids with special tokens UpperCAmelCase_ : Tuple = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase_ : int = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ : Optional[int] = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCAmelCase_ : Optional[int] = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowercase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ : List[Any] = "こんにちは、世界。" UpperCAmelCase_ : List[Any] = "こんばんは、㔺界。😀" UpperCAmelCase_ : List[Any] = "こんにちは、世界。こんばんは、世界。😀" UpperCAmelCase_ : Optional[Any] = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase_ : List[str] = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCAmelCase_ : str = tokenizer.encode(lowercase_ , prefix_text=lowercase_ ) UpperCAmelCase_ : List[Any] = tokenizer.decode(lowercase_ ) UpperCAmelCase_ : str = tokenizer.decode(lowercase_ ) UpperCAmelCase_ : List[str] = tokenizer.decode(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ : Union[str, Any] = "こんにちは、世界。" UpperCAmelCase_ : Union[str, Any] = "こんばんは、㔺界。😀" UpperCAmelCase_ : List[Any] = len(tokenizer.encode(lowercase_ ) ) - 2 UpperCAmelCase_ : Dict = len(tokenizer.encode(lowercase_ ) ) - 2 UpperCAmelCase_ : Union[str, Any] = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase_ : Any = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase_ : List[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase_ : Dict = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase_ : Optional[Any] = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase_ : str = tokenizer(lowercase_ , prefix_text=lowercase_ ).token_type_ids self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ : str = tokenizer.encode("あンいワ" ) UpperCAmelCase_ : List[Any] = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCAmelCase_ : str = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) ) self.assertEqual(tokenizer.decode(lowercase_ ) , tokenizer.decode(lowercase_ ) ) self.assertNotEqual(lowercase_ , lowercase_ ) self.assertNotEqual(lowercase_ , lowercase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ : Tuple = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCAmelCase_ : Dict = tokenizer(lowercase_ , padding=lowercase_ ) UpperCAmelCase_ : int = tokenizer.batch_encode_plus(lowercase_ , padding=lowercase_ ) # fmt: off UpperCAmelCase_ : str = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] UpperCAmelCase_ : Optional[int] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase_ : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase_ ) self.assertListEqual(x_token.token_type_ids , lowercase_ ) self.assertListEqual(x_token.attention_mask , lowercase_ ) self.assertListEqual(x_token_a.input_ids , lowercase_ ) self.assertListEqual(x_token_a.token_type_ids , lowercase_ ) self.assertListEqual(x_token_a.attention_mask , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase__ ( self ): """simple docstring""" # tokenizer has no padding token pass
61
from scipy.stats import pearsonr import datasets _lowerCamelCase =""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ _lowerCamelCase =""" Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ _lowerCamelCase =""" @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class A__ ( datasets.Metric): def UpperCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__=False ): if return_pvalue: lowerCamelCase : Optional[Any] = pearsonr(__magic_name__ , __magic_name__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__magic_name__ , __magic_name__ )[0] )}
287
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case__(unittest.TestCase ): """simple docstring""" def snake_case ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : List[Any] ): lowercase__ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowercase__ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowercase__ : int = "xvjiarui/stable-diffusion-2-inpainting" lowercase__ , lowercase__ : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE ) lowercase__ : str = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ : Dict = jax.random.PRNGKey(0 ) lowercase__ : Optional[int] = 50 lowercase__ : List[str] = jax.device_count() lowercase__ : List[Any] = num_samples * [prompt] lowercase__ : Tuple = num_samples * [init_image] lowercase__ : Union[str, Any] = num_samples * [mask_image] lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # shard inputs and rng lowercase__ : Union[str, Any] = replicate(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = jax.random.split(SCREAMING_SNAKE_CASE , jax.device_count() ) lowercase__ : Any = shard(SCREAMING_SNAKE_CASE ) lowercase__ : str = shard(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = shard(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = pipeline( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , jit=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = output.images.reshape(SCREAMING_SNAKE_CASE , 512 , 512 , 3 ) lowercase__ : Union[str, Any] = images[0, 253:256, 253:256, -1] lowercase__ : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase__ : List[str] = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
121
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] lowerCAmelCase__ = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowerCAmelCase__ = f'''down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.0.''' unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''input_blocks.{3*i + j + 1}.1.''' unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowerCAmelCase__ = f'''up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.0.''' unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowerCAmelCase__ = f'''up_blocks.{i}.attentions.{j}.''' lowerCAmelCase__ = f'''output_blocks.{3*i + j}.1.''' unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.conv.''' lowerCAmelCase__ = f'''input_blocks.{3*(i+1)}.0.op.''' unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''output_blocks.{3*i + 2}.{1 if i == 0 else 2}.''' unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowerCAmelCase__ = '''mid_block.attentions.0.''' lowerCAmelCase__ = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{j}.''' lowerCAmelCase__ = f'''middle_block.{2*j}.''' unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[str] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase__ : str = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase__ : int = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = v lowercase__ : Union[str, Any] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowerCAmelCase__ = f'''encoder.down_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''encoder.down.{i}.block.{j}.''' vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowerCAmelCase__ = f'''down_blocks.{i}.downsamplers.0.''' lowerCAmelCase__ = f'''down.{i}.downsample.''' vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowerCAmelCase__ = f'''up_blocks.{i}.upsamplers.0.''' lowerCAmelCase__ = f'''up.{3-i}.upsample.''' vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowerCAmelCase__ = f'''decoder.up_blocks.{i}.resnets.{j}.''' lowerCAmelCase__ = f'''decoder.up.{3-i}.block.{j}.''' vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowerCAmelCase__ = f'''mid_block.resnets.{i}.''' lowerCAmelCase__ = f'''mid.block_{i+1}.''' vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase__ : Optional[int] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase__ : List[str] = v.replace(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = v lowercase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase__ : Optional[int] = ["q", "k", "v", "proj_out"] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F"""mid.attn_1.{weight_name}.weight""" in k: print(F"""Reshaping {k} for SD format""" ) lowercase__ : Dict = reshape_weight_for_sd(lowerCamelCase__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowerCAmelCase__ = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] lowerCAmelCase__ = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowerCAmelCase__ = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowerCAmelCase__ = {'''q''': 0, '''k''': 1, '''v''': 2} def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = {} lowercase__ : List[Any] = {} lowercase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(".self_attn.q_proj.weight" ) or k.endswith(".self_attn.k_proj.weight" ) or k.endswith(".self_attn.v_proj.weight" ) ): lowercase__ : int = k[: -len(".q_proj.weight" )] lowercase__ : Optional[Any] = k[-len("q_proj.weight" )] if k_pre not in capture_qkv_weight: lowercase__ : Dict = [None, None, None] lowercase__ : Any = v continue if ( k.endswith(".self_attn.q_proj.bias" ) or k.endswith(".self_attn.k_proj.bias" ) or k.endswith(".self_attn.v_proj.bias" ) ): lowercase__ : Optional[int] = k[: -len(".q_proj.bias" )] lowercase__ : Any = k[-len("q_proj.bias" )] if k_pre not in capture_qkv_bias: lowercase__ : str = [None, None, None] lowercase__ : str = v continue lowercase__ : Union[str, Any] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : List[Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : str = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Any = torch.cat(lowerCamelCase__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing" ) lowercase__ : List[str] = textenc_pattern.sub(lambda lowerCamelCase__ : protected[re.escape(m.group(0 ) )] , lowerCamelCase__ ) lowercase__ : Tuple = torch.cat(lowerCamelCase__ ) return new_state_dict def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return text_enc_dict if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) lowerCAmelCase__ = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowerCAmelCase__ = load_file(unet_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): lowerCAmelCase__ = load_file(vae_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') lowerCAmelCase__ = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): lowerCAmelCase__ = load_file(text_enc_path, device='''cpu''') else: lowerCAmelCase__ = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') lowerCAmelCase__ = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model lowerCAmelCase__ = convert_unet_state_dict(unet_state_dict) lowerCAmelCase__ = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowerCAmelCase__ = convert_vae_state_dict(vae_state_dict) lowerCAmelCase__ = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowerCAmelCase__ = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowerCAmelCase__ = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} lowerCAmelCase__ = convert_text_enc_state_dict_vaa(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: lowerCAmelCase__ = convert_text_enc_state_dict(text_enc_dict) lowerCAmelCase__ = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowerCAmelCase__ = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowerCAmelCase__ = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowerCAmelCase__ = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
121
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCAmelCase : def __init__( self : List[str], __A : List[str], __A : Any=3, __A : List[Any]=3_2, __A : str=3, __A : Tuple=1_0, __A : Optional[Any]=[1_0, 2_0, 3_0, 4_0], __A : List[Any]=[1, 1, 2, 1], __A : List[str]=True, __A : Dict=True, __A : Any="relu", __A : Tuple=3, __A : List[Any]=None, ): UpperCAmelCase : List[str] = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[Any] = image_size UpperCAmelCase : int = num_channels UpperCAmelCase : Dict = embeddings_size UpperCAmelCase : Optional[int] = hidden_sizes UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : str = hidden_act UpperCAmelCase : Dict = num_labels UpperCAmelCase : List[str] = scope UpperCAmelCase : Optional[int] = len(__A ) def __magic_name__ ( self : Dict ): UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Dict ): return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def __magic_name__ ( self : List[str], __A : int, __A : Union[str, Any], __A : List[str] ): UpperCAmelCase : Union[str, Any] = TFRegNetModel(config=__A ) UpperCAmelCase : Optional[int] = model(__A, training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2), ) def __magic_name__ ( self : Tuple, __A : int, __A : Optional[Any], __A : Optional[Any] ): UpperCAmelCase : Tuple = self.num_labels UpperCAmelCase : List[str] = TFRegNetForImageClassification(__A ) UpperCAmelCase : Union[str, Any] = model(__A, labels=__A, training=__A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Any ): UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = config_and_inputs UpperCAmelCase : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __magic_name__ ( self : Any ): UpperCAmelCase : List[Any] = TFRegNetModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self, config_class=__A, has_text_modality=__A ) def __magic_name__ ( self : List[str] ): return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __magic_name__ ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def __magic_name__ ( self : Optional[Any] ): super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __magic_name__ ( self : List[Any] ): pass def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(__A ) UpperCAmelCase : Union[str, Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Dict = [*signature.parameters.keys()] UpperCAmelCase : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __A ) def __magic_name__ ( self : int ): UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def __magic_name__ ( self : List[str] ): def check_hidden_states_output(__A : List[Any], __A : Dict, __A : int ): UpperCAmelCase : Union[str, Any] = model_class(__A ) UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__A, __A ), training=__A ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__A ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[int] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase : Tuple = layer_type UpperCAmelCase : List[str] = True check_hidden_states_output(__A, __A, __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : Any = True check_hidden_states_output(__A, __A, __A ) def __magic_name__ ( self : List[str] ): UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__A : Optional[Any], __A : int, __A : List[str], __A : Tuple={} ): UpperCAmelCase : Optional[Any] = model(__A, return_dict=__A, **__A ) UpperCAmelCase : Any = model(__A, return_dict=__A, **__A ).to_tuple() def recursive_check(__A : List[str], __A : Optional[int] ): if isinstance(__A, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A, __A ): recursive_check(__A, __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A, __A ) ), msg=( '''Tuple and dict output are not equal. Difference:''' F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ), ) recursive_check(__A, __A ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class(__A ) UpperCAmelCase : List[Any] = self._prepare_for_class(__A, __A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A ) check_equivalence(__A, __A, __A ) UpperCAmelCase : str = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : int = self._prepare_for_class(__A, __A, return_labels=__A ) check_equivalence(__A, __A, __A ) UpperCAmelCase : Union[str, Any] = self._prepare_for_class(__A, __A ) UpperCAmelCase : Union[str, Any] = self._prepare_for_class(__A, __A ) check_equivalence(__A, __A, __A, {'''output_hidden_states''': True} ) UpperCAmelCase : Any = self._prepare_for_class(__A, __A, return_labels=__A ) UpperCAmelCase : List[Any] = self._prepare_for_class(__A, __A, return_labels=__A ) check_equivalence(__A, __A, __A, {'''output_hidden_states''': True} ) def __magic_name__ ( self : List[Any] ): UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def __magic_name__ ( self : Optional[int] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : int = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ) -> List[Any]: UpperCAmelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Optional[Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Optional[int] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : List[Any] = image_processor(images=__A, return_tensors='''tf''' ) # forward pass UpperCAmelCase : str = model(**__A, training=__A ) # verify the logits UpperCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, __A ) UpperCAmelCase : Any = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3], __A, atol=1E-4 )
336
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> str: while b: snake_case : List[Any] = b, a % b return a def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: return a if b == 0 else euclidean_gcd_recursive(lowerCAmelCase__ ,a % b ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 ,5 )}""" ) print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 ,3 )}""" ) print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 ,3 )}""" ) print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 ,6 )}""" ) print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 ,3 )}""" ) print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 ,5 )}""" ) print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 ,3 )}""" ) print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 ,3 )}""" ) print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 ,6 )}""" ) print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 ,3 )}""" ) if __name__ == "__main__": main()
