code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCAmelCase ( a_ , unittest.TestCase ): __lowercase = ShapEPipeline __lowercase = ["""prompt"""] __lowercase = ["""prompt"""] __lowercase = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowercase = False @property def UpperCAmelCase_ ( self :int )-> Any: return 32 @property def UpperCAmelCase_ ( self :List[str] )-> Dict: return 32 @property def UpperCAmelCase_ ( self :List[str] )-> Any: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Optional[int]: return 8 @property def UpperCAmelCase_ ( self :List[Any] )-> Any: A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCAmelCase_ ( self :Optional[int] )-> Optional[int]: torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(_a ) @property def UpperCAmelCase_ ( self :List[str] )-> List[str]: torch.manual_seed(0 ) A__ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } A__ = PriorTransformer(**_a ) return model @property def UpperCAmelCase_ ( self :Union[str, Any] )-> str: torch.manual_seed(0 ) A__ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } A__ = ShapERenderer(**_a ) return model def UpperCAmelCase_ ( self :int )-> List[str]: A__ = self.dummy_prior A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_renderer A__ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=_a , clip_sample=_a , clip_sample_range=1.0 , ) A__ = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :int , lowercase_ :Optional[int]=0 )-> List[Any]: if str(_a ).startswith("mps" ): A__ = torch.manual_seed(_a ) else: A__ = torch.Generator(device=_a ).manual_seed(_a ) A__ = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCAmelCase_ ( self :List[Any] )-> int: A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**_a ) A__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A__ = pipe(**self.get_dummy_inputs(_a ) ) A__ = output.images[0] A__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A__ = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase_ ( self :Any )-> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: A__ = torch_device == "cpu" A__ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_a , relax_max_difference=_a , ) def UpperCAmelCase_ ( self :Optional[Any] )-> List[str]: A__ = self.get_dummy_components() A__ = self.pipeline_class(**_a ) A__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A__ = 1 A__ = 2 A__ = self.get_dummy_inputs(_a ) for key in inputs.keys(): if key in self.batch_params: A__ = batch_size * [inputs[key]] A__ = pipe(**_a , num_images_per_prompt=_a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Union[str, Any] )-> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) A__ = ShapEPipeline.from_pretrained("openai/shap-e" ) A__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) A__ = torch.Generator(device=_a ).manual_seed(0 ) A__ = pipe( "a shark" , generator=_a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_a , _a )
237
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _A : List[Any] = logging.get_logger(__name__) class a__ ( a_ ): __lowerCAmelCase = ["""pixel_values"""] def __init__( self , _a = True , _a = None , _a = PILImageResampling.BILINEAR , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = True , **_a , ): super().__init__(**_a ) lowercase : Optional[Any] = size if size is not None else {"shortest_edge": 224} lowercase : List[Any] = get_size_dict(_a , default_to_square=_a ) lowercase : str = crop_size if crop_size is not None else {"height": 256, "width": 256} lowercase : List[str] = get_size_dict(_a , param_name="crop_size" ) lowercase : int = do_resize lowercase : Optional[int] = size lowercase : str = resample lowercase : List[Any] = do_rescale lowercase : Union[str, Any] = rescale_factor lowercase : Optional[int] = do_center_crop lowercase : Union[str, Any] = crop_size lowercase : Optional[Any] = do_flip_channel_order def __magic_name__ ( self , _a , _a , _a = PIL.Image.BILINEAR , _a = None , **_a , ): lowercase : List[Any] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase : Union[str, Any] = get_resize_output_image_size(_a , size=size["shortest_edge"] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a , _a = None , **_a , ): lowercase : str = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(_a , size=(size["height"], size["width"]) , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a , _a = None , **_a , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def __magic_name__ ( self , _a , _a = None ): return flip_channel_order(_a , data_format=_a ) def __magic_name__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase : Tuple = resample if resample is not None else self.resample lowercase : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Optional[int] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowercase : str = size if size is not None else self.size lowercase : Any = get_size_dict(_a , default_to_square=_a ) lowercase : int = crop_size if crop_size is not None else self.crop_size lowercase : Any = get_size_dict(_a , param_name="crop_size" ) lowercase : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowercase : Any = [to_numpy_array(_a ) for image in images] if do_resize: lowercase : Optional[int] = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: lowercase : str = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: lowercase : Union[str, Any] = [self.rescale(image=_a , scale=_a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowercase : int = [self.flip_channel_order(image=_a ) for image in images] lowercase : int = [to_channel_dimension_format(_a , _a ) for image in images] lowercase : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a ) def __magic_name__ ( self , _a , _a = None ): lowercase : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_a ) != len(_a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(_a ): lowercase : Tuple = target_sizes.numpy() lowercase : List[Any] = [] for idx in range(len(_a ) ): lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=_a ) lowercase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_a ) else: lowercase : str = logits.argmax(dim=1 ) lowercase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
202
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() def __lowerCamelCase ( self ) -> Any: '''simple docstring''' __UpperCamelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __UpperCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __UpperCamelCase : str = "xvjiarui/stable-diffusion-2-inpainting" __UpperCamelCase , __UpperCamelCase : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(__UpperCamelCase , safety_checker=__UpperCamelCase ) __UpperCamelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" __UpperCamelCase : Tuple = jax.random.PRNGKey(0 ) __UpperCamelCase : List[str] = 50 __UpperCamelCase : int = jax.device_count() __UpperCamelCase : List[str] = num_samples * [prompt] __UpperCamelCase : Optional[Any] = num_samples * [init_image] __UpperCamelCase : Optional[Any] = num_samples * [mask_image] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = pipeline.prepare_inputs(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # shard inputs and rng __UpperCamelCase : Dict = replicate(__UpperCamelCase ) __UpperCamelCase : Optional[int] = jax.random.split(__UpperCamelCase , jax.device_count() ) __UpperCamelCase : Optional[int] = shard(__UpperCamelCase ) __UpperCamelCase : Dict = shard(__UpperCamelCase ) __UpperCamelCase : Tuple = shard(__UpperCamelCase ) __UpperCamelCase : int = pipeline( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , jit=__UpperCamelCase ) __UpperCamelCase : Tuple = output.images.reshape(__UpperCamelCase , 5_12 , 5_12 , 3 ) __UpperCamelCase : Any = images[0, 2_53:2_56, 2_53:2_56, -1] __UpperCamelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __UpperCamelCase : List[Any] = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
171
def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00 ): __UpperCamelCase : Tuple = n * (n + 1) * (2 * n + 1) / 6 __UpperCamelCase : List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
171
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "data2vec-text" def __init__( self , __lowerCamelCase=3_0_5_2_2 , __lowerCamelCase=7_6_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_2 , __lowerCamelCase=3_0_7_2 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase="absolute" , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[int]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) _A : Union[str, Any] = vocab_size _A : List[str] = hidden_size _A : Optional[Any] = num_hidden_layers _A : str = num_attention_heads _A : Union[str, Any] = hidden_act _A : List[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : Union[str, Any] = initializer_range _A : Tuple = layer_norm_eps _A : List[Any] = position_embedding_type _A : Tuple = use_cache _A : Optional[int] = classifier_dropout class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _A : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
11
def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) _A : int = (boundary[1] - boundary[0]) / steps _A : Any = boundary[0] _A : List[Any] = boundary[1] _A : str = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _A : str = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ): _A : Optional[int] = a + h while x < (b - h): yield x _A : Dict = x + h def _UpperCAmelCase (UpperCamelCase__ : Optional[int] ): # enter your function here _A : Any = (x - 0) * (x - 0) return y def _UpperCAmelCase (): _A : Optional[Any] = 0.0 # Lower bound of integration _A : Optional[int] = 1.0 # Upper bound of integration _A : List[Any] = 10.0 # define number of steps or resolution _A : Any = [a, b] # define boundary of integration _A : Tuple = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f"y = {y}" ) if __name__ == "__main__": main()
11
1
def __lowerCamelCase ( __UpperCamelCase ) -> bool: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
350
"""simple docstring""" import qiskit def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase_ : int = qiskit.Aer.get_backend("aer_simulator" ) lowerCAmelCase_ : List[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCAmelCase_ : Tuple = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
161
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a : List[Any] = logging.get_logger(__name__) a : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a : int = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } a : str = { "google/realm-cc-news-pretrained-embedder": 5_12, "google/realm-cc-news-pretrained-encoder": 5_12, "google/realm-cc-news-pretrained-scorer": 5_12, "google/realm-cc-news-pretrained-openqa": 5_12, "google/realm-orqa-nq-openqa": 5_12, "google/realm-orqa-nq-reader": 5_12, "google/realm-orqa-wq-openqa": 5_12, "google/realm-orqa-wq-reader": 5_12, } a : int = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = RealmTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=True , snake_case="[UNK]" , snake_case="[SEP]" , snake_case="[PAD]" , snake_case="[CLS]" , snake_case="[MASK]" , snake_case=True , snake_case=None , **snake_case , ): '''simple docstring''' super().__init__( snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , tokenize_chinese_chars=snake_case , strip_accents=snake_case , **snake_case , ) UpperCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case ) != tokenize_chinese_chars ): UpperCAmelCase : List[str] = getattr(snake_case , normalizer_state.pop("type" ) ) UpperCAmelCase : Optional[int] = do_lower_case UpperCAmelCase : List[Any] = strip_accents UpperCAmelCase : str = tokenize_chinese_chars UpperCAmelCase : Tuple = normalizer_class(**snake_case ) UpperCAmelCase : str = do_lower_case def A_ ( self , snake_case , **snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = PaddingStrategy.MAX_LENGTH UpperCAmelCase : int = text UpperCAmelCase : List[str] = kwargs.pop("text_pair" , snake_case ) UpperCAmelCase : Dict = kwargs.pop("return_tensors" , snake_case ) UpperCAmelCase : str = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(snake_case ): if batch_text_pair is not None: UpperCAmelCase : Any = batch_text_pair[idx] else: UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : List[str] = super().__call__(snake_case , snake_case , return_tensors=snake_case , **snake_case ) UpperCAmelCase : Dict = encoded_candidates.get("input_ids" ) UpperCAmelCase : Any = encoded_candidates.get("attention_mask" ) UpperCAmelCase : str = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(snake_case ) if encoded_attention_mask is not None: output_data["attention_mask"].append(snake_case ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(snake_case ) UpperCAmelCase : int = {key: item for key, item in output_data.items() if len(snake_case ) != 0} return BatchEncoding(snake_case , tensor_type=snake_case ) def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : List[Any] = [self.sep_token_id] UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Dict = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case )
311
'''simple docstring''' def lowercase ( __magic_name__ ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
311
1
from __future__ import annotations from math import pi def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
from __future__ import annotations def _a ( lowerCamelCase: list , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list: '''simple docstring''' __A = [] __A , __A = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) __A = result + left + right return input_list def _a ( lowerCamelCase: list ) -> list: '''simple docstring''' if len(lowerCamelCase ) <= 1: return input_list __A = list(lowerCamelCase ) # iteration for two-way merging __A = 2 while p <= len(lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCamelCase ) , lowerCamelCase ): __A = i __A = i + p - 1 __A = (low + high + 1) // 2 __A = merge(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # final merge of last two parts if p * 2 >= len(lowerCamelCase ): __A = i __A = merge(lowerCamelCase , 0 , lowerCamelCase , len(lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": snake_case__ : Any = input('Enter numbers separated by a comma:\n').strip() if user_input == "": snake_case__ : str = [] else: snake_case__ : str = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
117
from __future__ import annotations def _a ( lowerCamelCase: list[float] , lowerCamelCase: Tuple ) -> List[str]: '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(lowerCamelCase ): print(F"""{i}\t\t{d}""" ) def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: list[float] , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def _a ( lowerCamelCase: list[dict[str, int]] , lowerCamelCase: int , lowerCamelCase: int , lowerCamelCase: int ) -> list[float]: '''simple docstring''' __A = [float('''inf''' )] * vertex_count __A = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowerCamelCase ): __A , __A , __A = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: __A = distance[u] + w __A = check_negative_cycle(lowerCamelCase , lowerCamelCase , lowerCamelCase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() snake_case__ : Dict = int(input('Enter number of vertices: ').strip()) snake_case__ : Optional[int] = int(input('Enter number of edges: ').strip()) snake_case__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) snake_case__ , snake_case__ , snake_case__ : Dict = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) snake_case__ : List[Any] = {'src': src, 'dst': dest, 'weight': weight} snake_case__ : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) snake_case__ : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
117
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss a__ = pytest.mark.integration @require_faiss class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[Any]: _a : Tuple = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(_a ) for x in np.arange(3_0 ).tolist()]} ) return dset def __lowercase ( self ) -> List[Any]: import faiss _a : Dataset = self._create_dummy_dataset() _a : Union[str, Any] = dset.map( lambda _a , _a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_a , keep_in_memory=_a ) _a : List[str] = dset.add_faiss_index('''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) _a , _a : Optional[Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __lowercase ( self ) -> Optional[int]: import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _a , _a : Union[str, Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowercase ( self ) -> str: import faiss _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) _a , _a : str = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __lowercase ( self ) -> Optional[int]: _a : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(_a , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __lowercase ( self ) -> Any: from elasticsearch import Elasticsearch _a : Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _a : Dict = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 3_0 ) _a : Tuple = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 2_9}]}} _a : Optional[int] = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=_a ) _a , _a : Optional[Any] = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> Tuple: import faiss _a : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query _a : Optional[int] = np.zeros(5 , dtype=np.floataa ) _a : Optional[int] = 1 _a , _a : int = index.search(_a ) self.assertRaises(_a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _a : Dict = np.eye(5 , dtype=np.floataa )[::-1] _a , _a : Any = index.search_batch(_a ) self.assertRaises(_a , index.search_batch , queries[0] ) _a : Dict = [scores[0] for scores in total_scores] _a : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _a ) def __lowercase ( self ) -> str: import faiss _a : int = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _a : Optional[Any] = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_a ): _a : List[str] = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __lowercase ( self ) -> str: import faiss _a : int = faiss.IndexFlat(5 ) _a : str = FaissIndex(custom_index=_a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowercase ( self ) -> str: import faiss _a : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: index.save(tmp_file.name ) _a : Union[str, Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _a : List[Any] = np.zeros(5 , dtype=np.floataa ) _a : int = 1 _a , _a : Union[str, Any] = index.search(_a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __UpperCAmelCase ( __a : Optional[int] ) -> List[Any]: """simple docstring""" import faiss _a : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) _a : str = '''index.faiss''' _a : int = F"""mock://{index_name}""" index.save(__a ,storage_options=mockfs.storage_options ) _a : int = FaissIndex.load(__a ,storage_options=mockfs.storage_options ) _a : Tuple = np.zeros(5 ,dtype=np.floataa ) _a : str = 1 _a , _a : Union[str, Any] = index.search(__a ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __lowercase ( self ) -> List[str]: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: _a : int = Elasticsearch() _a : List[Any] = {'''acknowledged''': True} _a : List[str] = ElasticSearchIndex(es_client=_a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query _a : str = '''foo''' _a : List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _a , _a : Optional[Any] = index.search(_a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _a : Any = '''foo''' _a : List[str] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} _a , _a : Optional[int] = index.search(_a , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _a : str = ['''foo''', '''bar''', '''foobar'''] _a : Optional[int] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _a , _a : Union[str, Any] = index.search_batch(_a ) _a : Union[str, Any] = [scores[0] for scores in total_scores] _a : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a ) # batched queries with timeout _a : Tuple = ['''foo''', '''bar''', '''foobar'''] _a : str = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} _a , _a : int = index.search_batch(_a , request_timeout=3_0 ) _a : Tuple = [scores[0] for scores in total_scores] _a : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a )
15
def __UpperCAmelCase ( __a : int ,__a : int ,__a : int ) -> int: """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: _a : List[Any] = _modexpt(__a ,exponent // 2 ,__a ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__a ,exponent - 1 ,__a )) % modulo_value def __UpperCAmelCase ( __a : int = 1_777 ,__a : int = 1_855 ,__a : int = 8 ) -> int: """simple docstring""" _a : List[Any] = base for _ in range(1 ,__a ): _a : Any = _modexpt(__a ,__a ,10**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
15
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ : Any = 2 class SCREAMING_SNAKE_CASE : def __init__( self , *, # begin keyword-only arguments _UpperCAmelCase="<s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=None , ): '''simple docstring''' __A ,__A ,__A ,__A : Union[str, Any] = bos, unk, pad, eos __A : int = [] __A : Dict = [] __A : Union[str, Any] = {} __A : int = self.add_symbol(_UpperCAmelCase) __A : List[str] = self.add_symbol(_UpperCAmelCase) __A : Dict = self.add_symbol(_UpperCAmelCase) __A : Any = self.add_symbol(_UpperCAmelCase) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_UpperCAmelCase) __A : List[Any] = len(self.symbols) def __eq__( self , _UpperCAmelCase): '''simple docstring''' return self.indices == other.indices def __getitem__( self , _UpperCAmelCase): '''simple docstring''' if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self): '''simple docstring''' return len(self.symbols) def __contains__( self , _UpperCAmelCase): '''simple docstring''' return sym in self.indices @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' __A : int = cls() d.add_from_file(_UpperCAmelCase) return d def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=False): '''simple docstring''' if word in self.indices and not overwrite: __A : List[str] = self.indices[word] __A : Optional[Any] = self.count[idx] + n return idx else: __A : Optional[Any] = len(self.symbols) __A : int = idx self.symbols.append(_UpperCAmelCase) self.count.append(_UpperCAmelCase) return idx def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return 0 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): try: with open(_UpperCAmelCase , 'r' , encoding='utf-8') as fd: self.add_from_file(_UpperCAmelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(_UpperCAmelCase)) return __A : Optional[int] = f.readlines() __A : Dict = self._load_meta(_UpperCAmelCase) for line in lines[indices_start_line:]: try: __A ,__A : str = line.rstrip().rsplit(' ' , 1) if field == "#fairseq:overwrite": __A : Dict = True __A ,__A : List[str] = line.rsplit(' ' , 1) else: __A : List[Any] = False __A : Dict = int(_UpperCAmelCase) __A : List[str] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(_UpperCAmelCase)) self.add_symbol(_UpperCAmelCase , n=_UpperCAmelCase , overwrite=_UpperCAmelCase) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'') def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Dict: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} __A : List[str] = dict((re.sub(r'@@$' , '' , __snake_case ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , __snake_case ), v) for k, v in d.items() ) __A : str = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] __A : Union[str, Any] = d[k] # restore return da def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[Any] ) -> Optional[Any]: # prep if not os.path.exists(__snake_case ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(__snake_case , exist_ok=__snake_case ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __A : str = os.path.join(__snake_case , 'checkpoint.pt' ) if not os.path.isfile(__snake_case ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) __A : str = torch.load(__snake_case , map_location='cpu' ) __A : Optional[Any] = chkpt['cfg']['model'] # dicts __A : List[str] = os.path.join(__snake_case , 'dict.txt' ) if not os.path.isfile(__snake_case ): raise ValueError(f'path to the file {dict_file} does not exist!' ) __A : List[str] = Dictionary.load(__snake_case ) __A : str = rewrite_dict_keys(src_dict.indices ) __A : List[Any] = len(__snake_case ) __A : str = os.path.join(__snake_case , VOCAB_FILES_NAMES['vocab_file'] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__snake_case , ensure_ascii=__snake_case , indent=__snake_case ) ) # merges_file (bpecodes) __A : str = os.path.join(__snake_case , 'bpecodes' ) if not os.path.isfile(__snake_case ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) __A : Optional[int] = os.path.join(__snake_case , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__snake_case , __snake_case ) # model config __A : Dict = os.path.join(__snake_case , 'config.json' ) __A : Union[str, Any] = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1e-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__snake_case , ensure_ascii=__snake_case , indent=__snake_case ) ) # tokenizer config __A : Any = os.path.join(__snake_case , __snake_case ) __A : Optional[Any] = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 10_24, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__snake_case , ensure_ascii=__snake_case , indent=__snake_case ) ) # model __A : Any = chkpt['model'] # remove unneeded keys __A : Union[str, Any] = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__snake_case , __snake_case ) __A : List[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): __A : Dict = model_state_dict.pop(__snake_case ) else: __A : int = model_state_dict.pop(__snake_case ) __A : int = BioGptConfig.from_pretrained(__snake_case ) __A : Optional[int] = BioGptForCausalLM(__snake_case ) # check that it loads ok model_new.load_state_dict(__snake_case ) # save __A : Optional[int] = os.path.join(__snake_case , __snake_case ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(__snake_case , __snake_case ) print('Conversion is done!' ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
190
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class SCREAMING_SNAKE_CASE (datasets.BuilderConfig ): lowerCAmelCase = None class SCREAMING_SNAKE_CASE (datasets.ArrowBasedBuilder ): lowerCAmelCase = PandasConfig def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}') __A : Dict = dl_manager.download_and_extract(self.config.data_files) if isinstance(_UpperCAmelCase , (str, list, tuple)): __A : Union[str, Any] = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] __A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Dict = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Optional[Any] = [dl_manager.iter_files(_UpperCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(_UpperCAmelCase , self.config.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase)): with open(_UpperCAmelCase , 'rb') as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase)) yield i, self._cast_table(_UpperCAmelCase)
190
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE_ = { """bert-base-uncased""": 5_1_2, """bert-large-uncased""": 5_1_2, """bert-base-cased""": 5_1_2, """bert-large-cased""": 5_1_2, """bert-base-multilingual-uncased""": 5_1_2, """bert-base-multilingual-cased""": 5_1_2, """bert-base-chinese""": 5_1_2, """bert-base-german-cased""": 5_1_2, """bert-large-uncased-whole-word-masking""": 5_1_2, """bert-large-cased-whole-word-masking""": 5_1_2, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_1_2, """bert-base-cased-finetuned-mrpc""": 5_1_2, """bert-base-german-dbmdz-cased""": 5_1_2, """bert-base-german-dbmdz-uncased""": 5_1_2, """TurkuNLP/bert-base-finnish-cased-v1""": 5_1_2, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_1_2, """wietsedv/bert-base-dutch-cased""": 5_1_2, } SCREAMING_SNAKE_CASE_ = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = PRETRAINED_INIT_CONFIGURATION __snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[Any] = BertTokenizer def __init__( self : Tuple ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : List[Any]="[UNK]" ,lowerCamelCase__ : Tuple="[SEP]" ,lowerCamelCase__ : Tuple="[PAD]" ,lowerCamelCase__ : List[Any]="[CLS]" ,lowerCamelCase__ : str="[MASK]" ,lowerCamelCase__ : int=True ,lowerCamelCase__ : Tuple=None ,**lowerCamelCase__ : Dict ,) -> Dict: '''simple docstring''' super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,tokenize_chinese_chars=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,lowerCamelCase__ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(lowerCamelCase__ ,normalizer_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = do_lower_case def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple=None ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
193
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if index == number_of_items: return 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
193
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCamelCase__ : def __init__(self : List[str] , snake_case_ : Union[str, Any]=2 , snake_case_ : Optional[int]=3 , snake_case_ : int=6_4 , snake_case_ : Optional[int]=None ): __a : Dict = np.random.default_rng(snake_case_ ) __a : str = length __a : List[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __a : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__(self : List[str] ): return self.length def __getitem__(self : List[Any] , snake_case_ : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCamelCase__ ( torch.nn.Module ): def __init__(self : List[str] , snake_case_ : Optional[Any]=0 , snake_case_ : Optional[int]=0 , snake_case_ : Dict=False ): super().__init__() __a : Optional[int] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __a : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __a : str = True def lowerCAmelCase (self : List[str] , snake_case_ : Optional[Any]=None ): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) __a : List[Any] = False return x * self.a[0] + self.b[0] class UpperCamelCase__ ( torch.nn.Module ): def __init__(self : Tuple , snake_case_ : Union[str, Any]=0 , snake_case_ : int=0 , snake_case_ : Any=False ): super().__init__() __a : Union[str, Any] = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __a : Optional[int] = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __a : Union[str, Any] = True def lowerCAmelCase (self : int , snake_case_ : str=None ): if self.first_batch: print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}" ) __a : List[Any] = False return x * self.a + self.b def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1_6 ): from datasets import load_dataset from transformers import AutoTokenizer __a : Any = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __a : Union[str, Any] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __a : Any = load_dataset('''csv''' , data_files=lowerCAmelCase__ ) __a : Optional[Any] = datasets['''train'''].unique('''label''' ) __a : Union[str, Any] = {v: i for i, v in enumerate(lowerCAmelCase__ )} def tokenize_function(lowerCAmelCase__ : Any ): # max_length=None => use the model max length (it's actually the default) __a : Dict = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' ) if "label" in examples: __a : Union[str, Any] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(lowerCAmelCase__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a : Union[str, Any] = DataLoader(tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=2 ) __a : Any = DataLoader(tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
216
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase__ =['text', 'image', 'audio'] def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): __a : Optional[int] = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): inputs.append(create_inputs(lowerCAmelCase__ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def __UpperCamelCase ( lowerCAmelCase__ : List ): __a : List[str] = [] for output in outputs: if isinstance(lowerCAmelCase__ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowerCAmelCase__ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowerCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class UpperCamelCase__ : def lowerCAmelCase (self : Any ): self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) __a : Any = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __a : Optional[int] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase (self : List[Any] ): __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : List[Any] = self.tool(*snake_case_ ) # There is a single output if len(self.tool.outputs ) == 1: __a : Tuple = [outputs] self.assertListEqual(output_types(snake_case_ ) , self.tool.outputs ) def lowerCAmelCase (self : List[Any] ): self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def lowerCAmelCase (self : Any ): __a : Any = create_inputs(self.tool.inputs ) __a : Union[str, Any] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __a : Tuple = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case_ , self.tool.outputs ): __a : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case_ , snake_case_ ) ) def lowerCAmelCase (self : Optional[int] ): __a : Any = create_inputs(self.tool.inputs ) __a : Dict = [] for _input, input_type in zip(snake_case_ , self.tool.inputs ): if isinstance(snake_case_ , snake_case_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __a : Optional[Any] = self.tool(*snake_case_ ) if not isinstance(snake_case_ , snake_case_ ): __a : Dict = [outputs] self.assertEqual(len(snake_case_ ) , len(self.tool.outputs ) )
216
1
def UpperCamelCase_( snake_case__: int = 60_08_51_47_51_43 ) -> int: try: UpperCAmelCase__ = int(snake_case__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 while i * i <= n: while n % i == 0: UpperCAmelCase__ = i n //= i i += 1 if n > 1: UpperCAmelCase__ = n return int(snake_case__ ) if __name__ == "__main__": print(F"""{solution() = }""")
335
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCamelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def UpperCamelCase_( snake_case__: int ) -> str: for pegasus_name, hf_name in PATTERNS: UpperCAmelCase__ = k.replace(snake_case__ , snake_case__ ) return k def UpperCamelCase_( snake_case__: dict , snake_case__: dict ) -> PegasusForConditionalGeneration: UpperCAmelCase__ = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) UpperCAmelCase__ = PegasusConfig(**snake_case__ ) UpperCAmelCase__ = PegasusForConditionalGeneration(snake_case__ ) UpperCAmelCase__ = torch_model.model.state_dict() UpperCAmelCase__ = {} for k, v in tf_weights.items(): UpperCAmelCase__ = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: UpperCAmelCase__ = v.T UpperCAmelCase__ = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected UpperCAmelCase__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = mapping['shared.weight'] UpperCAmelCase__ = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) UpperCAmelCase__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def UpperCamelCase_( snake_case__: int="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: UpperCAmelCase__ = tf.train.list_variables(snake_case__ ) UpperCAmelCase__ = {} UpperCAmelCase__ = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): UpperCAmelCase__ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCAmelCase__ = tf.train.load_variable(snake_case__ , snake_case__ ) UpperCAmelCase__ = array return tf_weights def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> Optional[Any]: # save tokenizer first UpperCAmelCase__ = Path(snake_case__ ).parent.name UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] UpperCAmelCase__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model UpperCAmelCase__ = get_tf_weights_as_numpy(snake_case__ ) UpperCAmelCase__ = task_specific_params[f"summarization_{dataset}"] if dataset == "large": UpperCAmelCase__ = task_specific_params UpperCAmelCase__ = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) UpperCAmelCase__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _UpperCamelCase = parser.parse_args() if args.save_dir is None: _UpperCamelCase = Path(args.tf_ckpt_path).parent.name _UpperCamelCase = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
335
1
'''simple docstring''' from __future__ import annotations def lowercase__ ( __lowercase : List[str] ) -> bool: """simple docstring""" if len(_UpperCAmelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __UpperCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __A : Tuple = logging.get_logger(__name__) __A : List[Any] = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class __A ( lowerCAmelCase ): @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : str ): raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class __A ( lowerCAmelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None ): lowerCAmelCase : str = max_length lowerCAmelCase : Any = max_position_embeddings @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : List[Any] = input_ids.shape[-1] lowerCAmelCase : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " 'exceptions, performance degradation, or nothing at all.' ) return is_done class __A ( lowerCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " 'with `max_length = start_length + max_new_tokens` instead.' , UpperCAmelCase_ , ) lowerCAmelCase : Optional[Any] = start_length lowerCAmelCase : List[Any] = max_new_tokens lowerCAmelCase : Union[str, Any] = start_length + max_new_tokens @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Dict , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[int] ): return input_ids.shape[-1] >= self.max_length class __A ( lowerCAmelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[float] = None ): lowerCAmelCase : List[str] = max_time lowerCAmelCase : Optional[Any] = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : List[Any] , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : List[Any] ): return time.time() - self.initial_timestamp > self.max_time class __A ( lowerCAmelCase ): @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : torch.LongTensor , UpperCAmelCase_ : torch.FloatTensor , **UpperCAmelCase_ : Optional[Any] ): return any(criteria(UpperCAmelCase_ , UpperCAmelCase_ ) for criteria in self ) @property def lowercase__ ( self : Tuple ): for stopping_criterium in self: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return stopping_criterium.max_length elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return stopping_criterium.max_length return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' lowerCAmelCase : Dict = stopping_criteria.max_length lowerCAmelCase : Dict = deepcopy(_UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter', _UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_UpperCAmelCase ) ) return new_stopping_criteria
138
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_ ( __A, __A, __A, __A, __A=True, __A="pt" ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = {"add_prefix_space": True} if isinstance(__A, __A ) and not line.startswith(" " ) else {} UpperCAmelCase__ = padding_side return tokenizer( [line], max_length=__A, padding="max_length" if pad_to_max_length else None, truncation=__A, return_tensors=__A, add_special_tokens=__A, **__A, ) def lowerCAmelCase_ ( __A, __A, __A=None, ) -> Any: '''simple docstring''' UpperCAmelCase__ = input_ids.ne(__A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A ( UpperCAmelCase_ ): def __init__(self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any="train" , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Any="" , ) -> Optional[Any]: """simple docstring""" super().__init__() UpperCAmelCase__ = Path(__UpperCAmelCase ).joinpath(type_path + ".source" ) UpperCAmelCase__ = Path(__UpperCAmelCase ).joinpath(type_path + ".target" ) UpperCAmelCase__ = self.get_char_lens(self.src_file ) UpperCAmelCase__ = max_source_length UpperCAmelCase__ = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" UpperCAmelCase__ = tokenizer UpperCAmelCase__ = prefix if n_obs is not None: UpperCAmelCase__ = self.src_lens[:n_obs] UpperCAmelCase__ = src_lang UpperCAmelCase__ = tgt_lang def __len__(self : List[str] ) -> Any: """simple docstring""" return len(self.src_lens ) def __getitem__(self : str , __UpperCAmelCase : Union[str, Any] ) -> Dict[str, torch.Tensor]: """simple docstring""" UpperCAmelCase__ = index + 1 # linecache starts at 1 UpperCAmelCase__ = self.prefix + linecache.getline(str(self.src_file ) , __UpperCAmelCase ).rstrip("\n" ) UpperCAmelCase__ = linecache.getline(str(self.tgt_file ) , __UpperCAmelCase ).rstrip("\n" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer ) UpperCAmelCase__ = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer UpperCAmelCase__ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , "right" ) UpperCAmelCase__ = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , "right" ) UpperCAmelCase__ = source_inputs["input_ids"].squeeze() UpperCAmelCase__ = target_inputs["input_ids"].squeeze() UpperCAmelCase__ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase_ (__UpperCAmelCase : str ) -> Tuple: """simple docstring""" return [len(__UpperCAmelCase ) for x in Path(__UpperCAmelCase ).open().readlines()] def lowercase_ (self : Optional[Any] , __UpperCAmelCase : List[str] ) -> Dict[str, torch.Tensor]: """simple docstring""" UpperCAmelCase__ = torch.stack([x["input_ids"] for x in batch] ) UpperCAmelCase__ = torch.stack([x["attention_mask"] for x in batch] ) UpperCAmelCase__ = torch.stack([x["decoder_input_ids"] for x in batch] ) UpperCAmelCase__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) UpperCAmelCase__ = trim_batch(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch UpperCamelCase__ = getLogger(__name__) def lowerCAmelCase_ ( __A ) -> Dict: '''simple docstring''' return list(itertools.chain.from_iterable(__A ) ) def lowerCAmelCase_ ( __A ) -> None: '''simple docstring''' UpperCAmelCase__ = get_git_info() save_json(__A, os.path.join(__A, "git_log.json" ) ) def lowerCAmelCase_ ( __A, __A, __A=4, **__A ) -> List[str]: '''simple docstring''' with open(__A, "w" ) as f: json.dump(__A, __A, indent=__A, **__A ) def lowerCAmelCase_ ( __A ) -> Optional[int]: '''simple docstring''' with open(__A ) as f: return json.load(__A ) def lowerCAmelCase_ ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = git.Repo(search_parent_directories=__A ) UpperCAmelCase__ = { "repo_id": str(__A ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_ ( __A, __A ) -> List: '''simple docstring''' return list(map(__A, __A ) ) def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' with open(__A, "wb" ) as f: return pickle.dump(__A, __A ) def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' def remove_articles(__A ): return re.sub(r"\b(a|an|the)\b", " ", __A ) def white_space_fix(__A ): return " ".join(text.split() ) def remove_punc(__A ): UpperCAmelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def lowerCAmelCase_ ( __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = normalize_answer(__A ).split() UpperCAmelCase__ = normalize_answer(__A ).split() UpperCAmelCase__ = Counter(__A ) & Counter(__A ) UpperCAmelCase__ = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase__ = 1.0 * num_same / len(__A ) UpperCAmelCase__ = 1.0 * num_same / len(__A ) UpperCAmelCase__ = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' return normalize_answer(__A ) == normalize_answer(__A ) def lowerCAmelCase_ ( __A, __A ) -> Dict: '''simple docstring''' assert len(__A ) == len(__A ) UpperCAmelCase__ = 0 for hypo, pred in zip(__A, __A ): em += exact_match_score(__A, __A ) if len(__A ) > 0: em /= len(__A ) return {"em": em} def lowerCAmelCase_ ( __A ) -> int: '''simple docstring''' return model_prefix.startswith("rag" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase__ = "dropout_rate" for p in extra_params: if getattr(__A, __A, __A ): if not hasattr(__A, __A ) and not hasattr(__A, equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__A ) ) delattr(__A, __A ) continue UpperCAmelCase__ = p if hasattr(__A, __A ) else equivalent_param[p] setattr(__A, __A, getattr(__A, __A ) ) delattr(__A, __A ) return hparams, config