366
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) snake_case : List[str] = MaskFormerConfig(backbone_config=lowercase ) snake_case : List[Any] = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok snake_case : Dict = 847 snake_case : List[str] = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok snake_case : Union[str, Any] = 150 snake_case : List[Any] = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok snake_case : Union[str, Any] = 171 snake_case : int = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO snake_case : Optional[Any] = 133 snake_case : Optional[Any] = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok snake_case : Tuple = 19 snake_case : int = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok snake_case : int = 65 snake_case : Any = """mapillary-vistas-id2label.json""" snake_case : Optional[Any] = json.load(open(hf_hub_download(lowercase ,lowercase ,repo_type="""dataset""" ) ,"""r""" ) ) snake_case : List[Any] = {int(lowercase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : Union[str, Any] = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ) -> str: snake_case : Tuple = dct.pop(lowercase ) snake_case : int = val def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> int: snake_case : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case : Optional[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case : Tuple = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case : Optional[Any] = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[Any] = in_proj_weight[:dim, :] snake_case : Optional[int] = in_proj_bias[: dim] snake_case : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] snake_case : Tuple = in_proj_bias[ dim : dim * 2 ] snake_case : List[Any] = in_proj_weight[ -dim :, : ] snake_case : Any = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Any: # fmt: off snake_case : int = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case : Any = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) snake_case : Tuple = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Optional[int] = in_proj_weight[: hidden_size, :] snake_case : Any = in_proj_bias[:config.hidden_size] snake_case : Any = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case : int = in_proj_bias[hidden_size : hidden_size * 2] snake_case : Any = in_proj_weight[-hidden_size :, :] snake_case : Union[str, Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case : Dict = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) snake_case : str = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case : Dict = in_proj_weight[: hidden_size, :] snake_case : Dict = in_proj_bias[:config.hidden_size] snake_case : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] snake_case : Tuple = in_proj_weight[-hidden_size :, :] snake_case : str = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE__ ( ) -> torch.Tensor: snake_case : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : Any = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase = False ) -> Dict: snake_case : List[str] = get_maskformer_config(lowercase ) # load original state_dict with open(lowercase ,"""rb""" ) as f: snake_case : Optional[Any] = pickle.load(lowercase ) snake_case : Optional[Any] = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case : str = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase ,lowercase ,lowercase ) read_in_swin_q_k_v(lowercase ,config.backbone_config ) read_in_decoder_q_k_v(lowercase ,lowercase ) # update to torch tensors for key, value in state_dict.items(): snake_case : List[Any] = torch.from_numpy(lowercase ) # load 🤗 model snake_case : int = MaskFormerForInstanceSegmentation(lowercase ) model.eval() for name, param in model.named_parameters(): print(lowercase ,param.shape ) snake_case , snake_case : Optional[int] = model.load_state_dict(lowercase ,strict=lowercase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results snake_case : List[str] = prepare_img() if "vistas" in model_name: snake_case : Optional[int] = 65 elif "cityscapes" in model_name: snake_case : int = 65535 else: snake_case : List[str] = 255 snake_case : List[Any] = True if """ade""" in model_name else False snake_case : Optional[int] = MaskFormerImageProcessor(ignore_index=lowercase ,reduce_labels=lowercase ) snake_case : Tuple = image_processor(lowercase ,return_tensors="""pt""" ) snake_case : str = model(**lowercase ) print("""Logits:""" ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case : Union[str, Any] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowercase ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) image_processor.save_pretrained(lowercase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCamelCase : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
176
0
'''simple docstring''' import math def UpperCAmelCase_ ( ): lowercase_ :Union[str, Any] = input("Enter message: " ) lowercase_ :Tuple = int(input(F'Enter key [2-{len(__lowerCAmelCase ) - 1}]: ' ) ) lowercase_ :str = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): lowercase_ :Union[str, Any] = encrypt_message(__lowerCAmelCase ,__lowerCAmelCase ) elif mode.lower().startswith("d" ): lowercase_ :Tuple = decrypt_message(__lowerCAmelCase ,__lowerCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : str ): lowercase_ :Optional[int] = [""] * key for col in range(__lowerCAmelCase ): lowercase_ :List[str] = col while pointer < len(__lowerCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(__lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : str ): lowercase_ :Dict = math.ceil(len(__lowerCAmelCase ) / key ) lowercase_ :List[Any] = key lowercase_ :Any = (num_cols * num_rows) - len(__lowerCAmelCase ) lowercase_ :Tuple = [""] * num_cols lowercase_ :Union[str, Any] = 0 lowercase_ :List[str] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowercase_ :Optional[Any] = 0 row += 1 return "".join(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
223
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[Any] = TypeVar("T") def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (position - 1) // 2 def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (2 * position) + 1 def __magic_name__ ( __lowerCAmelCase : int ) -> int: return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): def __init__( self : List[str] ) -> None: __lowerCamelCase = [] __lowerCamelCase = {} __lowerCamelCase = 0 def __len__( self : Optional[int] ) -> int: return self.elements def __repr__( self : Optional[int] ) -> str: return str(self.heap ) def __A ( self : Union[str, Any] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __A ( self : str , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) __lowerCamelCase = self.elements self.elements += 1 self._bubble_up(SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowerCamelCase , __lowerCamelCase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowerCamelCase , __lowerCamelCase = self.heap[0] self._bubble_down(SCREAMING_SNAKE_CASE__ ) return elem def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Update the weight of the given key __lowerCamelCase = self.position_map[elem] __lowerCamelCase = (elem, weight) if position > 0: __lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: self._bubble_down(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] __lowerCamelCase = self.position_map[elem] if curr_pos == 0: return None __lowerCamelCase = get_parent_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase , __lowerCamelCase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_up(SCREAMING_SNAKE_CASE__ ) return None def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] __lowerCamelCase = self.position_map[elem] __lowerCamelCase , __lowerCamelCase = self.heap[curr_pos] __lowerCamelCase = get_child_left_position(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = get_child_right_position(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_left_position] __lowerCamelCase , __lowerCamelCase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) if child_left_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) else: return None if child_right_position < self.elements: __lowerCamelCase , __lowerCamelCase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return self._bubble_down(SCREAMING_SNAKE_CASE__ ) return None def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> None: # Swap the nodes at the given positions __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase = self.heap[nodea_pos][0] __lowerCamelCase , __lowerCamelCase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowerCamelCase = nodea_pos __lowerCamelCase = nodea_pos class lowerCAmelCase__ ( Generic[T] ): def __init__( self : Tuple ) -> None: __lowerCamelCase = {} __lowerCamelCase = 0 def __repr__( self : Optional[int] ) -> str: return str(self.connections ) def __len__( self : List[str] ) -> int: return self.nodes def __A ( self : List[str] , SCREAMING_SNAKE_CASE__ : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: __lowerCamelCase = {} self.nodes += 1 def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : T , SCREAMING_SNAKE_CASE__ : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(SCREAMING_SNAKE_CASE__ ) self.add_node(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = weight __lowerCamelCase = weight def __magic_name__ ( __lowerCAmelCase : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: __lowerCamelCase = {node: maxsize for node in graph.connections} __lowerCamelCase = {node: None for node in graph.connections} __lowerCamelCase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__lowerCAmelCase , __lowerCAmelCase ) if priority_queue.is_empty(): return dist, parent # initialization __lowerCamelCase = priority_queue.extract_min() __lowerCamelCase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowerCAmelCase , dist[neighbour] ) __lowerCamelCase = node # running prim's algorithm while not priority_queue.is_empty(): __lowerCamelCase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowerCamelCase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__lowerCAmelCase , dist[neighbour] ) __lowerCamelCase = node return dist, parent
270
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCAmelCase__ ( _UpperCamelCase : BertModel , _UpperCamelCase : str , _UpperCamelCase : str ) -> int: """simple docstring""" snake_case = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') snake_case = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) snake_case = model.state_dict() def to_tf_var_name(_UpperCamelCase : str ): for patt, repl in iter(_UpperCamelCase ): snake_case = name.replace(_UpperCamelCase , _UpperCamelCase ) return f"""bert/{name}""" def create_tf_var(_UpperCamelCase : np.ndarray , _UpperCamelCase : str , _UpperCamelCase : tf.Session ): snake_case = tf.dtypes.as_dtype(tensor.dtype ) snake_case = tf.get_variable(dtype=_UpperCamelCase , shape=tensor.shape , name=_UpperCamelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_UpperCamelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: snake_case = to_tf_var_name(_UpperCamelCase ) snake_case = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): snake_case = torch_tensor.T snake_case = create_tf_var(tensor=_UpperCamelCase , name=_UpperCamelCase , session=_UpperCamelCase ) tf.keras.backend.set_value(_UpperCamelCase , _UpperCamelCase ) snake_case = session.run(_UpperCamelCase ) print(f"""Successfully created {tf_name}: {np.allclose(_UpperCamelCase , _UpperCamelCase )}""" ) snake_case = tf.train.Saver(tf.trainable_variables() ) saver.save(_UpperCamelCase , os.path.join(_UpperCamelCase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any]=None ) -> List[str]: """simple docstring""" snake_case = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_UpperCamelCase , required=_UpperCamelCase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=_UpperCamelCase , default=_UpperCamelCase , required=_UpperCamelCase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=_UpperCamelCase , required=_UpperCamelCase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=_UpperCamelCase , required=_UpperCamelCase , help='Directory in which to save tensorflow model' ) snake_case = parser.parse_args(_UpperCamelCase ) snake_case = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_UpperCamelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
149
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Tuple = """swinv2""" _lowerCAmelCase : Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase=2_24 , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=96 , lowerCAmelCase=[2, 2, 6, 2] , lowerCAmelCase=[3, 6, 12, 24] , lowerCAmelCase=7 , lowerCAmelCase=4.0 , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase="gelu" , lowerCAmelCase=False , lowerCAmelCase=0.02 , lowerCAmelCase=1E-5 , lowerCAmelCase=32 , **lowerCAmelCase , ): """simple docstring""" super().__init__(**lowerCAmelCase ) snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = embed_dim snake_case = depths snake_case = len(lowerCAmelCase ) snake_case = num_heads snake_case = window_size snake_case = mlp_ratio snake_case = qkv_bias snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = drop_path_rate snake_case = hidden_act snake_case = use_absolute_embeddings snake_case = layer_norm_eps snake_case = initializer_range snake_case = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case = int(embed_dim * 2 ** (len(lowerCAmelCase ) - 1) ) snake_case = (0, 0, 0, 0)
149
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : str = MODEL_FOR_MASKED_LM_MAPPING A__ : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def snake_case_ ( self : Any ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def snake_case_ ( self : Optional[int] ): __lowercase : Optional[Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) __lowercase : Any = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-0_5, '''token''': 3_8015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-0_5, '''token''': 2_5506, '''token_str''': ''' accuser'''}, ] , ) __lowercase : Any = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-0_5, '''token''': 3_8015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-0_5, '''token''': 2_5506, '''token_str''': ''' accuser''', }, ] , ) __lowercase : Union[str, Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-0_5, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-0_5, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def snake_case_ ( self : str ): __lowercase : Union[str, Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) __lowercase : Any = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-0_5, '''token''': 3_5676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-0_5, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) __lowercase : Any = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-0_5, '''token''': 3_5676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-0_5, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) __lowercase : Union[str, Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-0_5, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-0_5, '''token''': 1_3606, '''token_str''': ''' Clara'''}, ] , ) __lowercase : List[str] = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { '''score''': 2.2E-0_5, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-0_5, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-0_5, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-0_5, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def snake_case_ ( self : Optional[Any] ): __lowercase : int = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() __lowercase : Dict = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def snake_case_ ( self : List[str] ): __lowercase : str = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__snake_case ) @slow @require_tf def snake_case_ ( self : str ): __lowercase : int = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__snake_case ) def snake_case_ ( self : Optional[Any] , _snake_case : Any ): __lowercase : Any = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) __lowercase : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 1_2790, '''token_str''': ''' Lyon''', }, ] , ) __lowercase : int = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def snake_case_ ( self : Optional[Any] ): __lowercase : Union[str, Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) __lowercase : str = None __lowercase : Optional[int] = None self.run_pipeline_test(__snake_case , [] ) @require_tf def snake_case_ ( self : Optional[Any] ): __lowercase : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) __lowercase : Tuple = None __lowercase : Union[str, Any] = None self.run_pipeline_test(__snake_case , [] ) def snake_case_ ( self : Any , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : List[Any] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) __lowercase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __lowercase : List[str] = [ F'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def snake_case_ ( self : Tuple , _snake_case : Tuple , _snake_case : str ): __lowercase : Union[str, Any] = fill_masker.tokenizer __lowercase : Dict = fill_masker.model __lowercase : Optional[int] = fill_masker( F'This is a {tokenizer.mask_token}' , ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) __lowercase : List[str] = fill_masker([F'This is a {tokenizer.mask_token}'] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) __lowercase : Any = fill_masker([F'This is a {tokenizer.mask_token}', F'Another {tokenizer.mask_token} great test.'] ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('''This is''' ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Dict ): __lowercase : Optional[int] = tokenizer.get_vocab() __lowercase : int = sorted(vocab.keys() )[:2] # Pipeline argument __lowercase : int = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) __lowercase : List[Any] = fill_masker(F'This is a {tokenizer.mask_token}' ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) __lowercase : Optional[int] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) __lowercase : Optional[Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Call argument __lowercase : List[str] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __lowercase : str = fill_masker(F'This is a {tokenizer.mask_token}' , targets=__snake_case ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) __lowercase : Optional[Any] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) __lowercase : Union[str, Any] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Score equivalence __lowercase : List[str] = fill_masker(F'This is a {tokenizer.mask_token}' , targets=__snake_case ) __lowercase : Tuple = [top_mask['''token_str'''] for top_mask in outputs] __lowercase : int = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): __lowercase : Dict = fill_masker(F'This is a {tokenizer.mask_token}' , targets=__snake_case ) __lowercase : int = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): __lowercase : Optional[int] = fill_masker(F'This is a {tokenizer.mask_token}' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): __lowercase : Optional[int] = fill_masker(F'This is a {tokenizer.mask_token}' , targets=[''''''] ) with self.assertRaises(__snake_case ): __lowercase : Optional[int] = fill_masker(F'This is a {tokenizer.mask_token}' , targets='''''' ) def snake_case_ ( self : int , _snake_case : str , _snake_case : Union[str, Any] ): __lowercase : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) __lowercase : Tuple = fill_masker(F'This is a {tokenizer.mask_token}' ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) __lowercase : List[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __lowercase : Union[str, Any] = fill_masker(F'This is a {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def snake_case_ ( self : Optional[int] , _snake_case : List[Any] , _snake_case : Tuple ): __lowercase : List[Any] = tokenizer.get_vocab() __lowercase : int = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 __lowercase : Any = sorted(vocab.keys() )[:3] __lowercase : str = fill_masker(F'This is a {tokenizer.mask_token}' , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results __lowercase : int = [el['''token_str'''] for el in sorted(__snake_case , key=lambda _snake_case : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): __lowercase : Optional[Any] = fill_masker(F'This is a {tokenizer.mask_token}' , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def snake_case_ ( self : Tuple , _snake_case : List[str] , _snake_case : Optional[Any] ): __lowercase : Optional[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __lowercase : Optional[Any] = tokenizer.get_vocab() # String duplicates + id duplicates __lowercase : List[Any] = sorted(vocab.keys() )[:3] __lowercase : Tuple = [targets[0], targets[1], targets[0], targets[2], targets[1]] __lowercase : Union[str, Any] = fill_masker(F'My name is {tokenizer.mask_token}' , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def snake_case_ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : List[Any] ): __lowercase : Dict = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) __lowercase : int = fill_masker( F'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2 ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , )
156
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[str] = 'deit' def __init__( self : Optional[Any] ,_UpperCAmelCase : Tuple=768 ,_UpperCAmelCase : Dict=12 ,_UpperCAmelCase : Optional[Any]=12 ,_UpperCAmelCase : int=3072 ,_UpperCAmelCase : int="gelu" ,_UpperCAmelCase : Optional[Any]=0.0 ,_UpperCAmelCase : Tuple=0.0 ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : Optional[int]=1E-12 ,_UpperCAmelCase : Optional[int]=224 ,_UpperCAmelCase : int=16 ,_UpperCAmelCase : Dict=3 ,_UpperCAmelCase : str=True ,_UpperCAmelCase : Tuple=16 ,**_UpperCAmelCase : int ,): super().__init__(**_UpperCAmelCase ) _a : Union[str, Any] = hidden_size _a : List[str] = num_hidden_layers _a : Dict = num_attention_heads _a : List[Any] = intermediate_size _a : Any = hidden_act _a : Union[str, Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Optional[int] = initializer_range _a : Tuple = layer_norm_eps _a : List[str] = image_size _a : List[str] = patch_size _a : List[Any] = num_channels _a : int = qkv_bias _a : int = encoder_stride class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : Tuple = version.parse('1.11' ) @property def __lowercase ( self : List[str] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowercase ( self : Tuple ): return 1E-4
107
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> list: if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
107
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> bool: '''simple docstring''' snake_case_ = len(__UpperCAmelCase ) snake_case_ = len(__UpperCAmelCase ) snake_case_ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] snake_case_ = True for i in range(__UpperCAmelCase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: snake_case_ = True if a[i].islower(): snake_case_ = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
56
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = "openai/whisper-base" __A : str = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __A : Any = "transcriber" __A : Any = WhisperProcessor __A : int = WhisperForConditionalGeneration __A : Any = ["audio"] __A : List[str] = ["text"] def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor(__A , return_tensors="pt" ).input_features def _snake_case ( self , __A ): """simple docstring""" return self.model.generate(inputs=__A ) def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0]
283
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : List[str] = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
127
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """nielsr/canine-s""": 2048, } # Unicode defines 1,114,112 total “codepoints” lowerCAmelCase : Any = 1114112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py lowerCAmelCase : Dict = 0 lowerCAmelCase : Dict = 0xe000 lowerCAmelCase : str = 0xe001 lowerCAmelCase : str = 0xe002 lowerCAmelCase : Optional[int] = 0xe003 lowerCAmelCase : List[Any] = 0xe004 # Maps special codepoints to human-readable names. lowerCAmelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. lowerCAmelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple=chr(lowerCAmelCase__) , lowerCAmelCase__ : Tuple=chr(lowerCAmelCase__) , lowerCAmelCase__ : str=chr(lowerCAmelCase__) , lowerCAmelCase__ : List[Any]=chr(lowerCAmelCase__) , lowerCAmelCase__ : Optional[int]=chr(lowerCAmelCase__) , lowerCAmelCase__ : Union[str, Any]=chr(lowerCAmelCase__) , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : int=2048 , **lowerCAmelCase__ : Tuple , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else bos_token SCREAMING_SNAKE_CASE_: List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else eos_token SCREAMING_SNAKE_CASE_: List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else sep_token SCREAMING_SNAKE_CASE_: Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else cls_token SCREAMING_SNAKE_CASE_: str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_: Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else mask_token super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , model_max_length=lowerCAmelCase__ , **lowerCAmelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. SCREAMING_SNAKE_CASE_: Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): SCREAMING_SNAKE_CASE_: List[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. SCREAMING_SNAKE_CASE_: Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } SCREAMING_SNAKE_CASE_: List[str] = UNICODE_VOCAB_SIZE SCREAMING_SNAKE_CASE_: Tuple = len(self._special_codepoints) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self._unicode_vocab_size def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : str): return list(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : str): try: return ord(lowerCAmelCase__) except TypeError: raise ValueError(F"invalid token: '{token}'") def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCAmelCase__) except TypeError: raise ValueError(F"invalid id: {index}") def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Dict): return "".join(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE_: Tuple = [self.cls_token_id] SCREAMING_SNAKE_CASE_: int = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = [1] + ([0] * len(lowerCAmelCase__)) + [1] if token_ids_a is not None: result += ([0] * len(lowerCAmelCase__)) + [1] return result def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_: int = [self.cls_token_id] SCREAMING_SNAKE_CASE_: List[str] = len(cls + token_ids_a + sep) * [0] if token_ids_a is not None: result += len(token_ids_a + sep) * [1] return result def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): return ()
127
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ): if attention_mask is None: __SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowercase : Union[str, Any] = OPTConfig __lowercase : Union[str, Any] = {} __lowercase : List[Any] = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=9_9 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=2_0 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=1_6 , lowerCAmelCase__=1_6 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = word_embed_proj_dim __SCREAMING_SNAKE_CASE = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) __SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) __SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1) __SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __SCREAMING_SNAKE_CASE = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__) return config, inputs_dict def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFOPTModel(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inputs_dict["""input_ids"""] __SCREAMING_SNAKE_CASE = input_ids[:1, :] __SCREAMING_SNAKE_CASE = inputs_dict["""attention_mask"""][:1, :] __SCREAMING_SNAKE_CASE = 1 # first forward pass __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size) __SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and __SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1) __SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__)[0] __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice __SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1])) __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3) @require_tf class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowercase : Any = (TFOPTForCausalLM,) if is_tf_available() else () __lowercase : int = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __lowercase : List[str] = False __lowercase : Union[str, Any] = False __lowercase : Tuple = False __lowercase : Union[str, Any] = 10 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFOPTModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__): if hasattr(lowerCAmelCase__ , """weight"""): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , """weight"""): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings __SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings()) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings()) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings()) __SCREAMING_SNAKE_CASE = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings()) # check that the resized embeddings size matches the desired size. __SCREAMING_SNAKE_CASE = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__) # check that weights remain the same after resizing __SCREAMING_SNAKE_CASE = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: __SCREAMING_SNAKE_CASE = False self.assertTrue(lowerCAmelCase__) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(pa - pa)) > 0: __SCREAMING_SNAKE_CASE = False self.assertTrue(lowerCAmelCase__) def _lowerCAmelCase ( UpperCamelCase_ ): return tf.constant(UpperCamelCase_ , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" __lowercase : Union[str, Any] = 99 def snake_case_ ( self): __SCREAMING_SNAKE_CASE = tf.ones((4, 1) , dtype=tf.intaa) * 2 __SCREAMING_SNAKE_CASE = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3) + 3, eos_column_vector] , axis=1) __SCREAMING_SNAKE_CASE = input_ids.shape[0] __SCREAMING_SNAKE_CASE = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFOPTModel.from_pretrained("""facebook/opt-350m""") __SCREAMING_SNAKE_CASE = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]]) __SCREAMING_SNAKE_CASE = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id) with tf.GradientTape(): __SCREAMING_SNAKE_CASE = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__).last_hidden_state __SCREAMING_SNAKE_CASE = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]]) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3)) __SCREAMING_SNAKE_CASE = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = xla_generate(lowerCAmelCase__ , lowerCAmelCase__)[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2)) @require_tf @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = """facebook/opt-350m""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(self.path_model) __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(self.path_model) __SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""" , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) __SCREAMING_SNAKE_CASE = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4)) __SCREAMING_SNAKE_CASE = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask)[0] , axis=-1) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4)) @require_tf @slow class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @property def snake_case_ ( self): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """facebook/opt-125m""" __SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__) for prompt in self.prompts: __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , max_length=1_0) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """facebook/opt-350m""" __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """left""" # use different length sentences to test batching __SCREAMING_SNAKE_CASE = [ """Hello, my dog is a little""", """Today, I""", ] __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""" , padding=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inputs["""input_ids"""] __SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["""attention_mask"""]) __SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa)) __SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """facebook/opt-350m""" __SCREAMING_SNAKE_CASE = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__) for prompt in self.prompts: __SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors="""tf""").input_ids __SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , max_length=1_0) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__)
100