367
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__(self : Tuple , __UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = False def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
143
0
from numpy import exp, pi, sqrt def a__ ( snake_case , snake_case = 0.0 , snake_case = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
303
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices.''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(f'''Command: {cmd}''' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_a , env=os.environ.copy() ) @require_multi_gpu def __UpperCAmelCase ( self ): print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' ) __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ): execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = Accelerator() lowercase_ = (accelerator.state.process_index + 2, 1_0) lowercase_ = torch.randint(0, 1_0, shape).to(accelerator.device) lowercase_ = "" lowercase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowercase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowercase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
45
0
'''simple docstring''' import gc import threading import time import psutil import torch class A__ : def __init__( self : Optional[int] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =psutil.Process() _SCREAMING_SNAKE_CASE =False def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =-1 while True: _SCREAMING_SNAKE_CASE =max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A ( self : Optional[int] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =threading.Thread(target=self.peak_monitor ) _SCREAMING_SNAKE_CASE =True self.thread.start() def A ( self : str ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =False self.thread.join() return self.cpu_memory_peak lowerCamelCase : Tuple = PeakCPUMemory() def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ={'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _SCREAMING_SNAKE_CASE =psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _SCREAMING_SNAKE_CASE =torch.cuda.memory_allocated(_UpperCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCAmelCase ( _UpperCamelCase : Any ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem _SCREAMING_SNAKE_CASE =(psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 _SCREAMING_SNAKE_CASE =(cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _SCREAMING_SNAKE_CASE =(torch.cuda.memory_allocated(_UpperCamelCase ) - start_measures[str(_UpperCamelCase )]) / 2**20 _SCREAMING_SNAKE_CASE =(torch.cuda.max_memory_allocated(_UpperCamelCase ) - start_measures[str(_UpperCamelCase )]) / 2**20 return measures def _lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[Any] ) -> List[str]: """simple docstring""" print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(_UpperCamelCase )]:.2f}MiB" ) _SCREAMING_SNAKE_CASE =measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
114
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : int = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class A__ ( A__ ): A__ = 'data2vec-vision' def __init__( self : str , _a : Optional[int]=768 , _a : List[str]=12 , _a : Any=12 , _a : Tuple=3072 , _a : Optional[Any]="gelu" , _a : Tuple=0.0 , _a : str=0.0 , _a : Dict=0.02 , _a : int=1e-12 , _a : List[str]=224 , _a : str=16 , _a : Dict=3 , _a : int=False , _a : List[str]=False , _a : str=False , _a : str=False , _a : Optional[int]=0.1 , _a : List[str]=0.1 , _a : Dict=True , _a : str=[3, 5, 7, 11] , _a : List[Any]=[1, 2, 3, 6] , _a : Any=True , _a : Optional[Any]=0.4 , _a : str=256 , _a : Dict=1 , _a : List[str]=False , _a : List[Any]=255 , **_a : Any , ) -> Optional[Any]: '''simple docstring''' super().__init__(**_a ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =use_mask_token _SCREAMING_SNAKE_CASE =use_absolute_position_embeddings _SCREAMING_SNAKE_CASE =use_relative_position_bias _SCREAMING_SNAKE_CASE =use_shared_relative_position_bias _SCREAMING_SNAKE_CASE =layer_scale_init_value _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =use_mean_pooling # decode head attributes (semantic segmentation) _SCREAMING_SNAKE_CASE =out_indices _SCREAMING_SNAKE_CASE =pool_scales # auxiliary head attributes (semantic segmentation) _SCREAMING_SNAKE_CASE =use_auxiliary_head _SCREAMING_SNAKE_CASE =auxiliary_loss_weight _SCREAMING_SNAKE_CASE =auxiliary_channels _SCREAMING_SNAKE_CASE =auxiliary_num_convs _SCREAMING_SNAKE_CASE =auxiliary_concat_input _SCREAMING_SNAKE_CASE =semantic_loss_ignore_index class A__ ( A__ ): A__ = version.parse('1.11' ) @property def A ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : List[Any] ) -> float: '''simple docstring''' return 1e-4
114
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Any = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _UpperCAmelCase ( __a): __a : List[Any] = """trocr""" __a : Tuple = ["""past_key_values"""] __a : Any = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , _A=5_02_65 , _A=10_24 , _A=12 , _A=16 , _A=40_96 , _A="gelu" , _A=5_12 , _A=0.1 , _A=0.0 , _A=0.0 , _A=2 , _A=0.02 , _A=0.0 , _A=True , _A=False , _A=True , _A=True , _A=1 , _A=0 , _A=2 , **_A , ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Optional[int] = d_model _UpperCAmelCase : List[Any] = decoder_layers _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : Optional[int] = decoder_ffn_dim _UpperCAmelCase : Optional[int] = activation_function _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Tuple = dropout _UpperCAmelCase : Optional[Any] = attention_dropout _UpperCAmelCase : List[str] = activation_dropout _UpperCAmelCase : List[Any] = init_std _UpperCAmelCase : Optional[Any] = decoder_layerdrop _UpperCAmelCase : Any = use_cache _UpperCAmelCase : Union[str, Any] = scale_embedding _UpperCAmelCase : str = use_learned_position_embeddings _UpperCAmelCase : Tuple = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
246
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int = 3, _lowerCAmelCase : int = 7, _lowerCAmelCase : int = 1000000 ) -> int: _UpperCAmelCase : Dict = 0 _UpperCAmelCase : int = 1 for current_denominator in range(1, limit + 1 ): _UpperCAmelCase : Union[str, Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _UpperCAmelCase : Optional[Any] = current_numerator _UpperCAmelCase : str = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
246
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __A : Optional[Any] = _symbol_database.Default() __A : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) __A : Dict = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __A : List[Any] = None __A : Union[str, Any] = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __A : Dict = 45 __A : Optional[Any] = 1_581 __A : Dict = 1_517 __A : Tuple = 1_570 __A : List[Any] = 1_584 __A : Union[str, Any] = 1_793 __A : List[Any] = 1_795 __A : Optional[int] = 1_916 __A : List[str] = 1_864 __A : List[str] = 1_905 __A : Any = 1_919 __A : Any = 2_429 __A : Dict = 2_208 __A : Optional[int] = 2_418 __A : Optional[int] = 2_323 __A : Union[str, Any] = 2_407 # @@protoc_insertion_point(module_scope)
365
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __A : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowercase__ ): def __init__( self :List[str] ,*_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" ,_UpperCamelCase ,) super().__init__(*_UpperCamelCase ,**_UpperCamelCase )
8
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a__ ( unittest.TestCase ): def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=4 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class a__ ( snake_case__ , unittest.TestCase ): _a : str = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxAlbertModelTester(self ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained("albert-base-v2" ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ ) @require_flax class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = FlaxAlbertModel.from_pretrained("albert-base-v2" ) __lowerCAmelCase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase = model(A_ , attention_mask=A_ )[0] __lowerCAmelCase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , A_ ) __lowerCAmelCase = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) )
92
def _SCREAMING_SNAKE_CASE ( lowercase : list ): '''simple docstring''' for i in range(len(lowercase ) - 1 , 0 , -1 ): lowerCamelCase_ = False for j in range(lowercase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCamelCase_ , lowerCamelCase_ = unsorted[j - 1], unsorted[j] lowerCamelCase_ = True for j in range(lowercase ): if unsorted[j] > unsorted[j + 1]: lowerCamelCase_ , lowerCamelCase_ = unsorted[j + 1], unsorted[j] lowerCamelCase_ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(",")] print(F"""{cocktail_shaker_sort(unsorted) = }""")
204
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a ( __lowercase ): _lowercase = "encoder-decoder" _lowercase = True def __init__( self , **A_ ): '''simple docstring''' super().__init__(**_a ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" _UpperCAmelCase : int = kwargs.pop("encoder" ) _UpperCAmelCase : List[str] = encoder_config.pop("model_type" ) _UpperCAmelCase : List[Any] = kwargs.pop("decoder" ) _UpperCAmelCase : List[Any] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig _UpperCAmelCase : Tuple = AutoConfig.for_model(_a , **_a ) _UpperCAmelCase : int = AutoConfig.for_model(_a , **_a ) _UpperCAmelCase : Optional[Any] = True @classmethod def _UpperCAmelCase ( cls , A_ , A_ , **A_ ): '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_a ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : List[str] = self.encoder.to_dict() _UpperCAmelCase : str = self.decoder.to_dict() _UpperCAmelCase : str = self.__class__.model_type return output
350
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( UpperCAmelCase ): _lowercase = (PNDMScheduler,) _lowercase = (("num_inference_steps", 5_0),) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**A_ ) return config def _UpperCAmelCase ( self , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : int = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Dict = 0.1 * sample _UpperCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Dict = self.get_scheduler_config(**A_ ) _UpperCAmelCase : Any = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Union[str, Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : Any = dict(self.forward_default_kwargs ) _UpperCAmelCase : int = kwargs.pop("num_inference_steps" , A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Any = 0.1 * sample _UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : List[Any] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Union[str, Any] = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(**A_ ) _UpperCAmelCase : List[str] = scheduler_class(**A_ ) _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : Optional[int] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.prk_timesteps ): _UpperCAmelCase : Dict = model(A_ , A_ ) _UpperCAmelCase : int = scheduler.step_prk(A_ , A_ , A_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _UpperCAmelCase : Any = model(A_ , A_ ) _UpperCAmelCase : Any = scheduler.step_plms(A_ , A_ , A_ ).prev_sample return sample def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _UpperCAmelCase : str = kwargs.pop("num_inference_steps" , A_ ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(A_ , "set_timesteps" ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ , "set_timesteps" ): _UpperCAmelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCAmelCase : Any = dummy_past_residuals[:] _UpperCAmelCase : Any = scheduler.step_prk(A_ , 0 , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_prk(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCAmelCase : Optional[int] = scheduler.step_plms(A_ , 0 , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(steps_offset=1 ) _UpperCAmelCase : str = scheduler_class(**A_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _UpperCAmelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = 27 for scheduler_class in self.scheduler_classes: _UpperCAmelCase : str = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _UpperCAmelCase : Dict = scheduler.step_prk(A_ , A_ , A_ ).prev_sample def _UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(A_ ): _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**A_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.full_loop() _UpperCAmelCase : int = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Dict = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Dict = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
189
0
"""simple docstring""" from collections.abc import Iterable from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ = None ): """simple docstring""" A_ : Optional[Any] = value A_ : Node | None = None # Added in order to delete a node easier A_ : Node | None = None A_ : Node | None = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ = None ): """simple docstring""" A_ : int = root def __str__( self ): """simple docstring""" return str(self.root ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" if new_children is not None: # reset its kids A_ : Any = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case_ ): # If it is the right children A_ : int = new_children else: A_ : Union[str, Any] = new_children else: A_ : Optional[Any] = new_children def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def lowerCamelCase_ ( self ): """simple docstring""" return self.root is None def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : int = Node(snake_case_ ) # create a new Node if self.empty(): # if Tree is empty A_ : Any = new_node # set its root else: # Tree is not empty A_ : List[str] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: A_ : Optional[Any] = new_node # We insert the new node in a leaf break else: A_ : Union[str, Any] = parent_node.left else: if parent_node.right is None: A_ : Any = new_node break else: A_ : Tuple = parent_node.right A_ : Tuple = parent_node def lowerCamelCase_ ( self , *snake_case_ ): """simple docstring""" for value in values: self.__insert(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: A_ : Any = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: A_ : str = node.left if value < node.value else node.right return node def lowerCamelCase_ ( self , snake_case_ = None ): """simple docstring""" if node is None: if self.root is None: return None A_ : str = self.root if not self.empty(): while node.right is not None: A_ : List[str] = node.right return node def lowerCamelCase_ ( self , snake_case_ = None ): """simple docstring""" if node is None: A_ : str = self.root if self.root is None: return None if not self.empty(): A_ : Optional[Any] = self.root while node.left is not None: A_ : Dict = node.left return node def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Optional[Any] = self.search(snake_case_ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case_ , snake_case_ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case_ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case_ , node.left ) else: A_ : Tuple = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore A_ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCamelCase_ ( self , snake_case_=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" if node: self.inorder(snake_case_ , node.left ) arr.append(node.value ) self.inorder(snake_case_ , node.right ) def lowerCamelCase_ ( self , snake_case_ , snake_case_ ): """simple docstring""" A_ : list[int] = [] self.inorder(snake_case_ , snake_case_ ) # append all values to list using inorder traversal return arr[k - 1] def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[int] = [] if curr_node is not None: A_ : Tuple = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def UpperCAmelCase__ ( ): """simple docstring""" A_ : int = (8, 3, 6, 1, 10, 14, 13, 4, 7) A_ : Optional[int] = BinarySearchTree() for i in testlist: t.insert(_UpperCAmelCase ) # Prints all the elements of the list in order traversal print(_UpperCAmelCase ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(_UpperCAmelCase ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
286
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : Optional[Any] = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((f"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", f"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A_ : List[str] = '' else: A_ : Dict = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : str = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) A_ : List[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A_ : Tuple = in_proj_bias[: config.hidden_size] A_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Tuple = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = dct.pop(_UpperCAmelCase ) A_ : Optional[int] = val def UpperCAmelCase__ ( ): """simple docstring""" A_ : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' A_ : int = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" A_ : List[Any] = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=_UpperCAmelCase , ) A_ : Optional[int] = ViTHybridConfig(backbone_config=_UpperCAmelCase , image_size=384 , num_labels=1000 ) A_ : Union[str, Any] = False # load original model from timm A_ : List[Any] = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ : Tuple = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase ) A_ : Any = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Union[str, Any] = 'huggingface/label-files' A_ : Dict = 'imagenet-1k-id2label.json' A_ : List[str] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) A_ : str = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A_ : List[Any] = ViTHybridModel(_UpperCAmelCase ).eval() else: A_ : str = ViTHybridForImageClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) # create image processor A_ : Dict = create_transform(**resolve_data_config({} , model=_UpperCAmelCase ) ) A_ : List[str] = transform.transforms A_ : List[str] = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } A_ : Tuple = ViTHybridImageProcessor( do_resize=_UpperCAmelCase , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_UpperCAmelCase , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_UpperCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A_ : Optional[Any] = prepare_img() A_ : Any = transform(_UpperCAmelCase ).unsqueeze(0 ) A_ : Dict = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) # verify logits with torch.no_grad(): A_ : List[Any] = model(_UpperCAmelCase ) A_ : List[str] = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: A_ : Union[str, Any] = timm_model.forward_features(_UpperCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase , outputs.pooler_output , atol=1E-3 ) else: A_ : Tuple = timm_model(_UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCAmelCase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(f"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(f"""ybelkada/{vit_name}""" ) processor.push_to_hub(f"""ybelkada/{vit_name}""" ) if __name__ == "__main__": lowerCamelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCamelCase_ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
286
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ : Dict = logging.get_logger(__name__) def _snake_case ( lowerCamelCase__ : List[str] , lowerCamelCase__ : str=False ) -> Dict: lowerCamelCase_ : Any =[] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight""") ) rename_keys.append((F"""patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias""", F"""vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias""") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase_ : Optional[int] =[(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any]=False ) -> List[Any]: for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase_ : Optional[int] ="" else: lowerCamelCase_ : List[str] ="vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ : Tuple =state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCamelCase_ : Union[str, Any] =state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Optional[Any] =in_proj_weight[ : config.hidden_size, : ] lowerCamelCase_ : List[Any] =in_proj_bias[: config.hidden_size] lowerCamelCase_ : str =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ : str =in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase_ : Dict =in_proj_bias[-config.hidden_size :] def _snake_case ( lowerCamelCase__ : int ) -> Dict: lowerCamelCase_ : Optional[int] =["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] ) -> str: lowerCamelCase_ : List[Any] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =val def _snake_case ( ) -> str: lowerCamelCase_ : Union[str, Any] ="http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ : Any =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def _snake_case ( lowerCamelCase__ : Any , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str]=False ) -> Any: lowerCamelCase_ : List[Any] =BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowerCamelCase__ , ) lowerCamelCase_ : Optional[Any] =ViTHybridConfig(backbone_config=lowerCamelCase__ , image_size=384 , num_labels=1_000 ) lowerCamelCase_ : Optional[Any] =False # load original model from timm lowerCamelCase_ : Optional[int] =timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase_ : str =timm_model.state_dict() if base_model: remove_classification_head_(lowerCamelCase__ ) lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ , lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[Any] ="imagenet-1k-id2label.json" lowerCamelCase_ : Any =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Optional[int] ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : List[Any] =idalabel lowerCamelCase_ : List[str] ={v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase_ : Any =ViTHybridModel(lowerCamelCase__ ).eval() else: lowerCamelCase_ : Dict =ViTHybridForImageClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) # create image processor lowerCamelCase_ : Tuple =create_transform(**resolve_data_config({} , model=lowerCamelCase__ ) ) lowerCamelCase_ : Dict =transform.transforms lowerCamelCase_ : Any ={ "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowerCamelCase_ : Dict =ViTHybridImageProcessor( do_resize=lowerCamelCase__ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCamelCase__ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCamelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase_ : Dict =prepare_img() lowerCamelCase_ : Optional[Any] =transform(lowerCamelCase__ ).unsqueeze(0 ) lowerCamelCase_ : Dict =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ) # verify logits with torch.no_grad(): lowerCamelCase_ : str =model(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: lowerCamelCase_ : List[Any] =timm_model.forward_features(lowerCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCamelCase__ , outputs.pooler_output , atol=1e-3 ) else: lowerCamelCase_ : Dict =timm_model(lowerCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCamelCase__ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor to the hub {vit_name}""" ) model.push_to_hub(F"""ybelkada/{vit_name}""" ) processor.push_to_hub(F"""ybelkada/{vit_name}""" ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) A__ : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
209
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int ) -> List[Any]: if isinstance(lowerCamelCase__ , torch.Tensor ): return image elif isinstance(lowerCamelCase__ , PIL.Image.Image ): lowerCamelCase_ : int =[image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ : Tuple =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] lowerCamelCase_ : Any =np.concatenate(lowerCamelCase__ , axis=0 ) lowerCamelCase_ : Any =np.array(lowerCamelCase__ ).astype(np.floataa ) / 255.0 lowerCamelCase_ : Any =image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ : Dict =2.0 * image - 1.0 lowerCamelCase_ : List[Any] =torch.from_numpy(lowerCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ : Tuple =torch.cat(lowerCamelCase__ , dim=0 ) return image def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=0.9995 ) -> List[str]: if not isinstance(lowerCamelCase__ , np.ndarray ): lowerCamelCase_ : List[Any] =True lowerCamelCase_ : Tuple =va.device lowerCamelCase_ : Optional[int] =va.cpu().numpy() lowerCamelCase_ : List[Any] =va.cpu().numpy() lowerCamelCase_ : Any =np.sum(va * va / (np.linalg.norm(lowerCamelCase__ ) * np.linalg.norm(lowerCamelCase__ )) ) if np.abs(lowerCamelCase__ ) > DOT_THRESHOLD: lowerCamelCase_ : str =(1 - t) * va + t * va else: lowerCamelCase_ : Tuple =np.arccos(lowerCamelCase__ ) lowerCamelCase_ : Any =np.sin(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] =theta_a * t lowerCamelCase_ : Tuple =np.sin(lowerCamelCase__ ) lowerCamelCase_ : List[str] =np.sin(theta_a - theta_t ) / sin_theta_a lowerCamelCase_ : Union[str, Any] =sin_theta_t / sin_theta_a lowerCamelCase_ : str =sa * va + sa * va if inputs_are_torch: lowerCamelCase_ : Any =torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) return va def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Dict ) -> List[str]: lowerCamelCase_ : List[Any] =F.normalize(lowerCamelCase__ , dim=-1 ) lowerCamelCase_ : Any =F.normalize(lowerCamelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : List[Any] ) -> Any: for param in model.parameters(): lowerCamelCase_ : Any =value class lowercase__ ( snake_case__ ): def __init__( self : Union[str, Any] , snake_case__ : AutoencoderKL , snake_case__ : CLIPTextModel , snake_case__ : CLIPModel , snake_case__ : CLIPTokenizer , snake_case__ : UNetaDConditionModel , snake_case__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , snake_case__ : CLIPFeatureExtractor , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : str=None , ): super().__init__() self.register_modules( vae=snake_case__ , text_encoder=snake_case__ , clip_model=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , feature_extractor=snake_case__ , coca_model=snake_case__ , coca_tokenizer=snake_case__ , coca_transform=snake_case__ , ) lowerCamelCase_ : Optional[Any] =( feature_extractor.size if isinstance(feature_extractor.size , snake_case__ ) else feature_extractor.size["shortest_edge"] ) lowerCamelCase_ : Union[str, Any] =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , snake_case__ ) set_requires_grad(self.clip_model , snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ : List[Any] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def UpperCAmelCase__ ( self : int ): self.enable_attention_slicing(snake_case__ ) def UpperCAmelCase__ ( self : str ): set_requires_grad(self.vae , snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): set_requires_grad(self.vae , snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): set_requires_grad(self.unet , snake_case__ ) def UpperCAmelCase__ ( self : Tuple ): set_requires_grad(self.unet , snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): # get the original timestep using init_timestep lowerCamelCase_ : Optional[int] =min(int(num_inference_steps * strength ) , snake_case__ ) lowerCamelCase_ : Dict =max(num_inference_steps - init_timestep , 0 ) lowerCamelCase_ : Union[str, Any] =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : List[Any]=None ): if not isinstance(snake_case__ , torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(snake_case__ )}""" ) lowerCamelCase_ : List[str] =image.to(device=snake_case__ , dtype=snake_case__ ) if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : Optional[int] =[ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] lowerCamelCase_ : Tuple =torch.cat(snake_case__ , dim=0 ) else: lowerCamelCase_ : Any =self.vae.encode(snake_case__ ).latent_dist.sample(snake_case__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ : Optional[Any] =0.18_215 * init_latents lowerCamelCase_ : Optional[Any] =init_latents.repeat_interleave(snake_case__ , dim=0 ) lowerCamelCase_ : List[Any] =randn_tensor(init_latents.shape , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents lowerCamelCase_ : Optional[int] =self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase_ : int =init_latents return latents def UpperCAmelCase__ ( self : Dict , snake_case__ : List[Any] ): lowerCamelCase_ : Optional[int] =self.coca_transform(snake_case__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCamelCase_ : Tuple =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCamelCase_ : str =self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>" , "" ).rstrip(" .," ) def UpperCAmelCase__ ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): lowerCamelCase_ : int =self.feature_extractor.preprocess(snake_case__ ) lowerCamelCase_ : Tuple =torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() lowerCamelCase_ : Optional[int] =self.clip_model.get_image_features(snake_case__ ) lowerCamelCase_ : List[str] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case__ ) lowerCamelCase_ : str =image_embeddings_clip.repeat_interleave(snake_case__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Dict , snake_case__ : Any , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : str , ): lowerCamelCase_ : Any =latents.detach().requires_grad_() lowerCamelCase_ : Union[str, Any] =self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCamelCase_ : Any =self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCamelCase_ : Any =self.scheduler.alphas_cumprod[timestep] lowerCamelCase_ : str =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ : Dict =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCamelCase_ : Tuple =torch.sqrt(snake_case__ ) lowerCamelCase_ : Optional[int] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , snake_case__ ): lowerCamelCase_ : Optional[Any] =self.scheduler.sigmas[index] lowerCamelCase_ : Optional[int] =latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ : str =1 / 0.18_215 * sample lowerCamelCase_ : List[Any] =self.vae.decode(snake_case__ ).sample lowerCamelCase_ : List[Any] =(image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ : Any =transforms.Resize(self.feature_extractor_size )(snake_case__ ) lowerCamelCase_ : Any =self.normalize(snake_case__ ).to(latents.dtype ) lowerCamelCase_ : Any =self.clip_model.get_image_features(snake_case__ ) lowerCamelCase_ : Optional[int] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case__ ) lowerCamelCase_ : Union[str, Any] =spherical_dist_loss(snake_case__ , snake_case__ ).mean() * clip_guidance_scale lowerCamelCase_ : Union[str, Any] =-torch.autograd.grad(snake_case__ , snake_case__ )[0] if isinstance(self.scheduler , snake_case__ ): lowerCamelCase_ : int =latents.detach() + grads * (sigma**2) lowerCamelCase_ : Tuple =noise_pred_original else: lowerCamelCase_ : Union[str, Any] =noise_pred_original - torch.sqrt(snake_case__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Any , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image] , snake_case__ : Union[torch.FloatTensor, PIL.Image.Image] , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[int] = 512 , snake_case__ : Optional[int] = 512 , snake_case__ : float = 0.6 , snake_case__ : Optional[int] = 50 , snake_case__ : Optional[float] = 7.5 , snake_case__ : Optional[int] = 1 , snake_case__ : float = 0.0 , snake_case__ : Optional[float] = 100 , snake_case__ : Optional[torch.Generator] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , snake_case__ : float = 0.8 , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , ): if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(snake_case__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(snake_case__ , torch.Generator ) and batch_size > 1: lowerCamelCase_ : List[str] =[generator] + [None] * (batch_size - 1) lowerCamelCase_ : Any =[ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] lowerCamelCase_ : Optional[Any] =[x[0] for x in coca_is_none if x[1]] lowerCamelCase_ : Any =", ".join(snake_case__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowerCamelCase_ : Union[str, Any] =self.get_image_description(snake_case__ ) if style_prompt is None: if len(snake_case__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowerCamelCase_ : str =self.get_image_description(snake_case__ ) # get prompt text embeddings for content and style lowerCamelCase_ : str =self.tokenizer( snake_case__ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) lowerCamelCase_ : List[str] =self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ : int =self.tokenizer( snake_case__ , padding="max_length" , max_length=self.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="pt" , ) lowerCamelCase_ : Optional[int] =self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCamelCase_ : Dict =slerp(snake_case__ , snake_case__ , snake_case__ ) # duplicate text embeddings for each generation per prompt lowerCamelCase_ : str =text_embeddings.repeat_interleave(snake_case__ , dim=0 ) # set timesteps lowerCamelCase_ : List[Any] ="offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCamelCase_ : List[Any] ={} if accepts_offset: lowerCamelCase_ : Optional[int] =1 self.scheduler.set_timesteps(snake_case__ , **snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] =self.get_timesteps(snake_case__ , snake_case__ , self.device ) lowerCamelCase_ : Union[str, Any] =timesteps[:1].repeat(snake_case__ ) # Preprocess image lowerCamelCase_ : str =preprocess(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase_ : int =self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , text_embeddings.dtype , self.device , snake_case__ ) lowerCamelCase_ : Dict =preprocess(snake_case__ , snake_case__ , snake_case__ ) lowerCamelCase_ : Tuple =self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , text_embeddings.dtype , self.device , snake_case__ ) lowerCamelCase_ : int =slerp(snake_case__ , snake_case__ , snake_case__ ) if clip_guidance_scale > 0: lowerCamelCase_ : List[Any] =self.get_clip_image_embeddings(snake_case__ , snake_case__ ) lowerCamelCase_ : Optional[Any] =self.get_clip_image_embeddings(snake_case__ , snake_case__ ) lowerCamelCase_ : List[Any] =slerp( snake_case__ , snake_case__ , snake_case__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ : str =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ : List[Any] =content_text_input.input_ids.shape[-1] lowerCamelCase_ : Union[str, Any] =self.tokenizer([""] , padding="max_length" , max_length=snake_case__ , return_tensors="pt" ) lowerCamelCase_ : List[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCamelCase_ : List[str] =uncond_embeddings.repeat_interleave(snake_case__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ : List[str] =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ : Optional[Any] =(batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ : List[str] =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCamelCase_ : Union[str, Any] =torch.randn(snake_case__ , generator=snake_case__ , device="cpu" , dtype=snake_case__ ).to( self.device ) else: lowerCamelCase_ : Tuple =torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowerCamelCase_ : Any =latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ : Optional[int] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ : List[Any] ="eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ : Dict ={} if accepts_eta: lowerCamelCase_ : Tuple =eta # check if the scheduler accepts generator lowerCamelCase_ : Tuple ="generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCamelCase_ : Optional[int] =generator with self.progress_bar(total=snake_case__ ): for i, t in enumerate(snake_case__ ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ : List[str] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ : Optional[Any] =self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual lowerCamelCase_ : Tuple =self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ , lowerCamelCase_ : Dict =noise_pred.chunk(2 ) lowerCamelCase_ : Optional[Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCamelCase_ : Optional[int] =( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =self.cond_fn( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ : Dict =self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCamelCase_ : str =1 / 0.18_215 * latents lowerCamelCase_ : List[str] =self.vae.decode(snake_case__ ).sample lowerCamelCase_ : str =(image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ : List[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ : List[str] =self.numpy_to_pil(snake_case__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
209
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss SCREAMING_SNAKE_CASE :Dict = pytest.mark.integration @require_faiss class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple ): __A = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(A ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase_ ( self : Optional[Any] ): import faiss __A = self._create_dummy_dataset() __A = dset.map( lambda A ,A : {"vecs": i * np.ones(5 ,dtype=np.floataa )} ,with_indices=A ,keep_in_memory=A ) __A = dset.add_faiss_index("vecs" ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ) __A , __A = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) dset.drop_index("vecs" ) def UpperCamelCase_ ( self : Tuple ): import faiss __A = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,batch_size=1_00 ,metric_type=faiss.METRIC_INNER_PRODUCT ,) __A , __A = dset.get_nearest_examples("vecs" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) def UpperCamelCase_ ( self : List[str] ): import faiss __A = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ,metric_type=faiss.METRIC_INNER_PRODUCT ,) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: dset.save_faiss_index("vecs" ,tmp_file.name ) dset.load_faiss_index("vecs2" ,tmp_file.name ) os.unlink(tmp_file.name ) __A , __A = dset.get_nearest_examples("vecs2" ,np.ones(5 ,dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 ,1 ) ,index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(A ,partial(dset.get_nearest_examples ,"vecs2" ,np.ones(5 ,dtype=np.floataa ) ) ) def UpperCamelCase_ ( self : Dict ): from elasticsearch import Elasticsearch __A = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __A = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __A = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __A = Elasticsearch() dset.add_elasticsearch_index("filename" ,es_client=A ) __A , __A = dset.get_nearest_examples("filename" ,"my_name-train_29" ) self.assertEqual(examples["filename"][0] ,"my_name-train_29" ) @require_faiss class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int] ): import faiss __A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal ,5 ) index.add_vectors(np.zeros((5, 5) ,dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal ,10 ) # single query __A = np.zeros(5 ,dtype=np.floataa ) __A = 1 __A , __A = index.search(A ) self.assertRaises(A ,index.search ,query.reshape(-1 ,1 ) ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) # batched queries __A = np.eye(5 ,dtype=np.floataa )[::-1] __A , __A = index.search_batch(A ) self.assertRaises(A ,index.search_batch ,queries[0] ) __A = [scores[0] for scores in total_scores] __A = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) ,0 ) self.assertListEqual([4, 3, 2, 1, 0] ,A ) def UpperCamelCase_ ( self : Tuple ): import faiss __A = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) __A = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexLSH ) with self.assertRaises(A ): __A = FaissIndex(string_factory="Flat" ,custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase_ ( self : Any ): import faiss __A = faiss.IndexFlat(5 ) __A = FaissIndex(custom_index=A ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index ,faiss.IndexFlat ) def UpperCamelCase_ ( self : Union[str, Any] ): import faiss __A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A ) as tmp_file: index.save(tmp_file.name ) __A = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __A = np.zeros(5 ,dtype=np.floataa ) __A = 1 __A , __A = index.search(A ) self.assertGreater(scores[0] ,0 ) self.assertEqual(indices[0] ,1 ) @require_faiss def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" import faiss __A = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __A = "index.faiss" __A = F'''mock://{index_name}''' index.save(a_ , storage_options=mockfs.storage_options ) __A = FaissIndex.load(a_ , storage_options=mockfs.storage_options ) __A = np.zeros(5 , dtype=np.floataa ) __A = 1 __A , __A = index.search(a_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ): from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __A = Elasticsearch() __A = {"acknowledged": True} __A = ElasticSearchIndex(es_client=A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __A = "foo" __A = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __A , __A = index.search(A ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # single query with timeout __A = "foo" __A = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __A , __A = index.search(A ,request_timeout=30 ) self.assertEqual(scores[0] ,1 ) self.assertEqual(indices[0] ,0 ) # batched queries __A = ["foo", "bar", "foobar"] __A = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __A , __A = index.search_batch(A ) __A = [scores[0] for scores in total_scores] __A = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) ,0 ) self.assertListEqual([1, 1, 1] ,A ) # batched queries with timeout __A = ["foo", "bar", "foobar"] __A = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __A , __A = index.search_batch(A ,request_timeout=30 ) __A = [scores[0] for scores in total_scores] __A = [indices[0] for indices in total_indices] self.assertGreater(np.min(A ) ,0 ) self.assertListEqual([1, 1, 1] ,A )
15
import numpy as np def UpperCAmelCase ( a_ , a_ , a_ = 1E-12 , a_ = 1_0_0 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(a_ )[0] == np.shape(a_ )[1] # Ensure proper dimensionality. assert np.shape(a_ )[0] == np.shape(a_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a_ ) == np.iscomplexobj(a_ ) __A = np.iscomplexobj(a_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __A = False __A = 0 __A = 0 __A = 1E12 while not convergence: # Multiple matrix by the vector. __A = np.dot(a_ , a_ ) # Normalize the resulting output vector. __A = w / np.linalg.norm(a_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __A = vector.conj().T if is_complex else vector.T __A = np.dot(a_ , np.dot(a_ , a_ ) ) # Check convergence. __A = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __A = True __A = lambda_ if is_complex: __A = np.real(lambda_ ) return lambda_, vector def UpperCAmelCase ( ) -> None: """simple docstring""" __A = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) __A = np.array([4_1, 4, 2_0] ) __A = real_input_matrix.astype(np.complexaaa ) __A = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __A = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __A = real_input_matrix __A = real_vector elif problem_type == "complex": __A = complex_input_matrix __A = complex_vector # Our implementation. __A , __A = power_iteration(a_ , a_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __A , __A = np.linalg.eigh(a_ ) # Last eigenvalue is the maximum one. __A = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __A = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a_ ) - np.abs(a_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
15
1
'''simple docstring''' import math def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __A ='Enter the base and the power separated by a comma: ' __A , __A =map(int, input(prompt).split(',')) __A , __A =map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. __A =res(xa, ya) __A =res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
283
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _snake_case ( unittest.TestCase ): def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) UpperCAmelCase__ : List[str] = Vector() def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(_lowerCamelCase) , """(0,0,0,0,0,1)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4]) self.assertEqual(len(_lowerCamelCase) , 4) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Vector([1, 2]) UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3, 4, 5]) UpperCAmelCase__ : Optional[Any] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Union[str, Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3) def snake_case__ ( self): UpperCAmelCase__ : int = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[Any] = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 2, 3]) UpperCAmelCase__ : Dict = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def snake_case__ ( self): UpperCAmelCase__ : Tuple = Vector([1, 2, 3]) UpperCAmelCase__ : Optional[int] = Vector([2, -1, 4]) # for test of dot product UpperCAmelCase__ : Any = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , """(3.0,6.0,9.0)""") self.assertEqual((a * b) , 0) def snake_case__ ( self): self.assertEqual(str(zero_vector(10)).count("""0""") , 10) def snake_case__ ( self): self.assertEqual(str(unit_basis_vector(3 , 1)) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : Any = Vector([1, 2, 3]) UpperCAmelCase__ : List[str] = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , _lowerCamelCase , _lowerCamelCase)) , """(3,4,7)""") def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = Vector([1, 0, 0, 0, 0, 0]) UpperCAmelCase__ : Optional[int] = x.copy() self.assertEqual(str(_lowerCamelCase) , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : str = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(_lowerCamelCase) , """(0,1,0)""") def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : List[str] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Tuple = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(_lowerCamelCase , _lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) UpperCAmelCase__ : List[Any] = Vector([1, 2, 3]) self.assertEqual("""(14,32,50)""" , str(a * x)) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2)) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(_lowerCamelCase)) def snake_case__ ( self): UpperCAmelCase__ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def snake_case__ ( self): UpperCAmelCase__ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b)) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) UpperCAmelCase__ : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b)) def snake_case__ ( self): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
283
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt'''} __lowerCamelCase : Optional[int] = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } __lowerCamelCase : Dict = { '''openbmb/cpm-ant-10b''': 1024, } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = collections.OrderedDict() with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ = reader.readlines() for index, token in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ = index return vocab class __snake_case ( lowerCamelCase_ ): def __init__( self : Any , _lowercase : Union[str, Any] , _lowercase : Optional[Any]="<unk>" , _lowercase : Optional[Any]=2_00 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab SCREAMING_SNAKE_CASE__ = unk_token SCREAMING_SNAKE_CASE__ = max_input_chars_per_word def __a ( self : Optional[Any] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(_lowercase ) if len(_lowercase ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] while start < len(_lowercase ): SCREAMING_SNAKE_CASE__ = len(_lowercase ) SCREAMING_SNAKE_CASE__ = None while start < end: SCREAMING_SNAKE_CASE__ = """""".join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowercase ) SCREAMING_SNAKE_CASE__ = end return sub_tokens class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] lowerCAmelCase_ = False def __init__( self : Dict , _lowercase : List[Any] , _lowercase : List[str]="<d>" , _lowercase : List[Any]="</d>" , _lowercase : int="<s>" , _lowercase : Union[str, Any]="</s>" , _lowercase : Optional[Any]="<pad>" , _lowercase : List[Any]="<unk>" , _lowercase : Any="</n>" , _lowercase : str="</_>" , _lowercase : Union[str, Any]="left" , **_lowercase : List[str] , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_lowercase , eod_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , unk_token=_lowercase , line_token=_lowercase , space_token=_lowercase , padding_side=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ = bod_token SCREAMING_SNAKE_CASE__ = eod_token SCREAMING_SNAKE_CASE__ = load_vocab(_lowercase ) SCREAMING_SNAKE_CASE__ = self.encoder[space_token] SCREAMING_SNAKE_CASE__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Union[str, Any] ): """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : int ): """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : List[Any] ): """simple docstring""" return self.encoder["\n"] @property def __a ( self : Dict ): """simple docstring""" return len(self.encoder ) def __a ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : List[str] , _lowercase : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for x in jieba.cut(_lowercase , cut_all=_lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowercase ) ) return output_tokens def __a ( self : List[Any] , _lowercase : List[str] , **_lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : Optional[Any] ): """simple docstring""" return token in self.encoder def __a ( self : Optional[int] , _lowercase : List[str] ): """simple docstring""" return "".join(_lowercase ) def __a ( self : str , _lowercase : List[Any] ): """simple docstring""" return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def __a ( self : Optional[Any] , _lowercase : Union[str, Any] ): """simple docstring""" return self.decoder.get(_lowercase , self.unk_token ) def __a ( self : List[str] , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" if os.path.isdir(_lowercase ): SCREAMING_SNAKE_CASE__ = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: SCREAMING_SNAKE_CASE__ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory SCREAMING_SNAKE_CASE__ = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder["""\n"""] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) SCREAMING_SNAKE_CASE__ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) return [1] + ([0] * len(_lowercase ))
219
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger(__name__) __lowerCamelCase : Dict = '''Hello, World!''' __lowerCamelCase : Optional[Any] = '''en_XX''' def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : bool ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = Path("""data_bin""" ) SCREAMING_SNAKE_CASE__ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__UpperCamelCase ).parent ) , checkpoint_file=Path(__UpperCamelCase ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(__UpperCamelCase ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(__UpperCamelCase ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE__ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = XmodForSequenceClassification(__UpperCamelCase ) if classification_head else XmodForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE__ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE__ = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE__ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE__ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE__ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE__ = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE__ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) SCREAMING_SNAKE_CASE__ = xmod_layer.fca.weight SCREAMING_SNAKE_CASE__ = xmod_layer.fca.bias SCREAMING_SNAKE_CASE__ = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE__ = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE__ = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE__ = from_adapter.fca.weight SCREAMING_SNAKE_CASE__ = from_adapter.fca.bias SCREAMING_SNAKE_CASE__ = from_adapter.fca.weight SCREAMING_SNAKE_CASE__ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].dense.weight SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].dense.bias SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.weight SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE__ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE__ = xmod.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = model(__UpperCamelCase )[0] if classification_head: SCREAMING_SNAKE_CASE__ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(__UpperCamelCase ) ) else: SCREAMING_SNAKE_CASE__ = xmod.model(__UpperCamelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE__ = torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase , exist_ok=__UpperCamelCase ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __lowerCamelCase : str = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
219
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'marian' __UpperCAmelCase : Any = ['past_key_values'] __UpperCAmelCase : int = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _a=58_101 , _a=None , _a=1_024 , _a=12 , _a=4_096 , _a=16 , _a=12 , _a=4_096 , _a=16 , _a=0.0 , _a=0.0 , _a=True , _a=True , _a="gelu" , _a=1_024 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=58_100 , _a=False , _a=58_100 , _a=0 , _a=0 , _a=True , **_a , ): __a = vocab_size __a = decoder_vocab_size or vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True __a = share_encoder_decoder_embeddings super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , **_a , ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self ): if self.task in ["default", "seq2seq-lm"]: __a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __a = {0: '''batch'''} __a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __a = {0: '''batch''', 1: '''decoder_sequence'''} __a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_a , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __a , __a = self.num_layers for i in range(_a ): __a = {0: '''batch''', 2: '''past_sequence + sequence'''} __a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self ): if self.task in ["default", "seq2seq-lm"]: __a = super().outputs else: __a = super(_a , self ).outputs if self.use_past: __a , __a = self.num_layers for i in range(_a ): __a = {0: '''batch''', 2: '''past_sequence + sequence'''} __a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ): __a = self._generate_dummy_inputs_for_encoder_and_decoder( _a , _a , _a , _a , _a ) # Generate decoder inputs __a = seq_length if not self.use_past else 1 __a = self._generate_dummy_inputs_for_encoder_and_decoder( _a , _a , _a , _a , _a ) __a = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __a = dict(**_a , **_a ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __a , __a = common_inputs['''input_ids'''].shape __a = common_inputs['''decoder_input_ids'''].shape[1] __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = decoder_seq_length + 3 __a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_a , _a )] , dim=1 ) __a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __a , __a = self.num_layers __a = min(_a , _a ) __a = max(_a , _a ) - min_num_layers __a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_a ): common_inputs["past_key_values"].append( ( torch.zeros(_a ), torch.zeros(_a ), torch.zeros(_a ), torch.zeros(_a ), ) ) # TODO: test this. __a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_a , _a ): common_inputs["past_key_values"].append((torch.zeros(_a ), torch.zeros(_a )) ) return common_inputs def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ): __a = self._generate_dummy_inputs_for_encoder_and_decoder( _a , _a , _a , _a , _a ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __a , __a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __a = seqlen + 2 __a , __a = self.num_layers __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = common_inputs['''attention_mask'''].dtype __a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_a , _a , dtype=_a )] , dim=1 ) __a = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(_a ) ] return common_inputs def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __a = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __a = tokenizer.num_special_tokens_to_add(_a ) __a = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_a ) # Generate dummy inputs according to compute batch and sequence __a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __a = dict(tokenizer(_a , return_tensors=_a ) ) return common_inputs def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ): if self.task in ["default", "seq2seq-lm"]: __a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) else: __a = self._generate_dummy_inputs_for_causal_lm( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) return common_inputs def __UpperCAmelCase ( self , _a , _a , _a , _a ): if self.task in ["default", "seq2seq-lm"]: __a = super()._flatten_past_key_values_(_a , _a , _a , _a ) else: __a = super(_a , self )._flatten_past_key_values_( _a , _a , _a , _a ) @property def __UpperCAmelCase ( self ): return 1E-4
11
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[list[str]] , lowerCAmelCase__ : int , ) -> None: __a = len(lowerCAmelCase__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(lowerCAmelCase__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCAmelCase__ , lowerCAmelCase__ , ) def lowercase ( lowerCAmelCase__ : int ) -> None: __a = [] depth_first_search([] , [] , [] , lowerCAmelCase__ , lowerCAmelCase__ ) # Print all the boards for board in boards: for column in board: print(lowerCAmelCase__ ) print('''''' ) print(len(lowerCAmelCase__ ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
11
1
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a__ : Any = sys.version_info >= (3, 1_0) def _UpperCamelCase ( __A=None , __A=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=__A ) @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = 42 @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = None class lowercase_ ( a__ ): __UpperCAmelCase = 'titi' __UpperCAmelCase = 'toto' class lowercase_ ( a__ ): __UpperCAmelCase = 'titi' __UpperCAmelCase = 'toto' __UpperCAmelCase = 42 @dataclass class lowercase_ : __UpperCAmelCase = "toto" def __a ( self ): UpperCamelCase__ = BasicEnum(self.foo ) @dataclass class lowercase_ : __UpperCAmelCase = "toto" def __a ( self ): UpperCamelCase__ = MixedTypeEnum(self.foo ) @dataclass class lowercase_ : __UpperCAmelCase = None __UpperCAmelCase = field(default=a__ , metadata={'help': 'help message'} ) __UpperCAmelCase = None __UpperCAmelCase = list_field(default=[] ) __UpperCAmelCase = list_field(default=[] ) @dataclass class lowercase_ : __UpperCAmelCase = list_field(default=[] ) __UpperCAmelCase = list_field(default=[1, 2, 3] ) __UpperCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __UpperCAmelCase = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : __UpperCAmelCase = field() __UpperCAmelCase = field() __UpperCAmelCase = field() def __a ( self ): UpperCamelCase__ = BasicEnum(self.required_enum ) @dataclass class lowercase_ : __UpperCAmelCase = 42 __UpperCAmelCase = field() __UpperCAmelCase = None __UpperCAmelCase = field(default='toto' , metadata={'help': 'help message'} ) __UpperCAmelCase = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : __UpperCAmelCase = False __UpperCAmelCase = True __UpperCAmelCase = None @dataclass class lowercase_ : __UpperCAmelCase = None __UpperCAmelCase = field(default=a__ , metadata={'help': 'help message'} ) __UpperCAmelCase = None __UpperCAmelCase = list_field(default=[] ) __UpperCAmelCase = list_field(default=[] ) class lowercase_ ( unittest.TestCase ): def __a ( self , a , a ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase__ = {k: v for k, v in vars(a ).items() if k != "container"} UpperCamelCase__ = {k: v for k, v in vars(a ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , a ) and yy.get("choices" , a ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](a ) , yy["type"](a ) ) del xx["type"], yy["type"] self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , required=a ) expected.add_argument("--bar" , type=a , required=a ) expected.add_argument("--baz" , type=a , required=a ) expected.add_argument("--flag" , type=a , default=a , const=a , nargs="?" ) self.argparsersEqual(a , a ) UpperCamelCase__ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCamelCase__) , ) = parser.parse_args_into_dataclasses(a , look_for_args_file=a ) self.assertFalse(example.flag ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=a ) expected.add_argument("--baz" , default="toto" , type=a , help="help message" ) self.argparsersEqual(a , a ) def __a ( self ): UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , default=a , const=a , nargs="?" ) expected.add_argument("--baz" , type=a , default=a , const=a , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=a , dest="baz" ) expected.add_argument("--opt" , type=a , default=a ) UpperCamelCase__ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(a ) for dataclass_type in dataclass_types: UpperCamelCase__ = HfArgumentParser(a ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) UpperCamelCase__ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase__ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase__ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) UpperCamelCase__ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __a ( self ): @dataclass class lowercase_ : __UpperCAmelCase = "toto" UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase__ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase__ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=a ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=a ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=a ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual( a , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase__ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(a , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __a ( self ): UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , default=a , type=a ) expected.add_argument("--bar" , default=a , type=a , help="help message" ) expected.add_argument("--baz" , default=a , type=a ) expected.add_argument("--ces" , nargs="+" , default=[] , type=a ) expected.add_argument("--des" , nargs="+" , default=[] , type=a ) UpperCamelCase__ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(a ) for dataclass_type in dataclass_types: UpperCamelCase__ = HfArgumentParser(a ) self.argparsersEqual(a , a ) UpperCamelCase__ = parser.parse_args([] ) self.assertEqual(a , Namespace(foo=a , bar=a , baz=a , ces=[] , des=[] ) ) UpperCamelCase__ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(a , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=a , required=a ) expected.add_argument("--required_str" , type=a , required=a ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , ) self.argparsersEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , required=a ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , ) expected.add_argument("--opt" , type=a , default=a ) expected.add_argument("--baz" , default="toto" , type=a , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a ) self.argparsersEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCamelCase__ = parser.parse_dict(a )[0] UpperCamelCase__ = BasicExample(**a ) self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(a , parser.parse_dict , a , allow_extra_keys=a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a , "temp_json" ) os.mkdir(a ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(a , a ) UpperCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCamelCase__ = BasicExample(**a ) self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) UpperCamelCase__ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ = os.path.join(a , "temp_yaml" ) os.mkdir(a ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(a , a ) UpperCamelCase__ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCamelCase__ = BasicExample(**a ) self.assertEqual(a , a ) def __a ( self ): UpperCamelCase__ = HfArgumentParser(a ) self.assertIsNotNone(a )
80
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Dict =nn.functional.normalize(__lowerCAmelCase ) UpperCAmelCase : Tuple =nn.functional.normalize(__lowerCAmelCase ) return torch.mm(__lowerCAmelCase , normalized_text_embeds.t() ) class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : List[str] = CLIPConfig __lowerCamelCase : List[Any] = ["""CLIPEncoderLayer"""] def __init__( self , snake_case__ ) -> Dict: '''simple docstring''' super().__init__(snake_case__ ) UpperCAmelCase : Dict =CLIPVisionModel(config.vision_config ) UpperCAmelCase : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=snake_case__ ) UpperCAmelCase : int =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : List[str] =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=snake_case__ ) UpperCAmelCase : str =nn.Parameter(torch.ones(17 ) , requires_grad=snake_case__ ) UpperCAmelCase : Optional[int] =nn.Parameter(torch.ones(3 ) , requires_grad=snake_case__ ) @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : Optional[Any] =self.visual_projection(snake_case__ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : List[str] =cosine_distance(snake_case__ , self.special_care_embeds ).cpu().float().numpy() UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ).cpu().float().numpy() UpperCAmelCase : Tuple =[] UpperCAmelCase : Dict =image_embeds.shape[0] for i in range(snake_case__ ): UpperCAmelCase : str ={'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : str =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): UpperCAmelCase : Optional[Any] =special_cos_dist[i][concept_idx] UpperCAmelCase : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() UpperCAmelCase : str =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) UpperCAmelCase : int =0.01 for concept_idx in range(len(cos_dist[0] ) ): UpperCAmelCase : Any =cos_dist[i][concept_idx] UpperCAmelCase : Optional[int] =self.concept_embeds_weights[concept_idx].item() UpperCAmelCase : int =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(snake_case__ ) result.append(snake_case__ ) UpperCAmelCase : Optional[int] =[len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any =self.vision_model(snake_case__ )[1] # pooled_output UpperCAmelCase : List[str] =self.visual_projection(snake_case__ ) UpperCAmelCase : Any =cosine_distance(snake_case__ , self.special_care_embeds ) UpperCAmelCase : Optional[Any] =cosine_distance(snake_case__ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images UpperCAmelCase : Optional[Any] =0.0 UpperCAmelCase : Any =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) UpperCAmelCase : str =torch.any(special_scores > 0 , dim=1 ) UpperCAmelCase : List[Any] =special_care * 0.01 UpperCAmelCase : Union[str, Any] =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) UpperCAmelCase : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) UpperCAmelCase : str =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
348
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _UpperCAmelCase : Union[str, Any] = "<<<<<<< This should probably be modified because it mentions: " _UpperCAmelCase : List[Any] = "=======\n>>>>>>>\n" _UpperCAmelCase : Optional[int] = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] _UpperCAmelCase : Optional[Any] = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def A ( lowercase ) -> Optional[Any]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase ( _SCREAMING_SNAKE_CASE ): @staticmethod def __UpperCamelCase ( A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=A_ , required=A_ , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=A_ , required=A_ , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ , A_ , *A_ ) -> Any: """simple docstring""" UpperCamelCase = get_logger('datasets-cli/converting' ) UpperCamelCase = tfds_path UpperCamelCase = datasets_directory def __UpperCamelCase ( self ) -> int: """simple docstring""" if os.path.isdir(self._tfds_path ): UpperCamelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCamelCase = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) UpperCamelCase = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = {} if os.path.isdir(self._tfds_path ): UpperCamelCase = os.listdir(A_ ) else: UpperCamelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) UpperCamelCase = os.path.join(A_ , A_ ) UpperCamelCase = os.path.join(A_ , A_ ) if not os.path.isfile(A_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(A_ , encoding='utf-8' ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [] UpperCamelCase = False UpperCamelCase = False UpperCamelCase = [] for line in lines: UpperCamelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCamelCase = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here UpperCamelCase = '' continue elif "from absl import logging" in out_line: UpperCamelCase = 'from datasets import logging\n' elif "getLogger" in out_line: UpperCamelCase = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCamelCase = True UpperCamelCase = list(filter(lambda A_ : e in out_line , A_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(A_ ) + '\n' ) out_lines.append(A_ ) out_lines.append(A_ ) continue else: for pattern, replacement in TO_CONVERT: UpperCamelCase = re.sub(A_ , A_ , A_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCamelCase = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , A_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) UpperCamelCase = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCamelCase = True out_lines.append(A_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCamelCase = f_name.replace('.py' , '' ) UpperCamelCase = os.path.join(A_ , A_ ) UpperCamelCase = os.path.join(A_ , A_ ) os.makedirs(A_ , exist_ok=A_ ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(A_ ) if needs_manual_update: with_manual_update.append(A_ ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.writelines(A_ ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: UpperCamelCase = os.path.basename(A_ ) UpperCamelCase = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(A_ , A_ ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
358
import logging import os from .state import PartialState class lowercase ( logging.LoggerAdapter ): @staticmethod def __UpperCamelCase ( A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __UpperCamelCase ( self , A_ , A_ , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) UpperCamelCase = kwargs.pop('main_process_only' , A_ ) UpperCamelCase = kwargs.pop('in_order' , A_ ) if self.isEnabledFor(A_ ): if self._should_log(A_ ): UpperCamelCase , UpperCamelCase = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) elif in_order: UpperCamelCase = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase , UpperCamelCase = self.process(A_ , A_ ) self.logger.log(A_ , A_ , *A_ , **A_ ) state.wait_for_everyone() def A ( lowercase , lowercase = None ) -> Dict: '''simple docstring''' if log_level is None: UpperCamelCase = os.environ.get('ACCELERATE_LOG_LEVEL' , lowercase ) UpperCamelCase = logging.getLogger(lowercase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowercase , {} )
110
0
import argparse from collections import defaultdict import yaml _A = '''docs/source/en/_toctree.yml''' def __UpperCamelCase ( _A ): lowerCAmelCase_ = defaultdict(_A ) for doc in model_doc: counts[doc["local"]] += 1 lowerCAmelCase_ = [key for key, value in counts.items() if value > 1] lowerCAmelCase_ = [] for duplicate_key in duplicates: lowerCAmelCase_ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(_A ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(_A , key=lambda _A : s["title"].lower() ) def __UpperCamelCase ( _A=False ): with open(_A , encoding='''utf-8''' ) as f: lowerCAmelCase_ = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ = content[api_idx]['''sections'''] # Then to the model doc lowerCAmelCase_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowerCAmelCase_ = api_doc[model_idx]['''sections'''] lowerCAmelCase_ = [(idx, section) for idx, section in enumerate(_A ) if '''sections''' in section] lowerCAmelCase_ = False for idx, modality_doc in modalities_docs: lowerCAmelCase_ = modality_doc['''sections'''] lowerCAmelCase_ = clean_model_doc_toc(_A ) if old_modality_doc != new_modality_doc: lowerCAmelCase_ = True if overwrite: lowerCAmelCase_ = new_modality_doc if diff: if overwrite: lowerCAmelCase_ = model_doc lowerCAmelCase_ = api_doc with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _A = parser.parse_args() check_model_doc(args.fix_and_overwrite)
278
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __UpperCamelCase ( _A ): lowerCAmelCase_ = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_A , _A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(_A , _A , bias=_A ) lowerCAmelCase_ = emb.weight.data return lin_layer def __UpperCamelCase ( _A ): lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) lowerCAmelCase_ = Namespace(**checkpoint['''cfg''']['''model'''] ) lowerCAmelCase_ = checkpoint['''model'''] remove_ignore_keys_(_A ) lowerCAmelCase_ = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCAmelCase_ = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} lowerCAmelCase_ = XGLMConfig( vocab_size=_A , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) lowerCAmelCase_ = XGLMForCausalLM(_A ) lowerCAmelCase_ = model.load_state_dict(_A , strict=_A ) print(_A ) lowerCAmelCase_ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') _A = parser.parse_args() _A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
278
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( snake_case_ , unittest.TestCase ): UpperCamelCase : Tuple = BlenderbotSmallTokenizer UpperCamelCase : List[Any] = False def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: super().setUp() _a : List[Any] = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] _a : Dict = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) _a : Tuple = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] _a : Any = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} _a : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase__ ) ) def _lowercase ( self : int , **UpperCAmelCase__ : Optional[Any] ) -> str: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def _lowercase ( self : str , UpperCAmelCase__ : str ) -> Dict: _a : Tuple = """adapt act apte""" _a : Union[str, Any] = """adapt act apte""" return input_text, output_text def _lowercase ( self : List[Any] ) -> Union[str, Any]: _a : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a : List[Any] = """adapt act apte""" _a : List[str] = ["""adapt""", """act""", """ap@@""", """te"""] _a : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _a : Optional[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) def _lowercase ( self : Optional[Any] ) -> Optional[Any]: _a : Optional[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] _a : Dict = """I am a small frog.""" _a : Optional[int] = tok([src_text] , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ )["""input_ids"""] _a : Optional[int] = tok.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase ( self : Dict ) -> str: _a : int = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) _a : List[Any] = """I am a small frog .""" _a : Tuple = """.""" _a : Optional[int] = tok(UpperCAmelCase__ )["""input_ids"""] _a : Dict = tok(UpperCAmelCase__ )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
def UpperCamelCase_( lowerCamelCase_ ) -> int: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError('only integers accepted as input' ) else: _lowercase : Any = str(abs(lowerCamelCase_ ) ) _lowercase : Dict = [list(lowerCamelCase_ ) for char in range(len(lowerCamelCase_ ) )] for index in range(len(lowerCamelCase_ ) ): num_transpositions[index].pop(lowerCamelCase_ ) return max( int(''.join(list(lowerCamelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
21
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __lowerCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCamelCase__: lowerCAmelCase__ : str = field( default=__A , metadata={'help': 'Model type selected in the list: ' + ', '.join(__A )} ) lowerCAmelCase__ : str = field( default=__A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ : bool = field( default=__A , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ : bool = field( default=__A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Dict = 'train' lowerCAmelCase__ : int = 'dev' class UpperCamelCase__( __A ): lowerCAmelCase__ : SquadDataTrainingArguments lowerCAmelCase__ : List[SquadFeatures] lowerCAmelCase__ : Split lowerCAmelCase__ : bool def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = Split.train ,__UpperCAmelCase = False ,__UpperCAmelCase = None ,__UpperCAmelCase = "pt" ,) -> Optional[Any]: A__ = args A__ = is_language_sensitive A__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: A__ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A__ = mode # Load data features from cache or dataset file A__ = 'v2' if args.version_2_with_negative else 'v1' A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + '.lock' with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(__UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ = self.old_features['features'] A__ = self.old_features.get('dataset' ,__UpperCAmelCase ) A__ = self.old_features.get('examples' ,__UpperCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) A__ , A__ = squad_convert_examples_to_features( examples=self.examples ,tokenizer=__UpperCAmelCase ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=__UpperCAmelCase ,) A__ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} ,__UpperCAmelCase ,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self ,__UpperCAmelCase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset A__ = self.features[i] A__ = torch.tensor(feature.input_ids ,dtype=torch.long ) A__ = torch.tensor(feature.attention_mask ,dtype=torch.long ) A__ = torch.tensor(feature.token_type_ids ,dtype=torch.long ) A__ = torch.tensor(feature.cls_index ,dtype=torch.long ) A__ = torch.tensor(feature.p_mask ,dtype=torch.float ) A__ = torch.tensor(feature.is_impossible ,dtype=torch.float ) A__ = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ = torch.tensor(feature.start_position ,dtype=torch.long ) A__ = torch.tensor(feature.end_position ,dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
221
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } lowerCAmelCase__ = '''▁''' class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = AlbertTokenizer def __init__(self , __a=None , __a=None , __a=True , __a=True , __a=False , __a="[CLS]" , __a="[SEP]" , __a="<unk>" , __a="[SEP]" , __a="<pad>" , __a="[CLS]" , __a="[MASK]" , **__a , ) -> int: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCamelCase = ( AddedToken(__a , lstrip=__a , rstrip=__a , normalized=__a ) if isinstance(__a , __a ) else mask_token ) super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) UpperCamelCase = do_lower_case UpperCamelCase = remove_space UpperCamelCase = keep_accents UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ (self , __a , __a = None ) -> List[int]: UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ (self , __a , __a = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
244
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCAmelCase__ = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = _TestCommandArgs(dataset=_SCREAMING_SNAKE_CASE , all_configs=_SCREAMING_SNAKE_CASE , save_infos=_SCREAMING_SNAKE_CASE ) UpperCamelCase = TestCommand(*_SCREAMING_SNAKE_CASE ) test_command.run() UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , "README.md" ) assert os.path.exists(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict.from_directory(_SCREAMING_SNAKE_CASE ) UpperCamelCase = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 2_351_563, "num_examples": 10_000, }, { "name": "validation", "num_bytes": 238_418, "num_examples": 1_000, }, ] , download_size=3_940_680 , dataset_size=2_589_981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: UpperCamelCase , UpperCamelCase = getattr(dataset_infos["default"] , _SCREAMING_SNAKE_CASE ), getattr(expected_dataset_infos["default"] , _SCREAMING_SNAKE_CASE ) if key == "num_bytes": assert is_apercent_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif key == "splits": assert list(_SCREAMING_SNAKE_CASE ) == list(_SCREAMING_SNAKE_CASE ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
244
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) class lowercase__ ( __A): UpperCamelCase_ = ["input_ids", "attention_mask"] def __init__( self : List[Any] , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : List[Any]="<unk>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : Optional[int]=125 , UpperCamelCase__ : Dict=None , **UpperCamelCase__ : Tuple , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE : Any = [f"""<extra_id_{i}>""" for i in range(_UpperCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE : str = len(set(filter(lambda UpperCamelCase__ : bool('''extra_id''' in str(_UpperCamelCase ) ) , _UpperCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) SCREAMING_SNAKE_CASE : int = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token SCREAMING_SNAKE_CASE : Tuple = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token super().__init__( eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , extra_ids=_UpperCamelCase , additional_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = extra_ids SCREAMING_SNAKE_CASE : Tuple = 2**8 # utf is 8 bits # define special tokens dict SCREAMING_SNAKE_CASE : Dict = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } SCREAMING_SNAKE_CASE : str = len(self.special_tokens_encoder ) SCREAMING_SNAKE_CASE : Optional[int] = len(_UpperCamelCase ) for i, token in enumerate(_UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = self.vocab_size + i - n SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.special_tokens_encoder.items()} @property def __A ( self : Optional[int] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __A ( self : Tuple , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCamelCase )) + [1] return ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def __A ( self : Union[str, Any] , UpperCamelCase__ : List[int] ): '''simple docstring''' if len(_UpperCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self._add_eos_if_not_present(_UpperCamelCase ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE : Any = self._add_eos_if_not_present(_UpperCamelCase ) return token_ids_a + token_ids_a def __A ( self : Optional[int] , UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [chr(_UpperCamelCase ) for i in text.encode('''utf-8''' )] return tokens def __A ( self : List[str] , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if token in self.special_tokens_encoder: SCREAMING_SNAKE_CASE : Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: SCREAMING_SNAKE_CASE : Any = self.added_tokens_encoder[token] elif len(_UpperCamelCase ) != 1: SCREAMING_SNAKE_CASE : List[str] = self.unk_token_id else: SCREAMING_SNAKE_CASE : List[str] = ord(_UpperCamelCase ) + self._num_special_tokens return token_id def __A ( self : int , UpperCamelCase__ : Tuple ): '''simple docstring''' if index in self.special_tokens_decoder: SCREAMING_SNAKE_CASE : Any = self.special_tokens_decoder[index] else: SCREAMING_SNAKE_CASE : str = chr(index - self._num_special_tokens ) return token def __A ( self : int , UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = B'''''' for token in tokens: if token in self.special_tokens_decoder: SCREAMING_SNAKE_CASE : Any = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: SCREAMING_SNAKE_CASE : List[Any] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: SCREAMING_SNAKE_CASE : int = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: SCREAMING_SNAKE_CASE : List[str] = token.encode('''utf-8''' ) else: SCREAMING_SNAKE_CASE : Optional[Any] = bytes([ord(_UpperCamelCase )] ) bstring += tok_string SCREAMING_SNAKE_CASE : List[Any] = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def __A ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' return ()
182
import math def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase_ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) lowerCAmelCase_ , lowerCAmelCase_ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase_ = res(xa, ya) lowerCAmelCase_ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
8
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self : Dict , lowerCamelCase_ : List[Any] = 16 , lowerCamelCase_ : Optional[int] = 88 , lowerCamelCase_ : int = None , lowerCamelCase_ : List[Any] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : Tuple = 0.0 , lowerCamelCase_ : Optional[Any] = 32 , lowerCamelCase_ : Dict = None , lowerCamelCase_ : List[Any] = False , lowerCamelCase_ : str = None , lowerCamelCase_ : Optional[Any] = "geglu" , lowerCamelCase_ : List[str] = True , lowerCamelCase_ : Tuple = True , ): """simple docstring""" super().__init__() UpperCamelCase = num_attention_heads UpperCamelCase = attention_head_dim UpperCamelCase = num_attention_heads * attention_head_dim UpperCamelCase = in_channels UpperCamelCase = torch.nn.GroupNorm(num_groups=A__ , num_channels=A__ , eps=1E-6 , affine=A__ ) UpperCamelCase = nn.Linear(A__ , A__ ) # 3. Define transformers blocks UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock( A__ , A__ , A__ , dropout=A__ , cross_attention_dim=A__ , activation_fn=A__ , attention_bias=A__ , double_self_attention=A__ , norm_elementwise_affine=A__ , ) for d in range(A__ ) ] ) UpperCamelCase = nn.Linear(A__ , A__ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : str=1 , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Dict = True , ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = hidden_states.shape UpperCamelCase = batch_frames // num_frames UpperCamelCase = hidden_states UpperCamelCase = hidden_states[None, :].reshape(A__ , A__ , A__ , A__ , A__ ) UpperCamelCase = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) UpperCamelCase = self.norm(A__ ) UpperCamelCase = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , A__ , A__ ) UpperCamelCase = self.proj_in(A__ ) # 2. Blocks for block in self.transformer_blocks: UpperCamelCase = block( A__ , encoder_hidden_states=A__ , timestep=A__ , cross_attention_kwargs=A__ , class_labels=A__ , ) # 3. Output UpperCamelCase = self.proj_out(A__ ) UpperCamelCase = ( hidden_states[None, None, :] .reshape(A__ , A__ , A__ , A__ , A__ ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) UpperCamelCase = hidden_states.reshape(A__ , A__ , A__ , A__ ) UpperCamelCase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A__ )