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __magic_name__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __SCREAMING_SNAKE_CASE = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value return new_state_dict def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:256] __SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:256] __SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __SCREAMING_SNAKE_CASE = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[:256] __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[-256:] def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = max(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 800 if """detection""" in checkpoint_url else 1000 __SCREAMING_SNAKE_CASE = target_max_size / current_max_size __SCREAMING_SNAKE_CASE = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = F.to_tensor(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = F.normalize(UpperCamelCase_ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): logger.info("""Converting model...""" ) # load original state dict __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __SCREAMING_SNAKE_CASE = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val # create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __SCREAMING_SNAKE_CASE = 15 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = {0: """table""", 1: """table rotated"""} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} else: __SCREAMING_SNAKE_CASE = 125 __SCREAMING_SNAKE_CASE = 6 __SCREAMING_SNAKE_CASE = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) __SCREAMING_SNAKE_CASE = TableTransformerForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # verify our conversion __SCREAMING_SNAKE_CASE = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = Image.open(UpperCamelCase_ ).convert("""RGB""" ) __SCREAMING_SNAKE_CASE = normalize(resize(UpperCamelCase_ , UpperCamelCase_ ) ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE = model(UpperCamelCase_ ) if "detection" in checkpoint_url: __SCREAMING_SNAKE_CASE = (1, 15, 3) __SCREAMING_SNAKE_CASE = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __SCREAMING_SNAKE_CASE = (1, 125, 7) __SCREAMING_SNAKE_CASE = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) __SCREAMING_SNAKE_CASE = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(UpperCamelCase_ ) image_processor.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __magic_name__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
100
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def A_( A : float , A : float , A : float): if (resistance, reactance, impedance).count(0) != 1: raise ValueError('One and only one argument must be 0') if resistance == 0: return {"resistance": sqrt(pow(A , 2) - pow(A , 2))} elif reactance == 0: return {"reactance": sqrt(pow(A , 2) - pow(A , 2))} elif impedance == 0: return {"impedance": sqrt(pow(A , 2) + pow(A , 2))} else: raise ValueError('Exactly one argument must be 0') if __name__ == "__main__": import doctest doctest.testmod()
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : int = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """timesformer""" def __init__( self , A_=224 , A_=16 , A_=3 , A_=8 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-6 , A_=True , A_="divided_space_time" , A_=0 , **A_ , )-> Union[str, Any]: '''simple docstring''' super().__init__(**A_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = num_frames UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = qkv_bias UpperCamelCase = attention_type UpperCamelCase = drop_path_rate
251
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , """embed_dim""")) self.parent.assertTrue(hasattr(lowercase_ , """num_heads""")) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=6_4 , lowerCAmelCase__=3 , lowerCAmelCase__=[1_6, 4_8, 9_6] , lowerCAmelCase__=[1, 3, 6] , lowerCAmelCase__=[1, 2, 1_0] , lowerCAmelCase__=[7, 3, 3] , lowerCAmelCase__=[4, 2, 2] , lowerCAmelCase__=[2, 1, 1] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[False, False, True] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=2 , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = patch_stride __SCREAMING_SNAKE_CASE = patch_padding __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = stride_kv __SCREAMING_SNAKE_CASE = depth __SCREAMING_SNAKE_CASE = cls_token __SCREAMING_SNAKE_CASE = attention_drop_rate __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = None if self.use_labels: # create a random int32 tensor of given shape __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def snake_case_ ( self): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = TFCvtModel(config=lowercase_) __SCREAMING_SNAKE_CASE = model(lowercase_ , training=lowercase_) __SCREAMING_SNAKE_CASE = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = image_size[0], image_size[1] for i in range(len(self.depth)): __SCREAMING_SNAKE_CASE = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) __SCREAMING_SNAKE_CASE = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFCvtForImageClassification(lowercase_) __SCREAMING_SNAKE_CASE = model(lowercase_ , labels=lowercase_ , training=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" __lowercase : Tuple = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __lowercase : Any = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) __lowercase : List[str] = False __lowercase : int = False __lowercase : Dict = False __lowercase : Dict = False __lowercase : Optional[int] = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFCvtModelTester(self) __SCREAMING_SNAKE_CASE = TFCvtConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=3_7) def snake_case_ ( self): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""") def snake_case_ ( self): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""") def snake_case_ ( self): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""") def snake_case_ ( self): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""")) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def snake_case_ ( self): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""")) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def snake_case_ ( self): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""") def snake_case_ ( self): __SCREAMING_SNAKE_CASE = tf.keras.mixed_precision.Policy("""mixed_float16""") tf.keras.mixed_precision.set_global_policy(lowercase_) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""") def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(lowercase_) __SCREAMING_SNAKE_CASE = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_) def snake_case_ ( self): def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = model_class(lowercase_) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowercase_ , lowercase_)) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = len(self.model_tester.depth) self.assertEqual(len(lowercase_) , lowercase_) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def snake_case_ ( self): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFCvtModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=lowercase_ , return_tensors="""tf""") # forward pass __SCREAMING_SNAKE_CASE = model(**lowercase_) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowercase_) __SCREAMING_SNAKE_CASE = tf.constant([0.92_85, 0.90_15, -0.31_50]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowercase_ , atol=1E-4))
100
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
237
0
from manim import * class lowerCAmelCase__( __lowercase ): def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE : Dict = Rectangle(height=0.25 , width=0.25 ) _SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE : List[str] = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Any = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Optional[int] = Text("CPU" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : List[Any] = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE : Dict = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Optional[int] = Text("GPU" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : List[Any] = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Dict = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : List[str] = Text("Model" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Dict = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Tuple = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) model_cpu_arr.append(__lowerCamelCase ) self.add(*__lowerCamelCase , *__lowerCamelCase , *__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = [mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Any = Text("Loaded Checkpoint" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Any = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : List[str] = [] for i, rect in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) ckpt_arr.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__lowerCamelCase ) self.add(*__lowerCamelCase , *__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE : List[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) _SCREAMING_SNAKE_CASE : int = [meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : List[Any] = [meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE : int = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : str = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) _SCREAMING_SNAKE_CASE : Tuple = Text("Disk" , font_size=2_4 ) _SCREAMING_SNAKE_CASE : Dict = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__lowerCamelCase , run_time=3 ) , Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] for i, rect in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(FadeOut(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase , run_time=3 ) ) self.play( FadeOut(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , *__lowerCamelCase ) , ) self.wait()
365
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'BlipImageProcessor' __snake_case = 'AutoTokenizer' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer _SCREAMING_SNAKE_CASE : List[str] = qformer_tokenizer def __call__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = True , __lowerCamelCase = False , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = 0 , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , **__lowerCamelCase , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) _SCREAMING_SNAKE_CASE : Any = BatchFeature() if text is not None: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : str = qformer_text_encoding.pop("input_ids" ) _SCREAMING_SNAKE_CASE : List[Any] = qformer_text_encoding.pop("attention_mask" ) if images is not None: _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> str: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def UpperCamelCase_ ( self , __lowerCamelCase , **__lowerCamelCase ) -> Any: if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def UpperCamelCase_ ( cls , __lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) _SCREAMING_SNAKE_CASE : Optional[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
325
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class _snake_case ( _a ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Optional[int] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." ,SCREAMING_SNAKE_CASE__ ,) super().__init__(args=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
139
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _a , unittest.TestCase ): _A : str = CTRLTokenizer _A : List[str] = False _A : int = False def __UpperCamelCase ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE:Dict = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] SCREAMING_SNAKE_CASE:Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE__ ,range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) SCREAMING_SNAKE_CASE:str = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] SCREAMING_SNAKE_CASE:Union[str, Any] = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE:Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE__ ) ) def __UpperCamelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : Any ): kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**SCREAMING_SNAKE_CASE__ ) def __UpperCamelCase ( self : int ,SCREAMING_SNAKE_CASE__ : Any ): SCREAMING_SNAKE_CASE:Optional[Any] = "adapt react readapt apt" SCREAMING_SNAKE_CASE:Tuple = "adapt react readapt apt" return input_text, output_text def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:List[str] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE:Any = "adapt react readapt apt" SCREAMING_SNAKE_CASE:Any = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() SCREAMING_SNAKE_CASE:Union[str, Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE:Optional[int] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) ,SCREAMING_SNAKE_CASE__ )
139
1
import math def lowerCAmelCase_ ( _lowercase : Optional[int]) -> bool: """simple docstring""" a__ : Optional[Any] = math.loga(math.sqrt(4 * positive_integer + 1) / 2 + 1 / 2) return exponent == int(__snake_case) def lowerCAmelCase_ ( _lowercase : str = 1 / 1_2345) -> int: """simple docstring""" a__ : str = 0 a__ : Tuple = 0 a__ : Tuple = 3 while True: a__ : Optional[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__snake_case): a__ : str = int(__snake_case) total_partitions += 1 if check_partition_perfect(__snake_case): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__snake_case) integer += 1 if __name__ == "__main__": print(f'{solution() = }')
364
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : List[str] =logging.get_logger(__name__) _lowercase : List[str] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : Optional[Any] ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _lowercase : int ={"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : List[str] = ( list(range(ord("""!""") , ord("""~""") + 1)) + list(range(ord("""¡""") , ord("""¬""") + 1)) + list(range(ord("""®""") , ord("""ÿ""") + 1)) ) a__ : Optional[Any] = bs[:] a__ : List[Any] = 0 for b in range(2**8): if b not in bs: bs.append(_lowercase) cs.append(2**8 + n) n += 1 a__ : Tuple = [chr(_lowercase) for n in cs] return dict(zip(_lowercase , _lowercase)) def lowerCAmelCase_ ( _lowercase : Tuple) -> List[str]: """simple docstring""" a__ : int = set() a__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char)) a__ : Any = char return pairs class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :str = VOCAB_FILES_NAMES __lowerCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ) -> List[Any]: """simple docstring""" a__ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token a__ : Optional[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token a__ : Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token a__ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token a__ : List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token a__ : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : List[str] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: a__ : str = json.load(__lowercase ) a__ : Dict = {v: k for k, v in self.encoder.items()} a__ : Any = errors # how to handle errors in decoding a__ : Union[str, Any] = bytes_to_unicode() a__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: a__ : List[Any] = merges_handle.read().split("""\n""" )[1:-1] a__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] a__ : str = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a__ : Optional[Any] = {} a__ : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : Union[str, Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] a__ : List[Any] = tuple(__lowercase ) a__ : Optional[int] = get_pairs(__lowercase ) if not pairs: return token while True: a__ : List[Any] = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : Dict = bigram a__ : List[Any] = [] a__ : int = 0 while i < len(__lowercase ): try: a__ : str = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : Optional[int] = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : List[Any] = tuple(__lowercase ) a__ : Any = new_word if len(__lowercase ) == 1: break else: a__ : List[Any] = get_pairs(__lowercase ) a__ : Optional[Any] = """ """.join(__lowercase ) a__ : Tuple = word return word def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : int = [] for token in re.findall(self.pat , __lowercase ): a__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" return self.decoder.get(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Union[str, Any] = """""".join(__lowercase ) a__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : int = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : Optional[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) a__ : str = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) a__ : Tuple = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" a__ : Any = [self.sep_token_id] a__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False , **__lowercase ) -> int: """simple docstring""" a__ : Tuple = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): a__ : Union[str, Any] = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[str]: """simple docstring""" return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[int]: """simple docstring""" a__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__lowercase ) a__ : Optional[int] = """ """.join(__lowercase ) a__ : Any = self.encode(__lowercase ) if len(__lowercase ) > self.model_max_length: a__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
266