359
def lowercase( UpperCamelCase_ ) -> list[list]: '''simple docstring''' UpperCamelCase = current_set.copy() for row_index, row in enumerate(UpperCamelCase_ ): UpperCamelCase = row[0] for column_index, column in enumerate(UpperCamelCase_ ): if magnitude == 0: UpperCamelCase = column continue UpperCamelCase = column / magnitude # Subtract to cancel term UpperCamelCase = current_set[0] UpperCamelCase = [first_row] UpperCamelCase = current_set[1::] for row in current_set: UpperCamelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(UpperCamelCase_ ) continue for column_index in range(len(UpperCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(UpperCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCamelCase = final_set[0] UpperCamelCase = [] UpperCamelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCamelCase = simplify(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , UpperCamelCase_ ) UpperCamelCase = resultant return final_set def lowercase( UpperCamelCase_ ) -> list: '''simple docstring''' if len(UpperCamelCase_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) UpperCamelCase = len(UpperCamelCase_ ) + 1 if any(len(UpperCamelCase_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(UpperCamelCase_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(UpperCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCamelCase = equations.copy() if any(0 in row for row in data_set ): UpperCamelCase = data_set.copy() UpperCamelCase = [] for row_index, row in enumerate(UpperCamelCase_ ): if 0 not in row: UpperCamelCase = data_set.pop(UpperCamelCase_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , UpperCamelCase_ ) UpperCamelCase = data_set.copy() UpperCamelCase = simplify(UpperCamelCase_ ) UpperCamelCase = simplified[::-1] UpperCamelCase = [] for row in simplified: UpperCamelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCamelCase = row.copy()[: len(UpperCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(UpperCamelCase_ ) == 0: solutions.append(0 ) continue UpperCamelCase = temp_row[1::] UpperCamelCase = temp_row[::-1] for column_index, column in enumerate(UpperCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(UpperCamelCase_ ) UpperCamelCase = [] for item in solutions: final.append(float(round(UpperCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
165
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] UpperCAmelCase_ : Optional[int] = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Tuple: """simple docstring""" a_ : str = torch.load(__A , map_location='cpu' ) return sd def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Union[str, Any] , __A : Dict=rename_keys_prefix ) -> List[Any]: """simple docstring""" a_ : str = OrderedDict() a_ : Optional[int] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue a_ : Optional[int] = key for name_pair in rename_keys_prefix: a_ : Union[str, Any] = new_key.replace(name_pair[0] , name_pair[1] ) a_ : Dict = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately a_ : Optional[Any] = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : List[str] ) -> int: """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: a_ : Dict = 'pretraining' if "vcr" in checkpoint_path: a_ : Any = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: a_ : Optional[int] = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: a_ : str = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: a_ : List[Any] = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: a_ : Dict = {'visual_embedding_dim': 5_12} a_ : Union[str, Any] = 'multichoice' elif "vqa_advanced" in checkpoint_path: a_ : Union[str, Any] = {'visual_embedding_dim': 20_48} a_ : int = 'vqa_advanced' elif "vqa" in checkpoint_path: a_ : int = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} a_ : Tuple = 'vqa' elif "nlvr" in checkpoint_path: a_ : Dict = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } a_ : int = 'nlvr' a_ : List[str] = VisualBertConfig(**__A ) # Load State Dict a_ : List[Any] = load_state_dict(__A ) a_ : str = get_new_dict(__A , __A ) if model_type == "pretraining": a_ : int = VisualBertForPreTraining(__A ) elif model_type == "vqa": a_ : str = VisualBertForQuestionAnswering(__A ) elif model_type == "nlvr": a_ : Optional[Any] = VisualBertForVisualReasoning(__A ) elif model_type == "multichoice": a_ : Tuple = VisualBertForMultipleChoice(__A ) model.load_state_dict(__A ) # Save Checkpoints Path(__A ).mkdir(exist_ok=__A ) model.save_pretrained(__A ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ : List[Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
32
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Optional[int] =logging.get_logger() @dataclass class __a : _lowerCAmelCase : nn.Module _lowerCAmelCase : List[nn.Module] = field(default_factory=A__ ) _lowerCAmelCase : list = field(default_factory=A__ ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Dict = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __a : _lowerCAmelCase : nn.Module _lowerCAmelCase : nn.Module _lowerCAmelCase : int = 0 _lowerCAmelCase : List = field(default_factory=A__ ) _lowerCAmelCase : List = field(default_factory=A__ ) def __call__( self : Any , SCREAMING_SNAKE_CASE : Tensor ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = Tracker(self.dest )(SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase__ : Any = Tracker(self.src )(SCREAMING_SNAKE_CASE ).parametrized UpperCamelCase__ : str = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.src_skip , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : List[Any] = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.dest_skip , SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise Exception( F'Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE )} operations while' F' destination module has {len(SCREAMING_SNAKE_CASE )}.' ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True ) -> Optional[int]: print(f'Converting {name}...' ) with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() UpperCamelCase__ : List[Any] = ResNetForImageClassification(__lowerCAmelCase ).eval() UpperCamelCase__ : Optional[Any] = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase ) UpperCamelCase__ : int = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCAmelCase ) assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one." UpperCamelCase__ : List[Any] = f'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=__lowerCAmelCase , ) # we can use the convnext one UpperCamelCase__ : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=__lowerCAmelCase , ) print(f'Pushed {checkpoint_name}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True ) -> Dict: UpperCamelCase__ : Dict = "imagenet-1k-id2label.json" UpperCamelCase__ : Optional[int] = 1000 UpperCamelCase__ : Any = (1, num_labels) UpperCamelCase__ : Union[str, Any] = "huggingface/label-files" UpperCamelCase__ : Optional[int] = num_labels UpperCamelCase__ : str = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ : Optional[int] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : Tuple = idalabel UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase : int =parser.parse_args() lowerCamelCase : Path =args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
189
0
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __UpperCAmelCase ( UpperCAmelCase_ : List[str] ) -> List[Any]: # picklable for multiprocessing '''simple docstring''' return x.sum() def __UpperCAmelCase ( UpperCAmelCase_ : List[str] ) -> Union[str, Any]: # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class UpperCamelCase : UpperCAmelCase : int UpperCAmelCase : str class UpperCamelCase ( lowercase ): def _lowercase (self : str) -> Tuple: __snake_case : Optional[int] = {} __snake_case : Optional[int] = [] __snake_case : Union[str, Any] = 1 __snake_case : List[str] = [1, 2] __snake_case : Dict = {'a': 1, 'b': 2} __snake_case : Optional[Any] = {'a': [1, 2], 'b': [3, 4]} __snake_case : str = {'a': {'1': 1}, 'b': 2} __snake_case : int = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __snake_case : Optional[Any] = {} __snake_case : Optional[int] = [] __snake_case : Optional[int] = 2 __snake_case : Optional[int] = [2, 3] __snake_case : Optional[int] = {'a': 2, 'b': 3} __snake_case : Any = {'a': [2, 3], 'b': [4, 5]} __snake_case : List[str] = {'a': {'1': 2}, 'b': 3} __snake_case : Optional[int] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) self.assertEqual(map_nested(_A , _A) , _A) __snake_case : Tuple = 2 self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) self.assertEqual(map_nested(_A , _A , num_proc=_A) , _A) __snake_case : Optional[int] = {'a': np.eye(2), 'b': np.zeros(3), 'c': np.ones(2)} __snake_case : Dict = {'a': 2, 'b': 0, 'c': 2} __snake_case : List[str] = { 'a': np.eye(2).astype(_A), 'b': np.zeros(3).astype(_A), 'c': np.ones(2).astype(_A), } self.assertEqual(map_nested(_A , _A , map_numpy=_A) , _A) self.assertEqual( {k: v.tolist() for k, v in map_nested(_A , _A , map_numpy=_A).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_A , _A , map_numpy=_A , num_proc=_A) , _A) self.assertEqual( {k: v.tolist() for k, v in map_nested(_A , _A , map_numpy=_A , num_proc=_A).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_A): # can't pickle a local lambda map_nested(lambda _A: x + 1 , _A , num_proc=_A) def _lowercase (self : Dict) -> Union[str, Any]: __snake_case : Union[str, Any] = {'a': 1, 'b': 2} __snake_case : Tuple = {'a': 3, 'b': 4} __snake_case : List[Any] = {'a': 5, 'b': 6} __snake_case : Dict = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))]) self.assertEqual(sorted(zip_dict(_A , _A , _A)) , _A) def _lowercase (self : List[Any]) -> str: class UpperCamelCase : UpperCAmelCase : Optional[int] = """bar""" __snake_case : Optional[Any] = Foo() self.assertEqual(foo.my_attr , 'bar') with temporary_assignment(_A , 'my_attr' , 'BAR'): self.assertEqual(foo.my_attr , 'BAR') self.assertEqual(foo.my_attr , 'bar') @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ) -> Dict: '''simple docstring''' with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: __snake_case : int = {F"{i}": i for i in range(UpperCAmelCase_ )} __snake_case : str = map_nested(lambda UpperCAmelCase_ : x + 10 , UpperCAmelCase_ , num_proc=UpperCAmelCase_ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCamelCase ( lowercase ): @require_tf def _lowercase (self : Union[str, Any]) -> Optional[int]: import tensorflow as tf from tensorflow.keras import layers __snake_case : Optional[Any] = layers.Dense(2) def gen_random_output(): __snake_case : int = tf.random.uniform((1, 3)) return model(_A).numpy() with temp_seed(42 , set_tensorflow=_A): __snake_case : Tuple = gen_random_output() with temp_seed(42 , set_tensorflow=_A): __snake_case : Union[str, Any] = gen_random_output() __snake_case : str = gen_random_output() np.testing.assert_equal(_A , _A) self.assertGreater(np.abs(outa - outa).sum() , 0) @require_torch def _lowercase (self : List[str]) -> List[Any]: import torch def gen_random_output(): __snake_case : Optional[Any] = torch.nn.Linear(3 , 2) __snake_case : Dict = torch.rand(1 , 3) return model(_A).detach().numpy() with temp_seed(42 , set_pytorch=_A): __snake_case : Optional[int] = gen_random_output() with temp_seed(42 , set_pytorch=_A): __snake_case : Optional[int] = gen_random_output() __snake_case : Dict = gen_random_output() np.testing.assert_equal(_A , _A) self.assertGreater(np.abs(outa - outa).sum() , 0) def _lowercase (self : Dict) -> Optional[Any]: def gen_random_output(): return np.random.rand(1 , 3) with temp_seed(42): __snake_case : Dict = gen_random_output() with temp_seed(42): __snake_case : str = gen_random_output() __snake_case : Optional[Any] = gen_random_output() np.testing.assert_equal(_A , _A) self.assertGreater(np.abs(outa - outa).sum() , 0) @pytest.mark.parametrize('input_data' , [{}] ) def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Any = NestedDataStructure(UpperCAmelCase_ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def __UpperCAmelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> Dict: '''simple docstring''' __snake_case : List[str] = NestedDataStructure(UpperCAmelCase_ ).flatten() assert output == expected_output def __UpperCAmelCase ( ) -> Any: '''simple docstring''' __snake_case : List[Any] = A(x=1 , y='foobar' ) __snake_case : int = {'x': 1, 'y': 'foobar'} assert asdict(UpperCAmelCase_ ) == expected_output __snake_case : Optional[int] = {'a': {'b': A(x=10 , y='foo' )}, 'c': [A(x=20 , y='bar' )]} __snake_case : Union[str, Any] = {'a': {'b': {'x': 10, 'y': 'foo'}}, 'c': [{'x': 20, 'y': 'bar'}]} assert asdict(UpperCAmelCase_ ) == expected_output with pytest.raises(UpperCAmelCase_ ): asdict([1, A(x=10 , y='foo' )] ) def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> Tuple: '''simple docstring''' return text.split() def __UpperCAmelCase ( UpperCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' with Pool(2 ) as pool: __snake_case : Any = list(iflatmap_unordered(UpperCAmelCase_ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCAmelCase_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: __snake_case : int = list(iflatmap_unordered(UpperCAmelCase_ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 10 ) ) assert out.count('hello' ) == 10 assert out.count('there' ) == 10 assert len(UpperCAmelCase_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: __snake_case : Union[str, Any] = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase_ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(UpperCAmelCase_ ) == 4
95
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests _a : int= "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _a : Dict= BASE_URL + "/user" # https://github.com/settings/tokens _a : Union[str, Any]= os.environ.get("USER_TOKEN", "") def __UpperCAmelCase ( UpperCAmelCase_ : str ) -> dict[Any, Any]: '''simple docstring''' __snake_case : Tuple = { 'Authorization': F"token {auth_token}", 'Accept': 'application/vnd.github.v3+json', } return requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
95
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( __lowerCAmelCase , unittest.TestCase ): __magic_name__ = LDMTextToImagePipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } __magic_name__ = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = False def __lowerCAmelCase ( self ) -> str: """simple docstring""" torch.manual_seed(0 ) A : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A : Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) A : Dict = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , ) torch.manual_seed(0 ) A : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A : Union[str, Any] = CLIPTextModel(lowerCamelCase_ ) A : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vqvae''': vae, '''bert''': text_encoder, '''tokenizer''': tokenizer, } return components def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> Dict: """simple docstring""" if str(lowerCamelCase_ ).startswith('''mps''' ): A : Dict = torch.manual_seed(lowerCamelCase_ ) else: A : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) A : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : str = self.get_dummy_components() A : Tuple = LDMTextToImagePipeline(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A : List[str] = self.get_dummy_inputs(lowerCamelCase_ ) A : Tuple = pipe(**lowerCamelCase_ ).images A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A : Tuple = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=torch.floataa , SCREAMING_SNAKE_CASE=0 ) -> List[Any]: """simple docstring""" A : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) A : Any = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 32, 32) ) A : str = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) A : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Optional[Any] = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A : str = self.get_inputs(lowerCamelCase_ ) A : Any = pipe(**lowerCamelCase_ ).images A : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A : Optional[int] = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] ) A : List[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=torch.floataa , SCREAMING_SNAKE_CASE=0 ) -> int: """simple docstring""" A : Optional[Any] = torch.manual_seed(lowerCamelCase_ ) A : Union[str, Any] = np.random.RandomState(lowerCamelCase_ ).standard_normal((1, 4, 32, 32) ) A : Union[str, Any] = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ , dtype=lowerCamelCase_ ) A : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) A : Any = self.get_inputs(lowerCamelCase_ ) A : Any = pipe(**lowerCamelCase_ ).images[0] A : Tuple = load_numpy( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' ) A : Dict = np.abs(expected_image - image ).max() assert max_diff < 1e-3
3
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase ): __lowerCAmelCase = """swin""" __lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , lowerCamelCase_ : Optional[int]=224 , lowerCamelCase_ : Union[str, Any]=4 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Optional[Any]=96 , lowerCamelCase_ : int=[2, 2, 6, 2] , lowerCamelCase_ : Dict=[3, 6, 12, 24] , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=4.0 , lowerCamelCase_ : str=True , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Any=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Any="gelu" , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : Optional[Any]=0.0_2 , lowerCamelCase_ : str=1E-5 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : str=None , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1E-4
343
0
import logging import os from .state import PartialState class _lowerCamelCase ( logging.LoggerAdapter ): @staticmethod def _snake_case ( _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : Dict = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) A_ : int = kwargs.pop('''main_process_only''' , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = kwargs.pop('''in_order''' , _SCREAMING_SNAKE_CASE ) if self.isEnabledFor(_SCREAMING_SNAKE_CASE ): if self._should_log(_SCREAMING_SNAKE_CASE ): A_ : Dict = self.process(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.logger.log(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) elif in_order: A_ : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: A_ : Dict = self.process(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.logger.log(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ): if log_level is None: A_ : Tuple = os.environ.get('''ACCELERATE_LOG_LEVEL''' , SCREAMING_SNAKE_CASE ) A_ : str = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
358
from manim import * class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Optional[int] = Rectangle(height=0.5 , width=0.5 ) A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A_ : Any = [mem.copy() for i in range(6 )] A_ : Tuple = [mem.copy() for i in range(6 )] A_ : str = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Optional[Any] = Text('''CPU''' , font_size=24 ) A_ : Union[str, Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = [mem.copy() for i in range(1 )] A_ : Any = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Dict = Text('''GPU''' , font_size=24 ) A_ : List[str] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.align_to(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = [mem.copy() for i in range(6 )] A_ : List[str] = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) A_ : Union[str, Any] = Text('''Model''' , font_size=24 ) A_ : List[Any] = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , Create(_SCREAMING_SNAKE_CASE , run_time=1 ) , ) A_ : int = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) A_ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A_ : Any = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(_SCREAMING_SNAKE_CASE ) , Write(_SCREAMING_SNAKE_CASE ) ) self.add(_SCREAMING_SNAKE_CASE ) A_ : Dict = [] A_ : int = [] A_ : Optional[Any] = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(_SCREAMING_SNAKE_CASE ) cpu_target.generate_target() A_ : Union[str, Any] = 0.4_6 / 4 A_ : Any = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(_SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*_SCREAMING_SNAKE_CASE ) self.play(*_SCREAMING_SNAKE_CASE ) self.wait()
65
0
"""simple docstring""" from __future__ import annotations def lowercase_ ( _lowerCamelCase: int | float | str , _lowerCamelCase: int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] __lowerCamelCase : List[str] = int(_lowerCamelCase ) __lowerCamelCase : str = int(_lowerCamelCase ) __lowerCamelCase : list[str] = [] for temp in range(int(_lowerCamelCase ) ): series.append(F"""1 / {pow(temp + 1 , int(_lowerCamelCase ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __A = int(input('''Enter the last number (nth term) of the P-Series''')) __A = int(input('''Enter the power for P-Series''')) print('''Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p''') print(p_series(nth_term, power))
135
"""simple docstring""" import math import random def lowercase_ ( _lowerCamelCase: float , _lowerCamelCase: bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __A = 0.02 def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: int ) -> float: '''simple docstring''' __lowerCamelCase : Tuple = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(_lowerCamelCase ): # Forward propagation __lowerCamelCase : List[Any] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __lowerCamelCase : Any = (expected / 100) - layer_a # Error delta __lowerCamelCase : Dict = layer_1_error * sigmoid_function(_lowerCamelCase , _lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __A = int(input('''Expected value: ''')) __A = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
135
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase :List[str] = logging.get_logger(__name__) def _a ( _lowercase : Dict , _lowercase : Tuple=False ): '''simple docstring''' __UpperCAmelCase : int = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __UpperCAmelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __UpperCAmelCase : List[Any] = """""" else: __UpperCAmelCase : List[str] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase : Union[str, Any] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) __UpperCAmelCase : List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : str = in_proj_weight[ : config.hidden_size, : ] __UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] __UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def _a ( _lowercase : Any ): '''simple docstring''' __UpperCAmelCase : int = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(_a , _a ) def _a ( _lowercase : str , _lowercase : Optional[int] , _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = dct.pop(_a ) __UpperCAmelCase : List[Any] = val def _a ( ): '''simple docstring''' __UpperCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : int = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def _a ( _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : str=False ): '''simple docstring''' __UpperCAmelCase : Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=_a , ) __UpperCAmelCase : Union[str, Any] = ViTHybridConfig(backbone_config=_a , image_size=384 , num_labels=1000 ) __UpperCAmelCase : Optional[int] = False # load original model from timm __UpperCAmelCase : Optional[int] = timm.create_model(_a , pretrained=_a ) timm_model.eval() # load state_dict of original model, remove and rename some keys __UpperCAmelCase : str = timm_model.state_dict() if base_model: remove_classification_head_(_a ) __UpperCAmelCase : Optional[int] = create_rename_keys(_a , _a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , _a ) __UpperCAmelCase : int = """huggingface/label-files""" __UpperCAmelCase : Optional[int] = """imagenet-1k-id2label.json""" __UpperCAmelCase : Optional[int] = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : Tuple = {int(_a ): v for k, v in idalabel.items()} __UpperCAmelCase : Tuple = idalabel __UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": __UpperCAmelCase : Tuple = ViTHybridModel(_a ).eval() else: __UpperCAmelCase : Tuple = ViTHybridForImageClassification(_a ).eval() model.load_state_dict(_a ) # create image processor __UpperCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=_a ) ) __UpperCAmelCase : Optional[Any] = transform.transforms __UpperCAmelCase : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __UpperCAmelCase : int = ViTHybridImageProcessor( do_resize=_a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : Dict = transform(_a ).unsqueeze(0 ) __UpperCAmelCase : str = processor(_a , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_a , _a ) # verify logits with torch.no_grad(): __UpperCAmelCase : Tuple = model(_a ) __UpperCAmelCase : Tuple = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: __UpperCAmelCase : List[Any] = timm_model.forward_features(_a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_a , outputs.pooler_output , atol=1E-3 ) else: __UpperCAmelCase : Tuple = timm_model(_a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_a , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_a ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": __UpperCAmelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __UpperCAmelCase :List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
365
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCAmelCase :str = logging.get_logger(__name__) __UpperCAmelCase :int = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __UpperCAmelCase :List[str] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __UpperCAmelCase :Optional[Any] = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ): '''simple docstring''' __UpperCAmelCase : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase : Optional[Any] = bs[:] __UpperCAmelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowercase ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Dict = [chr(_lowercase ) for n in cs] return dict(zip(_lowercase , _lowercase ) ) def _a ( _lowercase : str ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = set() __UpperCAmelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Tuple = char return pairs class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] def __init__( self : str , snake_case : Dict , snake_case : str , snake_case : Optional[int]="replace" , snake_case : Tuple="<s>" , snake_case : Dict="</s>" , snake_case : Any="</s>" , snake_case : Any="<s>" , snake_case : List[Any]="<unk>" , snake_case : int="<pad>" , snake_case : List[Any]="<mask>" , snake_case : List[Any]=False , **snake_case : Any , ) -> Union[str, Any]: __UpperCAmelCase : List[str] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token __UpperCAmelCase : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token __UpperCAmelCase : str = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token __UpperCAmelCase : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token __UpperCAmelCase : Tuple = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token __UpperCAmelCase : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : List[str] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase : Tuple = json.load(snake_case ) __UpperCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : List[str] = errors # how to handle errors in decoding __UpperCAmelCase : Any = bytes_to_unicode() __UpperCAmelCase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='''utf-8''' ) as merges_handle: __UpperCAmelCase : str = merges_handle.read().split('''\n''' )[1:-1] __UpperCAmelCase : int = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : str = dict(zip(snake_case , range(len(snake_case ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : Optional[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase__ ( self : Tuple ) -> List[str]: return len(self.encoder ) def lowerCamelCase__ ( self : Tuple ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : List[str] , snake_case : Optional[Any] ) -> int: if token in self.cache: return self.cache[token] __UpperCAmelCase : Optional[Any] = tuple(snake_case ) __UpperCAmelCase : Optional[int] = get_pairs(snake_case ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[str] = 0 while i < len(snake_case ): try: __UpperCAmelCase : Optional[Any] = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Optional[Any] = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Union[str, Any] = tuple(snake_case ) __UpperCAmelCase : Optional[Any] = new_word if len(snake_case ) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(snake_case ) __UpperCAmelCase : str = ''' '''.join(snake_case ) __UpperCAmelCase : Optional[int] = word return word def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] ) -> List[str]: __UpperCAmelCase : List[Any] = [] for token in re.findall(self.pat , snake_case ): __UpperCAmelCase : List[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(''' ''' ) ) return bpe_tokens def lowerCamelCase__ ( self : Dict , snake_case : List[str] ) -> Optional[int]: return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , snake_case : int ) -> Optional[int]: return self.decoder.get(snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = ''''''.join(snake_case ) __UpperCAmelCase : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCamelCase__ ( self : List[str] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCAmelCase : str = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase : int = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '''\n''' ) __UpperCAmelCase : Optional[int] = 0 with open(snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(''' '''.join(snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def lowerCamelCase__ ( self : List[Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : List[str] = [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : Union[str, Any] , snake_case : List[str] , snake_case : Dict=False , **snake_case : Union[str, Any] ) -> List[str]: __UpperCAmelCase : Optional[int] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): __UpperCAmelCase : Tuple = ''' ''' + text return (text, kwargs) def lowerCamelCase__ ( self : Tuple , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> int: return token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Dict , snake_case : "Conversation" ) -> List[int]: __UpperCAmelCase : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case ) __UpperCAmelCase : List[str] = ''' '''.join(snake_case ) __UpperCAmelCase : Tuple = self.encode(snake_case ) if len(snake_case ) > self.model_max_length: __UpperCAmelCase : List[str] = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
240
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "marian" __SCREAMING_SNAKE_CASE = ["past_key_values"] __SCREAMING_SNAKE_CASE = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __lowerCamelCase=5_8_1_0_1 , __lowerCamelCase=None , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=1_2 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=1_6 , __lowerCamelCase=1_2 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=1_6 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase="gelu" , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0_2 , __lowerCamelCase=5_8_1_0_0 , __lowerCamelCase=False , __lowerCamelCase=5_8_1_0_0 , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=True , **__lowerCamelCase , ) -> List[str]: _A : int = vocab_size _A : Tuple = decoder_vocab_size or vocab_size _A : Tuple = max_position_embeddings _A : Optional[Any] = d_model _A : List[Any] = encoder_ffn_dim _A : Optional[int] = encoder_layers _A : Any = encoder_attention_heads _A : Dict = decoder_ffn_dim _A : Any = decoder_layers _A : str = decoder_attention_heads _A : Optional[Any] = dropout _A : Optional[Any] = attention_dropout _A : Dict = activation_dropout _A : Any = activation_function _A : Any = init_std _A : str = encoder_layerdrop _A : Tuple = decoder_layerdrop _A : List[Any] = use_cache _A : Optional[Any] = encoder_layers _A : Dict = scale_embedding # scale factor will be sqrt(d_model) if True _A : Dict = share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class lowerCAmelCase__ ( a): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _A : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: _A : Tuple = {0: "batch"} _A : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _A : Dict = {0: "batch", 1: "decoder_sequence"} _A : List[Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. _A : List[str] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ]) if self.use_past: _A , _A : int = self.num_layers for i in range(__lowerCamelCase): _A : List[Any] = {0: "batch", 2: "past_sequence + sequence"} _A : str = {0: "batch", 2: "past_sequence + sequence"} else: _A : Optional[Any] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _A : Union[str, Any] = super().outputs else: _A : List[Any] = super(__lowerCamelCase , self).outputs if self.use_past: _A , _A : Union[str, Any] = self.num_layers for i in range(__lowerCamelCase): _A : List[Any] = {0: "batch", 2: "past_sequence + sequence"} _A : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]: _A : Any = self._generate_dummy_inputs_for_encoder_and_decoder( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # Generate decoder inputs _A : Dict = seq_length if not self.use_past else 1 _A : str = self._generate_dummy_inputs_for_encoder_and_decoder( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Tuple = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _A : List[str] = dict(**__lowerCamelCase , **__lowerCamelCase) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _A , _A : Dict = common_inputs["input_ids"].shape _A : Optional[int] = common_inputs["decoder_input_ids"].shape[1] _A , _A : int = self.num_attention_heads _A : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _A : Tuple = decoder_seq_length + 3 _A : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _A : Dict = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase)] , dim=1) _A : Dict = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _A , _A : str = self.num_layers _A : Tuple = min(__lowerCamelCase , __lowerCamelCase) _A : Optional[Any] = max(__lowerCamelCase , __lowerCamelCase) - min_num_layers _A : Optional[int] = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase), )) # TODO: test this. _A : Dict = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase))) return common_inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]: _A : Dict = self._generate_dummy_inputs_for_encoder_and_decoder( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch _A , _A : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _A : Dict = seqlen + 2 _A , _A : Any = self.num_layers _A , _A : Dict = self.num_attention_heads _A : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _A : Union[str, Any] = common_inputs["attention_mask"].dtype _A : Any = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase)] , dim=1) _A : List[Any] = [ (torch.zeros(__lowerCamelCase), torch.zeros(__lowerCamelCase)) for _ in range(__lowerCamelCase) ] return common_inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _A : Union[str, Any] = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _A : Optional[int] = tokenizer.num_special_tokens_to_add(__lowerCamelCase) _A : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase) # Generate dummy inputs according to compute batch and sequence _A : List[Any] = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size _A : Dict = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase)) return common_inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = -1 , __lowerCamelCase = -1 , __lowerCamelCase = False , __lowerCamelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _A : Union[str, Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase) else: _A : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase) return common_inputs def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[str]: if self.task in ["default", "seq2seq-lm"]: _A : str = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) else: _A : Tuple = super(__lowerCamelCase , self)._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) @property def _lowerCamelCase ( self) -> float: return 1e-4
11
def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : bool = False ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[Any] = f"Expected string as input, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _A : Union[str, Any] = f"Expected boolean as use_pascal parameter, found {type(UpperCamelCase__ )}" raise ValueError(UpperCamelCase__ ) _A : int = input_str.split("_" ) _A : str = 0 if use_pascal else 1 _A : str = words[start_index:] _A : Optional[Any] = [word[0].upper() + word[1:] for word in words_to_capitalize] _A : Any = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
11
1
from __future__ import annotations from scipy.special import comb # type: ignore class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase_ = len(UpperCAmelCase ) - 1 def A__ ( self , UpperCAmelCase ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase ) , 5 ) == 1 return output_values def A__ ( self , UpperCAmelCase ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ = self.basis_function(UpperCAmelCase ) lowercase_ = 0.0 lowercase_ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def A__ ( self , UpperCAmelCase = 0.01 ) -> Dict: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore lowercase_ = [] # x coordinates of points to plot lowercase_ = [] # y coordinates of points to plot lowercase_ = 0.0 while t <= 1: lowercase_ = self.bezier_curve_function(UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase_ = [i[0] for i in self.list_of_points] lowercase_ = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase , UpperCAmelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(UpperCAmelCase , UpperCAmelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
297
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( snake_case_ , snake_case_ ): """simple docstring""" lowerCAmelCase__ = 1 @register_to_config def __init__( self , UpperCAmelCase = 1000 , UpperCAmelCase = None ) -> List[Any]: '''simple docstring''' self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowercase_ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowercase_ = 4 # running values lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Optional[int]: '''simple docstring''' lowercase_ = num_inference_steps lowercase_ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowercase_ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowercase_ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowercase_ = torch.sin(steps * math.pi / 2 ) ** 2 lowercase_ = (1.0 - self.betas**2) ** 0.5 lowercase_ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowercase_ = timesteps.to(UpperCAmelCase ) lowercase_ = [] def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) lowercase_ = (self.timesteps == timestep).nonzero().item() lowercase_ = timestep_index + 1 lowercase_ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowercase_ = self.ets[-1] elif len(self.ets ) == 2: lowercase_ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowercase_ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowercase_ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowercase_ = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A__ ( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase ) -> torch.FloatTensor: '''simple docstring''' return sample def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = self.alphas[timestep_index] lowercase_ = self.betas[timestep_index] lowercase_ = self.alphas[prev_timestep_index] lowercase_ = self.betas[prev_timestep_index] lowercase_ = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowercase_ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> List[str]: '''simple docstring''' return self.config.num_train_timesteps
297
1
'''simple docstring''' def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[str] ) -> str: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _a = str(bin(lowercase ) )[2:] # remove the leading "0b" _a = str(bin(lowercase ) )[2:] _a = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
243
0
'''simple docstring''' import torch from transformers import AutoModel class lowerCAmelCase_( torch.nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase="sayef/fsner-bert-base-uncased" ) -> Any: super(__UpperCAmelCase ,self ).__init__() lowerCAmelCase__ : Tuple = AutoModel.from_pretrained(__UpperCAmelCase ,return_dict=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = torch.nn.CosineSimilarity(3 ,1E-08 ) lowerCAmelCase__ : Optional[Any] = torch.nn.Softmax(dim=1 ) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> str: return self.bert(**__UpperCAmelCase ).last_hidden_state def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[Any]: return token_embeddings.sum(2 ,keepdim=__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=1 ) -> Optional[int]: return self.softmax(T * self.cos(__UpperCAmelCase ,__UpperCAmelCase ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Any = W_supports["""sizes"""].tolist() lowerCAmelCase__ : Dict = W_supports["""start_token_id"""].item() lowerCAmelCase__ : Optional[Any] = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ : str = self.BERT(**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.BERT(**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Any = W_supports["""input_ids"""] == start_token_id lowerCAmelCase__ : List[Any] = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__UpperCAmelCase ): if i == 0: lowerCAmelCase__ : Tuple = 0 else: lowerCAmelCase__ : Optional[Any] = support_sizes[i - 1] lowerCAmelCase__ : List[str] = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ : List[Any] = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ : Optional[Any] = torch.matmul(q[i] ,s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ : Tuple = torch.matmul(q[i] ,s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ : List[str] = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ : List[Any] = p_start lowerCAmelCase__ : Optional[Any] = p_end return p_starts, p_ends
184
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" def count_of_possible_combinations(UpperCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" def count_of_possible_combinations_with_dp_array( UpperCamelCase , UpperCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase__ : Any = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase ) for item in array ) lowerCAmelCase__ : Tuple = answer return answer lowerCAmelCase__ : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = [0] * (target + 1) lowerCAmelCase__ : List[Any] = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = 3 _lowerCAmelCase = 5 _lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
184
1