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=8 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Dict=9_9 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[Any]=3_6 , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Tuple=5_1_2 , lowerCAmelCase_ : Optional[Any]=1_6 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Tuple=None , ): """simple docstring""" _A: Union[str, Any] = parent _A: List[str] = batch_size _A: List[str] = seq_length _A: Union[str, Any] = is_training _A: List[Any] = use_input_mask _A: Tuple = use_token_type_ids _A: int = use_labels _A: Optional[Any] = vocab_size _A: Dict = hidden_size _A: Union[str, Any] = num_hidden_layers _A: List[str] = num_attention_heads _A: int = intermediate_size _A: Tuple = hidden_act _A: Any = hidden_dropout_prob _A: Union[str, Any] = attention_probs_dropout_prob _A: Any = max_position_embeddings _A: Optional[Any] = type_vocab_size _A: List[Any] = type_sequence_label_size _A: Dict = initializer_range _A: Any = num_labels _A: Union[str, Any] = num_choices _A: Optional[int] = scope def __magic_name__ ( self : int ): """simple docstring""" _A: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A: Any = None if self.use_input_mask: _A: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _A: Any = None if self.use_token_type_ids: _A: Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A: int = None _A: str = None _A: List[str] = None if self.use_labels: _A: List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A: Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _A: int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : str ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Any ): """simple docstring""" _A: str = self.get_config() _A: Optional[int] = 3_0_0 return config def __magic_name__ ( self : Tuple ): """simple docstring""" ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ): Tuple = self.prepare_config_and_inputs() _A: Tuple = True _A: Optional[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A: Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __magic_name__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ): """simple docstring""" _A: List[Any] = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Any = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _A: Dict = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _A: Dict = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , ): """simple docstring""" _A: List[Any] = True _A: Dict = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) _A: str = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) _A: Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): """simple docstring""" _A: List[Any] = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Optional[Any] = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: str = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ): """simple docstring""" _A: Optional[int] = self.num_labels _A: Optional[int] = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: Optional[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: int = self.num_labels _A: List[str] = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: int = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" _A: Tuple = self.num_choices _A: List[str] = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A: int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _A: Dict = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Union[str, Any] = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ): str = config_and_inputs _A: Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : int = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Any = () def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" _A: Tuple = MraModelTester(self ) _A: List[str] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7 ) def __magic_name__ ( self : int ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A: List[str] = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def __magic_name__ ( self : Tuple ): """simple docstring""" _A: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def __magic_name__ ( self : str ): """simple docstring""" _A: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def __magic_name__ ( self : Tuple ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A: int = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='''MRA does not output attentions''' ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" return @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _A: int = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _A: Tuple = model(lowerCAmelCase_ )[0] _A: Tuple = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: Union[str, Any] = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Union[str, Any] = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _A: List[str] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _A: Tuple = model(lowerCAmelCase_ )[0] _A: Dict = 5_0_2_6_5 _A: Optional[Any] = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def __magic_name__ ( self : int ): """simple docstring""" _A: int = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _A: List[Any] = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): _A: Tuple = model(lowerCAmelCase_ )[0] _A: List[Any] = 5_0_2_6_5 _A: Union[str, Any] = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _A: int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
121
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase__ ( a=None ) -> int: _A: Union[str, Any] = argparse.ArgumentParser(add_help=a , allow_abbrev=a ) # The main config parser _A: str = config_command_parser(a ) # The subparser to add commands to _A: str = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(a , parents=[parent_parser] ) update_command_parser(a , parents=[parent_parser] ) return config_parser def lowerCamelCase__ ( ) -> Union[str, Any]: _A: Any = get_config_parser() _A: Tuple = config_parser.parse_args() if not hasattr(a , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(a ) if __name__ == "__main__": main()
121
1
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): while a != 0: UpperCAmelCase : Tuple = b % a, a return b def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: UpperCAmelCase : List[str] = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(UpperCAmelCase_ ) UpperCAmelCase : Any = 1, 0, a UpperCAmelCase : Dict = 0, 1, m while va != 0: UpperCAmelCase : Tuple = ua // va UpperCAmelCase : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
358
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if b == 0: return 1 if (b % 2) == 0: return actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) else: return a * actual_power(UpperCAmelCase_ , int(b / 2 ) ) * actual_power(UpperCAmelCase_ , int(b / 2 ) ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if b < 0: return 1 / actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) return actual_power(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": print(power(-2, -3))
280
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: '''simple docstring''' self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for a, b in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertAlmostEqual(lowerCAmelCase__ , lowerCAmelCase__ , delta=lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCAmelCase__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = None ops.enable_eager_execution_internal() __a = tf.config.list_physical_devices('''CPU''' ) if len(lowerCAmelCase__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a = tf.config.list_logical_devices(device_type='''CPU''' ) __a = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a = GradientAccumulator() __a = tf.Variable([4.0, 3.0] ) __a = create_optimizer(5E-5 , 10 , 5 ) __a = tf.Variable([0.0, 0.0] , trainable=lowerCAmelCase__ ) def accumulate_on_replica(_snake_case ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_snake_case , _snake_case ): with strategy.scope(): __a = strategy.experimental_local_results(lowerCAmelCase__ ) local_variables[0].assign(lowerCAmelCase__ ) local_variables[1].assign(lowerCAmelCase__ ) strategy.run(lowerCAmelCase__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCAmelCase__ ) def _check_local_values(_snake_case , _snake_case ): __a = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowerCAmelCase__ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , lowerCAmelCase__ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
6
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase__ : str = logging.getLogger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''summarization''' _A : Optional[Any] = ['''loss'''] _A : Tuple = ROUGE_KEYS _A : int = '''rouge2''' def __init__( self : int , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ): """simple docstring""" if hparams.sortish_sampler and hparams.gpus > 1: __SCREAMING_SNAKE_CASE : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , mode=self.mode , **lowerCAmelCase__ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) __SCREAMING_SNAKE_CASE : int = Path(self.output_dir ) / """metrics.json""" __SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : List[Any] = defaultdict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.config.model_type __SCREAMING_SNAKE_CASE : List[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size __SCREAMING_SNAKE_CASE : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } __SCREAMING_SNAKE_CASE : List[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } __SCREAMING_SNAKE_CASE : Any = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} __SCREAMING_SNAKE_CASE : Any = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], F"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) __SCREAMING_SNAKE_CASE : Any = get_git_info()["""repo_sha"""] __SCREAMING_SNAKE_CASE : Any = hparams.num_workers __SCREAMING_SNAKE_CASE : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.lang_code_to_id[hparams.tgt_lang] __SCREAMING_SNAKE_CASE : Any = self.decoder_start_token_id __SCREAMING_SNAKE_CASE : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.hparams.eval_max_gen_length else: __SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.max_length __SCREAMING_SNAKE_CASE : Optional[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCamelCase__ ( self : str , lowerCAmelCase__ : Dict[str, torch.Tensor] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase__ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) __SCREAMING_SNAKE_CASE : Optional[int] = True return readable_batch def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" return self.model(lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.batch_decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) return lmap(str.strip , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.pad_token_id __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""], batch["""attention_mask"""] __SCREAMING_SNAKE_CASE : Tuple = batch["""labels"""] if isinstance(self.model , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : str = self.model._shift_right(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCAmelCase__ , lowerCAmelCase__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero __SCREAMING_SNAKE_CASE : Tuple = decoder_input_ids self.save_readable_batch(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id __SCREAMING_SNAKE_CASE : Tuple = nn.CrossEntropyLoss(ignore_index=lowerCAmelCase__ ) assert lm_logits.shape[-1] == self.vocab_size __SCREAMING_SNAKE_CASE : List[Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(lowerCAmelCase__ , dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = label_smoothed_nll_loss( lowerCAmelCase__ , lowerCAmelCase__ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase__ ) return (loss,) @property def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" return self.tokenizer.pad_token_id def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = dict(zip(self.loss_names , lowerCAmelCase__ ) ) # tokens per batch __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : str = batch["""input_ids"""].eq(self.pad ).sum() __SCREAMING_SNAKE_CASE : Optional[int] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]="val" ): """simple docstring""" self.step_count += 1 __SCREAMING_SNAKE_CASE : int = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} __SCREAMING_SNAKE_CASE : List[Any] = losses["""loss"""] __SCREAMING_SNAKE_CASE : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } __SCREAMING_SNAKE_CASE : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) __SCREAMING_SNAKE_CASE : torch.FloatTensor = torch.tensor(lowerCAmelCase__ ).type_as(lowerCAmelCase__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = {F"{prefix}_avg_{k}": x for k, x in losses.items()} __SCREAMING_SNAKE_CASE : Optional[int] = self.step_count self.metrics[prefix].append(lowerCAmelCase__ ) # callback writes this to self.metrics_save_path __SCREAMING_SNAKE_CASE : int = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F"{prefix}_loss": loss, F"{prefix}_{self.val_metric}": metric_tensor, } def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ): """simple docstring""" return calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') __SCREAMING_SNAKE_CASE : List[str] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCAmelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (time.time() - ta) / batch["""input_ids"""].shape[0] __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.ids_to_clean_text(batch["""labels"""] ) __SCREAMING_SNAKE_CASE : Optional[Any] = self._step(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(self.loss_names , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = self.calc_generative_metrics(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = np.mean(lmap(lowerCAmelCase__ , lowerCAmelCase__ ) ) base_metrics.update(gen_time=lowerCAmelCase__ , gen_len=lowerCAmelCase__ , preds=lowerCAmelCase__ , target=lowerCAmelCase__ , **lowerCAmelCase__ ) return base_metrics def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" return self._generative_step(lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : int ): """simple docstring""" return self.validation_epoch_end(lowerCAmelCase__ , prefix="""test""" ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.n_obs[type_path] __SCREAMING_SNAKE_CASE : str = self.target_lens[type_path] __SCREAMING_SNAKE_CASE : str = self.dataset_class( self.tokenizer , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , max_target_length=lowerCAmelCase__ , **self.dataset_kwargs , ) return dataset def UpperCamelCase__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataset(lowerCAmelCase__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Optional[int] = dataset.make_sortish_sampler(lowerCAmelCase__ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": __SCREAMING_SNAKE_CASE : Any = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase__ , batch_sampler=lowerCAmelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase__ , num_workers=self.num_workers , sampler=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase__ ) return dataloader def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): """simple docstring""" BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) add_generic_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCAmelCase__ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument("""--logger_name""" , type=lowerCAmelCase__ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCAmelCase__ , default=5_0_0 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCAmelCase__ , default="""summarization""" , required=lowerCAmelCase__ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCAmelCase__ , default=0.0 , required=lowerCAmelCase__ ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase__ , default="""""" , required=lowerCAmelCase__ ) parser.add_argument("""--eval_beams""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( """--val_metric""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[Any] = '''translation''' _A : int = ['''loss'''] _A : Union[str, Any] = ['''bleu'''] _A : Dict = '''bleu''' def __init__( self : Any , lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ): """simple docstring""" super().__init__(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hparams.src_lang __SCREAMING_SNAKE_CASE : Dict = hparams.tgt_lang def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ): """simple docstring""" return calculate_bleu(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str=None ): Path(args.output_dir ).mkdir(exist_ok=_lowerCamelCase ) check_output_dir(_lowerCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: __SCREAMING_SNAKE_CASE : SummarizationModule = SummarizationModule(_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : SummarizationModule = TranslationModule(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): __SCREAMING_SNAKE_CASE : str = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Any = os.environ.get("""WANDB_PROJECT""" , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = WandbLogger(name=model.output_dir.name , project=_lowerCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger __SCREAMING_SNAKE_CASE : Optional[int] = WandbLogger(name=model.output_dir.name , project=F"hf_{dataset}" ) if args.early_stopping_patience >= 0: __SCREAMING_SNAKE_CASE : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = args.val_metric == """loss""" __SCREAMING_SNAKE_CASE : pl.Trainer = generic_train( _lowerCamelCase , _lowerCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _lowerCamelCase ) , early_stopping_callback=_lowerCamelCase , logger=_lowerCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model __SCREAMING_SNAKE_CASE : Optional[int] = """""" __SCREAMING_SNAKE_CASE : Any = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=_lowerCamelCase ) ) if checkpoints: __SCREAMING_SNAKE_CASE : List[Any] = checkpoints[-1] __SCREAMING_SNAKE_CASE : str = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() UpperCamelCase__ : Dict = pl.Trainer.add_argparse_args(parser) UpperCamelCase__ : List[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ ( a_ ): UpperCamelCase_ :Tuple = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ :Union[str, Any] = '''AutoImageProcessor''' UpperCamelCase_ :str = '''AutoTokenizer''' def __init__( self , _lowercase=None , _lowercase=None , **_lowercase )-> int: UpperCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) UpperCamelCase_ = kwargs.pop("feature_extractor" ) UpperCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowercase_ , lowercase_ ) UpperCamelCase_ = self.image_processor UpperCamelCase_ = False def __call__( self , *_lowercase , **_lowercase )-> List[Any]: if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_ ) UpperCamelCase_ = kwargs.pop("images" , lowercase_ ) UpperCamelCase_ = kwargs.pop("text" , lowercase_ ) if len(lowercase_ ) > 0: UpperCamelCase_ = args[0] UpperCamelCase_ = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCamelCase_ = self.image_processor(lowercase_ , *lowercase_ , **lowercase_ ) if text is not None: UpperCamelCase_ = self.tokenizer(lowercase_ , **lowercase_ ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase_ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> str: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Optional[int]: return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @contextmanager def UpperCAmelCase_ ( self )-> List[Any]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) UpperCamelCase_ = True UpperCamelCase_ = self.tokenizer yield UpperCamelCase_ = self.image_processor UpperCamelCase_ = False def UpperCAmelCase_ ( self , _lowercase , _lowercase=False , _lowercase=None )-> List[str]: if added_vocab is None: UpperCamelCase_ = self.tokenizer.get_added_vocab() UpperCamelCase_ = {} while tokens: UpperCamelCase_ = re.search(r"<s_(.*?)>" , lowercase_ , re.IGNORECASE ) if start_token is None: break UpperCamelCase_ = start_token.group(1 ) UpperCamelCase_ = re.search(rF"</s_{key}>" , lowercase_ , re.IGNORECASE ) UpperCamelCase_ = start_token.group() if end_token is None: UpperCamelCase_ = tokens.replace(lowercase_ , "" ) else: UpperCamelCase_ = end_token.group() UpperCamelCase_ = re.escape(lowercase_ ) UpperCamelCase_ = re.escape(lowercase_ ) UpperCamelCase_ = re.search(F"{start_token_escaped}(.*?){end_token_escaped}" , lowercase_ , re.IGNORECASE ) if content is not None: UpperCamelCase_ = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node UpperCamelCase_ = self.tokenajson(lowercase_ , is_inner_value=lowercase_ , added_vocab=lowercase_ ) if value: if len(lowercase_ ) == 1: UpperCamelCase_ = value[0] UpperCamelCase_ = value else: # leaf nodes UpperCamelCase_ = [] for leaf in content.split(r"<sep/>" ): UpperCamelCase_ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": UpperCamelCase_ = leaf[1:-2] # for categorical special tokens output[key].append(lowercase_ ) if len(output[key] ) == 1: UpperCamelCase_ = output[key][0] UpperCamelCase_ = tokens[tokens.find(lowercase_ ) + len(lowercase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowercase_ , added_vocab=lowercase_ ) if len(lowercase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase_ ( self )-> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def UpperCAmelCase_ ( self )-> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
364
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """dandelin/vilt-b32-finetuned-vqa""" UpperCamelCase_ :Dict = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) UpperCamelCase_ :Optional[int] = """image_qa""" UpperCamelCase_ :int = AutoProcessor UpperCamelCase_ :Tuple = AutoModelForVisualQuestionAnswering UpperCamelCase_ :Optional[int] = ["""image""", """text"""] UpperCamelCase_ :Tuple = ["""text"""] def __init__( self , *_lowercase , **_lowercase )-> Union[str, Any]: requires_backends(self , ["vision"] ) super().__init__(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> str: return self.pre_processor(_lowercase , _lowercase , return_tensors="pt" ) def UpperCAmelCase_ ( self , _lowercase )-> str: with torch.no_grad(): return self.model(**_lowercase ).logits def UpperCAmelCase_ ( self , _lowercase )-> List[Any]: UpperCamelCase_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
60
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _A ( lowercase ): """simple docstring""" a =SwinConfig() a =swin_name.split('''_''' ) a =name_split[1] a =int(name_split[4] ) a =int(name_split[3][-1] ) if model_size == "tiny": a =96 a =(2, 2, 6, 2) a =(3, 6, 12, 24) elif model_size == "small": a =96 a =(2, 2, 18, 2) a =(3, 6, 12, 24) elif model_size == "base": a =1_28 a =(2, 2, 18, 2) a =(4, 8, 16, 32) else: a =1_92 a =(2, 2, 18, 2) a =(6, 12, 24, 48) if "in22k" in swin_name: a =2_18_41 else: a =10_00 a ='''huggingface/label-files''' a ='''imagenet-1k-id2label.json''' a =json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) a ={int(lowercase ): v for k, v in idalabel.items()} a =idalabel a ={v: k for k, v in idalabel.items()} a =img_size a =num_classes a =embed_dim a =depths a =num_heads a =window_size return config def _A ( lowercase ): """simple docstring""" if "patch_embed.proj" in name: a =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: a =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: a ='''encoder.''' + name if "attn.proj" in name: a =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: a =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: a =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: a =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: a =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: a =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": a ='''layernorm.weight''' if name == "norm.bias": a ='''layernorm.bias''' if "head" in name: a =name.replace('''head''' , '''classifier''' ) else: a ='''swin.''' + name return name def _A ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): a =orig_state_dict.pop(lowercase ) if "mask" in key: continue elif "qkv" in key: a =key.split('''.''' ) a =int(key_split[1] ) a =int(key_split[3] ) a =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: a =val[:dim, :] a =val[ dim : dim * 2, : ] a =val[-dim:, :] else: a =val[ :dim ] a =val[ dim : dim * 2 ] a =val[ -dim: ] else: a =val return orig_state_dict def _A ( lowercase , lowercase ): """simple docstring""" a =timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() a =get_swin_config(lowercase ) a =SwinForImageClassification(lowercase ) model.eval() a =convert_state_dict(timm_model.state_dict() , lowercase ) model.load_state_dict(lowercase ) a ='''http://images.cocodataset.org/val2017/000000039769.jpg''' a =AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) a =Image.open(requests.get(lowercase , stream=lowercase ).raw ) a =image_processor(images=lowercase , return_tensors='''pt''' ) a =timm_model(inputs['''pixel_values'''] ) a =model(**lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1E-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCamelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase_ : str = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
81
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =ShapEPipeline lowerCamelCase__ =['prompt'] lowerCamelCase__ =['prompt'] lowerCamelCase__ =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowerCamelCase__ =False @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 32 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 8 @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __snake_case : Optional[int] = PriorTransformer(**a_ ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } __snake_case : List[Any] = ShapERenderer(**a_ ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.dummy_prior __snake_case : str = self.dummy_text_encoder __snake_case : str = self.dummy_tokenizer __snake_case : Tuple = self.dummy_renderer __snake_case : int = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=a_ , clip_sample=a_ , clip_sample_range=1.0 , ) __snake_case : Union[str, Any] = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Tuple = torch.manual_seed(a_ ) else: __snake_case : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = '''cpu''' __snake_case : str = self.get_dummy_components() __snake_case : List[Any] = self.pipeline_class(**a_ ) __snake_case : str = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = pipe(**self.get_dummy_inputs(a_ ) ) __snake_case : List[str] = output.images[0] __snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : List[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = torch_device == '''cpu''' __snake_case : Tuple = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=a_ , relax_max_difference=a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.get_dummy_components() __snake_case : int = self.pipeline_class(**a_ ) __snake_case : int = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = 1 __snake_case : List[Any] = 2 __snake_case : int = self.get_dummy_inputs(a_ ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Dict = batch_size * [inputs[key]] __snake_case : Union[str, Any] = pipe(**a_ , num_images_per_prompt=a_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) __snake_case : Optional[Any] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) __snake_case : Optional[int] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : str = pipe( '''a shark''' , generator=a_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(a_ , a_ )
102
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets SCREAMING_SNAKE_CASE_: Tuple =datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' SCREAMING_SNAKE_CASE_: int ='\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' SCREAMING_SNAKE_CASE_: Any ='\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Any=False , snake_case_ : List[str]=False , snake_case_ : List[str]=True , snake_case_ : Union[str, Any]=False , snake_case_ : int="dummy_doc" ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = {doc: key_lines} UpperCAmelCase_ = {doc: sys_lines} UpperCAmelCase_ = {} UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ , UpperCAmelCase_ = reader.get_doc_mentions(snake_case_ , key_doc_lines[doc] , snake_case_ ) key_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_ = reader.set_annotated_parse_trees(snake_case_ , key_doc_lines[doc] , snake_case_ , snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ = reader.get_doc_mentions(snake_case_ , sys_doc_lines[doc] , snake_case_ ) sys_singletons_num += singletons_num if NP_only or min_span: UpperCAmelCase_ = reader.set_annotated_parse_trees(snake_case_ , key_doc_lines[doc] , snake_case_ , snake_case_ ) if remove_nested: UpperCAmelCase_ , UpperCAmelCase_ = reader.remove_nested_coref_mentions(snake_case_ , snake_case_ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCAmelCase_ , UpperCAmelCase_ = reader.remove_nested_coref_mentions(snake_case_ , snake_case_ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCAmelCase_ = reader.get_mention_assignments(snake_case_ , snake_case_ ) UpperCAmelCase_ = reader.get_mention_assignments(snake_case_ , snake_case_ ) UpperCAmelCase_ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( "Number of resulting singleton clusters in the key " f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ "files, respectively" ) return doc_coref_infos def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = get_coref_infos(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = {} UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for name, metric in metrics: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = evaluator.evaluate_documents(snake_case_ , snake_case_ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 1_00:.2f}""" , f""" Precision: {precision * 1_00:.2f}""" , f""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: UpperCAmelCase_ = (conll / 3) * 1_00 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({"conll_score": conll} ) return output_scores def lowerCAmelCase_ ( snake_case_ : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: UpperCAmelCase_ = line.split()[5] if not parse_col == "-": UpperCAmelCase_ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def _lowercase (self : Optional[Any] , __a : Optional[int] , __a : Union[str, Any] , __a : int=True , __a : List[Any]=False , __a : Optional[Any]=False , __a : List[str]=False ): UpperCAmelCase_ = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: UpperCAmelCase_ = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCAmelCase_ = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
106
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __A ( unittest.TestCase , UpperCamelCase__ ): def _lowercase (self : Tuple ): UpperCAmelCase_ = load_tool("text-to-speech" ) self.tool.setup() def _lowercase (self : Union[str, Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def _lowercase (self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ = self.tool("hey" ) UpperCAmelCase_ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
106
1
import gc import threading import time import psutil import torch class snake_case__ : """simple docstring""" def __init__( self : Any ) -> Optional[int]: a = psutil.Process() a = False def __UpperCAmelCase ( self : str ) -> str: a = -1 while True: a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: a = True a = threading.Thread(target=self.peak_monitor ) a = True self.thread.start() def __UpperCAmelCase ( self : Any ) -> Optional[int]: a = False self.thread.join() return self.cpu_memory_peak __lowerCAmelCase : List[str] = PeakCPUMemory() def __magic_name__ ( ): '''simple docstring''' a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): a = torch.cuda.memory_allocated(A ) torch.cuda.reset_peak_memory_stats() return measures def __magic_name__ ( A : List[str] ): '''simple docstring''' a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): a = (torch.cuda.memory_allocated(A ) - start_measures[str(A )]) / 2**20 a = (torch.cuda.max_memory_allocated(A ) - start_measures[str(A )]) / 2**20 return measures def __magic_name__ ( A : List[Any], A : Any ): '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(A )]:.2f}MiB""" ) a = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
107
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Dict = {'vocab_file': 'spiece.model'} __lowerCAmelCase : Optional[int] = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } __lowerCAmelCase : Dict = {'bert_for_seq_generation': 512} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[str] , ) -> None: a = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) a = vocab_file a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def __UpperCAmelCase ( self : Dict ) -> Dict: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Optional[Any]: a = self.__dict__.copy() a = None return state def __setstate__( self : Optional[Any] , __lowerCamelCase : Dict ) -> Optional[Any]: a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] ) -> int: return self.sp_model.piece_to_id(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ) -> Any: a = self.sp_model.IdToPiece(__lowerCamelCase ) return token def __UpperCAmelCase ( self : Any , __lowerCamelCase : Dict ) -> Any: a = [] a = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token a = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
107
1