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : str = BlenderbotSmallTokenizer _snake_case : List[Any] = False def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().setUp() _UpperCamelCase = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _UpperCamelCase = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCamelCase = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _UpperCamelCase = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) def snake_case__ ( self : List[str] , **lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case__ ( self : str , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = '''adapt act apte''' _UpperCamelCase = '''adapt act apte''' return input_text, output_text def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase = '''adapt act apte''' _UpperCamelCase = ['''adapt''', '''act''', '''ap@@''', '''te'''] _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _UpperCamelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] _UpperCamelCase = '''I am a small frog.''' _UpperCamelCase = tok([src_text] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )['''input_ids'''] _UpperCamelCase = tok.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _UpperCamelCase = '''I am a small frog .''' _UpperCamelCase = '''.''' _UpperCamelCase = tok(lowerCAmelCase__ )['''input_ids'''] _UpperCamelCase = tok(lowerCAmelCase__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
324
'''simple docstring''' import math def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list: """simple docstring""" _UpperCamelCase = end or len(lowercase ) for i in range(lowercase, lowercase ): _UpperCamelCase = i _UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCamelCase = array[temp_index - 1] temp_index -= 1 _UpperCamelCase = temp_index_value return array def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap """simple docstring""" _UpperCamelCase = index _UpperCamelCase = 2 * index + 1 # Left Node _UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCamelCase = right_index if largest != index: _UpperCamelCase , _UpperCamelCase = array[largest], array[index] heapify(lowercase, lowercase, lowercase ) def a__ ( lowercase : list ) -> list: """simple docstring""" _UpperCamelCase = len(lowercase ) for i in range(n // 2, -1, -1 ): heapify(lowercase, lowercase, lowercase ) for i in range(n - 1, 0, -1 ): _UpperCamelCase , _UpperCamelCase = array[0], array[i] heapify(lowercase, 0, lowercase ) return array def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = low _UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCamelCase , _UpperCamelCase = array[j], array[i] i += 1 def a__ ( lowercase : list ) -> list: """simple docstring""" if len(lowercase ) == 0: return array _UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) ) _UpperCamelCase = 16 return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase ) def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 _UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 ) _UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase ) intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase ) _UpperCamelCase = p return insertion_sort(lowercase, lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Any = input('Enter numbers separated by a comma : ').strip() lowercase__ : Any = [float(item) for item in user_input.split(',')] print(sort(unsorted))
324
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowerCAmelCase : int ="""bert-base-cased""" __lowerCAmelCase : Dict ="""google/pegasus-xsum""" __lowerCAmelCase : str =[""" Sam ate lunch today.""", """Sams lunch ingredients."""] __lowerCAmelCase : Optional[Any] =["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] __lowerCAmelCase : Optional[Any] ="""patrickvonplaten/t5-tiny-random""" __lowerCAmelCase : List[Any] ="""sshleifer/bart-tiny-random""" __lowerCAmelCase : Union[str, Any] ="""sshleifer/tiny-mbart""" __lowerCAmelCase : List[str] ="""sshleifer/tiny-marian-en-de""" def UpperCAmelCase__ ( lowerCAmelCase__ :Path , lowerCAmelCase__ :list ) -> Union[str, Any]: '''simple docstring''' lowercase = """\n""".join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open("""w""" ).writelines(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , f'{split}.source' ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , f'{split}.target' ) , lowerCAmelCase__ ) return tmp_dir class _A ( lowerCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in ARTICLES ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in SUMMARIES ) lowercase = 4 lowercase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase , lowercase = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path="""train""" , max_source_length=__lowerCAmelCase , max_target_length=__lowerCAmelCase , src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , ) lowercase = DataLoader(__lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in ARTICLES ) lowercase = max(len(tokenizer.encode(__lowerCAmelCase ) ) for a in SUMMARIES ) lowercase = 4 lowercase = LegacySeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path="""train""" , max_source_length=20 , max_target_length=__lowerCAmelCase , ) lowercase = DataLoader(__lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A__ ( self ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase = tmp_dir.joinpath("""train.source""" ).open().readlines() lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__lowerCAmelCase , __lowerCAmelCase , 128 , __lowerCAmelCase ) lowercase = {x.name for x in tmp_dir.iterdir()} lowercase = {x.name for x in save_dir.iterdir()} lowercase = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowerCAmelCase ) < len(__lowerCAmelCase ) assert len(__lowerCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__lowerCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def A__ ( self ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return lowercase , lowercase , lowercase = self._get_dataset(max_len=64 ) lowercase = 64 lowercase = ds.make_dynamic_sampler(__lowerCAmelCase , required_batch_size_multiple=__lowerCAmelCase ) lowercase = [len(__lowerCAmelCase ) for x in batch_sampler] assert len(set(__lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowerCAmelCase ) == len(__lowerCAmelCase ) # no dropped or added examples lowercase = DataLoader(__lowerCAmelCase , batch_sampler=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase = [] lowercase = [] for batch in data_loader: lowercase = batch["""input_ids"""].shape lowercase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(__lowerCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowerCAmelCase ) assert num_src_per_batch[0] == max(__lowerCAmelCase ) if failures: raise AssertionError(f'too many tokens in {len(__lowerCAmelCase )} batches' ) def A__ ( self ): """simple docstring""" lowercase , lowercase , lowercase = self._get_dataset(max_len=512 ) lowercase = 2 lowercase = ds.make_sortish_sampler(__lowerCAmelCase , shuffle=__lowerCAmelCase ) lowercase = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCAmelCase ) lowercase = tokenizer.pad_token_id def count_pad_tokens(__lowerCAmelCase , __lowerCAmelCase="input_ids" ): return [batch[k].eq(__lowerCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowerCAmelCase , k="""labels""" ) ) < sum(count_pad_tokens(__lowerCAmelCase , k="""labels""" ) ) assert sum(count_pad_tokens(__lowerCAmelCase ) ) < sum(count_pad_tokens(__lowerCAmelCase ) ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase=1000 , __lowerCAmelCase=128 ): """simple docstring""" if os.getenv("""USE_REAL_DATA""" , __lowerCAmelCase ): lowercase = """examples/seq2seq/wmt_en_ro""" lowercase = max_len * 2 * 64 if not Path(__lowerCAmelCase ).joinpath("""train.len""" ).exists(): save_len_file(__lowerCAmelCase , __lowerCAmelCase ) else: lowercase = """examples/seq2seq/test_data/wmt_en_ro""" lowercase = max_len * 4 save_len_file(__lowerCAmelCase , __lowerCAmelCase ) lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase ) lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=__lowerCAmelCase , type_path="""train""" , max_source_length=__lowerCAmelCase , max_target_length=__lowerCAmelCase , n_obs=__lowerCAmelCase , ) return ds, max_tokens, tokenizer def A__ ( self ): """simple docstring""" lowercase , lowercase , lowercase = self._get_dataset() lowercase = set(DistributedSortishSampler(__lowerCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCAmelCase ) ) lowercase = set(DistributedSortishSampler(__lowerCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCAmelCase ) ) assert idsa.intersection(__lowerCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AutoTokenizer.from_pretrained(__lowerCAmelCase , use_fast=__lowerCAmelCase ) if tok_name == MBART_TINY: lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) lowercase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase = SeqaSeqDataset( __lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) lowercase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(__lowerCAmelCase ) == 0
32
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCAmelCase : List[Any] ={ """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =[ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __lowerCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
32
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( UpperCamelCase_ ): UpperCAmelCase_ :Optional[Any] = ['''pixel_values'''] def __init__( self , __A = True , __A = None , __A = 0.9 , __A = PILImageResampling.BICUBIC , __A = True , __A = None , __A = 1 / 255 , __A = True , __A = True , __A = None , __A = None , **__A , ) -> str: super().__init__(**_A ) lowerCAmelCase_ :List[str] = size if size is not None else {"""shortest_edge""": 224} lowerCAmelCase_ :Union[str, Any] = get_size_dict(_A , default_to_square=_A ) lowerCAmelCase_ :Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCAmelCase_ :Optional[int] = get_size_dict(_A , param_name="""crop_size""" ) lowerCAmelCase_ :str = do_resize lowerCAmelCase_ :Tuple = size lowerCAmelCase_ :int = crop_pct lowerCAmelCase_ :Any = resample lowerCAmelCase_ :Any = do_center_crop lowerCAmelCase_ :List[str] = crop_size lowerCAmelCase_ :List[str] = do_rescale lowerCAmelCase_ :str = rescale_factor lowerCAmelCase_ :Union[str, Any] = do_normalize lowerCAmelCase_ :Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase_ :Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCAmelCase ( self , __A , __A , __A = None , __A = PILImageResampling.BICUBIC , __A = None , **__A , ) -> Any: lowerCAmelCase_ :Dict = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCAmelCase_ :Optional[Any] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCAmelCase_ :Dict = int(size["""height"""] / crop_pct ) else: lowerCAmelCase_ :Optional[int] = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(_A ) ) lowerCAmelCase_ :Union[str, Any] = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) else: if "shortest_edge" in size: lowerCAmelCase_ :str = get_resize_output_image_size(_A , size=size["""shortest_edge"""] , default_to_square=_A ) elif "height" in size and "width" in size: lowerCAmelCase_ :List[str] = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(_A ) ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self , __A , __A , __A = None , **__A , ) -> List[Any]: lowerCAmelCase_ :Union[str, Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_A , size=(size["""height"""], size["""width"""]) , data_format=_A , **_A ) def __lowerCAmelCase ( self , __A , __A , __A = None , **__A , ) -> List[str]: return rescale(_A , scale=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self , __A , __A , __A , __A = None , **__A , ) -> Tuple: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def __lowerCAmelCase ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> Optional[Any]: lowerCAmelCase_ :Tuple = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ :Dict = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase_ :Optional[int] = resample if resample is not None else self.resample lowerCAmelCase_ :int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ :List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ :List[str] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ :Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ :Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase_ :Union[str, Any] = size if size is not None else self.size lowerCAmelCase_ :Optional[int] = get_size_dict(_A , default_to_square=_A ) lowerCAmelCase_ :List[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ :Union[str, Any] = get_size_dict(_A , param_name="""crop_size""" ) lowerCAmelCase_ :List[Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ :Tuple = [to_numpy_array(_A ) for image in images] if do_resize: lowerCAmelCase_ :Dict = [self.resize(image=_A , size=_A , crop_pct=_A , resample=_A ) for image in images] if do_center_crop: lowerCAmelCase_ :Dict = [self.center_crop(image=_A , size=_A ) for image in images] if do_rescale: lowerCAmelCase_ :List[str] = [self.rescale(image=_A , scale=_A ) for image in images] if do_normalize: lowerCAmelCase_ :List[str] = [self.normalize(image=_A , mean=_A , std=_A ) for image in images] lowerCAmelCase_ :List[str] = [to_channel_dimension_format(_A , _A ) for image in images] lowerCAmelCase_ :Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=_A , tensor_type=_A )
84
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ : Optional[Any] ={ '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =['''MobileNetV2FeatureExtractor'''] lowerCAmelCase__ : str =['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] =[ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
257
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Dict = ["image_processor", "tokenizer"] __UpperCAmelCase : int = "LayoutLMv2ImageProcessor" __UpperCAmelCase : List[Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Any, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : Optional[Any]=None, **UpperCAmelCase__ : Dict ): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", UpperCAmelCase__, ) __lowercase = kwargs.pop("feature_extractor" ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase__, UpperCAmelCase__ ) def __call__( self : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None, UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False, UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : int = 0, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, **UpperCAmelCase__ : Tuple, ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping." ) # first, apply the image processor __lowercase = self.image_processor(images=UpperCAmelCase__, return_tensors=UpperCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features["words"] __lowercase = self.tokenizer( text=text if text is not None else features["words"], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["boxes"], word_labels=UpperCAmelCase__, add_special_tokens=UpperCAmelCase__, padding=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=UpperCAmelCase__, stride=UpperCAmelCase__, pad_to_multiple_of=UpperCAmelCase__, return_token_type_ids=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__, return_overflowing_tokens=UpperCAmelCase__, return_special_tokens_mask=UpperCAmelCase__, return_offsets_mapping=UpperCAmelCase__, return_length=UpperCAmelCase__, verbose=UpperCAmelCase__, return_tensors=UpperCAmelCase__, **UpperCAmelCase__, ) # add pixel values __lowercase = features.pop("pixel_values" ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(UpperCAmelCase__, encoded_inputs["overflow_to_sample_mapping"] ) __lowercase = images return encoded_inputs def _lowercase ( self : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[int] ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(UpperCAmelCase__ )} and {len(UpperCAmelCase__ )}""" ) return images_with_overflow def _lowercase ( self : Optional[int], *UpperCAmelCase__ : List[str], **UpperCAmelCase__ : List[str] ): return self.tokenizer.batch_decode(*UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int], *UpperCAmelCase__ : Optional[Any], **UpperCAmelCase__ : List[Any] ): return self.tokenizer.decode(*UpperCAmelCase__, **UpperCAmelCase__ ) @property def _lowercase ( self : List[Any] ): return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowercase ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", UpperCAmelCase__, ) return self.image_processor_class @property def _lowercase ( self : List[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", UpperCAmelCase__, ) return self.image_processor
144
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[Any] ): __lowercase = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) __lowercase = tf.convert_to_tensor( [[5, 1_2_1, 1_1, 6_6_0, 1_6, 7_3_0, 2_5_5_4_3, 1_1_0, 8_3, 6]], dtype=tf.intaa, ) # J'aime le camembert !" __lowercase = model(UpperCAmelCase__ )["last_hidden_state"] __lowercase = tf.TensorShape((1, 1_0, 7_6_8) ) self.assertEqual(output.shape, UpperCAmelCase__ ) # compare the actual values for a slice. __lowercase = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]], dtype=tf.floataa, ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1E-4 ) )
144
1
'''simple docstring''' _SCREAMING_SNAKE_CASE : Any = 0 # The first color of the flag. _SCREAMING_SNAKE_CASE : Dict = 1 # The second color of the flag. _SCREAMING_SNAKE_CASE : Tuple = 2 # The third color of the flag. _SCREAMING_SNAKE_CASE : Union[str, Any] = (red, white, blue) def UpperCamelCase_( snake_case : list ): '''simple docstring''' if not sequence: return [] if len(snake_case ) == 1: return list(snake_case ) snake_case_ = 0 snake_case_ = len(snake_case ) - 1 snake_case_ = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case_ , snake_case_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case_ , snake_case_ = sequence[high], sequence[mid] high -= 1 else: snake_case_ = f'The elements inside the sequence must contains only {colors} values' raise ValueError(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE : Optional[int] = input("Enter numbers separated by commas:\n").strip() _SCREAMING_SNAKE_CASE : Tuple = [int(item.strip()) for item in user_input.split(",")] print(F"{dutch_national_flag_sort(unsorted)}")
85
'''simple docstring''' import os _SCREAMING_SNAKE_CASE : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = 0 snake_case_ = 0 while index < len(snake_case ) - 1: snake_case_ = SYMBOLS[numerals[index]] snake_case_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = "" snake_case_ = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 snake_case_ = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 snake_case_ = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase_( snake_case : str = "/p089_roman.txt" ): '''simple docstring''' snake_case_ = 0 with open(os.path.dirname(snake_case ) + roman_numerals_filename ) as filea: snake_case_ = filea.readlines() for line in lines: snake_case_ = line.strip() snake_case_ = parse_roman_numerals(snake_case ) snake_case_ = generate_roman_numerals(snake_case ) savings += len(snake_case ) - len(snake_case ) return savings if __name__ == "__main__": print(F"{solution() = }")
85
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __A ( ) -> Optional[Any]: a = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" a = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert("""RGB""" ) return image def __A ( __lowerCamelCase ) -> List[Any]: a = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: a = dct.pop(__lowerCamelCase ) a = val def __A ( __lowerCamelCase , __lowerCamelCase ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) a = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict a = torch.cat((q_bias, torch.zeros_like(__lowerCamelCase , requires_grad=__lowerCamelCase ), v_bias) ) a = qkv_bias def __A ( __lowerCamelCase ) -> Any: a = 364 if """coco""" in model_name else 224 a = InstructBlipVisionConfig(image_size=__lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: a = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() a = InstructBlipConfig(vision_config=__lowerCamelCase , text_config=__lowerCamelCase , qformer_config=__lowerCamelCase ) return config, image_size @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=False ) -> Dict: a = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: a = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) a , a = get_blipa_config(__lowerCamelCase ) a = InstructBlipForConditionalGeneration(__lowerCamelCase ).eval() a = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } a , a = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) a = """cuda:1""" if torch.cuda.is_available() else """cpu""" a = """cuda:2""" if torch.cuda.is_available() else """cpu""" a , a , a = load_model_and_preprocess( name=__lowerCamelCase , model_type=__lowerCamelCase , is_eval=__lowerCamelCase , device=__lowerCamelCase ) original_model.eval() print("""Done!""" ) # update state dict keys a = original_model.state_dict() a = create_rename_keys(__lowerCamelCase ) for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a = state_dict.pop(__lowerCamelCase ) if key.startswith("""Qformer.bert""" ): a = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: a = key.replace("""self""" , """attention""" ) if "llm_proj" in key: a = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: a = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): a = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): a = key.replace("""t5""" , """language""" ) a = val # read in qv biases read_in_q_v_bias(__lowerCamelCase , __lowerCamelCase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) a = load_demo_image() a = """What is unusual about this image?""" # create processor a = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__lowerCamelCase , image_std=__lowerCamelCase ) a = InstructBlipProcessor( image_processor=__lowerCamelCase , tokenizer=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase , ) a = processor(images=__lowerCamelCase , text=__lowerCamelCase , return_tensors="""pt""" ).to(__lowerCamelCase ) # make sure processor creates exact same pixel values a = vis_processors["""eval"""](__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase ) a = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __lowerCamelCase ) original_model.to(__lowerCamelCase ) hf_model.to(__lowerCamelCase ) with torch.no_grad(): if "vicuna" in model_name: a = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits a = hf_model(**__lowerCamelCase ).logits else: a = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits a = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(__lowerCamelCase ) a = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) a = hf_model(**__lowerCamelCase , labels=__lowerCamelCase ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , __lowerCamelCase , atol=__lowerCamelCase ) print("""Looks ok!""" ) print("""Generating with original model...""" ) a = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) a = hf_model.generate( **__lowerCamelCase , do_sample=__lowerCamelCase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a = 2 print("""Original generation:""" , __lowerCamelCase ) a = processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) a = [text.strip() for text in output_text] print("""HF generation:""" , __lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'Salesforce/{model_name}' ) hf_model.push_to_hub(f'Salesforce/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) __UpperCamelCase : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
347
__UpperCamelCase : Dict = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def __A ( ) -> None: a = input("""Enter message: """ ) a = input("""Enter key [alphanumeric]: """ ) a = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): a = """encrypt""" a = encrypt_message(__lowerCamelCase , __lowerCamelCase ) elif mode.lower().startswith("""d""" ): a = """decrypt""" a = decrypt_message(__lowerCamelCase , __lowerCamelCase ) print(f'\n{mode.title()}ed message:' ) print(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """encrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: return translate_message(__lowerCamelCase , __lowerCamelCase , """decrypt""" ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str: a = [] a = 0 a = key.upper() for symbol in message: a = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(__lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(__lowerCamelCase ): a = 0 else: translated.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) if __name__ == "__main__": main()
347
1
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = IFImgaImgSuperResolutionPipeline __a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} __a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) __a = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase ( self : Dict ): return self._get_superresolution_dummy_components() def lowercase ( self : Any , _lowerCamelCase : Any , _lowerCamelCase : List[str]=0 ): if str(_lowerCamelCase ).startswith('''mps''' ): _snake_case = torch.manual_seed(_lowerCamelCase ) else: _snake_case = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) _snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) _snake_case = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self : Union[str, Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase ( self : Any ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self : int ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self : Any ): self._test_save_load_local() def lowercase ( self : List[Any] ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
288
"""simple docstring""" from math import sqrt def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowerCamelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
288
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Dict = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[str] = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowercase = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def __UpperCAmelCase ( a_ , a_=None , a_=None , a_=None): snake_case_ = True while ask_again: snake_case_ = input(a_) try: if default is not None and len(a_) == 0: return default return convert_value(a_) if convert_value is not None else result except Exception: if error_message is not None: print(a_) def __UpperCAmelCase ( a_ , a_=[] , a_=None , a_=0): snake_case_ = BulletMenu(a_ , a_) snake_case_ = menu.run(default_choice=a_) return convert_value(a_) if convert_value is not None else result def __UpperCAmelCase ( a_): snake_case_ = int(a_) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value]) def __UpperCAmelCase ( a_): snake_case_ = int(a_) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value]) def __UpperCAmelCase ( a_): snake_case_ = int(a_) return DynamoBackend(DYNAMO_BACKENDS[value]).value def __UpperCAmelCase ( a_): snake_case_ = int(a_) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value]) def __UpperCAmelCase ( a_): snake_case_ = int(a_) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value]) def __UpperCAmelCase ( a_): return {"yes": True, "no": False}[value.lower()] class UpperCamelCase_ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _UpperCamelCase ( self , a , a , a , a ) -> Union[str, Any]: snake_case_ = super()._format_usage(a , a , a , a ) snake_case_ = usage.replace('<command> [<args>] ' , '' ) return usage
178
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def __UpperCAmelCase ( a_ , a_ , a_=8): snake_case_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 snake_case_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a , a , ) -> Tuple: super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) snake_case_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCamelCase ( self , a , a , a , a , a , a ) -> Any: if latents is None: snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) snake_case_ = latents.to(a ) snake_case_ = latents * scheduler.init_noise_sigma return latents def _UpperCamelCase ( self , a=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) snake_case_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def _UpperCamelCase ( self , a=0 ) -> List[str]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) snake_case_ = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) snake_case_ = None for cpu_offloaded_model in [self.unet, self.movq]: snake_case_ , snake_case_ = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. snake_case_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self ) -> Any: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(a , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self , a , a , a , a = 5_12 , a = 5_12 , a = 1_00 , a = 4.0 , a = 1 , a = None , a = None , a = "pil" , a = True , ) -> List[str]: snake_case_ = self._execution_device snake_case_ = guidance_scale > 1.0 if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) if isinstance(a , a ): snake_case_ = torch.cat(a , dim=0 ) snake_case_ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: snake_case_ = image_embeds.repeat_interleave(a , dim=0 ) snake_case_ = negative_image_embeds.repeat_interleave(a , dim=0 ) snake_case_ = hint.repeat_interleave(a , dim=0 ) snake_case_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) snake_case_ = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) snake_case_ = self.scheduler.timesteps snake_case_ = self.movq.config.latent_channels snake_case_ , snake_case_ = downscale_height_and_width(a , a , self.movq_scale_factor ) # create initial latent snake_case_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = {'image_embeds': image_embeds, 'hint': hint} snake_case_ = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) snake_case_ , snake_case_ = noise_pred.chunk(2 ) snake_case_ , snake_case_ = variance_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) snake_case_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): snake_case_ , snake_case_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing snake_case_ = self.movq.decode(a , force_not_quantize=a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: snake_case_ = image * 0.5 + 0.5 snake_case_ = image.clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
178
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A_ ( A__ ) -> List[str]: a__ : List[Any] = {} a__ : Optional[Any] = tokenizer(example['content'] , truncation=A__ )['input_ids'] a__ : Union[str, Any] = len(example['content'] ) / len(output['input_ids'] ) return output lowercase : Optional[Any] = HfArgumentParser(PretokenizationArguments) lowercase : str = parser.parse_args() if args.num_workers is None: lowercase : str = multiprocessing.cpu_count() lowercase : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase : str = time.time() lowercase : Dict = load_dataset(args.dataset_name, split="""train""") print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") lowercase : Optional[Any] = time.time() lowercase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") lowercase : int = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
350
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase : str = logging.get_logger(__name__) lowercase : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : """simple docstring""" __A : str = field( default=__UpperCAmelCase , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__UpperCAmelCase )} ) __A : str = field( default=__UpperCAmelCase , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) __A : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) __A : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) __A : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) __A : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) __A : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) __A : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = '''train''' __A : Tuple = '''dev''' class A__ ( __UpperCAmelCase ): """simple docstring""" __A : SquadDataTrainingArguments __A : List[SquadFeatures] __A : Split __A : bool def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> str: '''simple docstring''' a__ : List[str] = args a__ : Any = is_language_sensitive a__ : Optional[Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase): try: a__ : Optional[int] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') a__ : List[Any] = mode # Load data features from cache or dataset file a__ : List[str] = 'v2' if args.version_2_with_negative else 'v1' a__ : Optional[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a__ : List[Any] = cached_features_file + '.lock' with FileLock(lowercase): if os.path.exists(lowercase) and not args.overwrite_cache: a__ : List[Any] = time.time() a__ : Optional[Any] = torch.load(lowercase) # Legacy cache files have only features, while new cache files # will have dataset and examples also. a__ : List[str] = self.old_features['features'] a__ : int = self.old_features.get('dataset' , lowercase) a__ : Dict = self.old_features.get('examples' , lowercase) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run') else: if mode == Split.dev: a__ : Dict = self.processor.get_dev_examples(args.data_dir) else: a__ : int = self.processor.get_train_examples(args.data_dir) a__ , a__ : Any = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) a__ : Tuple = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]') def __len__( self) -> Tuple: '''simple docstring''' return len(self.features) def __getitem__( self , lowercase) -> Dict[str, torch.Tensor]: '''simple docstring''' a__ : Union[str, Any] = self.features[i] a__ : Optional[int] = torch.tensor(feature.input_ids , dtype=torch.long) a__ : Tuple = torch.tensor(feature.attention_mask , dtype=torch.long) a__ : Optional[Any] = torch.tensor(feature.token_type_ids , dtype=torch.long) a__ : str = torch.tensor(feature.cls_index , dtype=torch.long) a__ : Optional[Any] = torch.tensor(feature.p_mask , dtype=torch.float) a__ : Tuple = torch.tensor(feature.is_impossible , dtype=torch.float) a__ : str = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask}) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible}) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa) * self.args.lang_id)}) if self.mode == Split.train: a__ : Dict = torch.tensor(feature.start_position , dtype=torch.long) a__ : str = torch.tensor(feature.end_position , dtype=torch.long) inputs.update({'start_positions': start_positions, 'end_positions': end_positions}) return inputs
225
0
"""simple docstring""" lowercase_ = [0, 2, 4, 6, 8] lowercase_ = [1, 3, 5, 7, 9] def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __A = 0 for digit in range(1_0 ): __A = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __UpperCamelCase , __UpperCamelCase ) return result __A = 0 for digita in range(1_0 ): __A = digita if (remainder + digita) % 2 == 0: __A = ODD_DIGITS else: __A = EVEN_DIGITS for digita in other_parity_digits: __A = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __UpperCamelCase , __UpperCamelCase , ) return result def lowerCAmelCase ( __UpperCamelCase = 9 ): """simple docstring""" __A = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCamelCase , 0 , [0] * length , __UpperCamelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
266
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class snake_case : '''simple docstring''' def __init__( self : Optional[int], _lowerCamelCase : Optional[int]=2, _lowerCamelCase : Optional[int]=3, _lowerCamelCase : int=64, _lowerCamelCase : List[str]=None ): '''simple docstring''' __A = np.random.default_rng(_lowerCamelCase ) __A = length __A = rng.normal(size=(length,) ).astype(np.floataa ) __A = a * self.x + b + rng.normal(scale=0.1, size=(length,) ).astype(np.floataa ) def __len__( self : str ): '''simple docstring''' return self.length def __getitem__( self : Dict, _lowerCamelCase : Optional[int] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : Optional[Any], _lowerCamelCase : Tuple=0, _lowerCamelCase : Any=0, _lowerCamelCase : Optional[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : Optional[Any]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a[0] + self.b[0] class snake_case ( torch.nn.Module ): '''simple docstring''' def __init__( self : str, _lowerCamelCase : Optional[Any]=0, _lowerCamelCase : Any=0, _lowerCamelCase : List[Any]=False ): '''simple docstring''' super().__init__() __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = torch.nn.Parameter(torch.tensor(_lowerCamelCase ).float() ) __A = True def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[str]=None ): '''simple docstring''' if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __A = False return x * self.a + self.b def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase = 1_6 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer __A = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __A = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __A = load_dataset('''csv''' , data_files=__UpperCamelCase ) __A = datasets['''train'''].unique('''label''' ) __A = {v: i for i, v in enumerate(__UpperCamelCase )} def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase , padding='''max_length''' ) if "label" in examples: __A = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __A = DataLoader(tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=2 ) __A = DataLoader(tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
266
1
import argparse from collections import defaultdict def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ ) -> Any: """simple docstring""" __A = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_snake_case , "r" ) as f: __A = f.readlines() __A = F'''class {class_name}(''' __A = F'''{4 * ' '}def {test_name}(''' __A = F'''{8 * ' '}{correct_line.split()[0]}''' __A = F'''{1_6 * ' '}{correct_line.split()[0]}''' __A = False __A = False __A = False __A = False __A = 0 __A = 0 __A = [] for line in lines: if line.startswith(_snake_case ): __A = True elif in_class and line.startswith(_snake_case ): __A = True elif in_class and in_func and (line.startswith(_snake_case ) or line.startswith(_snake_case )): __A = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __A = True if in_class and in_func and in_line: if ")" not in line: continue else: __A = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * ' '}{correct_line}''' ) __A = False else: new_lines.append(_snake_case ) with open(_snake_case , "w" ) as f: for line in new_lines: f.write(_snake_case ) def UpperCAmelCase ( a_ , a_=None ) -> List[Any]: """simple docstring""" if fail is not None: with open(_snake_case , "r" ) as f: __A = {l.strip() for l in f.readlines()} else: __A = None with open(_snake_case , "r" ) as f: __A = f.readlines() __A = defaultdict(_snake_case ) for line in correct_lines: __A = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Any = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
352
def UpperCAmelCase ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] SCREAMING_SNAKE_CASE :List[str] = generate_large_matrix() SCREAMING_SNAKE_CASE :str = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( a_ ) -> None: """simple docstring""" assert all(row == sorted(a_ , reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_ , reverse=a_ ) for col in zip(*a_ ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __A = (left + right) // 2 __A = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __A = mid + 1 else: __A = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 __A = len(grid[0] ) for i in range(len(a_ ) ): __A = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def UpperCAmelCase ( ) -> None: """simple docstring""" from timeit import timeit print("Running benchmarks" ) __A = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __A = timeit(F'''{func}(grid=grid)''' , setup=a_ , number=5_0_0 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = tempfile.mkdtemp() # fmt: off UpperCamelCase__ :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on UpperCamelCase__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase__ :int = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } UpperCamelCase__ :Union[str, Any] = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :List[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :str = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ :Union[str, Any] = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) UpperCamelCase__ :Any = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :Dict = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = self.prepare_image_inputs() UpperCamelCase__ :List[str] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) UpperCamelCase__ :Optional[int] = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Any = '''lower newer''' UpperCamelCase__ :Optional[Any] = processor(text=UpperCamelCase_ ) UpperCamelCase__ :Tuple = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.get_image_processor() UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = '''lower newer''' UpperCamelCase__ :Optional[int] = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :List[str] = processor.batch_decode(UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.get_image_processor() UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = '''lower newer''' UpperCamelCase__ :Tuple = self.prepare_image_inputs() UpperCamelCase__ :Dict = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
97
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __SCREAMING_SNAKE_CASE = get_tests_dir("""fixtures/test_sentencepiece.model""") __SCREAMING_SNAKE_CASE = {"""target_lang""": """fi""", """source_lang""": """en"""} __SCREAMING_SNAKE_CASE = """>>zh<<""" __SCREAMING_SNAKE_CASE = """Helsinki-NLP/""" if is_torch_available(): __SCREAMING_SNAKE_CASE = """pt""" elif is_tf_available(): __SCREAMING_SNAKE_CASE = """tf""" else: __SCREAMING_SNAKE_CASE = """jax""" @require_sentencepiece class lowerCamelCase_ ( _A ,unittest.TestCase ): '''simple docstring''' a__ = MarianTokenizer a__ = False a__ = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: super().setUp() A : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) A : Tuple = Path(self.tmpdirname ) save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["target_spm"] ) A : int = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self : Any , **__lowerCamelCase : Dict ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> Dict: return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: A : str = "</s>" A : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: A : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(__lowerCamelCase ) , 9 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: A : Tuple = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) A : str = en_de_tokenizer(["I am a small frog"] , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) A : Optional[int] = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(__lowerCamelCase , batch.input_ids[0] ) A : List[str] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__lowerCamelCase ) A : str = [x.name for x in Path(__lowerCamelCase ).glob("*" )] self.assertIn("source.spm" , __lowerCamelCase ) MarianTokenizer.from_pretrained(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: A : Dict = self.get_tokenizer() A : Any = tok( ["I am a small frog" * 10_00, "I am a small frog"] , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: A : str = self.get_tokenizer() A : Any = tok(["I am a tiny frog", "I am a small frog"] , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Dict: # fmt: off A : List[str] = {"input_ids": [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: A : Optional[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) A : Optional[Any] = "Tämä on testi" A : Union[str, Any] = "This is a test" A : Optional[int] = [76, 7, 20_47, 2] A : int = [69, 12, 11, 9_40, 2] A : Any = tokenizer(__lowerCamelCase ).input_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) A : str = tokenizer(text_target=__lowerCamelCase ).input_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) A : List[str] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
256