'''simple docstring''' import argparse import os import re lowerCamelCase = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings lowerCamelCase = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def _A ( _lowerCAmelCase , _lowerCAmelCase = False ): """simple docstring""" with open(_lowerCAmelCase , 'r' , encoding='utf-8' ) as f: __lowercase =f.read() __lowercase =content.split('\n' ) __lowercase =[] __lowercase =0 while line_idx < len(_lowerCAmelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __lowercase =len(re.search(r'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 __lowercase =[] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __lowercase =line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __lowercase =sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : _re_identifier.search(_lowerCAmelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_lowerCAmelCase ) ) elif "\n".join(_lowerCAmelCase ) != content: return True def _A ( _lowerCAmelCase = False ): """simple docstring""" __lowercase =[os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for f in os.listdir(_lowerCAmelCase ) if f.endswith('.py' )] __lowercase =[sort_auto_mapping(_lowerCAmelCase , overwrite=_lowerCAmelCase ) for fname in fnames] if not overwrite and any(_lowerCAmelCase ): __lowercase =[f for f, d in zip(_lowerCAmelCase , _lowerCAmelCase ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {', '.join(_lowerCAmelCase )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCamelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
48
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCamelCase = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : Optional[int]=1): '''simple docstring''' __lowercase =tokenizer __lowercase =dataset __lowercase =len(_lowerCAmelCase) if n_tasks is None else n_tasks __lowercase =n_copies def __iter__( self : Union[str, Any]): '''simple docstring''' __lowercase =[] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip()) __lowercase =self.tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors='pt') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any]): '''simple docstring''' __lowercase =start_length __lowercase =eof_strings __lowercase =tokenizer def __call__( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : Any): '''simple docstring''' __lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :]) __lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(_lowerCAmelCase) def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =re.split('(%s)' % '|'.join(_lowerCAmelCase ) , _lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=20 , **_lowerCAmelCase ): """simple docstring""" __lowercase =defaultdict(_lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCAmelCase ) ): with torch.no_grad(): __lowercase =batch['ids'].shape[-1] __lowercase =accelerator.unwrap_model(_lowerCAmelCase ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_lowerCAmelCase , **_lowerCAmelCase ) # each task is generated batch_size times __lowercase =batch['task_id'].repeat(_lowerCAmelCase ) __lowercase =accelerator.pad_across_processes( _lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) __lowercase , __lowercase =accelerator.gather((generated_tokens, generated_tasks) ) __lowercase =generated_tokens.cpu().numpy() __lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCAmelCase , _lowerCAmelCase ): gen_token_dict[task].append(_lowerCAmelCase ) __lowercase =[[] for _ in range(_lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __lowercase =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase ) code_gens[task].append(remove_last_block(_lowerCAmelCase ) ) return code_gens def _A ( ): """simple docstring""" __lowercase =HfArgumentParser(_lowerCAmelCase ) __lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __lowercase ='false' if args.num_workers is None: __lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate __lowercase =Accelerator() set_seed(args.seed , device_specific=_lowerCAmelCase ) # Load model and tokenizer __lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) __lowercase =tokenizer.eos_token __lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __lowercase ={ 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCAmelCase , _lowerCAmelCase )] ), } # Load evaluation dataset and metric __lowercase =load_dataset('openai_humaneval' ) __lowercase =load_metric('code_eval' ) __lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) __lowercase =args.n_samples // args.batch_size __lowercase =TokenizedDataset(_lowerCAmelCase , human_eval['test'] , n_copies=_lowerCAmelCase , n_tasks=_lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences __lowercase =DataLoader(_lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __lowercase =code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception __lowercase , __lowercase =accelerator.prepare(_lowerCAmelCase , _lowerCAmelCase ) __lowercase =complete_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , n_tasks=_lowerCAmelCase , batch_size=args.batch_size , **_lowerCAmelCase , ) if accelerator.is_main_process: __lowercase =[] for task in tqdm(range(_lowerCAmelCase ) ): __lowercase =human_eval['test'][task]['test'] __lowercase =f"""check({human_eval['test'][task]['entry_point']})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric __lowercase , __lowercase =code_eval_metric.compute( references=_lowerCAmelCase , predictions=_lowerCAmelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
48
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __UpperCamelCase :Dict = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase , cache_dir=__lowercase) __UpperCamelCase :int = [t[-1] for t in os.walk(os.path.join(__lowercase , os.listdir(__lowercase)[0] , '''snapshots'''))] __UpperCamelCase :Tuple = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase :Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase) __UpperCamelCase :Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Optional[Any] = jax.random.PRNGKey(0) __UpperCamelCase :str = 4 __UpperCamelCase :Union[str, Any] = jax.device_count() __UpperCamelCase :Dict = num_samples * [prompt] __UpperCamelCase :Optional[int] = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :str = replicate(__lowercase) __UpperCamelCase :Optional[Any] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :Optional[Any] = shard(__lowercase) __UpperCamelCase :Optional[Any] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(__lowercase , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 __UpperCamelCase :Optional[int] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(__lowercase) == num_samples def UpperCamelCase__ ( self) -> int: __UpperCamelCase , __UpperCamelCase :Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__lowercase) __UpperCamelCase :List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :List[Any] = jax.random.PRNGKey(0) __UpperCamelCase :str = 50 __UpperCamelCase :Union[str, Any] = jax.device_count() __UpperCamelCase :Any = num_samples * [prompt] __UpperCamelCase :Dict = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :List[str] = replicate(__lowercase) __UpperCamelCase :List[Any] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :str = shard(__lowercase) __UpperCamelCase :List[str] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase :List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase) __UpperCamelCase :Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :str = jax.random.PRNGKey(0) __UpperCamelCase :Dict = 50 __UpperCamelCase :Optional[Any] = jax.device_count() __UpperCamelCase :Optional[int] = num_samples * [prompt] __UpperCamelCase :Optional[int] = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :List[str] = replicate(__lowercase) __UpperCamelCase :Optional[Any] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :Optional[int] = shard(__lowercase) __UpperCamelCase :Optional[Any] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase , __UpperCamelCase :Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa) __UpperCamelCase :List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :List[Any] = jax.random.PRNGKey(0) __UpperCamelCase :List[Any] = 50 __UpperCamelCase :Any = jax.device_count() __UpperCamelCase :List[str] = num_samples * [prompt] __UpperCamelCase :Tuple = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Any = replicate(__lowercase) __UpperCamelCase :Optional[int] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :Dict = shard(__lowercase) __UpperCamelCase :Optional[Any] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Tuple = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) __UpperCamelCase , __UpperCamelCase :Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__lowercase , safety_checker=__lowercase , ) __UpperCamelCase :str = scheduler.create_state() __UpperCamelCase :Any = scheduler_state __UpperCamelCase :Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Union[str, Any] = jax.random.PRNGKey(0) __UpperCamelCase :Any = 50 __UpperCamelCase :str = jax.device_count() __UpperCamelCase :Optional[int] = num_samples * [prompt] __UpperCamelCase :List[str] = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Optional[int] = replicate(__lowercase) __UpperCamelCase :List[Any] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :int = shard(__lowercase) __UpperCamelCase :List[Any] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Optional[int] = jax.device_count() __UpperCamelCase :int = num_samples * [prompt] __UpperCamelCase :Optional[Any] = jax.random.split(jax.random.PRNGKey(0) , __lowercase) __UpperCamelCase , __UpperCamelCase :Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , ) __UpperCamelCase :List[str] = replicate(__lowercase) __UpperCamelCase :Optional[int] = pipeline.prepare_inputs(__lowercase) __UpperCamelCase :List[Any] = shard(__lowercase) __UpperCamelCase :str = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) __UpperCamelCase :int = images[2, 0, 256, 10:17, 1] # With memory efficient attention __UpperCamelCase , __UpperCamelCase :Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , use_memory_efficient_attention=__lowercase , ) __UpperCamelCase :List[str] = replicate(__lowercase) __UpperCamelCase :Dict = pipeline.prepare_inputs(__lowercase) __UpperCamelCase :Union[str, Any] = shard(__lowercase) __UpperCamelCase :str = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __UpperCamelCase :Union[str, Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
43
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Optional[int]: super().setUp() lowercase__ : List[Any] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] lowercase__ : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Optional[Any] = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] lowercase__ : Dict = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} lowercase__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : str = '''adapt act apte''' lowercase__ : Any = '''adapt act apte''' return input_text, output_text def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[int] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Tuple = '''adapt act apte''' lowercase__ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te'''] lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : Any = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] lowercase__ : int = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> str: lowercase__ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] lowercase__ : str = '''I am a small frog.''' lowercase__ : Union[str, Any] = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] lowercase__ : List[str] = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) lowercase__ : Optional[Any] = '''I am a small frog .''' lowercase__ : Any = '''.''' lowercase__ : List[Any] = tok(__lowerCAmelCase )['''input_ids'''] lowercase__ : Optional[Any] = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
198
0
class _a : '''simple docstring''' def __init__( self , A__ , A__ , A__ ): A__ : List[str] = None A__ : List[Any] = None A__ : Any = graph self._normalize_graph(A__ , A__ ) A__ : Optional[Any] = len(A__ ) A__ : Union[str, Any] = None def __A ( self , A__ , A__ ): if sources is int: A__ : Any = [sources] if sinks is int: A__ : Union[str, Any] = [sinks] if len(A__ ) == 0 or len(A__ ) == 0: return A__ : Tuple = sources[0] A__ : List[str] = sinks[0] # make fake vertex if there are more # than one source or sink if len(A__ ) > 1 or len(A__ ) > 1: A__ : Union[str, Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A__ : Dict = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A__ : Tuple = max_input_flow A__ : Union[str, Any] = 0 A__ : Optional[int] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A__ : int = max_input_flow A__ : List[Any] = size - 1 def __A ( self ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __A ( self , A__ ): A__ : Optional[Any] = algorithm(self ) class _a : '''simple docstring''' def __init__( self , A__ ): A__ : Optional[int] = flow_network A__ : Union[str, Any] = flow_network.verticesCount A__ : Tuple = flow_network.sourceIndex A__ : str = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A__ : Any = flow_network.graph A__ : int = False def __A ( self ): if not self.executed: self._algorithm() A__ : List[Any] = True def __A ( self ): pass class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ ): super().__init__(A__ ) # use this to save your result A__ : Union[str, Any] = -1 def __A ( self ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ ): super().__init__(A__ ) A__ : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] A__ : List[str] = [0] * self.verticies_count A__ : Dict = [0] * self.verticies_count def __A ( self ): A__ : Union[str, Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A__ : List[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A__ : Tuple = 0 while i < len(A__ ): A__ : Union[str, Any] = vertices_list[i] A__ : Tuple = self.heights[vertex_index] self.process_vertex(A__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A__ ) ) A__ : Optional[Any] = 0 else: i += 1 A__ : Tuple = sum(self.preflow[self.source_index] ) def __A ( self , A__ ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A__ , A__ ) self.relabel(A__ ) def __A ( self , A__ , A__ ): A__ : List[Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __A ( self , A__ ): A__ : List[str] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A__ : int = self.heights[to_index] if min_height is not None: A__ : Optional[int] = min_height + 1 if __name__ == "__main__": A_ : int = [0] A_ : Optional[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A_ : Tuple = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A_ : Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A_ : List[str] = flow_network.find_maximum_flow() print(f'''maximum flow is {maximum_flow}''')
141
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ : Optional[int] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
141
1
__snake_case : List[Any] = "Alexander Joslin" import operator as op from .stack import Stack def _UpperCAmelCase ( a__): '''simple docstring''' a_ : Optional[Any] = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} a_ : Dict = Stack() a_ : str = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(a__)) elif i in operators: # RULE 2 operator_stack.push(a__) elif i == ")": # RULE 4 a_ : Dict = operator_stack.peek() operator_stack.pop() a_ : str = operand_stack.peek() operand_stack.pop() a_ : List[Any] = operand_stack.peek() operand_stack.pop() a_ : Dict = operators[opr](a__ , a__) operand_stack.push(a__) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __snake_case : Dict = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
248
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowercase: Any = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" def __init__(self , **lowerCamelCase_ ): """simple docstring""" super().__init__(**lowerCamelCase_ ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCamelCase_ ) def UpperCamelCase_ (self , **lowerCamelCase_ ): """simple docstring""" a = {} a = {} a = {} # preprocess args if "points_per_batch" in kwargs: a = kwargs["points_per_batch"] if "points_per_crop" in kwargs: a = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: a = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: a = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: a = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: a = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: a = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: a = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: a = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: a = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: a = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: a = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__(self , lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" return super().__call__(lowerCamelCase_ , *lowerCamelCase_ , num_workers=lowerCamelCase_ , batch_size=lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=64 , lowerCamelCase_ = 0 , lowerCamelCase_ = 512 / 1500 , lowerCamelCase_ = 32 , lowerCamelCase_ = 1 , ): """simple docstring""" a = load_image(lowerCamelCase_ ) a = self.image_processor.size["longest_edge"] a , a , a , a = self.image_processor.generate_crop_boxes( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = self.image_processor(images=lowerCamelCase_ , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": a = self.get_inference_context() with inference_context(): a = self._ensure_tensor_on_device(lowerCamelCase_ , device=self.device ) a = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) a = image_embeddings a = grid_points.shape[1] a = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCamelCase_ , lowerCamelCase_ ): a = grid_points[:, i : i + points_per_batch, :, :] a = input_labels[:, i : i + points_per_batch] a = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=0.88 , lowerCamelCase_=0.95 , lowerCamelCase_=0 , lowerCamelCase_=1 , ): """simple docstring""" a = model_inputs.pop("input_boxes" ) a = model_inputs.pop("is_last" ) a = model_inputs.pop("original_sizes" ).tolist() a = model_inputs.pop("reshaped_input_sizes" ).tolist() a = self.model(**lowerCamelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks a = model_outputs["pred_masks"] a = self.image_processor.post_process_masks( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , binarize=lowerCamelCase_ ) a = model_outputs["iou_scores"] a , a , a = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=0.7 , ): """simple docstring""" a = [] a = [] a = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) a = torch.cat(lowerCamelCase_ ) a = torch.cat(lowerCamelCase_ ) a , a , a , a = self.image_processor.post_process_for_mask_generation( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) a = defaultdict(lowerCamelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase_ ) a = {} if output_rle_mask: a = rle_mask if output_bboxes_mask: a = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