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Any = set() A : int = [] def parse_line(_lowerCamelCase ): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase ): A : Any = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase ) > 0: A : Union[str, Any] = "\n".join(_lowerCamelCase ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(_lowerCamelCase ) buffer.clear() continue else: A : Union[str, Any] = line.strip() buffer.append(_lowerCamelCase ) if from_gh: for filename in os.listdir(_lowerCamelCase ): A : Tuple = os.path.join(_lowerCamelCase , _lowerCamelCase ) if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) else: try: with zipfile.ZipFile(_lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase ) as fp: parse_line(_lowerCamelCase ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ): A : Tuple = set() A : Union[str, Any] = [os.path.join(_lowerCamelCase , _lowerCamelCase ) for p in os.listdir(_lowerCamelCase ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def UpperCAmelCase ( _lowerCamelCase ): return values.split("," ) __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __SCREAMING_SNAKE_CASE = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __SCREAMING_SNAKE_CASE = extract_warnings(args.output_dir, args.targets) __SCREAMING_SNAKE_CASE = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
256
1
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowercase ( _lowercase ): '''simple docstring''' __lowerCAmelCase = "" __lowerCAmelCase = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): super().__init__(self , **_UpperCAmelCase ) __a : List[str] = repo_info __a : Optional[int] = token __a : int = None def _lowerCamelCase ( self ): if self.dir_cache is None: __a : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __a : Union[str, Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_UpperCAmelCase ): {'''name''': str(_UpperCAmelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = "rb" , **_UpperCAmelCase , ): if not isinstance(self.repo_info , _UpperCAmelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __a : Optional[int] = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def _lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): self._get_dirs() __a : Dict = self._strip_protocol(_UpperCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False , **_UpperCAmelCase ): self._get_dirs() __a : Any = PurePosixPath(path.strip('''/''' ) ) __a : List[Any] = {} for p, f in self.dir_cache.items(): __a : Union[str, Any] = PurePosixPath(p.strip('''/''' ) ) __a : Union[str, Any] = p.parent if root == path: __a : List[str] = f __a : Dict = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
160
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __lowercase : List[Any] = None __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __lowercase : Optional[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __lowercase : List[str] = { '''google/rembert''': 256, } __lowercase : List[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[Any] = RemBertTokenizer def __init__(self , A=None , A=None , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) lowerCamelCase_ : Any = do_lower_case lowerCamelCase_ : Union[str, Any] = remove_space lowerCamelCase_ : Optional[Any] = keep_accents lowerCamelCase_ : str = vocab_file lowerCamelCase_ : str = False if not self.vocab_file else True def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Union[str, Any] = [self.sep_token_id] lowerCamelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : int = [self.sep_token_id] lowerCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(A ) ) return lowerCamelCase_ : Dict = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
318
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
334
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = DebertaTokenizer UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = DebertaTokenizerFast def _snake_case ( self : Optional[int] ) -> Dict: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A: Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] A: int = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A: Union[str, Any] = {'''unk_token''': '''[UNK]'''} A: List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Dict ) -> Union[str, Any]: '''simple docstring''' A: Optional[int] = '''lower newer''' A: str = '''lower newer''' return input_text, output_text def _snake_case ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A: str = self.get_tokenizer() A: Any = '''lower newer''' A: Dict = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] A: int = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokens + [tokenizer.unk_token] A: int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] ) -> Any: '''simple docstring''' A: str = self.get_tokenizer() A: List[str] = tokenizer('''Hello''' , '''World''' ) A: Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , SCREAMING_SNAKE_CASE_ ) @slow def _snake_case ( self : Tuple ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Any = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: Dict = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) A: int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: int = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: A: List[Any] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) A: Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] A: Dict = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) A: Any = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for seq in encoding['''input_ids''']] # fmt: off A: Any = { '''input_ids''': [ [1, 21_18, 1_11_26, 5_65, 35, 83, 2_51_91, 1_63, 1_88_54, 13, 1_21_56, 12, 1_61_01, 2_53_76, 1_38_07, 9, 2_22_05, 2_78_93, 16_35, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 21_18, 1_11_26, 5_65, 2_45_36, 80, 4_37_97, 48_78, 73_73, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_33, 78, 65, 16, 10, 37_24, 15_38, 3_31_83, 1_13_03, 4_37_97, 19_38, 4, 8_70, 2_41_65, 2_91_05, 5, 7_39, 3_26_44, 3_31_83, 1_13_03, 3_61_73, 88, 80, 6_50, 78_21, 4_59_40, 6, 52, 25_59, 5, 18_36, 9, 5, 73_97, 1_31_71, 31, 5, 18_36, 9, 3_26_44, 3_31_83, 1_13_03, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on A: Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , SCREAMING_SNAKE_CASE_ ) for expected, decoded in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
334
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=1_3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0 , SCREAMING_SNAKE_CASE__ : int=2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : str=3_2 , SCREAMING_SNAKE_CASE__ : str=5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : List[str]=3_7 , SCREAMING_SNAKE_CASE__ : Tuple="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=1_0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any=2 , ) -> str: a_ : Union[str, Any] = parent a_ : str = batch_size a_ : List[Any] = image_size a_ : int = patch_size a_ : Optional[int] = num_channels a_ : int = is_training a_ : List[Any] = use_labels a_ : Any = hidden_size a_ : Optional[Any] = num_hidden_layers a_ : List[Any] = num_attention_heads a_ : Optional[Any] = intermediate_size a_ : Dict = hidden_act a_ : Tuple = hidden_dropout_prob a_ : Optional[int] = attention_probs_dropout_prob a_ : Union[str, Any] = type_sequence_label_size a_ : List[Any] = initializer_range a_ : Union[str, Any] = scope a_ : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) a_ : int = (image_size // patch_size) ** 2 a_ : List[str] = num_patches + 2 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: a_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Tuple = None if self.use_labels: a_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> str: a_ : Dict = DeiTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : List[str] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: a_ : str = DeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Any = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images a_ : List[str] = 1 a_ : List[Any] = DeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: a_ : Tuple = self.type_sequence_label_size a_ : Dict = DeiTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Optional[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a_ : int = 1 a_ : Optional[int] = DeiTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() a_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a_ : str = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: a_ : Optional[Any] = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ) : Optional[int] = config_and_inputs a_ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , unittest.TestCase ): snake_case__ : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) snake_case__ : Dict = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case__ : Union[str, Any] = False snake_case__ : Union[str, Any] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : List[str] = DeiTModelTester(self ) a_ : List[str] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: pass def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Any = model_class(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : List[Any] = [*signature.parameters.keys()] a_ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: a_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Union[str, Any]: a_ : List[Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: if not self.model_tester.is_training: return a_ , a_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a_ : Optional[int] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue a_ : Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() a_ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: a_ , a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a_ : Optional[Any] = False a_ : Any = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue a_ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE__ ) model.train() a_ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) a_ : Dict = model(**SCREAMING_SNAKE_CASE__ ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE__ ), *get_values(SCREAMING_SNAKE_CASE__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): a_ : Optional[int] = problem_type['title'] a_ : Union[str, Any] = problem_type['num_labels'] a_ : Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.train() a_ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , return_labels=SCREAMING_SNAKE_CASE__ ) if problem_type["num_labels"] > 1: a_ : List[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) a_ : Tuple = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE__ ) as warning_list: a_ : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Dict = DeiTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" a_ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Union[str, Any] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = self.default_image_processor a_ : List[Any] = prepare_img() a_ : Any = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): a_ : Any = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits a_ : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) a_ : str = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: a_ : str = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) a_ : List[Any] = self.default_image_processor a_ : int = prepare_img() a_ : Dict = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) a_ : List[str] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): a_ : Tuple = model(SCREAMING_SNAKE_CASE__ )
32
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = ['''pixel_values'''] def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, int]] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) a_ : str = size if size is not None else {'shortest_edge': 2_5_6} a_ : Any = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : Dict = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = do_resize a_ : Dict = size a_ : Optional[Any] = resample a_ : Optional[int] = do_center_crop a_ : Dict = crop_size a_ : int = do_rescale a_ : int = rescale_factor a_ : Tuple = do_normalize a_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a_ : Tuple = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size['shortest_edge'] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Dict[str, int] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> np.ndarray: a_ : str = get_size_dict(SCREAMING_SNAKE_CASE__ ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size['height'], size['width']) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Union[float, List[float]] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : ImageInput , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : PILImageResampling = None , SCREAMING_SNAKE_CASE__ : bool = None , SCREAMING_SNAKE_CASE__ : Dict[str, int] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[float] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Union[str, Any]: a_ : List[str] = do_resize if do_resize is not None else self.do_resize a_ : Dict = size if size is not None else self.size a_ : Dict = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = resample if resample is not None else self.resample a_ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop a_ : int = crop_size if crop_size is not None else self.crop_size a_ : Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE__ ) a_ : Dict = do_rescale if do_rescale is not None else self.do_rescale a_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor a_ : Any = do_normalize if do_normalize is not None else self.do_normalize a_ : str = image_mean if image_mean is not None else self.image_mean a_ : Dict = image_std if image_std is not None else self.image_std a_ : Optional[int] = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. a_ : Any = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: a_ : str = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: a_ : int = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: a_ : Optional[Any] = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: a_ : List[Any] = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] a_ : Dict = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] a_ : Tuple = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
32
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. A : Any = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : int = spec.loader.load_module() A : Dict = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A : str = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") A : str = { 'CLIPConfigMixin', 'DecisionTransformerConfigMixin', 'EncoderDecoderConfigMixin', 'RagConfigMixin', 'SpeechEncoderDecoderConfigMixin', 'VisionEncoderDecoderConfigMixin', 'VisionTextDualEncoderConfigMixin', } def a__ ( ): SCREAMING_SNAKE_CASE_ = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE_ = False # source code of `config_class` SCREAMING_SNAKE_CASE_ = inspect.getsource(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = _re_checkpoint.findall(__UpperCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE_ = F'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE_ = True break SCREAMING_SNAKE_CASE_ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE_ = "\n".join(sorted(__UpperCAmelCase ) ) raise ValueError(F'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
356
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
0
def lowerCamelCase_ ( _UpperCamelCase ) -> bool: """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def lowerCamelCase_ ( _UpperCamelCase ) -> bool: """simple docstring""" snake_case_ : Any = credit_card_number snake_case_ : int = 0 snake_case_ : Optional[Any] = len(_UpperCamelCase ) - 2 for i in range(_UpperCamelCase , -1 , -2 ): # double the value of every second digit snake_case_ : Dict = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 snake_case_ : Tuple = cc_number[:i] + str(_UpperCamelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_UpperCamelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCamelCase_ ( _UpperCamelCase ) -> bool: """simple docstring""" snake_case_ : int = f'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(f'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(_UpperCamelCase ) <= 16: print(f'''{error_message} of its length.''' ) return False if not validate_initial_digits(_UpperCamelCase ): print(f'''{error_message} of its first two digits.''' ) return False if not luhn_validation(_UpperCamelCase ): print(f'''{error_message} it fails the Luhn check.''' ) return False print(f'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
279
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowerCAmelCase_ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ : str = list(s_dict.keys() ) for key in keys: snake_case_ : Optional[int] = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case_ : List[str] = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'''{key} -> {new_key}''' ) snake_case_ : Tuple = s_dict.pop(_UpperCamelCase ) return s_dict def lowerCamelCase_ ( _UpperCamelCase ) -> int: """simple docstring""" snake_case_ , snake_case_ : Dict = emb.weight.shape snake_case_ : Tuple = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) snake_case_ : Any = emb.weight.data return lin_layer def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bytes: """simple docstring""" os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ : List[Any] = os.path.basename(_UpperCamelCase ) snake_case_ : Any = url.split('''/''' )[-2] snake_case_ : str = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.exists(_UpperCamelCase ) and not os.path.isfile(_UpperCamelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_UpperCamelCase ): snake_case_ : Union[str, Any] = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_UpperCamelCase ) as source, open(_UpperCamelCase , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_UpperCamelCase , unit_divisor=1_024 ) as loop: while True: snake_case_ : Dict = source.read(8_192 ) if not buffer: break output.write(_UpperCamelCase ) loop.update(len(_UpperCamelCase ) ) snake_case_ : Any = open(_UpperCamelCase , '''rb''' ).read() if hashlib.shaaaa(_UpperCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" if ".pt" not in checkpoint_path: snake_case_ : str = _download(_MODELS[checkpoint_path] ) else: snake_case_ : Union[str, Any] = torch.load(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : int = original_checkpoint['''dims'''] snake_case_ : List[str] = original_checkpoint['''model_state_dict'''] snake_case_ : str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_UpperCamelCase ) rename_keys(_UpperCamelCase ) snake_case_ : Optional[int] = True snake_case_ : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] snake_case_ : List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_UpperCamelCase , decoder_ffn_dim=_UpperCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) snake_case_ : Union[str, Any] = WhisperForConditionalGeneration(_UpperCamelCase ) snake_case_ , snake_case_ : List[Any] = model.model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0 and not set(_UpperCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: snake_case_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case_ : Any = proj_out_weights model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase_ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
279
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch UpperCAmelCase__ = random.Random() def _a ( a :str , a :int=1.0 , a :Any=None , a :Union[str, Any]=None ) -> Union[str, Any]: if rng is None: a = global_rng a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any]=7 , __UpperCAmelCase : Optional[int]=400 , __UpperCAmelCase : Dict=2_000 , __UpperCAmelCase : Dict=1 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Union[str, Any]=16_000 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : List[str]=80 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Tuple=64 , __UpperCAmelCase : List[Any]="hann_window" , __UpperCAmelCase : int=80 , __UpperCAmelCase : int=7_600 , __UpperCAmelCase : Optional[Any]=1e-1_0 , __UpperCAmelCase : int=True , ) ->str: """simple docstring""" a = parent a = batch_size a = min_seq_length a = max_seq_length a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a = feature_size a = padding_value a = sampling_rate a = do_normalize a = num_mel_bins a = hop_length a = win_length a = win_function a = fmin a = fmax a = mel_floor a = return_attention_mask def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : Dict=False ) ->Union[str, Any]: """simple docstring""" def _flatten(__UpperCAmelCase : Dict ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : List[Any]=False ) ->Optional[int]: """simple docstring""" if equal_length: a = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch class lowercase_ ( _lowerCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = SpeechTaFeatureExtractor def __lowerCAmelCase ( self : List[Any] ) ->Optional[int]: """simple docstring""" a = SpeechTaFeatureExtractionTester(self ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[Any] ) ->Any: """simple docstring""" self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input a = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values a = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched a = feat_extract(__UpperCAmelCase , return_tensors='''np''' ).input_values a = feat_extract(__UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = ['''longest''', '''max_length''', '''do_not_pad'''] a = [None, 1_600, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): a = feat_extract(__UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = range(800 , 1_400 , 200 ) a = [floats_list((1, x) )[0] for x in lengths] a = ['''longest''', '''max_length''', '''do_not_pad'''] a = [None, 1_600, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): a = feat_extract(__UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_000 , padding='''max_length''' , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=1_000 , padding='''longest''' , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = feat_extract( __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=2_000 , padding='''longest''' , return_tensors='''np''' ) a = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Any: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a = np.random.rand(100 ).astype(np.floataa ) a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] a = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size a = feature_extractor(audio_target=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input a = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_values a = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a = [floats_list((1, x) )[0] for x in (800, 800, 800)] a = np.asarray(__UpperCAmelCase ) a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self : Dict ) ->str: """simple docstring""" a = self.feat_extract_tester.prepare_inputs_for_target() a = self.feature_extraction_class(**self.feat_extract_dict ) a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) for x, y in zip(__UpperCAmelCase , processed_features[input_name] ) ) ) a = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) a = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) a = processed_features[input_name] if len(batch_features_input.shape ) < 3: a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" a = self.feat_extract_tester.prepare_inputs_for_target(equal_length=__UpperCAmelCase ) a = self.feature_extraction_class(**self.feat_extract_dict ) a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) a = processed_features[input_name] if len(batch_features_input.shape ) < 3: a = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" a = self.feature_extraction_class(**self.feat_extract_dict ) a = self.feat_extract_tester.prepare_inputs_for_target() a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) a = feat_extract.num_mel_bins # hack! a = feat_extract.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] a = feat_extract.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" a = self.feat_extract_dict a = True a = self.feature_extraction_class(**__UpperCAmelCase ) a = self.feat_extract_tester.prepare_inputs_for_target() a = [len(__UpperCAmelCase ) for x in speech_inputs] a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) a = feat_extract.num_mel_bins # hack! a = feat_extract.pad(__UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCAmelCase ) def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a = self.feat_extract_dict a = True a = self.feature_extraction_class(**__UpperCAmelCase ) a = self.feat_extract_tester.prepare_inputs_for_target() a = [len(__UpperCAmelCase ) for x in speech_inputs] a = feat_extract.model_input_names[0] a = BatchFeature({input_name: speech_inputs} ) a = min(__UpperCAmelCase ) a = feat_extract.num_mel_bins # hack! a = feat_extract.pad( __UpperCAmelCase , padding='''max_length''' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , __UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowerCAmelCase ( self : Any , __UpperCAmelCase : str ) ->Optional[int]: """simple docstring""" from datasets import load_dataset a = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a = ds.sort('''id''' ).select(range(__UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" a = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on a = self._load_datasamples(1 ) a = SpeechTaFeatureExtractor() a = feature_extractor(__UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , __UpperCAmelCase , atol=1e-6 ) ) def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on a = self._load_datasamples(1 ) a = SpeechTaFeatureExtractor() a = feature_extractor(audio_target=__UpperCAmelCase , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __UpperCAmelCase , atol=1e-4 ) )
352
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ = "▁" UpperCAmelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = BertGenerationTokenizer __snake_case = False __snake_case = True def __lowerCAmelCase ( self : str ) ->str: """simple docstring""" super().setUp() a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : int ) ->Dict: """simple docstring""" a = '''<s>''' a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1_002 ) def __lowerCAmelCase ( self : List[str] ) ->List[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" a = BertGenerationTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self : List[Any] ) ->List[str]: """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" a = '''Hello World!''' a = [18_536, 2_260, 101] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def __lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @require_torch @slow def __lowerCAmelCase ( self : Any ) ->Dict: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a = list(self.big_tokenizer.get_vocab().keys() )[:10] a = ''' '''.join(__UpperCAmelCase ) a = self.big_tokenizer.encode_plus(__UpperCAmelCase , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__UpperCAmelCase ) a = BertGenerationConfig() a = BertGenerationEncoder(__UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__UpperCAmelCase ) model(**__UpperCAmelCase ) @slow def __lowerCAmelCase ( self : str ) ->Optional[Any]: """simple docstring""" a = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
26
0
"""simple docstring""" def lowerCamelCase ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] UpperCAmelCase : Union[str, Any] = generate_large_matrix() UpperCAmelCase : Union[str, Any] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase ( _UpperCamelCase : Dict ) -> None: '''simple docstring''' assert all(row == sorted(_UpperCamelCase , reverse=_UpperCamelCase ) for row in grid ) assert all(list(_UpperCamelCase ) == sorted(_UpperCamelCase , reverse=_UpperCamelCase ) for col in zip(*_UpperCamelCase ) ) def lowerCamelCase ( _UpperCamelCase : Any ) -> int: '''simple docstring''' __UpperCAmelCase : Any = 0 __UpperCAmelCase : Optional[int] = len(_UpperCamelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: __UpperCAmelCase : List[str] = (left + right) // 2 __UpperCAmelCase : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: __UpperCAmelCase : int = mid + 1 else: __UpperCAmelCase : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : Optional[int] = len(grid[0] ) for i in range(len(_UpperCamelCase ) ): __UpperCAmelCase : str = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCamelCase ) * len(grid[0] )) - total def lowerCamelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase ( _UpperCamelCase : Any ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 0 for row in grid: for i, number in enumerate(_UpperCamelCase ): if number < 0: total += len(_UpperCamelCase ) - i break return total def lowerCamelCase ( ) -> None: '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) __UpperCAmelCase : Any = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): __UpperCAmelCase : str = timeit(f'''{func}(grid=grid)''' , setup=_UpperCamelCase , number=5_0_0 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
115
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): '''simple docstring''' a__ = (IPNDMScheduler,) a__ = (("num_inference_steps", 50),) def lowerCAmelCase_ (self , **lowercase__ ) -> Tuple: __UpperCAmelCase = {'''num_train_timesteps''': 1_000} config.update(**lowercase__ ) return config def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Any: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self ) -> List[str]: pass def lowerCAmelCase_ (self , lowercase__=0 , **lowercase__ ) -> Optional[int]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] if time_step is None: __UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __UpperCAmelCase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = new_scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ (self , **lowercase__ ) -> List[Any]: __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(**lowercase__ ) __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = 10 __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase = model(lowercase__ , lowercase__ ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = dict(self.forward_default_kwargs ) __UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowercase__ ) for scheduler_class in self.scheduler_classes: __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**lowercase__ ) __UpperCAmelCase = self.dummy_sample __UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ , '''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ , '''set_timesteps''' ): __UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __UpperCAmelCase = dummy_past_residuals[:] __UpperCAmelCase = scheduler.timesteps[5] __UpperCAmelCase = scheduler.timesteps[6] __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample __UpperCAmelCase = scheduler.step(lowercase__ , lowercase__ , lowercase__ , **lowercase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ (self ) -> List[Any]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase__ , time_step=lowercase__ ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.full_loop() __UpperCAmelCase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
333
0
import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __A ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase__ : torch.FloatTensor UpperCamelCase__ : Optional[torch.FloatTensor] =None def A ( a_ ,a_=0.999 ,a_="cosine" ,) -> List[str]: if alpha_transform_type == "cosine": def alpha_bar_fn(a_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __UpperCamelCase : Any =[] for i in range(_SCREAMING_SNAKE_CASE ): __UpperCamelCase : Optional[Any] =i / num_diffusion_timesteps __UpperCamelCase : List[Any] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) ,_SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE ,dtype=torch.floataa ) class __A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase__ : List[Any] =1 @register_to_config def __init__( self , lowerCamelCase__ = 1000 , lowerCamelCase__ = 0.0_001 , lowerCamelCase__ = 0.02 , lowerCamelCase__ = "linear" , lowerCamelCase__ = None , lowerCamelCase__ = True , lowerCamelCase__ = True , lowerCamelCase__ = 0 , lowerCamelCase__ = "epsilon" , lowerCamelCase__ = 1.0 , **lowerCamelCase__ , ): """simple docstring""" if kwargs.get('set_alpha_to_one' , _snake_case ) is not None: __UpperCamelCase : str =( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate('set_alpha_to_one' , '1.0.0' , _snake_case , standard_warn=_snake_case ) __UpperCamelCase : List[str] =kwargs["set_alpha_to_one"] if trained_betas is not None: __UpperCamelCase : Union[str, Any] =torch.tensor(_snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCamelCase : Union[str, Any] =torch.linspace(_snake_case , _snake_case , _snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCamelCase : List[str] =( torch.linspace(beta_start**0.5 , beta_end**0.5 , _snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCamelCase : int =betas_for_alpha_bar(_snake_case ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __UpperCamelCase : Optional[int] =1.0 - self.betas __UpperCamelCase : List[str] =torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __UpperCamelCase : Optional[Any] =torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __UpperCamelCase : Tuple =1.0 # setable values __UpperCamelCase : Union[str, Any] =None __UpperCamelCase : Union[str, Any] =torch.from_numpy(np.arange(0 , _snake_case ).copy().astype(np.intaa ) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" return sample def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' f' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' f' maximal {self.config.num_train_timesteps} timesteps.' ) __UpperCamelCase : List[Any] =num_inference_steps __UpperCamelCase : List[Any] =self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCamelCase : str =(np.arange(0 , _snake_case ) * step_ratio).round().copy().astype(np.intaa ) __UpperCamelCase : str =torch.from_numpy(_snake_case ).to(_snake_case ) self.timesteps += self.config.steps_offset def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.0 , lowerCamelCase__ = False , lowerCamelCase__ = None , lowerCamelCase__ = True , ): """simple docstring""" __UpperCamelCase : Tuple =timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __UpperCamelCase : List[Any] =self.alphas_cumprod[timestep] __UpperCamelCase : List[str] =( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __UpperCamelCase : Tuple =1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase : str =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __UpperCamelCase : Optional[Any] =model_output elif self.config.prediction_type == "sample": __UpperCamelCase : Union[str, Any] =model_output __UpperCamelCase : Union[str, Any] =(sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __UpperCamelCase : Union[str, Any] =(alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __UpperCamelCase : List[str] =(alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __UpperCamelCase : List[str] =pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __UpperCamelCase : Union[str, Any] =(1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __UpperCamelCase : str =alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
351
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ :Union[str, Any] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Optional[int] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ :Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
245
0
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax snake_case_ : Any = logging.get_logger(__name__) @add_end_docstrings(lowercase__ ) class lowercase__ ( lowercase__ ): def __init__( self : Optional[Any] ,**lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__(**_A ) requires_backends(self ,'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[int] ,lowerCamelCase__ : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase__ : Dict ): '''simple docstring''' return super().__call__(_A ,**_A ) def UpperCamelCase_ ( self : Any ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : str = {} if "candidate_labels" in kwargs: _UpperCamelCase : str = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCamelCase : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : int="This is a photo of {}." ): '''simple docstring''' _UpperCamelCase : Dict = load_image(_A ) _UpperCamelCase : List[str] = self.image_processor(images=[image] ,return_tensors=self.framework ) _UpperCamelCase : Optional[Any] = candidate_labels _UpperCamelCase : List[Any] = [hypothesis_template.format(_A ) for x in candidate_labels] _UpperCamelCase : str = self.tokenizer(_A ,return_tensors=self.framework ,padding=_A ) _UpperCamelCase : Optional[Any] = [text_inputs] return inputs def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : str = model_inputs.pop('candidate_labels' ) _UpperCamelCase : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] ,_A ): _UpperCamelCase : Dict = text_inputs[0] else: # Batching case. _UpperCamelCase : Optional[Any] = text_inputs[0][0] _UpperCamelCase : List[Any] = self.model(**_A ,**_A ) _UpperCamelCase : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = model_outputs.pop('candidate_labels' ) _UpperCamelCase : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": _UpperCamelCase : Tuple = logits.softmax(dim=-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = probs.tolist() if not isinstance(_A ,_A ): _UpperCamelCase : Any = [scores] elif self.framework == "tf": _UpperCamelCase : Any = stable_softmax(_A ,axis=-1 ) _UpperCamelCase : Dict = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) _UpperCamelCase : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_A ,_A ) ,key=lambda lowerCamelCase__ : -x[0] ) ] return result
83
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase :Tuple = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :str = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :int = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : List[str] = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
251
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , )-> int: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = patch_size UpperCamelCase = max_length UpperCamelCase = num_mel_bins UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = frequency_stride UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase = frequency_out_dimension * time_out_dimension UpperCamelCase = num_patches + 2 def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, input_values, labels def UpperCAmelCase_ ( self )-> int: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Optional[int]: '''simple docstring''' UpperCamelCase = ASTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ )-> Dict: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ASTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A_( ): UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset') UpperCamelCase , UpperCamelCase = torchaudio.load(A) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.default_feature_extractor UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) UpperCamelCase = self.default_feature_extractor UpperCamelCase , UpperCamelCase = prepare_audio() UpperCamelCase = audio.squeeze().numpy() UpperCamelCase = feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
251
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case__ ): _lowercase : int = ['image_processor', 'tokenizer'] _lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowercase : List[str] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : Any , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Optional[Any] ) -> str: __lowerCAmelCase: str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase , ) __lowerCAmelCase: List[Any] = kwargs.pop('feature_extractor' ) __lowerCAmelCase: Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) # first, apply the image processor __lowerCAmelCase: str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase ): __lowerCAmelCase: Tuple = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowerCAmelCase: List[str] = features['words'] __lowerCAmelCase: List[Any] = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values __lowerCAmelCase: Tuple = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowerCAmelCase: int = self.get_overflowing_images(UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowerCAmelCase: str = images return encoded_inputs def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __lowerCAmelCase: str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(UpperCAmelCase )} and {len(UpperCAmelCase )}''' ) return images_with_overflow def UpperCAmelCase ( self : Optional[int] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Dict ) -> Union[str, Any]: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self : Any , *UpperCAmelCase : Dict , **UpperCAmelCase : Any ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self : Union[str, Any] ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase , ) return self.image_processor
322
def _a ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Optional[int] = len(SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _a ( SCREAMING_SNAKE_CASE : Any ) -> str: """simple docstring""" if len(SCREAMING_SNAKE_CASE ) <= 1: return arr, 0 __lowerCAmelCase: str = len(SCREAMING_SNAKE_CASE ) // 2 __lowerCAmelCase: str = arr[0:mid] __lowerCAmelCase: int = arr[mid:] __lowerCAmelCase , __lowerCAmelCase: List[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: int = _count_cross_inversions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: """simple docstring""" __lowerCAmelCase: List[str] = [] __lowerCAmelCase: List[str] = 0 while i < len(SCREAMING_SNAKE_CASE ) and j < len(SCREAMING_SNAKE_CASE ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _a ( ) -> int: """simple docstring""" __lowerCAmelCase: List[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: str = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __lowerCAmelCase: Tuple = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) # an empty list should also have zero inversions __lowerCAmelCase: int = [] __lowerCAmelCase: Any = count_inversions_bf(SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Dict = count_inversions_recursive(SCREAMING_SNAKE_CASE ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
322
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case__ : Dict = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :str = '''albert''' def __init__( self , snake_case_=3_0_0_0_0 , snake_case_=1_2_8 , snake_case_=4_0_9_6 , snake_case_=1_2 , snake_case_=1 , snake_case_=6_4 , snake_case_=1_6_3_8_4 , snake_case_=1 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=0 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_="absolute" , snake_case_=0 , snake_case_=2 , snake_case_=3 , **snake_case_ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Dict = embedding_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Any = inner_group_num UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Dict = classifier_dropout_prob UpperCAmelCase_ : Tuple = position_embedding_type class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase_ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
274