227
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer lowercase__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ : Optional[Any] = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Union[PIL.Image.Image, np.ndarray] class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : Tuple , lowercase_ : PriorTransformer , lowercase_ : CLIPVisionModel , lowercase_ : CLIPImageProcessor , lowercase_ : HeunDiscreteScheduler , lowercase_ : ShapERenderer , ): super().__init__() self.register_modules( prior=lowercase_ , image_encoder=lowercase_ , image_processor=lowercase_ , scheduler=lowercase_ , renderer=lowercase_ , ) def _snake_case ( self : Optional[Any] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[str] ): if latents is None: snake_case_ : List[str] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) snake_case_ : List[str] = latents.to(lowercase_ ) snake_case_ : Tuple = latents * scheduler.init_noise_sigma return latents def _snake_case ( self : Any , lowercase_ : Optional[int]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) snake_case_ : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) snake_case_ : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) @property def _snake_case ( self : Tuple ): if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowercase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _snake_case ( self : Dict , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] , ): if isinstance(lowercase_ , lowercase_ ) and isinstance(image[0] , torch.Tensor ): snake_case_ : Any = torch.cat(lowercase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(lowercase_ , axis=0 ) if not isinstance(lowercase_ , torch.Tensor ): snake_case_ : Union[str, Any] = self.image_processor(lowercase_ , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) snake_case_ : int = image.to(dtype=self.image_encoder.dtype , device=lowercase_ ) snake_case_ : Any = self.image_encoder(lowercase_ )['''last_hidden_state'''] snake_case_ : List[Any] = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 snake_case_ : Optional[Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) if do_classifier_free_guidance: snake_case_ : Tuple = torch.zeros_like(lowercase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ : List[str] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : Any , lowercase_ : Union[PIL.Image.Image, List[PIL.Image.Image]] , lowercase_ : int = 1 , lowercase_ : int = 25 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : float = 4.0 , lowercase_ : int = 64 , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): if isinstance(lowercase_ , PIL.Image.Image ): snake_case_ : Union[str, Any] = 1 elif isinstance(lowercase_ , torch.Tensor ): snake_case_ : Dict = image.shape[0] elif isinstance(lowercase_ , lowercase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): snake_case_ : Dict = len(lowercase_ ) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowercase_ )}" ) snake_case_ : str = self._execution_device snake_case_ : Optional[int] = batch_size * num_images_per_prompt snake_case_ : str = guidance_scale > 1.0 snake_case_ : Any = self._encode_image(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # prior self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) snake_case_ : str = self.scheduler.timesteps snake_case_ : List[Any] = self.prior.config.num_embeddings snake_case_ : Optional[int] = self.prior.config.embedding_dim snake_case_ : Optional[int] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim snake_case_ : List[Any] = latents.reshape(latents.shape[0] , lowercase_ , lowercase_ ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance snake_case_ : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ : Dict = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) snake_case_ : Optional[Any] = self.prior( lowercase_ , timestep=lowercase_ , proj_embedding=lowercase_ , ).predicted_image_embedding # remove the variance snake_case_ : Dict = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: snake_case_ : int = noise_pred.chunk(2 ) snake_case_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) snake_case_ : Dict = self.scheduler.step( lowercase_ , timestep=lowercase_ , sample=lowercase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowercase_ ) snake_case_ : List[Any] = [] for i, latent in enumerate(lowercase_ ): print() snake_case_ : Any = self.renderer.decode( latent[None, :] , lowercase_ , size=lowercase_ , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(lowercase_ ) snake_case_ : List[str] = torch.stack(lowercase_ ) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}" ) snake_case_ : Tuple = images.cpu().numpy() if output_type == "pil": snake_case_ : Dict = [self.numpy_to_pil(lowercase_ ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowercase_ )
350
"""simple docstring""" def __lowercase ( _a ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
155
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): if len(snake_case_ ) == 0: return False __UpperCAmelCase = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": _lowercase : Tuple = input('Enter numbers separated by comma:\n').strip() _lowercase : int = [int(item.strip()) for item in user_input.split(',')] _lowercase : Optional[int] = int(input('Enter the number to be found in the list:\n').strip()) _lowercase : List[Any] = '' if binary_search(sequence, target) else 'not ' print(f"""{target} was {not_str}found in {sequence}""")
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowercase : str = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) lowercase : Dict = dataset.iloc[:, 1:2].values lowercase : Dict = dataset.iloc[:, 2].values lowercase : List[str] = train_test_split(X, y, test_size=0.2, random_state=0) lowercase : str = PolynomialFeatures(degree=4) lowercase : List[Any] = poly_reg.fit_transform(X) lowercase : int = LinearRegression() pol_reg.fit(X_poly, y) def _snake_case( ) -> str: plt.scatter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , color="""red""" ) plt.plot(SCREAMING_SNAKE_CASE__ , pol_reg.predict(poly_reg.fit_transform(SCREAMING_SNAKE_CASE__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
371
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( lowerCAmelCase , unittest.TestCase ): _a : Optional[int]= None _a : Optional[Any]= BloomTokenizerFast _a : Tuple= BloomTokenizerFast _a : str= True _a : Optional[int]= False _a : List[Any]= "tokenizer_file" _a : List[Any]= {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Optional[Any] = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.get_rust_tokenizer() lowercase : List[str] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase : Optional[int] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : Any = tokenizer.batch_encode_plus(snake_case )["""input_ids"""] self.assertListEqual(snake_case ,snake_case ) lowercase : Optional[int] = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase : Dict = self.rust_tokenizer_class.from_pretrained(snake_case ,**snake_case ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : Dict = """This is a simple input""" lowercase : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase : Dict = ("""This is a simple input""", """This is a pair""") lowercase : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) tokenizer_r.encode(snake_case ,max_length=snake_case ) tokenizer_r.batch_encode_plus(snake_case ,max_length=snake_case ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase : Optional[int] = None # Hotfixing padding = None self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Simple input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises(snake_case ,tokenizer_r.encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ) # Pair input self.assertRaises( snake_case ,tokenizer_r.batch_encode_plus ,snake_case ,max_length=snake_case ,padding="""max_length""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.get_rust_tokenizer() lowercase : List[str] = load_dataset("""xnli""" ,"""all_languages""" ,split="""test""" ,streaming=snake_case ) lowercase : Optional[Any] = next(iter(snake_case ) )["""premise"""] # pick up one data lowercase : str = list(sample_data.values() ) lowercase : Optional[int] = list(map(tokenizer.encode ,snake_case ) ) lowercase : Dict = [tokenizer.decode(snake_case ,clean_up_tokenization_spaces=snake_case ) for x in output_tokens] self.assertListEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
285
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __lowerCamelCase : int = logging.get_logger(__name__) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: UpperCamelCase : Any = set() UpperCamelCase : Union[str, Any] = [] def parse_line(_lowerCAmelCase ): for line in fp: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCamelCase : Dict = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(_lowerCAmelCase ) > 0: UpperCamelCase : Dict = "\n".join(_lowerCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(_lowerCAmelCase ) buffer.clear() continue else: UpperCamelCase : List[Any] = line.strip() buffer.append(_lowerCAmelCase ) if from_gh: for filename in os.listdir(_lowerCAmelCase ): UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if not os.path.isdir(_lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with open(_lowerCAmelCase ) as fp: parse_line(_lowerCAmelCase ) else: try: with zipfile.ZipFile(_lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(_lowerCAmelCase ) as fp: parse_line(_lowerCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: UpperCamelCase : List[str] = set() UpperCamelCase : Dict = [os.path.join(_lowerCAmelCase , _lowerCAmelCase ) for p in os.listdir(_lowerCAmelCase ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCAmelCase , _lowerCAmelCase ) ) return selected_warnings if __name__ == "__main__": def A_ ( _lowerCAmelCase ) -> Tuple: return values.split("," ) __lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __lowerCamelCase : Optional[Any] = parser.parse_args() __lowerCamelCase : Tuple = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __lowerCamelCase : Optional[int] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __lowerCamelCase : Any = extract_warnings(args.output_dir, args.targets) __lowerCamelCase : List[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
52
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : str = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class A__ ( __snake_case , __snake_case ): _UpperCAmelCase :Optional[int] = 'convnextv2' def __init__( self , A_=3 , A_=4 , A_=4 , A_=None , A_=None , A_="gelu" , A_=0.02 , A_=1e-12 , A_=0.0 , A_=224 , A_=None , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Dict = num_channels UpperCamelCase : Union[str, Any] = patch_size UpperCamelCase : Union[str, Any] = num_stages UpperCamelCase : List[Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase : List[str] = [3, 3, 9, 3] if depths is None else depths UpperCamelCase : Dict = hidden_act UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : str = drop_path_rate UpperCamelCase : List[str] = image_size UpperCamelCase : List[str] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase , UpperCamelCase : str = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
52
1
class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: Any , _lowerCAmelCase: Tuple , _lowerCAmelCase: Optional[Any] ): lowercase :Any = name lowercase :str = value lowercase :List[str] = weight def __repr__( self: List[str] ): return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def SCREAMING_SNAKE_CASE ( self: int ): return self.value def SCREAMING_SNAKE_CASE ( self: Any ): return self.name def SCREAMING_SNAKE_CASE ( self: Dict ): return self.weight def SCREAMING_SNAKE_CASE ( self: Optional[int] ): return self.value / self.weight def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :List[str] = [] for i in range(len(lowerCamelCase ) ): menu.append(Things(name[i], value[i], weight[i] ) ) return menu def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :Any = sorted(lowerCamelCase, key=lowerCamelCase, reverse=lowerCamelCase ) lowercase :Union[str, Any] = [] lowercase , lowercase :Optional[int] = 0.0, 0.0 for i in range(len(lowerCamelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
360
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCAmelCase ( lowerCAmelCase): _a = 42 _a = None def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=0.999, lowerCamelCase="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase :Optional[int] = [] for i in range(lowerCamelCase ): lowercase :Any = i / num_diffusion_timesteps lowercase :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ), lowerCamelCase ) ) return torch.tensor(lowerCamelCase, dtype=torch.floataa ) class __lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase): _a = 1 @register_to_config def __init__( self: Any , _lowerCAmelCase: int = 10_00 , _lowerCAmelCase: float = 0.00_01 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: Optional[Union[np.ndarray, List[float]]] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: bool = True , _lowerCAmelCase: int = 0 , _lowerCAmelCase: str = "epsilon" , _lowerCAmelCase: float = 1.0 , **_lowerCAmelCase: Union[str, Any] , ): if kwargs.get("set_alpha_to_one" , _lowerCAmelCase ) is not None: lowercase :Optional[int] = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) lowercase :str = kwargs["set_alpha_to_one"] if trained_betas is not None: lowercase :int = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase :List[Any] = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase :Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase :Any = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase :Dict = 1.0 - self.betas lowercase :Dict = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowercase :Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowercase :Union[str, Any] = 1.0 # setable values lowercase :str = None lowercase :List[Any] = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, torch.device] = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowercase :List[Any] = num_inference_steps lowercase :Optional[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase :str = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowercase :str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE ( self: List[str] , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: int , _lowerCAmelCase: torch.FloatTensor , _lowerCAmelCase: float = 0.0 , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: bool = True , ): # 1. get previous step value (=t+1) lowercase :int = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowercase :List[Any] = self.alphas_cumprod[timestep] lowercase :Dict = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowercase :Optional[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowercase :int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowercase :Optional[Any] = model_output elif self.config.prediction_type == "sample": lowercase :Union[str, Any] = model_output lowercase :List[str] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowercase :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowercase :str = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowercase :Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :List[Any] = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase :Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self: List[str] ): return self.config.num_train_timesteps
158
0