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Optional[Any] = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = '''autoformer''' lowerCamelCase_ :Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = [1, 2, 3, 4, 5, 6, 7] , snake_case_ = True , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = "gelu" , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_ = True , snake_case_=True , snake_case_ = 1_0 , snake_case_ = 2_5 , snake_case_ = 3 , **snake_case_ , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = prediction_length UpperCAmelCase_ : List[str] = context_length if context_length is not None else prediction_length UpperCAmelCase_ : Optional[int] = distribution_output UpperCAmelCase_ : Optional[int] = loss UpperCAmelCase_ : Union[str, Any] = input_size UpperCAmelCase_ : int = num_time_features UpperCAmelCase_ : List[str] = lags_sequence UpperCAmelCase_ : Any = scaling UpperCAmelCase_ : Any = num_dynamic_real_features UpperCAmelCase_ : int = num_static_real_features UpperCAmelCase_ : Optional[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : List[Any] = cardinality else: UpperCAmelCase_ : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) UpperCAmelCase_ : List[str] = embedding_dimension else: UpperCAmelCase_ : List[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase_ : List[str] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase_ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase_ : str = d_model UpperCAmelCase_ : str = encoder_attention_heads UpperCAmelCase_ : str = decoder_attention_heads UpperCAmelCase_ : str = encoder_ffn_dim UpperCAmelCase_ : str = decoder_ffn_dim UpperCAmelCase_ : str = encoder_layers UpperCAmelCase_ : str = decoder_layers UpperCAmelCase_ : str = dropout UpperCAmelCase_ : Optional[int] = attention_dropout UpperCAmelCase_ : Tuple = activation_dropout UpperCAmelCase_ : Any = encoder_layerdrop UpperCAmelCase_ : Tuple = decoder_layerdrop UpperCAmelCase_ : List[str] = activation_function UpperCAmelCase_ : Tuple = init_std UpperCAmelCase_ : Union[str, Any] = use_cache # Autoformer UpperCAmelCase_ : Any = label_length UpperCAmelCase_ : Union[str, Any] = moving_average UpperCAmelCase_ : Tuple = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
274
1
"""simple docstring""" import operator as op UpperCAmelCase = """scaler.pt""" UpperCAmelCase = """pytorch_model""" UpperCAmelCase = """random_states""" UpperCAmelCase = """optimizer""" UpperCAmelCase = """scheduler""" UpperCAmelCase = """pytorch_model.bin""" UpperCAmelCase = """pytorch_model.bin.index.json""" UpperCAmelCase = """model.safetensors""" UpperCAmelCase = """model.safetensors.index.json""" UpperCAmelCase = """1.10.2""" UpperCAmelCase = """py38""" UpperCAmelCase = """4.17.0""" UpperCAmelCase = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] UpperCAmelCase = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] UpperCAmelCase = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] UpperCAmelCase = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] UpperCAmelCase = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] UpperCAmelCase = """2.0.1""" UpperCAmelCase = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] UpperCAmelCase = ["""default""", """reduce-overhead""", """max-autotune"""] UpperCAmelCase = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] UpperCAmelCase = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] UpperCAmelCase = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
256
"""simple docstring""" import os import sys import unittest UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCAmelCase = os.path.join(git_repo_path, """src""", """diffusers""") class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : Tuple ) -> str: _UpperCamelCase = find_backend(''' if not is_torch_available():''' ) self.assertEqual(__UpperCamelCase , '''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _UpperCamelCase = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(__UpperCamelCase , '''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _UpperCamelCase = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(__UpperCamelCase , '''torch_and_transformers_and_onnx''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __UpperCamelCase ) self.assertIn('''torch_and_transformers''' , __UpperCamelCase ) self.assertIn('''flax_and_transformers''' , __UpperCamelCase ) self.assertIn('''torch_and_transformers_and_onnx''' , __UpperCamelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] ) def _UpperCamelCase ( self : Tuple ) -> Optional[int]: _UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__UpperCamelCase , '''\nCONSTANT = None\n''' ) _UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __UpperCamelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' _UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Any: _UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' _UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __UpperCamelCase )
256
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Tuple )-> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A__ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ , cache_dir=lowercase_ ) A__ = [t[-1] for t in os.walk(os.path.join(lowercase_ , os.listdir(lowercase_ )[0] , "snapshots" ) )] A__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Optional[Any] )-> Any: A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowercase_ ) A__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A__ = jax.random.PRNGKey(0 ) A__ = 4 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng A__ = replicate(lowercase_ ) A__ = jax.random.split(lowercase_ , lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1E-3 assert np.abs(np.abs(lowercase_ , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5E-1 A__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowercase_ ) == num_samples def UpperCAmelCase_ ( self :Optional[Any] )-> str: A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowercase_ ) A__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng A__ = replicate(lowercase_ ) A__ = jax.random.split(lowercase_ , lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5E-1 def UpperCAmelCase_ ( self :Optional[int] )-> int: A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ ) A__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng A__ = replicate(lowercase_ ) A__ = jax.random.split(lowercase_ , lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5E-1 def UpperCAmelCase_ ( self :List[Any] )-> Tuple: A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) A__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng A__ = replicate(lowercase_ ) A__ = jax.random.split(lowercase_ , lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5E-1 def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: A__ = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , set_alpha_to_one=lowercase_ , steps_offset=1 , ) A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowercase_ , safety_checker=lowercase_ , ) A__ = scheduler.create_state() A__ = scheduler_state A__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A__ = jax.random.PRNGKey(0 ) A__ = 50 A__ = jax.device_count() A__ = num_samples * [prompt] A__ = pipeline.prepare_inputs(lowercase_ ) # shard inputs and rng A__ = replicate(lowercase_ ) A__ = jax.random.split(lowercase_ , lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1E-3 assert np.abs((np.abs(lowercase_ , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5E-1 def UpperCAmelCase_ ( self :Any )-> Any: A__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A__ = jax.device_count() A__ = num_samples * [prompt] A__ = jax.random.split(jax.random.PRNGKey(0 ) , lowercase_ ) A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , ) A__ = replicate(lowercase_ ) A__ = pipeline.prepare_inputs(lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images.shape == (num_samples, 1, 5_12, 5_12, 3) A__ = images[2, 0, 2_56, 10:17, 1] # With memory efficient attention A__, A__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowercase_ , use_memory_efficient_attention=lowercase_ , ) A__ = replicate(lowercase_ ) A__ = pipeline.prepare_inputs(lowercase_ ) A__ = shard(lowercase_ ) A__ = pipeline(lowercase_ , lowercase_ , lowercase_ , jit=lowercase_ ).images assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3) A__ = images[2, 0, 2_56, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
123
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=False ): A__ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = "" else: A__ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) A__ = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( _lowerCamelCase : Any ): A__ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = dct.pop(_lowerCamelCase ) A__ = val def UpperCamelCase ( ): A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : int=False ): A__ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_lowerCamelCase , ) A__ = ViTHybridConfig(backbone_config=_lowerCamelCase , image_size=3_84 , num_labels=10_00 ) A__ = False # load original model from timm A__ = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCamelCase ) A__ = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = "huggingface/label-files" A__ = "imagenet-1k-id2label.json" A__ = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) A__ = {int(_lowerCamelCase ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": A__ = ViTHybridModel(_lowerCamelCase ).eval() else: A__ = ViTHybridForImageClassification(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # create image processor A__ = create_transform(**resolve_data_config({} , model=_lowerCamelCase ) ) A__ = transform.transforms A__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } A__ = ViTHybridImageProcessor( do_resize=_lowerCamelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowerCamelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_lowerCamelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) A__ = prepare_img() A__ = transform(_lowerCamelCase ).unsqueeze(0 ) A__ = processor(_lowerCamelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) # verify logits with torch.no_grad(): A__ = model(_lowerCamelCase ) A__ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: A__ = timm_model.forward_features(_lowerCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCamelCase , outputs.pooler_output , atol=1e-3 ) else: A__ = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCamelCase ) print(F"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_lowerCamelCase ) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(F"ybelkada/{vit_name}" ) processor.push_to_hub(F"ybelkada/{vit_name}" ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) __lowerCAmelCase : Optional[Any] =parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
123
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = tokenizer(example["""content"""] , truncation=lowerCAmelCase )["""input_ids"""] _lowerCAmelCase = len(example["""content"""] ) / len(output["""input_ids"""] ) return output A__ : int =HfArgumentParser(PretokenizationArguments) A__ : Dict =parser.parse_args() if args.num_workers is None: A__ : int =multiprocessing.cpu_count() A__ : Optional[int] =AutoTokenizer.from_pretrained(args.tokenizer_dir) A__ : Tuple =time.time() A__ : Optional[int] =load_dataset(args.dataset_name, split='''train''') print(F"""Dataset loaded in {time.time()-t_start:.2f}s""") A__ : Union[str, Any] =time.time() A__ : Optional[int] =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F"""Dataset tokenized in {time.time()-t_start:.2f}s""") A__ : Tuple =time.time() ds.push_to_hub(args.tokenized_data_repo) print(F"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
70
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase__ ( unittest.TestCase ,__UpperCamelCase ): '''simple docstring''' def snake_case__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = load_tool('''text-to-speech''' ) self.tool.setup() def snake_case__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : List[Any] = self.tool('''hey''' ) __UpperCAmelCase : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[int] = self.tool('''hey''' ) __UpperCAmelCase : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
226
0
"""simple docstring""" UpperCamelCase = 8.314_462 # Unit - J mol-1 K-1 def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value.") return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowercase_ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value.") return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
370
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : Tuple=100 , _lowerCamelCase : Tuple=" "): lowercase__ : Union[str, Any] = text.split(_lowerCamelCase) return [character.join(text[i : i + n]).strip() for i in range(0 , len(_lowerCamelCase) , _lowerCamelCase)] def lowercase_ ( _lowerCamelCase : dict): lowercase__ , lowercase__ : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"]): if text is not None: for passage in split_text(_lowerCamelCase): titles.append(title if title is not None else "") texts.append(_lowerCamelCase) return {"title": titles, "text": texts} def lowercase_ ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast): lowercase__ : Union[str, Any] = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt")["input_ids"] lowercase__ : Any = ctx_encoder(input_ids.to(device=_lowerCamelCase) , return_dict=_lowerCamelCase).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ : str = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"]) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc) # And compute the embeddings lowercase__ : Optional[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=_lowerCamelCase) lowercase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) lowercase__ : List[Any] = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}) # optional, save as float32 instead of float64 to save space lowercase__ : List[Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset lowercase__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset") dataset.save_to_disk(_lowerCamelCase) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase) # And save the index lowercase__ : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(_lowerCamelCase) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class snake_case_ : __A : str = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) ,metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} ,) __A : Optional[str] = field( default=__A ,metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} ,) __A : str = field( default="facebook/rag-sequence-nq" ,metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} ,) __A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" ,metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } ,) __A : Optional[str] = field( default=str(Path(__A ).parent / "test_run" / "dummy-kb" ) ,metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} ,) @dataclass class snake_case_ : __A : Optional[int] = field( default=__A ,metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } ,) __A : int = field( default=16 ,metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } ,) @dataclass class snake_case_ : __A : int = field( default=768 ,metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} ,) __A : int = field( default=128 ,metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } ,) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
333
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
334
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'transfo-xl' __UpperCAmelCase = ['mems'] __UpperCAmelCase = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Union[str, Any] ,snake_case : List[Any]=267735 ,snake_case : Optional[int]=[20000, 40000, 200000] ,snake_case : int=1024 ,snake_case : Optional[Any]=1024 ,snake_case : Tuple=16 ,snake_case : int=64 ,snake_case : Union[str, Any]=4096 ,snake_case : List[str]=4 ,snake_case : int=False ,snake_case : int=18 ,snake_case : Tuple=1600 ,snake_case : List[str]=1000 ,snake_case : Optional[Any]=True ,snake_case : List[str]=True ,snake_case : Optional[Any]=0 ,snake_case : Optional[Any]=-1 ,snake_case : List[Any]=True ,snake_case : Optional[Any]=0.1 ,snake_case : Union[str, Any]=0.0 ,snake_case : int=True ,snake_case : Any="normal" ,snake_case : int=0.01 ,snake_case : int=0.01 ,snake_case : str=0.02 ,snake_case : Any=1e-5 ,snake_case : Optional[int]=0 ,**snake_case : List[Any] ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =[] self.cutoffs.extend(snake_case ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE =[False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE =[False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE =d_model SCREAMING_SNAKE_CASE =d_embed SCREAMING_SNAKE_CASE =d_head SCREAMING_SNAKE_CASE =d_inner SCREAMING_SNAKE_CASE =div_val SCREAMING_SNAKE_CASE =pre_lnorm SCREAMING_SNAKE_CASE =n_layer SCREAMING_SNAKE_CASE =n_head SCREAMING_SNAKE_CASE =mem_len SCREAMING_SNAKE_CASE =same_length SCREAMING_SNAKE_CASE =attn_type SCREAMING_SNAKE_CASE =clamp_len SCREAMING_SNAKE_CASE =sample_softmax SCREAMING_SNAKE_CASE =adaptive SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =dropatt SCREAMING_SNAKE_CASE =untie_r SCREAMING_SNAKE_CASE =init SCREAMING_SNAKE_CASE =init_range SCREAMING_SNAKE_CASE =proj_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =layer_norm_epsilon super().__init__(eos_token_id=snake_case ,**snake_case ) @property def _lowerCAmelCase ( self : str ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Dict ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
334
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights a : str = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) a : Optional[Any] = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase__ , os.listdir(lowerCAmelCase__ )[0] , "snapshots" ) )] a : Optional[int] = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Any: a : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ ) a : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : Optional[Any] = jax.random.PRNGKey(0 ) a : Optional[Any] = 4 a : Dict = jax.device_count() a : Tuple = num_samples * [prompt] a : List[Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Any = replicate(lowerCAmelCase__ ) a : Any = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : List[Any] = shard(lowerCAmelCase__ ) a : Tuple = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5E-1 a : Optional[Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase__ ) == num_samples def __a ( self ) -> Optional[Any]: a : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCAmelCase__ ) a : Optional[Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : Dict = jax.random.PRNGKey(0 ) a : List[Any] = 50 a : Optional[Any] = jax.device_count() a : str = num_samples * [prompt] a : str = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Optional[Any] = replicate(lowerCAmelCase__ ) a : str = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[Any] = shard(lowerCAmelCase__ ) a : Dict = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5E-1 def __a ( self ) -> Optional[Any]: a : Tuple = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ ) a : List[str] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : str = jax.random.PRNGKey(0 ) a : Dict = 50 a : Optional[Any] = jax.device_count() a : int = num_samples * [prompt] a : str = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Optional[int] = replicate(lowerCAmelCase__ ) a : str = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : int = shard(lowerCAmelCase__ ) a : Union[str, Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def __a ( self ) -> List[str]: a : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) a : Dict = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : int = jax.random.PRNGKey(0 ) a : str = 50 a : Any = jax.device_count() a : str = num_samples * [prompt] a : Any = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Optional[Any] = replicate(lowerCAmelCase__ ) a : Any = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Optional[int] = shard(lowerCAmelCase__ ) a : int = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5E-1 def __a ( self ) -> List[str]: a : Dict = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) a : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) a : Optional[int] = scheduler.create_state() a : List[str] = scheduler_state a : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : Tuple = jax.random.PRNGKey(0 ) a : Union[str, Any] = 50 a : List[Any] = jax.device_count() a : Optional[Any] = num_samples * [prompt] a : Dict = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng a : Optional[Any] = replicate(lowerCAmelCase__ ) a : Tuple = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = shard(lowerCAmelCase__ ) a : List[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5E-1 def __a ( self ) -> Any: a : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) a : int = jax.device_count() a : int = num_samples * [prompt] a : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase__ ) a : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , ) a : Any = replicate(lowerCAmelCase__ ) a : str = pipeline.prepare_inputs(lowerCAmelCase__ ) a : Optional[Any] = shard(lowerCAmelCase__ ) a : Optional[int] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 512, 512, 3) a : Optional[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention a : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , use_memory_efficient_attention=lowerCAmelCase__ , ) a : Optional[Any] = replicate(lowerCAmelCase__ ) a : Tuple = pipeline.prepare_inputs(lowerCAmelCase__ ) a : Union[str, Any] = shard(lowerCAmelCase__ ) a : str = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) a : Optional[Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
371
"""simple docstring""" from itertools import product def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int ) ->list[int]: '''simple docstring''' a : Dict = sides_number a : List[str] = max_face_number * dice_number a : Optional[int] = [0] * (max_total + 1) a : Dict = 1 a : Optional[Any] = range(_lowercase , max_face_number + 1 ) for dice_numbers in product(_lowercase , repeat=_lowercase ): a : Union[str, Any] = sum(_lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _SCREAMING_SNAKE_CASE ( ) ->float: '''simple docstring''' a : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) a : List[Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) a : Optional[Any] = 0 a : Tuple = 9 a : Union[str, Any] = 4 * 9 a : Any = 6 for peter_total in range(_lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a : List[str] = (4**9) * (6**6) a : List[Any] = peter_wins_count / total_games_number a : Any = round(_lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
79
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable _SCREAMING_SNAKE_CASE : Tuple = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
'''simple docstring''' import os _SCREAMING_SNAKE_CASE : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = 0 snake_case_ = 0 while index < len(snake_case ) - 1: snake_case_ = SYMBOLS[numerals[index]] snake_case_ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def UpperCamelCase_( snake_case : int ): '''simple docstring''' snake_case_ = "" snake_case_ = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 snake_case_ = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 snake_case_ = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def UpperCamelCase_( snake_case : str = "/p089_roman.txt" ): '''simple docstring''' snake_case_ = 0 with open(os.path.dirname(snake_case ) + roman_numerals_filename ) as filea: snake_case_ = filea.readlines() for line in lines: snake_case_ = line.strip() snake_case_ = parse_roman_numerals(snake_case ) snake_case_ = generate_roman_numerals(snake_case ) savings += len(snake_case ) - len(snake_case ) return savings if __name__ == "__main__": print(F"{solution() = }")
85
1
'''simple docstring''' class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = name lowercase_ : Any = value lowercase_ : Dict = weight def __repr__( self ): """simple docstring""" return F'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _snake_case ( self ): """simple docstring""" return self.value def _snake_case ( self ): """simple docstring""" return self.name def _snake_case ( self ): """simple docstring""" return self.weight def _snake_case ( self ): """simple docstring""" return self.value / self.weight def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" lowercase_ : Any = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : int = sorted(__SCREAMING_SNAKE_CASE , key=__SCREAMING_SNAKE_CASE , reverse=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [] lowercase_ , lowercase_ : Optional[int] = 0.0, 0.0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (volume) ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def snake_case_ ( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): """simple docstring""" return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
264
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'glpn' def __init__( self , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[32, 64, 160, 256] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[1, 2, 5, 8] , lowercase=[4, 4, 4, 4] , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=0.1 , lowercase=1e-6 , lowercase=64 , lowercase=10 , lowercase=-1 , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**lowercase ) A__ = num_channels A__ = num_encoder_blocks A__ = depths A__ = sr_ratios A__ = hidden_sizes A__ = patch_sizes A__ = strides A__ = mlp_ratios A__ = num_attention_heads A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = drop_path_rate A__ = layer_norm_eps A__ = decoder_hidden_size A__ = max_depth A__ = head_in_index
68
from math import asin, atan, cos, radians, sin, sqrt, tan _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = (AXIS_A - AXIS_B) / AXIS_A _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : List[str] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[Any] = radians(snake_case_ ) _A : str = radians(snake_case_ ) # Equation _A : Dict = sin((phi_a - phi_a) / 2 ) _A : List[str] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda _A : Optional[int] = sqrt(sin_sq_phi + (cos(snake_case_ ) * cos(snake_case_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
26
0
lowerCamelCase : Any = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCamelCase : int = ['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): __lowercase : int = start # add current to visited visited.append(lowerCAmelCase_ ) __lowercase : List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowercase : Optional[int] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCAmelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): for vertice in vertices: if vertice not in visited: __lowercase : Union[str, Any] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # return sort return sort if __name__ == "__main__": lowerCamelCase : int = topological_sort('''a''', [], []) print(sort)
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
import colorsys from PIL import Image # type: ignore def __lowerCAmelCase ( a__ , a__ , a__ ) -> float: __a = x __a = y for step in range(a__ ): # noqa: B007 __a = a * a - b * b + x __a = 2 * a * b + y __a = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __lowerCAmelCase ( a__ ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __lowerCAmelCase ( a__ ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(a__ , 1 , 1 ) ) def __lowerCAmelCase ( a__ = 800 , a__ = 600 , a__ = -0.6 , a__ = 0 , a__ = 3.2 , a__ = 50 , a__ = True , ) -> Image.Image: __a = Image.new('''RGB''' , (image_width, image_height) ) __a = img.load() # loop through the image-coordinates for image_x in range(a__ ): for image_y in range(a__ ): # determine the figure-coordinates based on the image-coordinates __a = figure_width / image_width * image_height __a = figure_center_x + (image_x / image_width - 0.5) * figure_width __a = figure_center_y + (image_y / image_height - 0.5) * figure_height __a = get_distance(a__ , a__ , a__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __a = get_color_coded_rgb(a__ ) else: __a = get_black_and_white_rgb(a__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure A : Tuple = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
6
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : float , _lowercase : float ) ->float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
105
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowercase__ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
280
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "dandelin/vilt-b32-finetuned-vqa" lowerCAmelCase__ : int = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) lowerCAmelCase__ : List[Any] = "image_qa" lowerCAmelCase__ : Any = AutoProcessor lowerCAmelCase__ : Tuple = AutoModelForVisualQuestionAnswering lowerCAmelCase__ : int = ["image", "text"] lowerCAmelCase__ : Any = ["text"] def __init__( self : Optional[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Any ) -> List[str]: """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Dict: """simple docstring""" return self.pre_processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) def a__ ( self : int , _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" with torch.no_grad(): return self.model(**_UpperCAmelCase ).logits def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
325
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : List[Any]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_0 ,SCREAMING_SNAKE_CASE__ : List[Any]=3 ,SCREAMING_SNAKE_CASE__ : Any=3_2 * 4 ,SCREAMING_SNAKE_CASE__ : Tuple=3_2 * 6 ,SCREAMING_SNAKE_CASE__ : int=4 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,): __lowerCamelCase : str = parent __lowerCamelCase : str = batch_size __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Optional[int] = use_auxiliary_loss __lowerCamelCase : int = num_queries __lowerCamelCase : List[str] = num_channels __lowerCamelCase : Optional[int] = min_size __lowerCamelCase : Optional[Any] = max_size __lowerCamelCase : Dict = num_labels __lowerCamelCase : Union[str, Any] = mask_feature_size def lowerCAmelCase ( self : str): __lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=SCREAMING_SNAKE_CASE__) > 0.5 ).float() __lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) ,device=SCREAMING_SNAKE_CASE__) > 0.5).long() __lowerCamelCase : Any = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase ( self : Any): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] ,) ,decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 ,num_queries=self.num_queries ,decoder_attention_heads=2 ,d_model=self.mask_feature_size ,) ,mask_feature_size=self.mask_feature_size ,fpn_feature_size=self.mask_feature_size ,num_channels=self.num_channels ,num_labels=self.num_labels ,) def lowerCAmelCase ( self : Tuple): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase : Dict = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase ( self : int ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : List[Any] = output.encoder_hidden_states __lowerCamelCase : Any = output.pixel_decoder_hidden_states __lowerCamelCase : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__) ,len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__) ,len(config.backbone_config.depths)) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__) ,config.decoder_config.decoder_layers) def lowerCAmelCase ( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[int]=False): with torch.no_grad(): __lowerCamelCase : Tuple = MaskFormerModel(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() __lowerCamelCase : List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE__ ,pixel_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.mask_feature_size) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : str = MaskFormerForInstanceSegmentation(config=SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE__ : str): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): __lowerCamelCase : int = model(pixel_values=SCREAMING_SNAKE_CASE__ ,pixel_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE__) comm_check_on_output(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = model( pixel_values=SCREAMING_SNAKE_CASE__ ,pixel_mask=SCREAMING_SNAKE_CASE__ ,mask_labels=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__) comm_check_on_output(SCREAMING_SNAKE_CASE__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape ,torch.Size([1])) @require_torch class A_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () _UpperCAmelCase : Dict = ( {'''feature-extraction''': MaskFormerModel, '''image-segmentation''': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : Tuple = False def lowerCAmelCase ( self : str): __lowerCamelCase : int = MaskFormerModelTester(self) __lowerCamelCase : Tuple = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,has_text_modality=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): self.config_tester.run_common_tests() def lowerCAmelCase ( self : int): __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE__) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def lowerCAmelCase ( self : int): pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def lowerCAmelCase ( self : Tuple): pass @unittest.skip(reason='MaskFormer is not a generative model') def lowerCAmelCase ( self : Any): pass @unittest.skip(reason='MaskFormer does not use token embeddings') def lowerCAmelCase ( self : int): pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def lowerCAmelCase ( self : str): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCAmelCase ( self : int): pass def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE__) @slow def lowerCAmelCase ( self : List[Any]): for model_name in ["facebook/maskformer-swin-small-coco"]: __lowerCamelCase : str = MaskFormerModel.from_pretrained(SCREAMING_SNAKE_CASE__) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : Any = (self.model_tester.min_size,) * 2 __lowerCamelCase : Any = { 'pixel_values': torch.randn((2, 3, *size) ,device=SCREAMING_SNAKE_CASE__), 'mask_labels': torch.randn((2, 1_0, *size) ,device=SCREAMING_SNAKE_CASE__), 'class_labels': torch.zeros(2 ,1_0 ,device=SCREAMING_SNAKE_CASE__).long(), } __lowerCamelCase : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE__) self.assertTrue(outputs.loss is not None) def lowerCAmelCase ( self : List[str]): __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ,output_hidden_states=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = model(**SCREAMING_SNAKE_CASE__ ,output_attentions=SCREAMING_SNAKE_CASE__) self.assertTrue(outputs.attentions is not None) def lowerCAmelCase ( self : Optional[Any]): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __lowerCamelCase : Optional[Any] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.train() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE__ ,mask_labels=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__).loss loss.backward() def lowerCAmelCase ( self : Optional[int]): # only MaskFormerForInstanceSegmentation has the loss __lowerCamelCase : Union[str, Any] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Optional[Any] = True __lowerCamelCase : Any = True __lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE__) model.to(SCREAMING_SNAKE_CASE__) model.train() __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE__ ,mask_labels=SCREAMING_SNAKE_CASE__ ,class_labels=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase : int = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __lowerCamelCase : int = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) a =1E-4 def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: __lowerCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self : Dict): return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def lowerCAmelCase ( self : int): __lowerCamelCase : Optional[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Dict = self.default_image_processor __lowerCamelCase : Optional[Any] = prepare_img() __lowerCamelCase : int = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ ,(1, 3, 8_0_0, 1_0_8_8)) with torch.no_grad(): __lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) __lowerCamelCase : str = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(SCREAMING_SNAKE_CASE__) .eval() ) __lowerCamelCase : Optional[int] = self.default_image_processor __lowerCamelCase : Optional[Any] = prepare_img() __lowerCamelCase : int = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ ,(1, 3, 8_0_0, 1_0_8_8)) with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__) # masks_queries_logits __lowerCamelCase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) __lowerCamelCase : Union[str, Any] = [ [-1.3737124, -1.7724937, -1.9364233], [-1.5977281, -1.9867939, -2.1523695], [-1.5795398, -1.9269832, -2.093942], ] __lowerCamelCase : str = torch.tensor(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) # class_queries_logits __lowerCamelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) __lowerCamelCase : str = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ]).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(SCREAMING_SNAKE_CASE__) .eval() ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : Any = prepare_img() __lowerCamelCase : List[Any] = image_processor(SCREAMING_SNAKE_CASE__ ,return_tensors='pt').to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(SCREAMING_SNAKE_CASE__ ,(1, 3, 8_0_0, 1_0_8_8)) with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__) # masks_queries_logits __lowerCamelCase : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ,) __lowerCamelCase : Any = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] __lowerCamelCase : int = torch.tensor(SCREAMING_SNAKE_CASE__).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) # class_queries_logits __lowerCamelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape ,(1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) __lowerCamelCase : Any = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]]).to(SCREAMING_SNAKE_CASE__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=SCREAMING_SNAKE_CASE__)) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : int = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(SCREAMING_SNAKE_CASE__) .eval() ) __lowerCamelCase : List[str] = self.default_image_processor __lowerCamelCase : Union[str, Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] ,segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] ,return_tensors='pt' ,) __lowerCamelCase : Optional[int] = inputs['pixel_values'].to(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = [el.to(SCREAMING_SNAKE_CASE__) for el in inputs['mask_labels']] __lowerCamelCase : str = [el.to(SCREAMING_SNAKE_CASE__) for el in inputs['class_labels']] with torch.no_grad(): __lowerCamelCase : Any = model(**SCREAMING_SNAKE_CASE__) self.assertTrue(outputs.loss is not None)
113
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a =[ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ) -> Optional[int]: __lowerCamelCase : int = True while ask_again: __lowerCamelCase : Dict = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__=[] , lowerCamelCase__=None , lowerCamelCase__=0 ) -> str: __lowerCamelCase : Union[str, Any] = BulletMenu(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Dict: __lowerCamelCase : List[str] = int(lowerCamelCase__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: __lowerCamelCase : Union[str, Any] = int(lowerCamelCase__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[Any] = int(lowerCamelCase__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class A_ ( argparse.RawDescriptionHelpFormatter ): def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : int = super()._format_usage(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = usage.replace('<command> [<args>] ' ,'') return usage
113
1
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> str: """simple docstring""" if not isinstance(A__ , A__ ): raise ValueError('iterations must be defined as integers' ) if not isinstance(A__ , A__ ) or not number >= 1: raise ValueError( 'starting number must be\n and integer and be more than 0' ) if not iterations >= 1: raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' ) UpperCamelCase = '' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(A__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
28
"""simple docstring""" from sklearn.metrics import recall_score import datasets UpperCAmelCase__ = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ UpperCAmelCase__ = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ UpperCAmelCase__ = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=None , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : List[str]="binary" , __lowerCAmelCase : Any=None , __lowerCAmelCase : int="warn" , ): _UpperCAmelCase = recall_score( __lowerCAmelCase , __lowerCAmelCase , labels=__lowerCAmelCase , pos_label=__lowerCAmelCase , average=__lowerCAmelCase , sample_weight=__lowerCAmelCase , zero_division=__lowerCAmelCase , ) return {"recall": float(__lowerCAmelCase ) if score.size == 1 else score}
289
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''BeitFeatureExtractor'''] __lowerCAmelCase = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase_ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase_ = { "facebook/m2m100_418M": 1_024, } # fmt: off lowercase_ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class __A ( A ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['input_ids', 'attention_mask'] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__(self , A , A , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<pad>" , A="<unk>" , A="m2m100" , A = None , A=8 , **A , ) -> None: """simple docstring""" _a = {} if sp_model_kwargs is None else sp_model_kwargs _a = language_codes _a = FAIRSEQ_LANGUAGE_CODES[language_codes] _a = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} _a = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A ) for lang_code in fairseq_language_code if self.get_lang_token(A ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A , tgt_lang=A , bos_token=A , eos_token=A , sep_token=A , unk_token=A , pad_token=A , language_codes=A , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A , **A , ) _a = vocab_file _a = load_json(A ) _a = {v: k for k, v in self.encoder.items()} _a = spm_file _a = load_spm(A , self.sp_model_kwargs ) _a = len(self.encoder ) _a = { self.get_lang_token(A ): self.encoder_size + i for i, lang_code in enumerate(A ) } _a = {lang_code: self.encoder_size + i for i, lang_code in enumerate(A )} _a = {v: k for k, v in self.lang_token_to_id.items()} _a = src_lang if src_lang is not None else '''en''' _a = tgt_lang _a = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _a = num_madeup_words @property def a__ (self ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a__ (self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a__ (self , A ) -> None: """simple docstring""" _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ (self , A ) -> List[str]: """simple docstring""" return self.sp_model.encode(A , out_type=A ) def a__ (self , A ) -> Union[str, Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A , self.encoder[self.unk_token] ) def a__ (self , A ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A , self.unk_token ) def a__ (self , A ) -> Dict: """simple docstring""" _a = [] _a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A ) + token _a = [] else: current_sub_tokens.append(A ) out_string += self.sp_model.decode(A ) return out_string.strip() def a__ (self , A , A = None , A = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) _a = [1] * len(self.prefix_tokens ) _a = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A )) + suffix_ones return prefix_ones + ([0] * len(A )) + ([0] * len(A )) + suffix_ones def a__ (self , A , A = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ (self ) -> Dict: """simple docstring""" _a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ) -> Dict: """simple docstring""" _a = self.__dict__.copy() _a = None return state def __setstate__(self , A ) -> None: """simple docstring""" _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = load_spm(self.spm_file , self.sp_model_kwargs ) def a__ (self , A , A = None ) -> Tuple[str]: """simple docstring""" _a = Path(A ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) _a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) _a = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , A ) if os.path.abspath(self.spm_file ) != os.path.abspath(A ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A ) elif not os.path.isfile(self.spm_file ): with open(A , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(A ) return (str(A ), str(A )) def a__ (self , A , A = "en" , A = None , A = "ro" , **A , ) -> BatchEncoding: """simple docstring""" _a = src_lang _a = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A , A , **A ) def a__ (self , A , A , A , **A ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _a = src_lang _a = self(A , add_special_tokens=A , **A ) _a = self.get_lang_id(A ) _a = tgt_lang_id return inputs def a__ (self ) -> Optional[Any]: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a__ (self ) -> Tuple: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ (self , A ) -> None: """simple docstring""" _a = self.get_lang_token(A ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def a__ (self , A ) -> None: """simple docstring""" _a = self.get_lang_token(A ) _a = self.lang_token_to_id[lang_token] _a = [self.cur_lang_id] _a = [self.eos_token_id] def a__ (self , A ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a__ (self , A ) -> int: """simple docstring""" _a = self.get_lang_token(A ) return self.lang_token_to_id[lang_token] def lowerCAmelCase (__A , __A): """simple docstring""" _a = sentencepiece.SentencePieceProcessor(**__A) spm.Load(str(__A)) return spm def lowerCAmelCase (__A): """simple docstring""" with open(__A , '''r''') as f: return json.load(__A) def lowerCAmelCase (__A , __A): """simple docstring""" with open(__A , '''w''') as f: json.dump(__A , __A , indent=2)
211
0
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
361
from datetime import datetime as dt import os from github import Github SCREAMING_SNAKE_CASE__ : Any = [ "good first issue", "good second issue", "good difficult issue", "feature request", "new model", "wip", ] def __magic_name__ ( ) -> Any: __lowerCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) __lowerCamelCase = g.get_repo('''huggingface/transformers''' ) __lowerCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: __lowerCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) __lowerCamelCase = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
339
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase__ : Dict = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase__ : str = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCAmelCase_ ( _lowerCamelCase: Dict , _lowerCamelCase: List[str]=1_00 , _lowerCamelCase: Any=" " ): __SCREAMING_SNAKE_CASE : Optional[int] = text.split(_lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase )] def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_lowerCamelCase ): titles.append(title if title is not None else """""" ) texts.append(_lowerCamelCase ) return {"title": titles, "text": texts} def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: List[str] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[Any] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_lowerCamelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __SCREAMING_SNAKE_CASE : Optional[Any] = ctx_encoder(input_ids.to(device=_lowerCamelCase ) , return_dict=_lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: Any , _lowerCamelCase: int , ): logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __SCREAMING_SNAKE_CASE : Dict = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __SCREAMING_SNAKE_CASE : List[Any] = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __SCREAMING_SNAKE_CASE : Dict = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __SCREAMING_SNAKE_CASE : Union[str, Any] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase ) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset __SCREAMING_SNAKE_CASE : int = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __SCREAMING_SNAKE_CASE : List[str] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_lowerCamelCase ) # And save the index __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _UpperCamelCase : '''simple docstring''' _A : Any = field( default=str(Path(_a ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) _A : List[Any] = field( default=_a , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) _A : Any = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) _A : Optional[Any] = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) _A : List[str] = field( default=str(Path(_a ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : Any = field( default=_a , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) _A : Tuple = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : Dict = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) _A : List[Any] = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase__ : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase__ : Any = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase__ : Optional[Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
112
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : int = logging.get_logger(__name__) A_ : str = {'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class A_ ( _a ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = ["input_ids", "attention_mask"] a__ = None def __init__(self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="<unk>" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="<pad>" , lowercase__=False , lowercase__=False , **lowercase__ , ) -> Dict: super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , unk_token=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , pad_token=lowercase__ , add_prefix_space=lowercase__ , clean_up_tokenization_spaces=lowercase__ , **lowercase__ , ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowercase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowercase__ ) __UpperCAmelCase = add_prefix_space def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , *lowercase__ , **lowercase__ ) -> BatchEncoding: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowercase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def lowerCAmelCase_ (self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __UpperCAmelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def lowerCAmelCase_ (self , lowercase__ ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase__ , add_special_tokens=lowercase__ ) + [self.eos_token_id] ) if len(lowercase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
333
0
"""simple docstring""" import requests _a = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" _UpperCamelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''], 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
100
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" _UpperCamelCase , _UpperCamelCase = analyze_text(__snake_case ) _UpperCamelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. _UpperCamelCase = sum(single_char_strings.values() ) # one length string _UpperCamelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCamelCase = single_char_strings[ch] _UpperCamelCase = my_str / all_sum my_fir_sum += prob * math.loga(__snake_case ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _UpperCamelCase = sum(two_char_strings.values() ) _UpperCamelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCamelCase = cha + cha if sequence in two_char_strings: _UpperCamelCase = two_char_strings[sequence] _UpperCamelCase = int(__snake_case ) / all_sum my_sec_sum += prob * math.loga(__snake_case ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def lowerCamelCase__ ( __snake_case ) -> tuple[dict, dict]: """simple docstring""" _UpperCamelCase = Counter() # type: ignore _UpperCamelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(__snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowerCamelCase__ ( ) -> Dict: """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
100
1
'''simple docstring''' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def _UpperCamelCase ( __A = 100 ) -> int: '''simple docstring''' UpperCamelCase__ = 1 UpperCamelCase__ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase__ = pre_numerator UpperCamelCase__ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ = cur_numerator UpperCamelCase__ = e_cont * pre_numerator + temp return sum_digits(__A ) if __name__ == "__main__": print(F"""{solution() = }""")
80
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__A ) first_sum += 1 / float(__A ) index += 1 return 1 / first_sum def _UpperCamelCase ( __A ) -> float: '''simple docstring''' UpperCamelCase__ = 0.00 UpperCamelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase__ = F'''Resistor at index {index} has a negative value!''' raise ValueError(__A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
80
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
357
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : int=18 , UpperCAmelCase_ : List[str]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , ): lowerCAmelCase : Any = size if size is not None else {'shortest_edge': 20} lowerCAmelCase : str = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase : List[Any] = parent lowerCAmelCase : Optional[Any] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : Any = max_resolution lowerCAmelCase : int = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : str = crop_size def lowercase__ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( lowerCAmelCase , unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None def lowercase__ ( self : int ): lowerCAmelCase : List[str] = MobileNetVaImageProcessingTester(self ) @property def lowercase__ ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ): lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'size' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop' ) ) self.assertTrue(hasattr(UpperCAmelCase_ , 'crop_size' ) ) def lowercase__ ( self : int ): lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase__ ( self : str ): pass def lowercase__ ( self : List[str] ): # Initialize image_processing lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Optional[Any] ): # Initialize image_processing lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase__ ( self : Dict ): # Initialize image_processing lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(UpperCAmelCase_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : int = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
137
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a_ : List[Any] = logging.getLogger(__name__) a_ : Dict = 'pytorch_model.bin' @dataclasses.dataclass class _snake_case : _lowercase : str = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) _lowercase : Optional[str] = dataclasses.field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class _snake_case : _lowercase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _lowercase : str = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) _lowercase : Optional[str] = dataclasses.field( default=A__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _lowercase : Optional[str] = dataclasses.field( default=A__ , metadata={'''help''': '''The name of the task to train on.'''} , ) _lowercase : Optional[List[str]] = dataclasses.field( default=A__ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class _snake_case : _lowercase : str = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) _lowercase : Optional[str] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) _lowercase : Optional[str] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) _lowercase : Optional[int] = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) _lowercase : Optional[bool] = dataclasses.field( default=A__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) _lowercase : Optional[bool] = dataclasses.field( default=A__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) _lowercase : Optional[bool] = dataclasses.field( default=A__ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) _lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) _lowercase : Optional[int] = dataclasses.field( default=1_00 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _lowercase : Optional[int] = dataclasses.field( default=A__ , metadata={'''help''': '''Random seed for initialization.'''} , ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = datasets.concatenate_datasets([infer_input, infer_output] , axis=1) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE = dataset.filter(lambda _UpperCAmelCase: example["probability"] > args.confidence_threshold) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE = int(eval_result * len(_UpperCAmelCase)) print(_UpperCAmelCase) SCREAMING_SNAKE_CASE = dataset.sort('probability' , reverse=_UpperCAmelCase) SCREAMING_SNAKE_CASE = dataset.select(range(_UpperCAmelCase)) SCREAMING_SNAKE_CASE = dataset.remove_columns(['label', 'probability']) SCREAMING_SNAKE_CASE = dataset.rename_column('prediction' , 'label') SCREAMING_SNAKE_CASE = dataset.map(lambda _UpperCAmelCase: {"label": idalabel[example["label"]]}) SCREAMING_SNAKE_CASE = dataset.shuffle(seed=args.seed) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''train_pseudo.{args.data_file_extension}''') if args.data_file_extension == "csv": dataset.to_csv(_UpperCAmelCase , index=_UpperCAmelCase) else: dataset.to_json(_UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): SCREAMING_SNAKE_CASE = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE = STModelArguments(model_name_or_path=_UpperCAmelCase) SCREAMING_SNAKE_CASE = STDataArguments(train_file=_UpperCAmelCase , infer_file=_UpperCAmelCase) SCREAMING_SNAKE_CASE = STTrainingArguments(output_dir=_UpperCAmelCase) SCREAMING_SNAKE_CASE = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_UpperCAmelCase).items(): setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) for key, value in kwargs.items(): if hasattr(_UpperCAmelCase , _UpperCAmelCase): setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # Sanity checks SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE = args.train_file SCREAMING_SNAKE_CASE = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE = data_files[key].split('.')[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: SCREAMING_SNAKE_CASE = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) logger.info('Creating the initial data directory for self-training...') SCREAMING_SNAKE_CASE = F'''{args.output_dir}/self-train_iter-{{}}'''.format SCREAMING_SNAKE_CASE = data_dir_format(0) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_UpperCAmelCase) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False # Show the progress bar SCREAMING_SNAKE_CASE = tqdm(range(args.max_selftrain_iterations) , disable=not accelerator.is_local_main_process) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations)): SCREAMING_SNAKE_CASE = data_dir_format(_UpperCAmelCase) assert os.path.exists(_UpperCAmelCase) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'stage-1') SCREAMING_SNAKE_CASE = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_UpperCAmelCase , _UpperCAmelCase): arguments_dict.update({key: value}) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'best-checkpoint' , _UpperCAmelCase) if os.path.exists(_UpperCAmelCase): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _UpperCAmelCase , _UpperCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _UpperCAmelCase) finetune(**_UpperCAmelCase) accelerator.wait_for_everyone() assert os.path.exists(_UpperCAmelCase) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _UpperCAmelCase) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'best-checkpoint') SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'stage-2') # Update arguments_dict SCREAMING_SNAKE_CASE = model_path SCREAMING_SNAKE_CASE = data_files['train'] SCREAMING_SNAKE_CASE = current_output_dir SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'best-checkpoint' , _UpperCAmelCase) if os.path.exists(_UpperCAmelCase): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _UpperCAmelCase , _UpperCAmelCase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _UpperCAmelCase) finetune(**_UpperCAmelCase) accelerator.wait_for_everyone() assert os.path.exists(_UpperCAmelCase) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _UpperCAmelCase) SCREAMING_SNAKE_CASE = iteration SCREAMING_SNAKE_CASE = data_dir_format(iteration + 1) SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(os.path.join(_UpperCAmelCase , 'best-checkpoint')) SCREAMING_SNAKE_CASE = config.idalabel SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'eval_results_best-checkpoint.json') SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'test_results_best-checkpoint.json') assert os.path.exists(_UpperCAmelCase) with open(_UpperCAmelCase , 'r') as f: SCREAMING_SNAKE_CASE = float(json.load(_UpperCAmelCase)[args.eval_metric]) SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'infer_output_best-checkpoint.csv') assert os.path.exists(_UpperCAmelCase) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']})['data'] SCREAMING_SNAKE_CASE = load_dataset('csv' , data_files={'data': infer_output_file})['data'] if accelerator.is_main_process: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) shutil.copy(_UpperCAmelCase , os.path.join(_UpperCAmelCase , F'''eval_results_iter-{iteration}.json''')) if os.path.exists(_UpperCAmelCase): shutil.copy(_UpperCAmelCase , os.path.join(_UpperCAmelCase , F'''test_results_iter-{iteration}.json''')) create_pseudo_labeled_data(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''train_pseudo.{args.data_file_extension}''') if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE = new_iteration SCREAMING_SNAKE_CASE = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE = new_iteration SCREAMING_SNAKE_CASE = new_eval_result SCREAMING_SNAKE_CASE = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE = new_iteration SCREAMING_SNAKE_CASE = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE = True progress_bar.update(1) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _UpperCAmelCase) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _UpperCAmelCase) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_UpperCAmelCase , F'''eval_results_iter-{iteration}.json''') , os.path.join(_UpperCAmelCase , 'eval_results_best-iteration.json') , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _UpperCAmelCase) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_UpperCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''') , os.path.join(_UpperCAmelCase , 'eval_results_best-iteration.json') , )
137
1
"""simple docstring""" from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=20_48) ->List[Any]: a_ = config.__dict__ a_ = modal_hidden_size if num_labels: a_ = num_labels
303
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Union[str, Any] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } lowerCamelCase : Tuple = {'mobilebert-uncased': 512} lowerCamelCase : int = {} class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : int = MobileBertTokenizer def __init__(self : Optional[int] , UpperCamelCase : Dict=None , UpperCamelCase : Tuple=None , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]="[UNK]" , UpperCamelCase : Any="[SEP]" , UpperCamelCase : str="[PAD]" , UpperCamelCase : Optional[int]="[CLS]" , UpperCamelCase : str="[MASK]" , UpperCamelCase : Tuple=True , UpperCamelCase : List[str]=None , **UpperCamelCase : List[str] , ): '''simple docstring''' super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(UpperCamelCase , normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**UpperCamelCase ) lowercase__ = do_lower_case def UpperCamelCase__ (self : str , UpperCamelCase : Tuple , UpperCamelCase : Any=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ (self : Any , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ (self : int , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
2
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase) SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None): SCREAMING_SNAKE_CASE = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''') else: SCREAMING_SNAKE_CASE = key.replace('moe_layer.experts.' , 'ffn.experts.expert_') if "gate" in key: SCREAMING_SNAKE_CASE = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier') if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace('.fc2.' , '.ffn.fc2.') if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE = key.replace('.fc1.' , '.ffn.fc1.') if ".encoder_attn." in key: SCREAMING_SNAKE_CASE = key.replace('.encoder_attn.' , '.cross_attention.') if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm') if "final_layer_norm" in key: SCREAMING_SNAKE_CASE = key.replace('final_layer_norm' , 'ff_layer_norm') SCREAMING_SNAKE_CASE = state_dict[old_key] return new_dict def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) for expert in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase)['model'] remove_ignore_keys_(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = os.path.join( _UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) torch.save(_UpperCAmelCase , _UpperCAmelCase) sharded_state_dicts.append(expert_state.keys()) total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size( expert_state[list(_UpperCAmelCase)[0]].dtype) # Add the last block SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin''')) SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + '-shared.pt')['model'] remove_ignore_keys_(_UpperCAmelCase) SCREAMING_SNAKE_CASE = rename_fairseq_keys(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys()) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_UpperCAmelCase) == 1: SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase) torch.save(_UpperCAmelCase , _UpperCAmelCase) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_UpperCAmelCase , _UpperCAmelCase) # Otherwise, let's build the index SCREAMING_SNAKE_CASE = {} for idx, shard in enumerate(_UpperCAmelCase): SCREAMING_SNAKE_CASE = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin''') SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''')) os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase)) for key in shard: SCREAMING_SNAKE_CASE = shard_file # Add the metadata SCREAMING_SNAKE_CASE = {'total_size': total_size} SCREAMING_SNAKE_CASE = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , 'w' , encoding='utf-8') as f: SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n' f.write(_UpperCAmelCase) return metadata, index if __name__ == "__main__": a_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) a_ : Optional[Any] = parser.parse_args() a_ , a_ : Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) a_ : List[Any] = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) a_ : int = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
137
0
'''simple docstring''' lowerCAmelCase :Any = { '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } lowerCAmelCase :Tuple = {value: key for key, value in encode_dict.items()} def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" if set(lowerCAmelCase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __magic_name__ : str = '' for word in coded.split(): while len(lowerCAmelCase ) != 0: decoded += decode_dict[word[:5]] __magic_name__ : Tuple = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
360
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __lowerCAmelCase ( self : Dict ) -> List[str]: torch.manual_seed(0 ) __magic_name__ : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __lowerCAmelCase ( self : str ) -> Any: __magic_name__ : Union[str, Any] = self.dummy_uncond_unet __magic_name__ : str = KarrasVeScheduler() __magic_name__ : List[Any] = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Dict = torch.manual_seed(0 ) __magic_name__ : int = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' ).images __magic_name__ : Any = torch.manual_seed(0 ) __magic_name__ : str = pipe(num_inference_steps=2 , generator=_A , output_type='numpy' , return_dict=_A )[0] __magic_name__ : int = image[0, -3:, -3:, -1] __magic_name__ : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : List[Any] ) -> str: __magic_name__ : Optional[int] = 'google/ncsnpp-celebahq-256' __magic_name__ : List[str] = UNetaDModel.from_pretrained(_A ) __magic_name__ : int = KarrasVeScheduler() __magic_name__ : str = KarrasVePipeline(unet=_A , scheduler=_A ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __magic_name__ : Any = torch.manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe(num_inference_steps=20 , generator=_A , output_type='numpy' ).images __magic_name__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __magic_name__ : int = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
275
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def snake_case ( self , __a ): with open(__a , encoding="utf-8" ) as input_file: __lowerCAmelCase = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __lowerCAmelCase = input_file.read() __lowerCAmelCase = regexp.search(__a ) return match def snake_case ( self , __a ): with open(__a , encoding="utf-8" ) as input_file: __lowerCAmelCase = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __lowerCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowerCAmelCase = regexp.finditer(__a ) __lowerCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def snake_case ( self ): __lowerCAmelCase = Path("./datasets" ) __lowerCAmelCase = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__a ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def snake_case ( self ): __lowerCAmelCase = Path("./datasets" ) __lowerCAmelCase = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__a ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
57
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase( a ): return getitem, k def _lowerCamelCase( a , a ): return setitem, k, v def _lowerCamelCase( a ): return delitem, k def _lowerCamelCase( a , a , *a ): try: return fun(a , *a ), None except Exception as e: return None, e SCREAMING_SNAKE_CASE__:List[Any] = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] SCREAMING_SNAKE_CASE__:List[Any] = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] SCREAMING_SNAKE_CASE__:Any = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] SCREAMING_SNAKE_CASE__:int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] SCREAMING_SNAKE_CASE__:Any = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase( a ): __a = HashMap(initial_block_size=4 ) __a = {} for _, (fun, *args) in enumerate(a ): __a , __a = _run_operation(a , a , *a ) __a , __a = _run_operation(a , a , *a ) assert my_res == py_res assert str(a ) == str(a ) assert set(a ) == set(a ) assert len(a ) == len(a ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase( ): def is_public(a ) -> bool: return not name.startswith("_" ) __a = {name for name in dir({} ) if is_public(a )} __a = {name for name in dir(HashMap() ) if is_public(a )} assert dict_public_names > hash_public_names
261
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger A_ : Any = get_logger(__name__) A_ : Union[str, Any] = Path(__file__).parent / 'model_card_template.md' A_ : List[Any] = uuida().hex A_ : List[str] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES A_ : str = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES A_ : Optional[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def lowerCamelCase_ ( _lowerCamelCase = None ): lowerCamelCase__ : Any = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): ua += "; " + user_agent return ua def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ): if token is None: lowerCamelCase__ : List[str] = HfFolder.get_token() if organization is None: lowerCamelCase__ : Optional[int] = whoami(__UpperCAmelCase )['name'] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__UpperCAmelCase , 'local_rank' ) and args.local_rank not in [-1, 0]: return lowerCamelCase__ : int = args.hub_token if hasattr(__UpperCAmelCase , 'hub_token' ) else None lowerCamelCase__ : Optional[int] = get_full_repo_name(__UpperCAmelCase , token=__UpperCAmelCase ) lowerCamelCase__ : List[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__UpperCAmelCase , model_name=__UpperCAmelCase , repo_name=__UpperCAmelCase , dataset_name=args.dataset_name if hasattr(__UpperCAmelCase , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCAmelCase , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__UpperCAmelCase , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCAmelCase , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__UpperCAmelCase , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__UpperCAmelCase , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCAmelCase , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCAmelCase , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__UpperCAmelCase , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__UpperCAmelCase , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) lowerCamelCase__ : Tuple = os.path.join(args.output_dir , 'README.md' ) model_card.save(__UpperCAmelCase ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): if resolved_file is None or commit_hash is not None: return commit_hash lowerCamelCase__ : List[str] = str(Path(__UpperCAmelCase ).as_posix() ) lowerCamelCase__ : Any = re.search(r'snapshots/([^/]+)/' , __UpperCAmelCase ) if search is None: return None lowerCamelCase__ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. A_ : str = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) A_ : Optional[Any] = os.path.join(hf_cache_home, "diffusers") def lowerCamelCase_ ( _lowerCamelCase = None , _lowerCamelCase = None ): if new_cache_dir is None: lowerCamelCase__ : List[Any] = DIFFUSERS_CACHE if old_cache_dir is None: lowerCamelCase__ : str = old_diffusers_cache lowerCamelCase__ : List[str] = Path(__UpperCAmelCase ).expanduser() lowerCamelCase__ : Any = Path(__UpperCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCamelCase__ : str = new_cache_dir / old_blob_path.relative_to(__UpperCAmelCase ) new_blob_path.parent.mkdir(parents=__UpperCAmelCase , exist_ok=__UpperCAmelCase ) os.replace(__UpperCAmelCase , __UpperCAmelCase ) try: os.symlink(__UpperCAmelCase , __UpperCAmelCase ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). A_ : Tuple = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): A_ : Tuple = 0 else: with open(cache_version_file) as f: try: A_ : Optional[Any] = int(f.read()) except ValueError: A_ : List[str] = 0 if cache_version < 1: A_ : Tuple = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: A_ : str = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " "the directory exists and can be written to." ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase = None ): if variant is not None: lowerCamelCase__ : int = weights_name.split('.' ) lowerCamelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] lowerCamelCase__ : str = '.'.join(__UpperCAmelCase ) return weights_name def lowerCamelCase_ ( _lowerCamelCase , *, _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , ): lowerCamelCase__ : Optional[Any] = str(__UpperCAmelCase ) if os.path.isfile(__UpperCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCAmelCase ): if os.path.isfile(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ): # Load from a PyTorch checkpoint lowerCamelCase__ : List[str] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ): lowerCamelCase__ : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCAmelCase ).base_version ) >= version.parse('0.20.0' ) ): try: lowerCamelCase__ : Any = hf_hub_download( __UpperCAmelCase , filename=_add_variant(__UpperCAmelCase , __UpperCAmelCase ) , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , ) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , __UpperCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCAmelCase , __UpperCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCAmelCase , __UpperCAmelCase )}\' so that the correct variant file can be added.''' , __UpperCAmelCase , ) try: # 2. Load model file as usual lowerCamelCase__ : Union[str, Any] = hf_hub_download( __UpperCAmelCase , filename=__UpperCAmelCase , cache_dir=__UpperCAmelCase , force_download=__UpperCAmelCase , proxies=__UpperCAmelCase , resume_download=__UpperCAmelCase , local_files_only=__UpperCAmelCase , use_auth_token=__UpperCAmelCase , user_agent=__UpperCAmelCase , subfolder=__UpperCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' 'this model name. Check the model page at ' f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
356
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar A_ : str = TypeVar("KEY") A_ : List[Any] = TypeVar("VAL") @dataclass(frozen=snake_case_ , slots=snake_case_ ) class a_ ( Generic[KEY, VAL] ): '''simple docstring''' lowerCamelCase__ : KEY lowerCamelCase__ : VAL class a_ ( _Item ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__(lowerCamelCase_, lowerCamelCase_ ) def __bool__(self ): '''simple docstring''' return False A_ : List[Any] = _DeletedItem() class a_ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__(self, lowerCamelCase_ = 8, lowerCamelCase_ = 0.75 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = initial_block_size lowerCamelCase__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCamelCase__ : List[Any] = capacity_factor lowerCamelCase__ : Optional[int] = 0 def a__ (self, lowerCamelCase_ ): '''simple docstring''' return hash(lowerCamelCase_ ) % len(self._buckets ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self._buckets[ind] if not stored: lowerCamelCase__ : Tuple = _Item(lowerCamelCase_, lowerCamelCase_ ) self._len += 1 return True elif stored.key == key: lowerCamelCase__ : Optional[int] = _Item(lowerCamelCase_, lowerCamelCase_ ) return True else: return False def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCamelCase__ : Any = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Any = self._buckets lowerCamelCase__ : Dict = [None] * new_size lowerCamelCase__ : Tuple = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def a__ (self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._get_bucket_index(lowerCamelCase_ ) for _ in range(len(self._buckets ) ): yield ind lowerCamelCase__ : Tuple = self._get_next_ind(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): if self._try_set(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): break def __setitem__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCamelCase_, lowerCamelCase_ ) def __delitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[str] = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase_ ) if item is _deleted: continue if item.key == key: lowerCamelCase__ : Optional[int] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self, lowerCamelCase_ ): '''simple docstring''' for ind in self._iterate_buckets(lowerCamelCase_ ): lowerCamelCase__ : List[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase_ ) def __len__(self ): '''simple docstring''' return self._len def __iter__(self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__(self ): '''simple docstring''' lowerCamelCase__ : List[str] = ' ,'.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
316
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A ={ '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __A ={ '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } __A ={ '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } __A ={ '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } __A ={ '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } __A ={ '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } __A ={ '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } __A ={ '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } __A ={ '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRContextEncoderTokenizer class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = DPRQuestionEncoderTokenizer __A =collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) __A =collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) __A =R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(snake_case_ ) class _SCREAMING_SNAKE_CASE : def __call__( self , lowercase , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = None , lowercase = None , lowercase = None , **lowercase , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors=lowercase , return_attention_mask=lowercase , **lowercase , ) elif titles is None or texts is None: lowerCamelCase_ = titles if texts is None else texts return super().__call__( lowercase , lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , return_tensors=lowercase , return_attention_mask=lowercase , **lowercase , ) lowerCamelCase_ = titles if not isinstance(lowercase , lowercase ) else [titles] lowerCamelCase_ = texts if not isinstance(lowercase , lowercase ) else [texts] lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = questions if not isinstance(lowercase , lowercase ) else [questions] * n_passages assert len(lowercase ) == len( lowercase ), f'There should be as many titles than texts but got {len(lowercase )} titles and {len(lowercase )} texts.' lowerCamelCase_ = super().__call__(lowercase , lowercase , padding=lowercase , truncation=lowercase )["input_ids"] lowerCamelCase_ = super().__call__(lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase )["input_ids"] lowerCamelCase_ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase , lowercase ) ] } if return_attention_mask is not False: lowerCamelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ = attention_mask return self.pad(lowercase , padding=lowercase , max_length=lowercase , return_tensors=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase = 16 , lowercase = 64 , lowercase = 4 , ) -> List[DPRSpanPrediction]: lowerCamelCase_ = reader_input["input_ids"] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = reader_output[:3] lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = sorted(range(lowercase ) , reverse=lowercase , key=relevance_logits.__getitem__ ) lowerCamelCase_ = [] for doc_id in sorted_docs: lowerCamelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ = len(lowercase ) lowerCamelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase , top_spans=lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase , start_index=lowercase , end_index=lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , ) -> List[DPRSpanPrediction]: lowerCamelCase_ = [] for start_index, start_score in enumerate(lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ = sorted(lowercase , key=lambda lowercase : x[1] , reverse=lowercase ) lowerCamelCase_ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'Wrong span indices: [{start_index}:{end_index}]' lowerCamelCase_ = end_index - start_index + 1 assert length <= max_answer_length, f'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case_ ) class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = DPRReaderTokenizer
19
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
285
0
def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : int ): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : str=0 ): return sorted(lowerCAmelCase_, key=lambda lowerCAmelCase_ : x[column] ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Dict=float('inf' ) ): for i in range(points_counts - 1 ): for j in range(i + 1, lowerCAmelCase_ ): __lowerCAmelCase = euclidean_distance_sqr(points[i], points[j] ) if current_dis < min_dis: __lowerCAmelCase = current_dis return min_dis def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Tuple, lowerCAmelCase_ : Union[str, Any]=float('inf' ) ): for i in range(min(6, points_counts - 1 ), lowerCAmelCase_ ): for j in range(max(0, i - 6 ), lowerCAmelCase_ ): __lowerCAmelCase = euclidean_distance_sqr(points[i], points[j] ) if current_dis < min_dis: __lowerCAmelCase = current_dis return min_dis def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Any, lowerCAmelCase_ : List[Any] ): # base case if points_counts <= 3: return dis_between_closest_pair(lowerCAmelCase_, lowerCAmelCase_ ) # recursion __lowerCAmelCase = points_counts // 2 __lowerCAmelCase = closest_pair_of_points_sqr( lowerCAmelCase_, points_sorted_on_y[:mid], lowerCAmelCase_ ) __lowerCAmelCase = closest_pair_of_points_sqr( lowerCAmelCase_, points_sorted_on_y[mid:], points_counts - mid ) __lowerCAmelCase = min(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCAmelCase_ ) __lowerCAmelCase = dis_between_closest_in_strip( lowerCAmelCase_, len(lowerCAmelCase_ ), lowerCAmelCase_ ) return min(lowerCAmelCase_, lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Dict ): __lowerCAmelCase = column_based_sort(lowerCAmelCase_, column=0 ) __lowerCAmelCase = column_based_sort(lowerCAmelCase_, column=1 ) return ( closest_pair_of_points_sqr( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) ) ** 0.5 if __name__ == "__main__": _snake_case : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
207
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def lowercase ( self : Optional[Any] ) -> List[Any]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=1_0 , ) return model @property def lowercase ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) __lowerCAmelCase = AutoencoderKL( sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) __lowerCAmelCase = UNetaDModel( sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def lowercase ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) __lowerCAmelCase = DDPMScheduler() __lowerCAmelCase = AudioDiffusionPipeline(vqvae=lowerCAmelCase_ , unet=self.dummy_unet , mel=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , steps=4 ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , steps=4 , return_dict=lowerCAmelCase_ ) __lowerCAmelCase = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) __lowerCAmelCase = DDIMScheduler() __lowerCAmelCase = self.dummy_vqvae_and_unet __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) np.random.seed(0 ) __lowerCAmelCase = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(raw_audio=lowerCAmelCase_ , generator=lowerCAmelCase_ , start_step=5 , steps=1_0 ) __lowerCAmelCase = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 __lowerCAmelCase = self.dummy_unet_condition __lowerCAmelCase = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=lowerCAmelCase_ , mel=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) np.random.seed(0 ) __lowerCAmelCase = torch.rand((1, 1, 1_0) ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , encoding=lowerCAmelCase_ ) __lowerCAmelCase = output.images[0] __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase = torch_device __lowerCAmelCase = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(4_2 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ ) __lowerCAmelCase = output.audios[0] __lowerCAmelCase = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] __lowerCAmelCase = np.frombuffer(image.tobytes() , dtype='uint8' )[:1_0] __lowerCAmelCase = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
207
1